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Abstract

In this paper the drag-out problem for shear-thinning liquids at variable
inclination angle is considered. For this free boundary problem dimension-
reduced lubrication equations are derived for the most commonly used viscos-
ity models, namely, the power-law, Ellis and Carreau model. For the resulting
lubrication models a system of ordinary differential equation governing the
steady state solutions is obtained. Phase plane analysis is used to character-
ize the type of possible steady state solutions and their dependence on the
rheological parameters.

1 Introduction

The drag-out problem, which is the problem of withdrawal of a plate or fiber
from a liquid bath, is one of the fundamental problems in fluid mechanics and
has many applications in nature and technology. The seminal paper on this
problem was given by Landau and Levich [12] and systematic extensions can
be found in [22], [17] and [21]. While the methods in these studies could be
extended and used in various applications [15], [3], they focus on Newtonian
liquids. However, many applications that are concerned with polymeric liquids
and suspensions show nonlinear stress-strain relationships, see e.g. [6] and
[16]. In fact, most polymer solutes used in coating exibit some degree of
shear-thinning behavior. Typically, they show distinct viscosity regimes when
subject to shear stress. At very low shear rates they behave as a Newtonian
fluid; as the shear rate increases the behavior starts to become nonlinear, after
further increase it moves into a regime where the viscosity can be modeled by
a power-law relation. Finally, at very high shear rates the behavior becomes
Newtonian once more.

While most studies in coating flows were concerned with applications of
spin coating, rimming flows or flows of films down an inclined plane, see e.g.
2], [4], [8], [10], [13], [14], [20], [9], we are interested in studying the relevant
parameters that control the shape of the free boundary exibited by shear-
thinning liquids during the steady withdrawal from a reservoir. We choose for
our studies some of the most commonly used viscosity models, which are the
power-law, the Ellis and the Carreau-Yasuda model. A recent discussion on
the suitability of these models for studying thin film flows of shear-thinning
liquids is given in [19] for the case of flows in thin channels, i.e. surface
tension is neglected. Here, we use asymptotic arguments to systematically
derive from the underlying equations of conservation of momentum and mass,
together with the boundary conditions of normal and tangential shear stress,
the leading order equations. These can be integrated out to yield extended



lubrication models for the profile of the film that take account of surface tension
and are also valid in the meniscus region.

In the following sections we are concerned with the steady states. For
all three models we can derive a system of ordinary differential equations for
the steady state solutions. A careful phase plane analysis then shows the
existence of two types of solutions. Type I corresponding to a monotone
film profile and Type II, corresponding to a spatially oscillating film profile.
We develop criteria for the power-law and Ellis model that select the type
of solution. Another difference between these solution is also the thickness
of the films towards the uniform region far away from the meniscus and is
being discussed in a separate section where matched asymptotic solutions and
numerical solutions are compared.

2 Problem formulation

Figure 1: Thin film withdrawn at an angle a from a liquid reservoir.

We consider the evolution of a thin layer of non-Newtonian shear-thinning
liquid on the inclined plane that can be withdrawn from a bath with velocity
U, see figure 1, or pushed into a bath with velocity —U, at the angle o with
the horizontal axis. Here, we only consider the two-dimensional case where
the solution is independent of the coordinate y and the thickness of the film
is denoted by h(Z,t). As usual, Z and Z denote the axes in stream-wise and
cross-stream directions, respectively.

The balance laws for momentum and mass of an incompressible fluid of
density p in the presence of gravity are

du

P = b —Ti* — 7~ pycosa, (2.1a)
e
pr = —p:— 7" — 7 — pgsina, (2.1b)



for 0 < Z < h and —co < T < +o0. Here, we denote d/dt = 0y + ud, + w0, .
At the free surface Z = h we have the normal and tangential stress condition

T2 — 27 hy + TTh2
1+ h2
(77 — 7%Vhg + 77%(1 — h2

T

— D = 0K, (2.1d)
) =0, (2.1e)

respectively. At the surface of the plane Z = 0 we require the no-slip condition
and impermeability of the plane, i.e.

a=U  @w=0 (2.1f)

where u(Z, z,t), w(Z, Z, t) denote the fluid velocity vector components, T is the
shear stress tensor

- TET  FEZ )0 1_ Uz + Wz 2’[Z)2
which is related to the strain tensor via

T=-"ny. (2.2)

We denote by 7 the viscosity and 7 is the strain rate,

D=

¥ = (262 + U + 2uzz + W5 + 2w3)7. (2.3)

Additionally we include, in particular for the cases of veritcal drag-out, the
nonlinear curvature at the free boundary h(Z,t)

