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Abstract

In this paper we introduce efficient Monte Carlo estimators for the valuation of
high-dimensional derivatives and their sensitivities (”Greeks”). These estimators are
based on an analytical, usually approximative representation of the underlying density.
We study approximative densities obtained by the WKB method. The results are
applied in the context of a Libor market model.

1 Introduction

Valuation methods for high-dimensional derivative products are typically based on Monte
Carlo simulation of the underlying process. The dynamics of the underlyings are usually
given via a (jump-)diffusion SDE. In case of a diffusion SDE, the underlying process may
be simulated using an Euler scheme or a (weak) second order scheme e.g. see Kloeden
& Platen (1992) or Milstein & Tretyakov (2004). For simulation of jump-diffusions see
e.g. Cont & Tankov (2003), and Glasserman & Merener (2003) for simulation of (Libor)
interest rate models with jumps. For the evaluation of option sensitivities, Greeks in
financial terminology, several works follow a pathwise approach, see Glasserman & Zhao
(1999), Piterbarg (2004), Milstein & Schoenmakers (2002). Chen & Glasserman (2006)
provide estimators which are connected with Malliavin methods.

In general the cost of computing prices and sensitivities for high-dimensional derivatives
can be considerably reduced if one has a procedure for simulating the underlying process
directly at the first exercise date. In the ideal case, the density of the underlying process
at a fixed point in time is known explictly and an efficient method to sample from it
is available. In practice, however, usually non of this is true. In the context of a the
Libor interest rate model, Kurbanmuradov, Sabelfeld & Schoenmakers (2002) considered
lognormal approximations for the transition density. Among other approaches for speeding
up the simulation of a Libor model we mention drift approximations by Hunter, Jäckel,
& Joshi (2001), and also Pelsser, Pietersz & van Regenmortel (2004). However, accurate
enough lognormal approximations or drift approximations for the underlying process do
not always exist (for certain jump-diffusions for example). In this paper we therefore choose
for a more general approach and consider the following objectives in order to tackle these
issues.

• Construction of a ”good” analytical approximation for the density of the underlying
process by using (convergent) WKB1 methods;

• Developing efficient probabilistic representations for the product price and price sen-
sitivities, based on an analytical approximation of the underlying density (e.g. a

1The historical origin of the name is the work of Wentzel, Kramers, Brioullin in the context of semi-

classical solutions of the Schrödinger equation. The meaning of WKB has broadened since; nowadays, it

refers to analytic expansions of exponential form.
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WKB approximation) and a possibly rougher approximative standard density (e.g.
a lognormal density) which is basically used as an importance sampler.

The structure of the paper is as follows. In Section 2 we set up the model class for
which we exemplify our methods and specify the financial products (including Bermudan
callables) for which prices and sensitivities are to be determined. In Section 3 we introduce
probabilistic representations for integral functionals of kernel type and their derivatives. As
a particular result we prove that the corresponding estimator for the derivatives has non-
exploding variance for sharply peaked kernels in contrast to some existing weighted Monte
Carlo schemes. This estimator thus allows for efficient Monte Carlo estimation of option
sensitivities, in particular with respect to underlyings (Deltas), even in situations where
the densities are sharply peaked (for instance when volatilities are small). The general
probabilistic representations introduced in Section 3 are applied to the computation of
Deltas for Bermudan callable products in Section 4. Section 5 deals with the WKB-
theory of densities of diffusion equations (densities of processes which have continuous
paths). A remark about extensions to analytic expansions of densities of Feller processes is
included. These extensions will be considered in detail in Kampen (2007). In Section 5.1
we summarize some results concerning pointwise valid WKB-representations of densities
obtained in Kampen (2006). Since in practice only finitely many terms of a WKB expansion
can be computed, it will be necessary to use a truncated form of the WKB-representation
for actual computations. In Section 5.2. we analyze the effect of this truncation error
on approximations of solutions of Cauchy problems and their derivatives.The case of non-
autonomous diffusion models is discussed in Section 5.3. The results of Sections 2-5 are
applied in Section 6 to the Libor market model. In Section 6.1. we compute explicitly the
first three coefficients of the WKB representation of the Libor model density. In Section
6.2 we compute prices and Deltas in a case study of European swaptions.

2 Basic setup

Let (X,B) be an underlying asset process in R
n
+ × R+ (R+ := {x : x > 0}) on a filtered

probability space (Ω,F, (Ft)t∈[t0,T ], P ), consisting of n risky assets X = (X1, ...,Xn), and
a numeraire B. We assume that the filtration (Ft) satisfies the usual conditions and that
the system (t,Xt) is Markovian with respect to this filtration. Moreover we assume that X
has an absolute continuous transition kernel with density p(t, x, s, y), which has derivatives
of any order in 0 ≤ t < s, x, y ∈ R

n
+. Further we assume that Bt, t > 0, is adapted to

(Xs, 0 ≤ s ≤ t) and is of finite variation. A popular framework for the system (X,B)
is, for instance, the class of jump-diffusions (e.g. Cont & Tankov (2003)). For simplicity
however we mainly consider ordinary diffusions in the present article, but, note that the
main results generally extend to jump processes as well (see Remark 11 for example). We
thus consider a system (X,B) given by its dynamics

dXi

Xi
= r(t,X)dt +

n∑

j=1

σij(t,X)dW j ,
dB

B
= r(t,X)dt, 1 ≤ i, j ≤ n, (2.1)

in the (risk-neutral) measure P. In (2.1) W = (W 1, ...,W n)⊤ is an adapted n-dimensional
standard Wiener process, where as usual (Ft) is the P -augmentation of the filtration gen-
erated by W. W.l.o.g. we take for Ω the space of all continuous functions ω : [0,∞) → R

n.
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Hence a generic ω ∈ Ω under the measure P is a trajectory of the Wiener process It is as-
sumed that the interest rate r(t,X) and the matrix σ(t, x) =

(
σij(t, x)

)
, t ∈ [t0, T ], x ∈ R

n
+

are such that for all x0 ∈ R
n
+, b0 > 0, there exists a unique solution t→ (Xt, Bt) ∈ R

n
+×R+

of (2.1) for t0 ≤ t ≤ T satisfying (Xt0 , Bt0) = (x0, b0) =: (Xt0,x0
t0 , Bt0,x0,b0

t0 ), such that all
Xi/B are (true) martingales on [t0, T ] under the risk-neutral measure P. Thus, since the
number of Brownian motions equals the number of tradables, the price system (X,B) con-
stitutes a complete market (e.g. Karatzas & Shreve (1998)). It is further required that the
Markov process X has a transition density p(t, x, s, y) which is differentiable with respect
to x, y ∈ R

n
+, s, t ∈ [t0, T ], t > s, up to any order. To meet all these requirements, it is

sufficient to assume that the functions r(·, ·) and σ(·, ·) are bounded and have bounded
derivatives up to any order, and that the volatility matrix σ(t, x) is regular with

0 < λ1 ≤
∣∣∣
(
σσ⊤

)
(t, x)

∣∣∣ ≤ λ2 (2.2)

for all (t, x), t ∈ [t0, T ], x ∈ R
n
+, and some 0 < λ1 < λ2 (see for example Bally & Talay

(1996)).

Let us take (w.l.o.g.) b0 = 1 and consider contingent claims with pay-off function of the
form f (Xτ )Bτ at some (F·)-stopping time τ. By completeness such claims are uniquely
priced at time t0 by

v(t0, x0) = E f(Xt0,x0
τ )

(e.g. Duffie (2001)). For deterministic τ, say τ ≡ T, we have a European claim, and for
t0 ≤ t ≤ T its value process can be represented by

vt := v(t,Xt, Bt) := BtE
Ftf(XT ) = e

R t

t0
r(s,Xs)ds

EFtf(XT ).