_ iz
KR= ——————. 24
TENEE (24)
For a discussion of the importance of this modification see e.g. [17| and |22].
Some of the most well-known viscosity models for shear-thinning or shear-
thickening fluids are: the power-law model

n=my""! (2.5)

that is pseudoplastic or shear thinning for n < 1 and shear thickening if n > 1,
the Ellis model, given by

-1
Tq

T1/2

o

; (2.6)

where 79 denotes the viscosity at zero shear and 7/, is the value at which
n =no/2 and the Carreau-Yasuda Model

= (1 ) (2.7)

where 19 and 7, are the limiting viscosities at low and high shear rates, re-
spectively. We note that, unlike the Ellis and Carreau-Yasuda models, the
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power-law model is only meant to apply at large shear rates. While the El-
lis model may for certain liquids underpredict the viscosity in the low shear
transition region from power law to Newtonian behavior, the results in [19]
show that in many cases it compares well with the results for the Carreau-
Yasuda model, which is most commonly employed for industrial applications.
The main advantage of the Ellis model over Carreau-Yasuda is that, in the
case of a film with a free surface, an explicit expression for the film profile
may be derived. Nevertheless, we show here, that for the case of o, = 0 and
c = 2, i.e. the so-called Carreau model, we still can derive a dimension-reduced
lubrication model.

In the following section we derive the lubrication equations for these models
for the drag-out problem. We will take account of the nonlinear curvature
which will be important when « is small, or even zero for the case of vertical
drag-out.

3 Lubrication models for power-law, Ellis and
Carreau model

To begin with, we introduce dimensionsless variables
r=1Lzx, u=U u, p=Pp, h=H h,
z=H =z, w=W w, t="Tt,

and assume that

H
i T and € T <

For the power-law model we observe first that the strain rate is
- . . 1
T=g i = (2622 + u? + 28%uw, + etw? + 26%w?)2

and the shear stress components are

T = —mHT 2u 4", T = _mH(i" (uz + 2wa)3" 7,
TR = _mHn” 2 w, 4", T = —ZHI{:EQ (2ux"y"_1)x,
TIF = _ZTTI [(u: + 62’ww)"7n_1]2, T = —ZTTI& (2w27"_1)z
e —ETZLE [(u + %we )37, -

As usual, the characteristic scale for the pressure is obtained by balancing the
xz-momentum equation (2.1a) p, with the dominant viscous stress term 777
then o
m
P= . 3.1
e H? (3.1)
Requiring the balance of the normal pressure and surface tension at the free

surface yields

p=2" (3.2)



This in turn yields for the capillary number

nU mU™ U mU"™ 3
T T H™g  Hvlg © (3:3)

Ca

Balancing 777 in equation (2.1a) with the gravity term yields an expression
for the characteristic height

H:( mt™ )”%1 (3.4)

pg Ccos &

Hence, we obtain for the dimensionless governing equations

du e e
64Rea = —pp +2(2u A" ), + [(uz + ew, )" 1]2 -1, (3.5a)
dw e e
eﬁReE = —p, +¢&° [(u: + 2w, )" 1]m +&2(2w,4" 1), — D, (3.5b)
Uy + w, =0, (3.5¢)

for 0 < z < h(z,t) and —oo < x < +00. At the free boundary z = h we find
now

A - L2 20w, — (u, + E2wx)2x2+ e2u h2)yn—1 (3.54)
(1 +&2h2)3/2 1+ e2h2
0 = 262 (w, — ug)hy + (uy + 2wy) (1 — e2h2) (3.5¢)
and at the surface of the plate z = 0 we have
u=1, w = 0. (3.5f)

The dependence on the inclination angle is now contained in the parameter

D = etana. (3.5g)
To leading order in € we find 7%% = —u, |u,|"~! and obtain the following
free boundary problem
0=—p, —77°—1, (3.6a)
0=—-p,— D, (3.6Db)
0=uz +w,. (3.6¢)
with boundary conditions
u=1, w =0, at z =0 (3.7a)
u, =0, P =—K, at z = h(x). (3.7b)

This problem can now be integrated to yield a single partial differential
equation for the profile h(x,t). We obtain first the pressure by integrating
(3.6b) with respect to z from z to h and use the boundary condition (3.7b)



p=—k+D(h—2) (3.8)
From the leading order equation (3.6a) we can get
(uz\uzln_l)z = —(ky — Dhy — 1) (3.9)

and intergrating this from z to h(x,t) and noting that z < h(x,t)

s = [ 7 p(h — 2)n (3.10)

where
Y =ky — Dhy —1 (3.11)