Hence the discounted price process ut := vt/Bt depends on X only, i.e.,

ut := u(t,Xt) := EFtf(XT ) =

∫
p(t,Xt, T, y)f(y)dy,

where

u(t, x) =

∫
p(t, x, T, y)f(y)dy (2.3)

is the unique solution of the Cauchy problem

∂u

∂t
+

1

2

n∑

i,j=1

xixj
(
σσ⊤

)ij
(t, x)

∂2u

∂xi∂xj
+

n∑

i=1

xir(t, x)
∂u

∂xi
= 0, (2.4)

u(T, x) = f(x).

The density kernel p(·, ·, T, y) is the unique (weak) solution of (2.4) with p(T, x, T, y) =
δ(x− y), where δ is the Dirac-delta function in Schwarz distribution sense.

Of particular importance are Bermudan callable contracts. A Bermudan contract starting
at t0, is specified by a set of exercise dates {t1, t2, ..., tI}, where t0 < t1 < ... < tI < T , and
corresponding (discounted) pay-off functions fi(x), 1 ≤ i ≤ I. According to the contract,
the holder has the right to call (once) a cash-flow fi(X

t0,x0
ti

)Bt0,x0,1
ti

at an exercise date ti

3



of his choice. It is well known that the fair value of this contract at time t, t0 ≤ t ≤ T,
assuming that no exercise took place before t, is given by

v(t, x, b) := bu(t, x) := sup
τ∈Ti,I

bEf(Xt,x
τ ) = bEf(Xt,x

τ t,x
∗

), ti−1 < t ≤ ti, (2.5)

where x = Xt0,x0
t , b = Bt0,x0,1

t , Ti,I the set of stopping times τ taking values in {ti, ti+1, ..., tI},
and τ t,x

∗ is an optimal stopping time.

3 Probabilistic representations and their estimators

In this section we consider for a given smooth function u : R
n
+ → R+ and a smooth kernel

function p : R
n
+ × R

n
+ → R+ (which may or may not be a transition kernel), probabilistic

representations for the integral

I(x) :=

∫
p(x, y)u(y)dy, and its gradient

∂I

∂x
(x) =

∫
∂

∂x
p(x, y)u(y)dy, with

∂

∂x
:=

(
∂

∂x1
, . . . ,

∂

∂xn

)
.

Let ζ be some random variable with density φ on R
n
+, φ > 0. Then, obviously,

I(x) = E p(x, ζ)
u(ζ)

φ(ζ)
(3.6)

is a probabilistic representation for (3.6) which may be estimated by the unbiased Monte
Carlo estimator

Î(x) :=
1

M

M∑

m=1

p(x,m ζ)
u(mζ)

φ(mζ)
, (3.7)

where for m = 1, ...,M, mζ are i.i.d. samples from a distribution with density φ. By taking
gradients in (3.6) we readily obtain the probabilistic representation

∂I

∂x
(x) = E

∂

∂x
p(x, ζ)

u(ζ)

φ(ζ)
, (3.8)

with corresponding estimator,

∂̂I

∂x
(x) :=

1

M

M∑

m=1

∂

∂x
p(x,m ζ)

u(mζ)

φ(mζ)
. (3.9)

While as a rule (3.7) is an effective estimator for I(x) for a proper choice of φ, unfortunately
the gradient estimator (3.9) has a serious drawback: If the kernel p(x, ·) is sharply peaked
(nearly proportional to a ’delta-function’), its variance may be extremely high. This fact
is demonstrated by the following stylistic example of a multi-asset model, which is in order
of magnitude realistic though.
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Example 1. Consider for fixed x0 ∈ R
n
+, parameters s > 0, and σ > 0, the n-dimensional

lognormal density

p(s, σ;x0, y) :=
1

(2πσ2s)n/2

n∏

i=1

exp
[
− 1

2σ2s ln2 yi

xi
0

]

yi
. (3.10)

In (3.10) p(s, σ;x0, ·) is the density of the random variable

(x1
0e

σ
√

sξ1
, ..., xn

0 e
σ
√

sξn

),

where ξi , i = 1, ..., d, are i.i.d. standard normal random variables. Thus, for small s and
σ, p(s, σ;x0, ·) is peaked (’delta-shaped’) around x0. Let us now take φ(·) := p(s, σ;x0, ·) in
(3.6) and (3.8), respectively, and u ≡ ||x0|| (a constant of order x0 in magnitude). Clearly,
estimator (3.7) equals ||x0|| almost surely and so has zero variance. However, estimator
(3.9) is not deterministic and we have

∂̂I

∂xj
(x0) :=

1

M

M∑

m=1

||x0||
p(s, σ;x0,m ζ)

∂

∂xj
p(s, σ;x0,m ζ)

=
||x0||
M

M∑

m=1

∂

∂xj
ln p(s, σ;x0,m ζ)

=
||x0||
M

M∑

m=1

ln mζj

xj
0

σ2sxj
0

=
||x0||
M

M∑

m=1

mξ
1

σ
√
sxj

0

.

Hence, E
[

∂̂I
∂xj (x0)

]
= 0 as should be, but,

Var

[
∂̂I

∂xj
(x0)

]
=

||x0/x
j
0||2

M

1

σ2s
(3.11)

which explodes when σ2s goes to zero!

Remark 2. In Fries & Kampen (2006) estimators (3.7) and (3.9) are used for comput-
ing prices and sensitivities of European Libor options, respectively. In their numerical
examples they used 50% (rather high) volatility in order to amplify Monte Carlo errors.
While, indeed, a larger volatility generally gives rise to a large Monte Carlor error of (3.7),
Example 1 shows that the opposite is true for estimator (3.9). For example, 50% volatil-
ity in combination with 0.5 yr. maturity corresponds to a (just moderate) variance factor
1/
(
σ2s
)

= 8.0 in (3.11), while a more usual Libor volatility, e.g. 14%, and 0.5 y maturity
would give a factor 102.0(!).

In the present paper we propose sensitivity estimators which are efficient on a broad time
and volatility scale. As a result, the next theorem provides a tool for constructing sensi-
tivity (gradient) estimators with non-exploding variance.

Theorem 3. Let λ be a reference density on R
n with λ(z) 6= 0 for all z (for example,

the standard normal density). Let ξ be an R
n-valued random variable with density λ and

g : R
n
+ × R

n → R
n
+ be a smooth map with |∂g(x, z)/∂z| 6= 0, such that for each x ∈ R

n
+ the
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random variable ζx := g(x, ξ) has a density φ(x, ·) on R
n
+. Then, we have the probabilistic

representation

∂I

∂x
(x) = E

∂

∂x

p(x, ζx)u(ζx)

φ(x, ζx)
= E

∂

∂x

p(x, g(x, ξ))u(g(x, ξ))

φ(x, g(x, ξ))
, (3.12)

with corresponding Monte Carlo estimator

∂̂I

∂x
(x) =

1

M

M∑

m=1

∂

∂x

p(x, g(x,m ξ))u(g(x,m ξ))

φ(x, g(x,m ξ))
. (3.13)

Let | · | denote either a vector norm or a compatible matrix norm. Then it holds

E

∣∣∣∣
∂

∂x

p(x, g(x, ξ))u(g(x, ξ))

φ(x, g(x, ξ))

∣∣∣∣
2

≤ 2M2
4

(
M2

2M
2
3 + 4M2

1M
2
5 + 4M2

1M
2
3M

2
6

)
, (3.14)

hence the second moments of the Monte Carlo samplers for the components of ∂I/∂x are
bounded by the right-hand-side of (3.14), if for fixed x ∈ R

n
+, there are α1, ..., α6 > 1 with

1

α4
+

1

α1
+

1

α5
= 1,

1

α4
+

1

α2
+

1

α3
= 1,

1

α4
+

1

α1
+

1

α6
+

1

α3
= 1,

such that,

E u2α1(g(x, ξ)) =

∫
u2α1(y)φ(x, y)dy ≤M2α1

1 ,

E

∣∣∣∣
∂u

∂y
(g(x, ξ))

∣∣∣∣
2α2

=

∫ ∣∣∣∣
∂u

∂y
(y)

∣∣∣∣
2α2

φ(x, y)dy ≤M2α2
2 ,

E

∣∣∣∣
∂g

∂x
(x, ξ)

∣∣∣∣
2α3

=

∫ ∣∣∣∣
∂g

∂x
(x, z)

∣∣∣∣
2α3

λ(z)dz ≤M2α3
3 ,

E

(
p(x, g(x, ξ))

φ(x, g(x, ξ))

)2α4

=

∫ (
p(x, y)

φ(x, y)

)2α4

φ(x, y)dy ≤M2α4
4 ,

E

∣∣∣∣
px(x, g(x, ξ))

p(x, g(x, ξ))
− φx(x, g(x, ξ))

φ(x, g(x, ξ))

∣∣∣∣
2α5

=

∫ ∣∣∣∣
px(x, y)

p(x, y)
− φx(x, y)

φ(x, y)

∣∣∣∣
2α5

φ(x, y)dy ≤M2α5
5 ,

and

E

∣∣∣∣
py(x, g(x, ξ))

p(x, g(x, ξ))
− φy(x, g(x, ξ))

φ(x, g(x, ξ))

∣∣∣∣
2α6

=

∫ ∣∣∣∣
py(x, y)

p(x, y)
− φy(x, y)

φ(x, y)

∣∣∣∣
2α6

φ(x, y)dy ≤M2α6
6 ,

with shorthands px := ∂p/∂x, etc.
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Proof. For any bounded measurable ψ : R
n
+ → R, we have

∫
ψ(g(x, z))λ(z)dz = E ψ(g(x, ξ)) = E ψ(ζx) =

∫
ψ(y)φ(x, y)dy

=

∫
ψ(g(x, z))φ(x, g(x, z))

∣∣∣∣
∂g(x, z)

∂z

∣∣∣∣ dz.

Therefore, the densities φ and g are connected via the relationship

φ(x, g(x, z))

∣∣∣∣
∂g(x, z)

∂z

∣∣∣∣ = λ(z). (3.15)

By taking the derivative outside the expectation in the right-hand-side of (3.12) and using
(3.15) we get (3.12),

∂

∂x
E
p(x, g(x, ξ))u(g(x, ξ))

φ(x, g(x, ξ))
=

∂

∂x

∫
p(x, g(x, z))u(g(x, z))

φ(x, g(x, z))
λ(z)dz

=
∂

∂x

∫
p(x, g(x, z))u(g(x, z))

∣∣∣∣
∂g(x, z)

∂z

∣∣∣∣ dz

=
∂

∂x

∫
p(x, y)u(y)dy =

∂I

∂x
(x).

To prove the moment estimation (3.14), we observe that

E

∣∣∣∣
∂

∂x

p(x, ζx)u(ζx)

φ(x, ζx)

∣∣∣∣
2

= E

∣∣∣∣
∂

∂x

p(x, g(x, ξ))u(g(x, ξ))

φ(x, g(x, ξ))

∣∣∣∣
2

=

= E

∣∣∣∣u(g(x, ξ))
∂

∂x

p(x, g(x, ξ))

φ(x, g(x, ξ))
+
p(x, g(x, ξ))

φ(x, g(x, ξ))

∂u

∂y
(g(x, ξ))

∂g

∂x
(x, ξ)

∣∣∣∣
2

≤ 2E
p2(x, g(x, ξ))

φ2(x, g(x, ξ))

∣∣∣∣
∂u

∂y
(g(x, ξ))

∣∣∣∣
2 ∣∣∣∣
∂g

∂x
(x, ξ)

∣∣∣∣
2

+ 2E u2(g(x, ξ))

∣∣∣∣
∂

∂x

p(x, g(x, ξ))

φ(x, g(x, ξ))

∣∣∣∣
2

=: 2(I) + 2(II).

Then by Hölders inequality,

(I) = E
p2(x, g(x, ξ))

φ2(x, g(x, ξ))

∣∣∣∣
∂u

∂y
(g(x, ξ))

∣∣∣∣
2 ∣∣∣∣
∂g

∂x
(x, ξ)

∣∣∣∣
2

≤ α2

√
E

∣∣∣∣
∂u

∂y
(g(x, ξ))

∣∣∣∣
2α2

α3

√
E

∣∣∣∣
∂g

∂x
(x, ξ)

∣∣∣∣
2α3

α4

√
E
p2α4(x, g(x, ξ))

φ2α4(x, g(x, ξ))

≤M2
2M

2
3M

2
4 .
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For (II) we have

(II) = E u2(g(x, ξ))

∣∣∣∣
∂

∂x

p(x, g(x, ξ))

φ(x, g(x, ξ))

∣∣∣∣
2

= E u2(g(x, ξ))
p2(x, g(x, ξ))

φ2(x, g(x, ξ))

∣∣∣∣
px(x, g(x, ξ))

p(x, g(x, ξ))
− φx(x, g(x, ξ))

φ(x, g(x, ξ))

+

(
py(x, g(x, ξ))

p(x, g(x, ξ))
− φy(x, g(x, ξ))

φ(x, g(x, ξ))

)
∂g

∂x
(x, ξ)

∣∣∣∣
2

≤ 2E u2(g(x, ξ))
p2(x, g(x, ξ))

φ2(x, g(x, ξ))

∣∣∣∣
px(x, g(x, ξ))

p(x, g(x, ξ))
− φx(x, g(x, ξ))

φ(x, g(x, ξ))

∣∣∣∣
2

+ 2E u2(g(x, ξ))
p2(x, g(x, ξ))

φ2(x, g(x, ξ))

∣∣∣∣
py(x, g(x, ξ))

p(x, g(x, ξ))
− φy(x, g(x, ξ))

φ(x, g(x, ξ))

∣∣∣∣
2 ∣∣∣∣
∂g

∂x
(x, ξ)

∣∣∣∣
2

,

and then again by Hölders inequality,

(II) ≤ 2M2
1M

2
4M

2
5 + 2M2

1M
2
3M

2
4M

2
6 .

Remark 4. If one takes φ(x, y) ≡ φ(x0, y) estimator (3.13) collapses to (3.9). The delicate
bound in Theorem 3 is M5. Indeed, in Example 1 where φ(x, y) ≡ p(x0, y) in fact, M5

cannot taken to be small when σ2s is small, i.e. when p is highly peaked around x. In
contrast, if for fixed x, φ(x,·) is approximately proportional to p(x, ·) and ∂ lnφ(x, ·)/∂x
≈ ∂ ln p(x, ·)/∂x (both with respect to the weight function φ(x, ·)), a small M5 may exists.
Note that for φ(·, ·) exactly proportional to p(·, ·), we may take M5 = 0.