We integrate this equation once more from 0 to z and use the no-slip condition
to get for the velocity

n 1-n n+1 n+1
—1_ = (h— T_hT) 3.12
uz) =1- 5o ((h - 2) (3.12)
This can now be used in the kinematic conditon at the free boundary
h
Och = —895/ udz (3.13)
0
to obtain
1—n n n 2n+1 2n+1
h=-— h — o h™n —h n 3.14
ouh =0, = 11"+ vt (57 ). e

or, introducing the new time scale t — %t we get the following lubrication
equation for the power-law model

Oh = —0y [h%\wy%w Lt h] (3.15)

with boundary conditions
lim A = ho, lim h, =0, (3.16a)
lim =0, lim h = o0 . (3.16b)

In principle, the derivation of the lubrication approximation for the Ellis-
and Carreau-Yasuda model are quite similar as demonstrated above. We there-
fore state only the main differences here and refer for details to the correspond-
ing appendices.

For the Ellis model the balance in the xz-momentum equation of p, with
the dominant viscous stress term 75% now yields the following characteristic
scale for the pressure

p_mU

= 1
2¢eH (3.17)



Similarly, balancing 777 in z-momentum equation with the gravity term gives
the following characteristic height

1
U 3
H= <L> (3.18)
2pg cos o
Here, ng, the viscosity at zero shear, is used to non-dimensionalize the viscosity
——
n=3" (3.19)
where
0 7o
LI (3.20)
n T1/2
and hence
2 _ 1—q|.-xz|q—1
=1+ E"79r*=17 ", (3.21)
n
with oF
-
B="""12 (3.22)
noU

The resulting non-dimensional equations can now be integrated, resulting in
the following expression for the velocity

Yt (-1 1, 1
= = |¢(hz — 2* h—z)?t + ——pat! 1 (3.23
u=g [vhs =)+ S (- et )| 41
from which we obtain, after rescaling time as ¢ — 3¢, from the kinematic
condition the lubrication equation for the Ellis model

1/ .5 3 1
8th = —8:0 |:§ <1/Jh + mEq_l

w\zpyq—lhq“) + Sh] (3.24)

together with the boundary conditions (3.16).
Finally, for the Carreau-Yasuda model note first that the parameter X is
assumed to be of order O(1/e¢), i.e.

A= \T = \<eT (3.25)

where A* = O(1). If A would be of larger or smaller order the lubrication
scaling we consider below would simplify into the lubrication problem for the
power-law or Newtonian case, respectively. Additionally, we set 1o, = 0 for
simplicity.

Hence, we have
k-1

n=mno[l+A9)7*

and the shear stress components are

(3.26)

U .
7 = _773{_62 ug[l+ (V)%

- .
T = _UOT(uZ + 2w, [1+ (M)

k-1

U
?222_7707622 wz[1+()\"Y)C] c



Integrating the system (3.6a)-(3.7b) once w.r.t. z we find

k-1
us (L+ [Nuzl) e =(z,t)(h — 2) (3.27)
As shown in appendix 2, one can find for the velocity u the representation

F(w(g(z)) — F(w(g(0)

u(z, z,t) = — e +1 (3.28)
where .
F(w) :/Lﬂw) dw (3.29)
(1+w)= ™

can be written in terms of generalized hypergeometric functions, and where w
and g are related by

wl+ W)t =gz, z,t), with g:= \[Y|(h—2))° (3.30)

Furthermore, for the Carreau model, i.e. ¢ = 2, one can integrate once more
to obtain a representation for the flux

h
QY(z,t) = /udz (3.31)
0
N 1 kwo — 1 kwo k2wk
= 4+ —F s — ——FL h
XBEAD O] | U3 ) T\ T T )T

and hence the corresponding lubrication equation
oh = —0,Q¢ (3.32)

where the F; denote the following generalized hypergeometric functions, see
e.g. [1],

13—k —k
Fl = F<— 3—'§'_W0>7 F2 =F <3—7;;g;_w0>7 (333)

27 2 2 2
1 3 5 7
B = F=2—ko F=F (22 ki — 34
3 (27 ka2a w0>7 4 <27 k727 w0> (33)

and
wo = w(g(O)),

together with the boundary conditions (3.16) at x — +o0o. We next investigate
the steady state solutions for these models.

4 Steady states

4.1 Power-law, Ellis and Carreau model

Set d:h = 0 in (3.15) and integrate w.r.t. z using the boundary conditions
(3.16), to obtain for the flux at +00. For convenience set
2n+1 1—n
a= .