Remark 5. It can be shown that Theorem 3 can be extended to probabilistic representa-
tions and corresponding estimators for higher order derivatives,

∂I

∂xβ
(x) = E

∂

∂xβ

p(x, ζx)u(ζx)

φ(x, ζx)
= E

∂

∂xβ

p(x, g(x, ξ))u(g(x, ξ))

φ(x, g(x, ξ))
,

with corresponding Monte Carlo estimator

∂̂I

∂xβ
(x) =

1

M

M∑

m=1

∂

∂xβ

p(x, g(x,m ξ))u(g(x,m ξ))

φ(x, g(x,m ξ))
, (3.16)

where β := (β1, . . . , βn), βi ∈ {0, 1, 2, . . .} is a multi-index with (formally) ∂xβ = ∂xβ1
1 ∂x

β2
2 · · · ∂xβn

n .
Loosely speaking, the variance of the higher order derivative estimator (3.16) can be
bounded from above by an expression like (3.14) involving (i) sufficiently high moments of
the derivatives,

y → ∂u

∂yγ
, and z → ∂g(x, z)

∂zγ

for fixed x, γ ≤ β (component wise), with respect to weight functions y → φ(x, y) and
z → λ(z), respectively, and, (ii) for fixed x, Lq(Rn

+, φ(x, y)dy)-norms of

y → ∂

∂xγ

(
φ(x, y)

p(x, y)

)
, and y → ∂

∂yγ

(
φ(x, y)

p(x, y)

)
, γ ≤ β,

for q large enough.
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Remark 6. In financial applications I(x) is usually the price of a derivative contract
considered in dependence of the argument x which may stand for the underlying process
or some parameter (vector) which affects the dynamics of the underlying process (e.g.
volatilities).

4 Sensitivities for Bermudan options

Theorem 3 may be applied in general for computing sensitivities (”Greeks”) of derivative
products. For estimator (3.9) the danger of exploding variance is typically the largest
when derivatives of prices with respect to underlyings (Deltas, Gammas) are considered.
We therefore consider in this section only (first order) derivatives with respect to the
underlying process, hence Deltas.

Let τ : Ω → R+ be a given stopping time with respect to the filtration (F·), and define
τ s,x(ω) := s + τ(Xs,x

s+·(ω)) (recall that Ω is the space of continuous trajectories [0,∞) →
R

d). We now consider the Bermudan contract introduced in Section 2. For fixed t, t+,

t0 ≤ t ≤ t+ ≤ t1, x ∈ R
n
+, we have τ t,x

∗ = τ
t+,Xt,x

t+∗ since τ t,x
∗ ≥ t1, and we thus may write

u(t, x) := Ef(Xt,x

τ t,x
∗

) = EEF
t+ f(X

t+,Xt,x

t+

τ
t+,X

t,x

t+
∗

)

=

∫
p(t, x, t+, y)dzEf(Xt+ ,y

τ t+,z
∗

)

=

∫
p(t, x, t+, y)u(t+, y)dy,

by the Chapman-Kolmogorov equation.

For each t, t+ as above, let φ(t, x, t+, y), g(t, x, t+, y), and reference density λ(t, t+, z) be
as in Theorem 3. We then have the probabilistic representation

u(t, x) = E
p(t, x, t+, g(t, x, t+, ξ))

φ(t, x, t+, g(t, x, t+, ξ))
f(X

t+,g(t,x,t+,ξ)

τ
t+,g(t,x,t+,ξ)
∗

), (4.17)

with Monte Carlo estimator

û(t, x) :=
1

M

M∑

m=1

p(t, x, t+, g(t, x, t+,m ξ))

φ(t, x, t+, g(t, x, t+,m ξ))
f(X

t+,g(t,x,t+, mξ)

τ
t+,g(t,x,t+, mξ)
∗

), (4.18)

and for the gradients (Deltas) we have the probabilistic representation

∆i :=
∂u

∂xi
(t, x) = E

∂

∂xi

(
p(t, x, t+, g(t, x, t+, ξ))

φ(t, x, t+, g(t, x, t+, ξ))
f(X

t+,g(t,x,t+,ξ)

τ
t+,g(t,x,t+,ξ)
∗

)

)
(4.19)

with Monte Carlo estimator

∆̂i :=
1

M

M∑

m=1

∂

∂xi

(
p(t, x, t+, g(t, x, t+,m ξ))

φ(t, x, t+, g(t, x, t+,m ξ))
f(X

t+,g(t,x,t+, mξ)

τ
t+,g(t,x,t+, mξ)
∗

)

)
, (4.20)

where mξ, m = 1, ...,M, are i.i.d. samples from the reference density λ. Indeed, by pre-
condtioning on Ft+ and then taking expectations we see that (4.18) and (4.20) are unbiased
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Monte Carlo estimators for the price (4.17) and ’deltas’ (4.19), respectively. Moreover, if φ
is close to p in the sense of Theorem 3, it is not difficult to see that also gradient estimator
(4.20) has non-exploding variance when t+ ↓ t.
Estimators (4.18) and (4.20) are useful if one has an analytic approximation p̂(t, x, t+, y) of
the density p(t, x, t+, y) and known densities φ(x, ·) for x ∈ R

n
+. The approximation p̂ may

be obtained by some specific method, for example by a WKB expansion as presented in
Section 5, or some lognormal approximation as proposed in Kurbanmuradov, Sabelfeld &
Schoenmakers (2002) for the Libor market model. Of course the density φ has to be chosen
with some care. If it is possible to sample directly from p̂ (e.g. in case of a log-normal
approximation) we may take φ = p̂. If not, (e.g. in the case of a WKB expansion) one may
take for φ a (not necessarily very accurate) lognormal approximation of the density p.

A canonical lognormal approximation for p(t, x, t+, z) is obtained by freezing X in the
coefficients of (2.1) at the initial time. We thus yield

X
(g)t,x;i
t+

:= xi exp


−1

2

n∑

j=1

∫ t+

t
(σij)2(s, x)ds +

∫ t+

t
r(s, x)ds

+

n∑

j=1

∫ t+

t
σij(s, x)dW j

s


 =: xi exp(ξi). (4.21)

Here, (ξi)
n
i=1 is a gaussian random vector with

Eξi = −1

2

n∑

j=1

∫ t+

t
(σij)2(s, x)ds+

∫ t+

t
r(s, x)ds =: µi;t,t+,x, 1 ≤ i ≤ n,

and

Cov(ξi, ξj) =

n∑

l=1

∫ t+

t
σil(s, x)σjl(s, x) ds =: σij;t,t+,x, 1 ≤ i, j ≤ n.

Clearly, the density φ is then given by

φ(t, x, t+, y) :=
ψµt,t+,x,σt,t+,x(ln y1

x1 , ln
y2

x2 , ..., ln
yn

xn )

y1y2 · · · yn
, (4.22)

yi > 0, 1 ≤ i ≤ n, with ψ
µt,t+,x,σt,t+,x being the density of the n-dimensional normal dis-

tribution Nn(µt,t+,x, σt,t+,x) with µt,t+,x := (µi;t,t+,x)1≤i≤n and σt,t+,x := (σij;t,t+,x)1≤i,j≤n.

For practical applications it is most useful to discretize estimator (4.20) to

∆̂h
i :=

1

M

M∑

m=1

1

2h

(
p(t, x+ hi, t

+, g(t, x + hi, t
+,m ξ))

φ(t, x+ hi, t+, g(t, x + hi, t+,m ξ))
f(X

t+,g(t,x+hi,t+, mξ)

τ
t+,g(t,x+hi,t+, mξ)
∗

)

− p(t, x− hi, t
+, g(t, x − hi, t

+,m ξ))

φ(t, x− hi, t+, g(t, x − hi, t+,m ξ))
f(X

t+,g(t,x−hi,t+, mξ)

τ
t+,g(t,x−hi,t+, mξ)
∗

)

)
, (4.23)

where hi := h(δi1, . . . , δin), for small enough h > 0. As an alternative, it is also possible to

push the derivatives in (4.20) through. Since the set of exercise dates is discrete, τ t+,y
∗ (ω)
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may be considered locally constant in y on a fixed ω. Thus, by differentiating (4.20) path-
wise we obtain

∆̂i :==
1

M

M∑

m=1

f(X
t+,g(t,x,t+, mξ)

τ
t+,g(t,x,t+, mξ)
∗

)
∂

∂xi

(
p(t, x, t+, g(t, x, t+,m ξ))

φ(t, x, t+, g(t, x, t+,m ξ))

)
(4.24)

+
1

M

M∑

m=1

p(t, x, t+, g(t, x, t+,m ξ))

φ(t, x, t+, g(t, x, t+,m ξ))

∂f

∂z
(X

t+,g(t,x,t+, mξ)

τ
t+,g(t,x,t+, mξ)
∗

)·

· ∂yX
t+,y

τ
t+,g(t,x,t+, mξ)
∗

(g(t, x, t+, mξ))
∂g(t, x, t+, mξ)

∂xi
,

where
∂

∂xi

p(t, x, t+, y)

φ(t, x, t+, y)
,

∂g(t, x, t+, mξ)

∂xi
,

∂f

∂z

can in principle be expressed analytically, and the vector process

∂yX
t+,y
s (·) :=

∂Xt+,y
s

∂y
(·), s ≥ t+,

can in principle be simulated via a variational system of SDEs (e.g. see Protter (1990),
Milstein & Schoenmakers (2002), Giles & Glasserman (2006)).

In this paper we will prefere the discretized version (4.23) of (4.20) for our applications.
The algorithm is as follows. We first choose a h > 0, and sample mξ for m = 1, . . . ,M from
the reference (usually normal) density. Next we simulate for each m a pair of trajectories

mX
±, which start in mg

± := g(t, x ± h, t+, mξ) at t+, and end at the optimal stopping

times mτ
±
∗ := τ t+,mg±

∗ . Of course the optimal exercise dates mτ
±
∗ are generally unknown

in practice, but we assume that we have good approximations mτ
± at hand, which are

constructed via some well known procedure. For example, in a pre-computation we may
construct an exercise boundary via the regression method of Longstaff & Schwartz (2001)
(Tsitsiklis & Van Roy (2001)), or as an alternative, we may use the policy iteration method
of Kolodko & Schoenmakers (2006), see also Bender & Schoenmakers (2006). For each m
we compute also the values mp

± := p(t, x± h, t+, mg
±) and mφ

± := φ(t, x± h, t+, mg
±),

and finally compute the estimate

∆̂h
i :=

1

M

M∑

m=1

1

2h

(
mp

+

mφ+
f(mX

+) − mp
−

mφ−
f(mX

−)

)
. (4.25)

Remark 7. The presented estimators are particularly effective for European products and
for longer dated Bermudans where t ≪ t+ ≤ t1.

Remark 8. In the previous sections vector and matrix components are denoted by su-
perscripts, so that time parameters of processes can be denoted by subscripts. In the
next sections we deflect from this convention and use subscripts for vector and matrix
components.
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5 WKB approximations for Greenian kernels

5.1 Recap of WKB theory

We summarize some results concerning WKB-expansions of parabolic equations (cf. Kam-
pen (2006) for details). Let us consider the parabolic diffusion operator

∂u
∂t + Lu ≡ ∂u

∂t + 1
2

∑
i,j aij

∂2u
∂xi∂xj

+
∑

i bi
∂u
∂xi
. (5.26)

For simplicity of notation and without loss of generality it is assumed that the diffusion
coefficients aij and the first order coefficients bi in (5.26) depend on the spatial variable x
only. In the following let δt = T − t, and let the functions

(x, y) → d(x, y) ≥ 0, (x, y) → ck(x, y), k ≥ 0,

be defined on R
n × R

n, with d2 and ck, k ≥ 0, being smooth. Then a set of (simplified)
conditions sufficient for pointwise valid WKB-representations of the form

p(t, x, T, y) =
1√

2πδt
n exp

(
−d

2(x, y)

2δt
+

∞∑

k=0

ck(x, y)δt
k

)
, (5.27)

for the solution (t, x) → p(t, x, T, y) of the final value problem

∂p

∂t
+ Lp = 0, with final value (5.28)

p(T, x, T, y) = δ(x − y), y ∈ R
n fixed,

is given by

(A) The operator L is uniformly elliptic in R
n, i.e. as in (2.2) the matrix norm of (aij(x))

is bounded below and above by 0 < λ < Λ <∞ uniformly in x,

(B) the smooth functions x→ aij(x) and x→ bi(x) and all their derivatives are bounded.

For more subtle (and partially weaker conditions) we refer to Kampen (2006). If we add
the uniform boundedness condition

(C) there exists a constant c such that for each multiindex α and for all 1 ≤ i, j, k ≤ n,

∣∣∣∂ajk

∂xα

∣∣∣,
∣∣∣ ∂bi
∂xα

∣∣∣ ≤ c exp
(
c|x|2

)
, (5.29)

then the Taylor expansions of the functions d and ck around y ∈ R
n are equal to d and

ck, k ≥ 0 globally. I.e. we have the power series representations

d2(x, y) =
∑

α

dα(y)δxα (5.30)

ck(x, y) =
∑

α

ck,α(y)δxα, k ≥ 0. (5.31)

Note that (C) is implied by the stronger condition that all derivatives in (5.29) have a
uniform bound. Summing up we have the following theorem:
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Theorem 9. If the hypotheses (A),(B) are satisfied, then the fundamental solution p has
the representation

p(δt, x, y) =
1√

2πδt
n exp


−d

2(x, y)

2δt
+
∑

k≥0

ck(x, y)δt
k


 , (5.32)

where d and ck are smooth functions, which are unique global solutions of the first order
differential equations (5.33),(5.34), and (5.36) below. Especially,

(δt, x, y) → δt ln p(δt, x, y) = −n
2
δt ln 2πδt − d2

2
+
∑

k≥0

ck(x, y)δt
k+1

is a smooth function which converges to −d2

2 as δt ց 0, where d is the Riemannian distance
induced by the line element ds2 =

∑
ij a

−1
ij dxidxj , where with a slight abuse of notation

(a−1
ij ) denotes the matrix inverse of (aij). If the hypotheses (A),(B) and (C) are satisfied,

then in addition the functions d, ck, k ≥ 0 equal their Taylor expansion around y globally,
i.e. we have (5.30)-(5.31).

The recursion formulas for d and ck, k ≥ 0 are obtained by plugging the Ansatz (5.27) into
the parabolic equation (5.28), and ordering terms with respect to the monoms δti = (T−t)i
for i ≥ −2. By collecting terms of order δt−2 we obtain

d2 =
1

4

∑

ij

d2
xi
aijd

2
xj
, (5.33)

where d2
xk

denotes the derivative of the function d2 with respect to the variable xk, with
the boundary condition d(x, y) = 0 for x = y. Collecting terms of order δt−1 yields

−n
2

+
1

2
Ld2 +

1

2

∑

i


∑

j

(aij(x) + aji(x))
d2

xj

2


 ∂c0
∂xi

(x, y) = 0, (5.34)

where the boundary condition

c0(y, y) = −1

2
ln
√

det (aij(y)) (5.35)

determines c0 uniquely for each y ∈ R
n. Finally, for k + 1 ≥ 1 we obtain

(k + 1)ck+1(x, y) + 1
2

∑
ij aij(x)

(
d2

xi

2
∂ck+1

∂xj
+

d2
xj

2
∂ck+1

∂xi

)

= 1
2

∑
ij aij(x)

∑k
l=0

∂cl

∂xi

∂ck−l

∂xj
+ 1

2

∑
ij aij(x)

∂2ck

∂xi∂xj
+
∑

i bi(x)
∂ck

∂xi
,

(5.36)

with boundary conditions

ck+1(x, y) = Rk(y, y) if x = y, (5.37)

Rk being the right side of (5.36). For some classical models in finance a global transfor-
mation of the diffusion operator to the Laplace operator is possible (at the price of more
complicated first order terms however). We observe this in the case of a Libor market
model (Section 6). By a straightforward derivation we get the next proposition.
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Proposition 10. There is a global coordinate transformation for the operator (5.26) such
that the second order part of the transformed operator equals the Laplacian, iff aij = (σσ⊤)ij
for a (square) matrix function σ which satisfies

n∑

l=1

∂σik(x)

∂xl
σlj(x) =

n∑

l=1

∂σij(x)

∂xl
σlk(x), x ∈ R

n. (5.38)

The latter fact is also observed and proved in Ait-Sahalia (2006). If the condition of
Proposition 10 is satisfied, then coordinate transformation leads to second order coefficients
of the form aij ≡ δij , so that the solution of (5.33) becomes

d2(x, y) =
∑

i

(xi − yi)
2.