, and b=
n n

(4.1)



Then we have
W [yl + ah = QLF (4.2)

where the flux at +o0 is
QLY = ahso — b, (4.3)

Note now, that in the case of a power-law viscosity we can obtain an explicit
expression for ¢ as a function of h. Let us denote it with

PL PL n—1
PL ( oo ah) ‘Qoo - ah‘
P = p2n+1 (4.4)

Therefore, we obtain the following third order ODE for the steady states

hee PL

We solve this ODE by first writing it as a system of first order equations.
For this we note first that, if we define

A(o) = 2 (4.6)

V1+e2h2

then v, = k. Hence, the system can be written as

hy = —1 (4.7)
1 —g22
Yz = K (4.8)
D
ke = 14— 4yPL (4.9)
1—e242
as long as ¢|y| < 1. The boundary conditions are
h—hsw, 7—0, kK—0 as & — 00, (4.10a)
i.e. towards the flat film, and
h—oo, 7— —1/e, kK—0 as x — 0, (4.10Db)

that is, towards the reservoir. The conditions in the thin flat film are h = h,
v =0 (since hy =0) and K =0 as x — oo.

For the Ellis model we solve the same first order system (4.7)-(4.9), except
that now "% is replaced by ¥ in (4.9). Now, ¥ is the solution of

% [1+q+i2 <%>q_1|¢E\q‘l b3+ 3h = QE (4.11)
where -
QF =3hy — % 1+ q% <%’°> ] h (4.12)
For the Carreau model ¢'% is replaced by ¢, which is the solution of
Q1) = Q% (4.13)

9



where Q¥ is given by

QC \/@

= froo = A3k + 1)

kwe, — 1 ko, k202
e (re5om) + (S50
Woo + 2

3 5

(4.14)
The functions F; are as in (3.33), (3.34) but for the argument wy, instead of
wp, where we is the solution of

woo (1 + woo)F ™1 = (Whoo)? . (4.15)

4.2 Classification of Type I/Type II solutions

We now discuss the possibility of steady state meniscus in more detail, i.e. of
solutions of the system (4.7)-(4.9) which satisfy the required boundary condi-
tions at zero and infinity, see (3.16). For simplicity, we focus first only on the
power-law fluid, and later explain how the results carry over to the othe types
of fluids considered in this paper.

For a given value of QQo,, the ODE system typically has two equilibria,
B = (hp,0,0) and T' = (hp,0,0), each of which can serve as the right far field
state for the meniscus solution. Specifically, for 0 < Qs < a — 1, the two
values hp < hp are the two solutions of the equation

ah; —h% = Que, T €{B,T}.

One easily finds that these solutions satisfy 0 < hp < 1 < hr.
The trajectory of a meniscus solution must lie on the stable manifold of
either B or T'. Linearising (4.7)-(4.9) near [ = B or I =T yields the system

(h7 Y H)/ = J](h, 7> ’1)7

where Jr is the Jacobian for the right hand side of (4.7)-(4.9), i.e.

0 10
J= 0 o 1], (4.16)
rPL 0o 0
where o+ 1
rPL = "hI (1—hi=9). (4.17)

The eigenvalues of J; are the solutions of
23 =Pl (4.18)

If rfL < 0, then we have one negative real eigenvalue and a pair of complex
conjugate eigenvalues with positive real part. In this case, the corresponding
fixed point has a one-dimensional stable manifold. Conversely, if rfL > 0, the
fixed point has a two-dimensional stable manifold.

From the definition of a, we have a — 1 = (n 4+ 1)/n > 0. Hence, we find
that 772 < 0 if and only if hy < 1, i.e. for the lower fix point, hy = hp.
Trajectories that connect to this fixed point as * — oo must therefore be

10



identical with one of the two branches of the one-dimensional stable manifold
W#(B). Conversely, for the top equilibrium, trajectories must lie on the two-
dimensional stable manifold W#*(T'). Due to the pair of complex eigenvalues,
h(z) will go through an infinite sequence of decaying oscillations as the trajec-
tory approaches T'. Following Miinch and Evans [18], we distinguish meniscus
solutions by the equilibrium they connect to: Solutions with trajectories that
lie on W*(B) are called Type I meniscus solutions, while those which connect
to T are called Type II solutions.

To complete this discussion, we also need to characterize the trajectories
that satisfy the boundary condition at x — 0. Note that it is sufficient to find
solutions for which h blows up as x approaches any finite value of x and &
goes to zero; since the system of ordinary differential equations (4.7)-(4.9) is
autonomous, the singularity can always be shifted to zero.

If h and h, blow-up, the dominant term on the left hand side of (4.5)
is [hxx/e3h§]x, and —1 on the right. To capture the leading behavior of A
as x — 0, we can either choose to balance the two are assume that the left
hand side vanishes to leading order. It turns out that the latter case leads
to a bounded solution, and can be ruled out. Furthermore, by enforcing the
balance and integrating up, one obtains that the only possibility for blow-up
is

h(z) ~ —e 32 Inz + ¢, for x—0, (4.19)

where c is an arbitrary constant. This also fixes the behaviour of v and x: we
can conclude that

v(x) ~ —% + %xz, and k(z) ~ z, as x — 0. (4.20)

The presence of a free constant in (4.19) suggests that the boundary condi-
tion imposed on h at the reservoir i.e. at x — 0 restrict the possible solutions
to a two-dimensional manifold of trajectories, which we denote by W°. Then,
Type I meniscus solutions arise from a codimension-1 intersection of W9 and
W#(B), which generically break under perturbations of the parameters, in
particular, if o, hence hp are changed with the other parameters held fixed.
We therefore expect that Type I solutions will only exist for certain discrete
far field film thicknesses hg and flow rates Q. In fact, numerical evidence
suggests that there is at most one value for Qo and one Type I meniscus
solution. On the other hand, intersections of W% and W*(T') have codimen-
sion 0 and therefore generically persist under perturbations. Thus, for Type I1
solutions, we expect that the film thickness can be varied continuously.

We can now explore the situation in phase space systematically by com-
puting the two branches of W#(B) and sufficiently densely spaced orbits on
W#(T) and W9, using a numerical integrator (LSODE [11]). The initial val-
ues for W#(B) and W*(T") were obtained from the eigenspaces of Jr and the
integration carried out in the direction of decreasing z, and from (4.19), (4.20)
for WO, for which the integration was carried out forward in x.

In fig. 2, we show the interesections of the trajectories with the Poincarée-
Plane P = {(h,7v,k); h = 3.0}. The values we chose were n = 1, i.e., the
Newtonian case of the power law model, ¢ = 1 and Q5 was the value for
which a Type I solution arises. This can be seen from the fact that the box

11



Figure 2:

Poincaré section of the invariant manifolds with the plane P =
{(h,7,K); h = 3.0}, obtained numerically for the Newtonian case of the power-law
model, i.e. with n set to one, and with ¢ = 0.1.

4
15 .
— Typel — Typel
—— Typell| | -- Typell
4 K \
h !
]
1]
4 1
L -
1
1
1
7 1
______________________ ]
\’,/’ ok J 1 :H
O rerrermem — ‘\ !
\ \ \ il
0 15 -1 -0.5
X

Figure 3: (a) Profiles of the Type I meniscus solution corresponding to the center

of the spiral in figure 2, and of one of the Type II solutions, corresponding to the

intersecion of W#*(B) and W*(T') with P labelled “1” in figure 2. (b) Projections of
the trajectories for these two solutions onto the ey-x-plane.
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which marks the point where W?*(B) intersects the Poincaré-plane lies on top
of W9 N P, indicating that there is the corresponding trajectory satisfies all
required boundary conditions at x — 0 and at x — oo.

Clearly visible is also the spiral structure in W#*(7T") N P. This spiral arises
for very similar reasons as in the phase space diagramms discussed for traveling
wave solutions of Marangoni-gravity driven films |5] and meniscii [18|. Briefly
explained, it arises because trajectories on W#5(T') that pass close to B are
“warped” around W#(B) due to the presence of the two unstable complex
conjugate eigenvalues of the linearised ODE system near B, thus forming a
spiral structrue with an infinite windings and W?*(B) located at its center.
Since the latter lies on top of W0, we expect an infinite number of intersections
of W#(T)NP and W°NP, each of which give rise to a different Type I1 solution.
Only the first two of these intersections are distinguishable in figure 2.

Profiles of the Type I solution and the Type II solution corresponding to
the intersection of W*(T) N P and W N P labelled on in figure 2 are shown
in the next figure, figure 3 (a). While the Type I solution decays monotonely
onto the flat film thickness ho, = hp at * — oo, the Type II solution has
a typically ’dip’ near close to where it connects to the reservoir, and then
decays through an infinite sequence of oscillations onto ho, = hp. It is also
instructive to look at projections of the trajectories of these two solutions onto
the ey-k-plane, shown in figure 3 (b). Both curves connect to the origin at
x — 00, and to (—1,0) at z — 0, as required by the boundary conditions in
(4.10). While for the curve for the Type I solution, v behaves monotonely
(as function of the arclength), the Type II curve has a spiral near the origin,
arising from the oscillatory decay onto the flat film at x — oo.