If conditions (A), (B), (C), and (5.38) hold, then in the transformed coordinates, explicit
formulas for the coefficient functions ck, k ≥ 0 can be computed via the formulas

c0(x, y) =
∑

i

(yi − xi)

∫ 1

0
bi(y + s(x− y))ds, (5.39)

and

ck+1(x, y) =

∫ 1

0
Rk(y + s(x− y), y)skds, (5.40)

with Rk being the right-hand-side of (5.36) where aij = δij . Similar formulas are obtained
in Ait-Sahalia (2006). In Kampen (2006) it is shown in addition how the coefficients ck can
be computed explicitly in terms of power series approximations of the diffusion coefficients
aij and bi. However, in high dimensional models such as the Libor market model direct
computation of the coefficients ck seems more feasible as it turns out that the computation
up to the coefficient c1 is sufficient for our purposes. We conclude this Section with a final
remark concerning possible generalizations to Feller processes.

Remark 11. Pointwise converging analytic expansion can be obtained for a large class of
densities pF of Feller processes which are fundamental solutions of the equation

∂u

∂δt
=

1

2

∑

ij

aij(x)
∂2u

∂xi∂xj
+
∑

i

bi(x)
∂u

∂xi
+ I [u] ,

where aij and bi satisfy conditions (A), (B), and (C), and

I [f ] ≡
∫

Rn

{
f(x+ y) − f(x) − 1[−1,1]n(y)

∂f

∂x
y

}
ν(x, dy)

with a jump measure ν(x, dy). If the jump measure ν(x, .) is a Radon measure on R
n \{0},

and ∫

Rn\{0}
zαν(x, dz) =: ǫα(x)

holds with functions ǫα ∈ C∞(Rn) where

supx∈Rn(ǫα(x))

α!
↓ 0 as α ↑ ∞,
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then there exists a pointwise converging representation of the form

pF (t, x, T, y) = pWKB(t, x, T, y)


∑

l≥0

rl(x, y)δt
l




where pWKB is the WKB-expansion (5.27) of the diffusion equation without integral term
and rl are coefficient functions which satisfy certain first order equations similar to those
of the WKB-coefficients ck (cf. Kampen (2007)).

5.2 Error estimates

We now study the approximation error of a truncated WKB expansion (and its derivatives),
which is essential for the convergence of the Monte Carlo schemes. In this respect we
will show how the derivatives (up to second order) of the product value fuction with
respect to the underlyings computed by means of a truncated WKB-expansion converge
in supremum norm and Hölder norms. Let us consider a WKB-approximation of the
fundamental solution p of the form

pl(t, x, T, y) =
1√

2πδt
n exp

(
−d

2(x, y)

2δt
+

l∑

k=0

ck(x, y)δt
k

)
, (5.41)

i.e. we assume that the coefficients d2 and ck, 0 ≤ k ≤ l have been computed up to order
l. We use the following a priori estimate: Let us denote the domain of the Cauchy problem
by D = (0, T ) × R

n. For integers n ≥ 0 and real numbers δ ∈ (0, 1) let Cm+δ/2,n+δ(D) be
the space of m (n) times differentiable functions such that the mth (nth) derivative with
respect to time (space) is Hölder continuous with exponent δ

2 (δ). Furthermore, |.|m+δ/2,n+δ

denote the natural norms associated with these function spaces. Then a consequence of
Safanov’s theorem (cf. Krylov (1996)) is

Theorem 12. Assume that (A), (B), and (C) are satisfied and let g ∈ C2+δ (Rn) and
f ∈ Cδ/2,δ(D). If

c ≤ −λ for some λ > 0, (5.42)

then the Cauchy problem





∂w
∂t + 1

2

∑
ij aij(x)

∂2w
∂xi∂xj

+
∑

i bi(x)
∂w
∂xi

+ c(x)w = f(t, x) in D

w(T, x) = g(x) for x ∈ R
n

(5.43)

has a unique solution w, and there exists a constant c depending only on δ, n λ,Λ and
K = max{|a|δ , |b|δ, |c|δ} such that

|w|1+δ/2,2+δ ≤ c
[
|f |δ/2,δ + |g|2+δ

]
. (5.44)

In order to analyze the truncation error of the Cauchy problem with data g we consider
he function

u∆(t, x) = u(t, x) − ul(t, x),

15



where

u(t, x) =

∫

Rn

g(y)p(t, x, T, y)dy,

and

ul(t, x) =

∫

Rn

g(y)pl(t, x, T, y)dy.

Observe that
∂u∆

∂t
+ Lu∆ = −∂ul

∂t
− Lul =: ful

(t, x)

Now assume that g ∈ Cδ
0(Rn), i.e. g has compact support. Then we apply the estimate

(5.44) to the function
w(t, x) = e−rtu∆

which solves (5.42) for a constant r > 0. Then we get

|u∆|1+δ/2,2+δ ≤ c|ful
|δ/2,δ . (5.45)

In order to compute the term on the right side of (5.45) we first plug (5.41) into the left-
hand side of (5.28) the parabolic equation satisfied by the exact fundamental solution p.
We get up to higher order terms in δt (recall that δt = T − t)

∂pl

∂t + 1
2

∑
ij aij

∂2pl

∂xi∂xj
+
∑

i bi
∂p
∂xi

=
[∑

i bicl,xi
δtl −∑2l

p=l

(∑
k+m=p ck,xi

cm,xj

)
δtp
]
pl.

Since the coefficients aij and bi are bounded and applying a priori estmates for pl we get

Theorem 13. Assume that conditions (A), (B), and (C) hold and that g ∈ Cδ
0(Rn). Then

|u(t, x, y) − ul(t, x, y)|1+δ/2,2+δ = O(δtl−
δ
2 ).

It is well known that g ∈ Cδ
0(Rn) is not essentially restrictive for practical purposes. Note

that the estimate above is in a very strong norm which ensues pointwise convergence in
the Hölder sense up to the second derivatives of the value function. The result can easily
extended to the case where the functions d2, ck,≤ l are known only in terms of their
Taylor representation up to some order. The case where ck are computed up to k = 1 is
the first case where the truncation error for first and second derivatives converges to zero
(in supremum norm with order O(δt) and in Hölder- extension of supremum norm with

order O(δt)1−
δ
2 ). This implies that our Monte Carlo computation scheme for the Greeks

converges.