Most of these derivations carry over for the Ellis mode. Basically, X
has to be replaced by the appropriate expression r¥ in (4.16) and subsequent
equations, which turns out to be

r = ° = (H(%)q_l : ) (4.21)
)q

3¢ ( hoo T3
1+ 75 (% froo Mo

Again, the sign of this expression determines the properties of the eigenvalues
of the linearised ODE system, and we find the same situation: A single real
negative eigenvalue for the lower fix point B and a complex conjugate pair
with negative real part for 7. Also, the situation for W9 and in particular its
dimension remains the same. Hence, the codimension of the intersections of
invariant manifolds that give rise to Type I and Type Il solutions are as they
were for the power-law model.

However, the upper bound for hpg, which is also the lower bound for Ar, is
no longer one, but depends on E; denote it by h(E). It is given by the solution

of .
FEY 4
L+ <h( ))
FE
Note that this bound on hg and hp delimits the range from above and below

for the flat film thickness of the Type I and Type II meniscus solutions. In
particular, the flat film thickness ho, = hp for Type I solutions must lie in the

h(E)?
2

=1. (4.22)
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intervall from 0 to h(E). Noting that the Ellis model is only used for shear
thinning liquids, ¢ > 1, we find that for £ — 0 this bound shrinks to zero.
Conversely, for large E — oo, we obtain h(E) — /2 > 1. This means that the
type of solution may also be influenced by the shear stress 7y o far upstream.

5 Film thickness

5.1 Asymptotic analysis

The film thickness ho, that is attained in steady state can be found easily
by asymptotic expansions, matching the inner solution, valid in the thin film
region to the outer solution of the meniscus region. This can be done in a very
similar fashion for both, the power-law model and the Ellis model.

Power-law model In the inner region the surface tension and flux terms,
i.e. the term on the left of (4.5) and the last term on the right side of (4.5)
must balance. This is achieved via the inner scaling

s=ePE,  h=eni2g,  he—cn2 O (5.1)

Note here, that unlike the Newtonian case § is not know at this point and has
to be determined by matching to the outer solution. Assuming the solutions
have the asymtotics expansions

6(&ie) = do(§) +201(§) +O(e?),  O(e) =B +e01+0()  (52)
we find for the leading order inner problem

¢35 oy = —a" (¢o — Op)" (5.3)

where ’ = J¢. Clearly, in the limit as £ — oo the solution will tend to the
uniform thickness ¢g — ©g. The behavior towards the mensicus region can
be found to have form

¢o<s>=A<n><#>3@osQ, as € —oo (5.4)
0

where the constants have to be matched by the solution of the outer problem,
valid in the meniscus and A(n) is determined by the numerical solution of the
(5.3). The outer scaling is given by

ZE:€_%X, and h=e 3 (5.5)
Hence, the outer problem is simply
d D
d
X\ (1+92)

lw
I
—_
—
ot
(=2]
~

which behaves as

P(x) = g 2 as x — 0 (5.7)
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Written in inner coordinates yields

2 3 3
o(€) :gsggz, where s =20+1- > —% (5.8)
But in order to match to (5.4) s must be zero. Therefore, matching yields the

yet unknown scaling factor
n+2

ﬁ:4n+2

Furthermore, matching the coefficients yields

0 = <2nn+1>—+ (vV2am) 7l (5.10)

(5.9)

Since hoo = ET3+2 Og, we finally obtain for the film thickness

hoo = eT72 <2”+1>%1 (V2am) o (5.11)

n
Ellis model Here, the inner scaling is achieved by setting
3aq_ 3ag_
x = e, h = g2+t @, hoo = €241 © (5.12)

which is the scaling that balances the second term of the left hand side of

equation

1 3 A\ a1l s h3, 3 (heo\"!

§l”q+—2<i> I P70 = =3(hheo+57 ”m(f)
(5.13)

with the first term on the right hand side. As is the power-law cae, the
exponent « is yet unknown and has to be determined by matching to the
outer solution. Additionally, we note that the balance of the first term on
the left hand side would lead to the scaling for the Newtonian case, and a
balance where both terms balance the first term on the right hand side leads
to inconsistencies.

Assuming asymptotic expansions as in (5.2) we now find with the scaling
(5.12) to leading order the inner problem

El_q +2 m| 94— 1
2(q+2) 9500 0| — (0 — ©9) (5.14)

Since ¢g — O > 0 and ¢ > 0 this equation can be written as

1
1 (a=D(e+2) (2(qg+2) )\«
200 = —(¢o — ©0)1¢p 9 <%> : (5.15)

Its solution attains the form

0



The outer problem is the same as before, i.e. given by (5.5)—(5.7). Matching
with (5.16) yields

12¢g+1
= 5.17
T2 (5.17)
Solving for heo, we find
5 g B0, (2(q +2)) 72
heo = €217 <C(q)\/§) o % (5.18)
E a2

where again, C(q) is found by solving (5.15). Note that in both cases, higher
order corrections can now in principle be carried out, as demonstrated in [22]
for the Newtonian case, but one needs to ensure that no contributions neglected
in the approximation leading to the governing equation (3.15) togeher with
(4.4) and (2.4) will become important.

5.2 Comparison with numerical results

1

Lol

T
\
1

0.01"
0.001‘ OOl | 01 | 1

Figure 4: Comparison of the Type I meniscus film thicknesses for the power-law
model obtained from the numerical solution of the steady state equation (symbols)
and the asymptotic formula (lines). Shown are the results for three different values
of the power law exponent, n = 0.5 (— — and x),n=1( and +)andn=2 (---
and o).

We rewrite asymptotic expressions for the Type I meniscus solution’s film
thickness obtained (5.11) for the Power-Law and in (5.18) for the Ellis-model
to group the coefficients that only depend on n or g, respectively. We obtain,

respectively,
hPL = A(n)eTr (5.19a)
with
2n
Aln) = (2”; 1) " (Vaam) e (5.19b)
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h, .
h, : g o
F 0.01+ X a
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0.01 . ’
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4 . 16-6?’ -
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A A

Figure 5: Comparison of the Type I meniscus film thicknesses for the power-law
model obtained from the numerical solution of the steady state equation (symbols)
and the asymptotic formula (lines). In (a), left, results are shown for fixed ¢ = 2
and three different values of F, F = 0.05 (— — and x), £ = 0.5 (— and +) and
E =5 (--- and o). In (b), right, results are shown for fixed £ = 0.5 and three
different values of ¢, ¢ =5 (— — and x), ¢ =2 (— and +) and ¢ = 1.1 (--- and o).

and

hE = C(q)E o e2ata, (5.20a)
with

2

Cl@) = (Clava) ™ (g +2)7=. (5.200)

We determined A(n) and C(q) by solving the appropriate inner problem nu-
merically. For large negative values of —x, the second derivative of the solution
with respect to = converges to a constant value, which is twice A(n) or C(q),
for the Power-Law or the Ellis model, respectively. From these, we obtain the
values for A(n) and C(q) collected in the following table:

n | 05 1 2 g | 11 2 5
A(n) | 1.488 [ 0.9458 | 0.6826 || C'(¢) | 1.565 | 2.105 | 3.305

We now compare the film thicknesses computed from the aysmptotic for-
mulae (5.19a) and (5.20a) with the values of ho, = hp for which a Type I
meniscus solution was obtained numerically for the the steady state equations.

For the power-law model, the results are shown in figure 4. For all three
values of n, the asymptotic and the numerical solution agree quite well up to
values of € near and above 0.1. Smaller values of n seem to lead to better
agreement, which might have been expected since for larger n, smaller pow-
ers of € appear in the asymptotic expansions for h.,, suggesting that higher
corrections have a stronger impact.
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For the Ellis model, we first fix ¢ = 2 and vary F over two orders of
magnitude. The agreement is good, upto € = 0.1 for the £ = 0.5 and £ =5
case and to a somewhat lesser extent for £ = 50. For the leading order result
(5.20a), increasing E increases the coefficient and if this is the case also for
the coefficients in the next corrections, this could explain why the agreement
deteriorates for larger FE.

Next, we keeps B = 0.5 fixed and vary ¢. Agreement is good up to e = 0.1
for ¢ = 2 and ¢ = 5, however, for ¢ = 1.1, there is a notable though decreasing
discrepance even down to values of 1076 for e. The reason for this can be easily
seen from the asymptotics: The dominant terms of the steady state problem
(5.13) for the Ellis model in inner scales and the neglected term on the left
hand side become of same order as ¢ — 1 from above.

Conclusions

In this study we derived lubrication models for the drag-out problem at vari-
able inclination angle for some of the most popular viscosity models from the
underlying free boundary problem governed by the equations of momentum
and mass conservation. A system of ordinary differental equations for the
steady states, that is obtained from the lubrication equations is investigated
using phase plane analysis. This yields criteria for the possibility of Type I,
corresponding to the monotone meniscus profile and Type II, corresponding
to the spatially oscillating meniscus profile, as a function of the rheological pa-
rameters. It would be interesting to compare our findings with experimental
results and further explore the relevant parameters that control the shape of
the free boundary, in particular in view of the implications for many related
problems, such as the well-known Bretherton problem [7] or the roller-coating
problem. We note that it is clear from our work that it is straight forward to
generalize our analysis also to the three-dimensional case.