5.3 Extension to diffusions with time-dependent coefficients

The results of Section 5.1 and 5.2. extend to time-dependent diffusions without great
difficulties. However, some remarks are in order as the numerical example of the Libor
market model below belongs to that class of diffusions. First, for a diffusion equation of
the form

∂u
∂t + Ltu ≡ ∂u

∂t + 1
2

∑
i,j aij(t, x)

∂2u
∂xi∂xj

+
∑

i bi(t, x)
∂u
∂xi

= 0
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Theorem 9 and Proposition 10 hold with time-dependent coefficient functions, and the
corresponding WKB expansion is of the form

p(t, x, T, y) =
1√

2πδt
n exp

(
−d

2(t, x, T, y)

2δt
+

∞∑

k=0

ck(t, x, y)δt
k

)
. (5.46)

Formally, recursion equations for the WKB-coefficient functions ck can be obtained in a
similar way as in the time-independent case. Application of a convergence theorem in
(Kampen, 2006) leads to a pointwise valid representation (5.46). In case a coordinate
transformation in the sense of Proposition 10 is possible, we obtain the final value problem

∂p

∂t
+ ∆p+

∑

i

µi(t, x)
∂p

∂xi
= 0, with final value

p(T, x, T, y) = δ(x− y),

for the WKB kernel (t, x) → p(t, x, T, y) in the transformed coordinates. In particular, the
function d2(x, y) =

∑
i(xi − yi)

2 does not depend on the time parameter anymore, and
the time-dependent WKB-coefficient functions ck are recursively defined by the first order
partial differential equations

∑

i

(xi − yi)

(
µi(t, x) +

∂c0
∂xi

)
(t, x, y) = 0, (5.47)

for k = 0, and

(k + 1)ck+1(t, x, y) +
∑

i(xi − yi)
∂ck+1

∂xi
(t, x, y)

= Rk(t, x, y) ≡ ∂ck

∂t + 1
2

∑
i

∑k
l=0

∂cl

∂xi

∂ck−l

∂xi
+ 1

2

∑
i

∂2ck

∂x2
i

+
∑

i µi(t, x)
∂ck

∂xi
,

(5.48)

for k + 1 ≥ 1, which have to be solved with the boundary conditions c0(t, x, y) = 0 if
x = y, and ck+1(t, x, y) = Rk(t, y, y) if x = y. Analogue to the time-inhomogenous case
we compute

ck+1(t, x, y) =

∫ 1

0
Rk(t, y + s(x− y), y)skds = Rk(t, x, y)

1

k + 1

−
∫ 1

0

∑

i

(xi − yi)∂iRk(t, y + s(x− y), y)
sk+1

k + 1
ds,

and obtain

(k + 1)ck+1(t, x, y) = Rk(t, x, y) −∫ 1

0

∑

i

(xi − yi)∂iRk(t, y + s(x− y), y)sk+1ds

= Rk(t, x, y) −
∑

i

(xi − yi)
∂ck+1

∂xi
.

As we see, the solution is formally the same as in the time-homogeneous case.
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6 Applications to the Libor market model

We consider a Libor market model with respect to a tenor structure 0 < T1 . . . < Tn+1

in the terminal measure Pn+1 (induced by the terminal zero coupon bond Bn+1(t)). The
dynamics of the forward Libors Li(t), defined in the interval [0, Ti] for 1 ≤ i ≤ n, are
governed by the following system of SDE’s (e.g., see Jamshidian (1997)),

dLi = −
n∑

j=i+1

δjLiLj γ
⊤
i γj

1 + δjLj
dt + Li γ

⊤
i dWn+1 =: µi(t, L) + Li γ

⊤
i dWn+1, (6.49)

where δi = Ti+1 − Ti are day count fractions and t → γi(t) = (γi,1(t), . . . , γi,d(t)),
(γ⊤i γj)

n
i,j=1 =: ρ are deterministic volatility vector functions defined in [0, Ti]. We denote

the matrix with rows γ⊤i by Γ and assume that Γ is invertible. In (6.49), (Wn+1(t) | 0 ≤
t ≤ Tn) is a standard d-dimensional Wiener process under the measure Pn+1 with d,
1 ≤ d ≤ n, being the number of driving factors. In what follows we consider the full-factor
Libor model with d = n in the time interval [0, T1).

6.1 WKB approximations for the Libor kernel

To approximate the transition density pL(s, u, t, v) of Libor process for 0 < s < t, we
transform (6.49) to an equation of form

dYi = µY
i (t, Y )dt+ dW i

n+1, 1 ≤ i ≤ n. (6.50)

For the transition density pY (s, x, t, y), we can compute ck, k = 0, 1, . . . in (5.46) via (5.47)-
(5.48). After that we find pL(s, u, t, v) by a density transformation formula. In order to
find µY in (6.50), we first transform (6.49) to Ki = logLi, 1 ≤ i ≤ n,

dKi =
1

Li
dLi −

1

2L2
i

d〈Li〉 =

(
−γ

⊤
i γi

2
+ µi(t, e

L1 , . . . , eLn)

)
dt+ γ⊤i dWn+1.

Then, by the transformation Y = Γ−1K we get

µY
i (t, Y ) = (MY )i + Vi +

n∑

j=1

Γ−1
ij µj(t, e

(ΓY )1 , . . . , e(ΓY )n),

where

Mij =
n∑

l=1

dΓ−1
il

dt
Γlj , Vi = −

n∑

j=1

Γ−1
ij

|γj |2
2

.

In our case WKB coefficients have a rather complicated form. However, according to our
experience, the convergence of the WKB expansion is typically very fast. In our example
(see Section 6.2) a WKB series with c0 and c1 only provides a very good appoximation for

the transition density. We now give formulas for c0 and its derivatives ∂c0
∂xp

, ∂2c0
∂x2

p
, 1 ≤ p ≤ n,

for further use in our numerical simulation (to compute c1, we integrate R0(s, x, y) in (5.48)
numerically by the trapezoidal rule). Using the notation

Fl(s, x, y) :=
1

(Γ(x− y))l
ln

1 + δle
(Γx)l

1 + δle(Γy)l
, 1 ≤ l ≤ n.
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we may write,

c0(s, x, y) =
1

2

n∑

i=1

n∑

j=1

Mij(yi − xi)(yj + xj) +

n∑

i=1

Vi(yi − xi)

+

n∑

i=1

n∑

j=1

Γ−1
ij (yi − xi)

n∑

l=j+1

ρjlFl(s, x, y),

∂c0
∂xp

(s, x, y) =
1

2

n∑

i=1

(Mip(yi − xi) −Mpi(yi + xi)) − Vp +

n∑

j=1

Γ−1
pj

n∑

l=j+1

ρjlFl(s, x, y) −

n∑

i=1

n∑

j=1

Γ−1
ij (yi − xi)

n∑

l=j+1

ρjl
∂Fl(s, x, y)

∂xp
,

∂2c0
∂x2

p

(s, x, y) = −Mpp + 2

n∑

j=1

Γ−1
pj

n∑

l=j+1

ρjl
∂Fl(s, x, y)

∂xp
−

n∑

i=1

n∑

j=1

Γ−1
ij (yi − xi)

n∑

l=j+1

ρjl
∂2Fl(s, x, y)

∂x2
p

,

where
∂Fl(s, x, y)

∂xp
=

Γlp(s)

(Γ(x− y))l

(
δle

(Γx)l

1 + δle(Γx)l
− Fl(s, x, y),

)

and

∂2Fl(s, x, y)

∂x2
p

=
2Γ2

lp

(Γ(x− y))2l

(
Fl(s, x, y) −

δle
(Γx)l

1 + δle(Γx)l

)

+
Γ2

lp

(Γ(x− y))l

δle
(Γx)l

(1 + δle(Γx)l)2
.

The function F (s, x, y) is analytical in the whole domain. In particluar, there is no singu-
larity when (Γx)l = (Γy)l, 1 ≤ l ≤ p. By L’Hospital’s Rule we get,

lim
(Γx)l→(Γy)l

Fl(s, x, y) =
δle

(Γy)l

1 + δle(Γy)l
,

lim
(Γx)l→(Γy)l

∂Fl(s, x, y)

∂xp
=

Γlpδle
(Γy)l

2(1 + δle(Γy)l)2
,

lim
(Γx)l→(Γy)l

∂2Fl(s, x, y)

∂x2
p

=
Γ2

lpδle
(Γy)l(1 − δle

(Γy)l)

3(1 + δle(Γy)l)3
.