Appendix 1
Lubrication equation for the Ellis model

As before we balance in the xz-momentum equation p, with the dominant
viscous stress term 777. Then

_mU
2¢eH

Balancing 7% in the x-momentum equation with the gravity termv yields

1
3
H = <ﬂ>
2pg cos o

We introduce here the dimensionsless viscosity by

77:577

where



Hence,

The leading order dimensionsless equations are (3.6a)-(3.7b) where 7% =
—nu,. These can be integrated to yield the expression for the component
of the stress tensor

T = —¢($,t)(h - 2)7
which can now be used to derive an expression the for the velocity, since
nu, =¥ (h — z). Hence,

h — 1 zz|q—1 1 a—1|p — 5la—1
w =t 2 = Jone) (14 ) = Qw14 M)

We assume h > z and get

1 PlplT (2
Uy = 5 (T/)(h - Z) + Fa—1
Integrating this w.r.t. z and using the no-slip condition,we find
— 1 2 ¢|T/)|q_1 —1 q+1 1 g+1
u—2{¢(hz 2%) + Fores q+1<h z) +q+1h ) )| +1
Hence,we get for the flux
h
Q = / udz
0
h
L [ NI 1 +2 Lo+t
= = ”L/J(hZ—Z)‘ + — (h—2)7* 4+ ——=hT"2) —i—z‘
2 o Bl \(¢+1)(g+2) g+1 0
L[ p® Rm3 oyt 1 1
= S |v(5-—=)+ hq+2+—h‘1+2>]+h
2 [¢(2 6/t pe <(q+1) TESrET L

Therefore we get

h 1 h3 ¢|1/)|q—1 hq+2
Q—/O udz—§[¢?+ for q+2}+h

which we plug into the kinematic condition to obtain the lubrication equation
Using the time scaling ¢ — 3t we get finally the following lubrication equa-
tion for the Ellis model

3 1
q+2FE11

Oh = —0, B <¢h3 + ¢|w|q—1hq+2) + 34

where we rescaled time as ¢t — 3t.
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Appendix 2
Lubrication equation for the Carreau model

Again we non-dimensionalize as before and assume additionally that the new
parameter A is scaled as

A= AT = \eT
ie. A=0(1/e) and A* = O(1). Hence,

k-1
)"7 01 * 1 —
":”°P+<€>} = o[+ (A9)7
and the shear stress components are

k-1

U
T _ _770752 ug[1+ (M),

- ]
S A EeES
7 — —M622 w1+ ()‘7)0]%’

H
Integrating the system (3.6a)-(3.7b) once w.r.t. z we find
k-1
uy (14 N |%) = = (z,t)(h - 2)
If we define
w = |Nu,|, and g(z,z,t) = (\|Y|(h — 2))°

we obtain the equation
wl+w) =g

and
_ Y(h—2)
U= ——— 7
(1+w(g) <
Upon integrating this once, it is conveniant to change integration variables to
w, via
l1—c
g 1+ kw
dz = — dg and dg=
cA* [y (14 w)* "
which leads to
F —F 0
(s 2, t) = — (wig(z) — Fwlg(0)

where

B w%(l—kkw)
F(w) —/m dw

To derive an expression for the flux involves the integral
1 0 we (1+ kw)

h
/0 [F (w(g(2))) = F (w(9(0)))] dz = “oldl L Fw o)

20



If we note that

0
wo 1—|—w 2 3
0 1 — 12,2
hw dw = 2w1/2 k2 5/2F

o (1 + w)2")wl/2

13—k 3 3—k 35
P = F —_— Fr=F 2.2
1 (27 2 5o w0>7 2 < 2 72727 w0>7

2
1 3 5 7
F; = F<—2 k,2, w0>, F4:F<—2—k;—;—w0>.

where

27

Hence, we obtain for the flux

h
© = d
Q% (x,t) /0 udz

\/ WO 1 k:wo—l ( kwo > ( k‘2 2 >
= P+ FR|+|FB-—2F
XER+ DO [+ U307 U s

and the corresponding lubrication equation
Oth = _amQC

with boundary condition at x — 400

lim h = he, lim h, =0,
T——00 T——00

lim k=0, lim A = oc.
r— 00 r— 00
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