We finally obtain pL(s, u, t, v) by density transformation formula,

pL(s, u, t, v) = pY (s, S−1
s (u), t, S−1

t (v))

∣∣∣∣
∂S−1

t (v)

∂v

∣∣∣∣
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with
S−1

t (v) := Γ−1(t)(log v1, . . . , log vn)⊤.

In our numerical example (Section 6.2) we assume for simplicity that the matrix Γ is upper
triangular and does not depend on t. In this case we have,

pL(s, u, t, v) =
1√

2π(t− s)
n

n∏

i=1

Γ−1
ii

vi
exp


−

(
Γ−1(log v1

u1
, . . . , log vn

un
)⊤
)2

2(t− s)

+

∞∑

k=0

ck(s, S
−1(u), S−1(v))(t − s)k

)
.

6.2 Case study: European swaptions

Estimators (3.7) and (3.13) will be tested for pricing European swaptions and Deltas in a
Libor market model for different maturities T1. A (payer) swaption contract with maturity
Ti and strike θ with principal $1 gives the right to contract at Ti for paying a fixed coupon
θ and receiving floating Libor at the settlement dates Ti+1,. . . ,Tn. So, in (3.7) and (3.13)
we take

u(L) =
Bn+1(0)

Bn+1(T1)




n∑

j=i

Bj+1(T1) (δjLj(T1) − θ)




+

. (6.51)

and then the discretized analogue of (3.13) reads,

∂̂I

∂xi

(h)

(x) :=
1

M

M∑

m=1

1

2h

(
p(x+ hi, g(x + hi, mξ))u(g(x + hi, mξ))

φ(x+ hi, g(x+ hi, mξ))
−

p(x− hi, g(x − hi, mξ))u(g(x − hi, mξ))

φ(x− hi, g(x − hi, mξ))

)
, 1 ≤ i ≤ n, (6.52)

where hi = h(δi1, . . . , δin).

For our experiments we take δi ≡ 0.5 for i ≥ 1, flat 3.5% initial Libor curve, and constant
volatility loadings

γi(t) ≡ 0.2ei,

in the Libor market model (6.49), where ei are n-dimensional unit vectors decomposing an
input correlation matrix ρ,

ρij = exp
[ |j − i|
n− 1

ln ρ∞
]
, 1 ≤ i, j ≤ n. (6.53)

with n > 2 and ρ∞ = 0.3 (for more general correlation structures we refer to Schoenmakers
(2005)). We consider at-the-money (θ = 3.5%) swaption over a period [T1, T19].

In our case, the Libor transitional kernel pL(s, x, t, y) has a pronounced ’delta-shaped’
form. See Fig. 1 for cross-sections α → pL(0, L(0), t, αL(0)) of its WKB approximations
pL
0 and pL

1 , with c0 only, and with c0 and c1, respectively. Because of the ’delta-shape’,
it is very important to find a proper density ϕ in (3.7) and (6.52) to make the estimators
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Figure 1: WKB approximations of the Libor transitional density (cross-section)
pL(0, L(0), t, αL(0)) for different t (thin line for pL

0 , bold line for pL
1 ) and lognormal ap-

proximation pL
ln(dashed line).

efficient. Here we take for ϕ a canonical lognormal approximation of the transition kernel
pL

ln(s, x, t, y) defined by (4.22),

pL
ln(s, u, t, v) =

1√
2π(t− s)

n

n∏

i=1

Γ−1
ii

vi
×

exp

(
−

(Γ−1((log v1
u1
. . . log vn

un
) − µln(s, t, x))T )2

2(t− s)

)

with

µln
i (s, t, x) = (t− s)


 |γi|2

2
−

n∑

j=i+1

|γi||γj |ρijδjxj

1 + δjxj


 , 1 ≤ i ≤ n.

The figure shows, that pL
ln(0, L(0), t, αL(0)) is rather close to WKB approximation. How-

ever, simulating Libors from pL
ln(0, L(0), t, ·) provides rather crude estimations for Euro-

pean swaptions and Deltas. In this example the bias is about 5% for prices of European
swaptions and 3% for the Deltas, see Table 1 and Table 2.

Now we consider estimators (3.7) and (6.52) with payoff (6.51) for x = L(0), where

ϕ(x, ·) = pL
ln(0, x, T1, ·),

p(x, ·) = pL
0 (0, x, T1, ·) and p(x, ·) = pL

1 (0, x, T1, ·).
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Let us denote them by Î0 and Î1, respectively. The estimates due to (3.7) and (6.52) are
compared with ’exact’ values of European swaptions and Delta. For the ’exact’ values, we
simulate M Libor trajectories of (6.49) by a log-Euler scheme with very small time steps,
∆t = δi/10, and take

Îex =
1

M

M∑

m=1

u(mL
0,x
T1

), (6.54)

∂̂Iex
∂xi

(h)

=
1

M

M∑

m=1

u(mL
0,x+h
T1

) − u(mL
0,x−h
T1

)

2h
, 1 ≤ i ≤ n.

Analogue to (6.54), we compute Îln and ∂bIln

∂xi
due to a lognormal approximation of the

Libor model with transition kernel pL
ln(0, x, T1, ·).

In Table 1 and Table 2, we give time 0 values of European swaptions and Deltas, computed

via estimators Îex, Îln, Î0, Î1 and ∂̂Iex

∂x1

(h)

, ∂̂Iln

∂x1

(h)

, ∂̂I0
∂x1

(h)

, ∂̂I1
∂x1

(h)

, respectively, for different

maturities T1. To compute the values in the tables, we take h = 3.5 × 10−5, M equal
to 3 × 105 and 2 × 105, respectively, to keep standard deviations within 0.5% relative to
the values. As we see, the WKB approximation with only two coefficients, c0 and c1, pro-
vides a very close estimate of the European swaptions and Deltas, also for large maturities.

The distance between Îex and Î1 and ∂̂Iex

∂x1
and ∂̂I1

∂x1
is smaller than 0.5% relative to the value.

Table 1. (values in basis points)

T1 Îex (SD) Îln (SD) Î0 (SD) Î1 (SD)

0.5 129.6(0.4) 128.9(0.4) 129.1(0.4) 128.4(0.4)
1.0 179.1(0.5) 179.4(0.5) 180.6(0.6) 178.7(0.5)
2.0 243.8(0.8) 246.0(0.8) 251.4(0.8) 245.1(0.8)
5.0 351.2(1.3) 357.8(1.3) 376.3(1.4) 349.4(1.3)
10.0 430.3(2.0) 453.3(2.2) 499.4(2.1) 430.6(1.8)

Table 2. (values in basis points)

T1
∂̂Iex

∂x1

(h)

(SD) ∂̂Iln

∂x1

(h)

(SD) ∂̂I0
∂x1

(h)

(SD) ∂̂I1
∂x1

(h)

(SD)

0.5 2475.3(5.6) 2470.3(6.0) 2485.4(6.0) 2470.5(6.0)
1.0 2450.6(6.2) 2451.7(6.2) 2480.0(6.6) 2450.1(6.1)
2.0 2401.4(6.4) 2405.2(6.4) 2460.3(6.6) 2400.4(6.4)
5.0 2257.2(7.1) 2261.2(7.2) 2386.7(7.4) 2239.1(6.9)
10.0 2017.9(8.3) 2077.3(8.8) 2299.8(9.0) 2010.2(7.7)
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