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RANDOM APPROXIMATION OF FINITE SUMS 

PETER MATHE 

September 2, 1992 

ABSTRACT. This paper is devoted to a detailed study of the randomized 
approximation of finite sums, i.e., sums I:j=1 x j, x E ~ m, where m is 
supposed to be large, shall be approximated with information on n coor-
dinates, only. The error is measured on balls in l;', 1 :::; p :::; oo. Main 
emphasis is laid on the exact solution of the problems stated below. In most 
cases we obtain both, an optimal method for the Monte Carlo setting and 
the description of least favorable distributions for the average case setting, 
exhibiting results obtained in a previous paper by the author, [Mat92]. 
Moreover, the solution of the finite-dimensional problem is applied to the 
Monte Carlo integration of continuous functions. Finally, this knowledge 
is used to study some of the properties, the optimal methods possess. 

1. INTRODUCTION 

This paper is devoted to a detailed study of the randomized approximation of 
finite sums. Although this is no problem of numerical relevance, it may serve as a 
model study of Monte Carlo integration on C(O, 1), the continuous functions on the 
unit interval, equipped with the supremum norm II· 11 00 • This application is studied 
in the last section. 

Main emphasis is laid on the exact solution of the problems stated below. This 
work shall exhibit results obtained in a previous paper by the author, see [Mat92]. 

Since we are able to compute the optimal methods in many cases explicitely we 
can study some of their properties. The usual (crude) Monte· Carlo integration is 
motivated by the law of large numbers, cf. [Erm71, §2.4] : If f E C(O, 1) is any 
function, then f01 f(x)dx = Ef = limn-oo 1/nI.:7=1 f(~j),a.s., where the ~i are in-
dependent random variables, distributed uniformly on [O, 1]. A simple computation 
proves 
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2 PETER MATHE 

Another standard argument proves that this typical Monte Carlo rate n- 1/ 2 cannot 
be improved on the class of all functions with 11111 00 ~ 1. Thus at the level of the 
rate of convergence we cannot expect to gain new insight. 

We will however compute the exact optimal error and provide a strictly optimal 
random method. 

2. OPTIMAL APPROXIMATION OF FINITE SUMS 

We shall study stochastic methods to approximate sums with a large number of 
summands. Since we are dealing with the discrete case in this section the underlying 
probabilities, describing the stochastic methods can be treated as combinatorial. 

The analysis carried out below is in the framework and notation of Information-
based Complexity, see (TWW88]. Additional background information can be ob-
tained there. Summation shall be considered as a linear functional sm on JR m, where 
m represents the length of the sum. To be precise, let sm : JR m -+ JR be defined as 

m 

Sm(x) := Lxi, x = (xi)J=t E JRm. 
j=l 

Weighted sums can be represented similarly as S'; : Rm -+ R via 
m 

s;;(x) := LO"jXji x = (xJ)J=l E Rm. 
j=l 

(We always shall assume, that the weights a = ( ai )j=1 are positive and arranged in 
decreasing order, a 1 ~ a2 ~ • • • ~ 0.) We shall consider sm or S'; as functionals 
acting on the closed unit balls B;' := { x E JR m, I:j=1 lxi IP ~ 1} C JR m, 1 ~ p ~ 
oo, the usual modification for p = oo, i.e., B;' is the class of problem elements. 

Given n E N we shall allow any deterministic method u of the form 

u(x) := LCjXj, x E JRm, 
jEI 

where I C {1, ._ .. , m} is any subset of at most n elements and ( ci )~1 E JR m are 
arbitrary weights (Observe, that the values of ci,j <f. I are not needed in the com-
putation). Thus the class of admissible methods is 

9nn(JRm) := {u(x) = L CjXj, card(!)~ n, Cj E JR}. 
jEJ 

All these methods u are linear (in x) functionals on Rm, which can be written 
as u( x) = I:j=1 x1 (j)cixh where Xr is the indicator function of the subset I C 
{1, ... ,m}. 

Let us, for completeness, review the worst-case problem of approximating Sr;' by 
methods u E 9nn (JR m) here, i.e., the error of any method u on B;' is defined as 

e(S;', u,B;;') :=sup {IS;'(x) - u(x)I, x EB;'}, 
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and 

Proposition 1. For any p, 1 ~ p ~ oo and 1 ~ n ~ m we have 

( ') l/p' (1) e(S;;, 9J1n(Rm), Bpm) = LJ=n+1 lai IP 
(2) e(Sm,9J1n(Rm),Bpm) = (m - n)11P'. 

(where p' is conjugate top, i.e., 1/p + 1/p' = 1) 
Proof: It is easy to see that the method u(x) = LJ=l aixi yields the error stated in 
the theorem. To prove that this is best possible, let u with I and ( ci )~ 1 be chosen. 
We have 

Since the weights are arranged in decreasing order we obtain the lower estimate. D 
The above result may serve as a reference to be compared with the estimate 

obtained for random methods. 
To proceed we shall introduce random (stochastic) methods. Stochastic methods 

are considered as probabilities on the class of (admissible) deterministic methods. 
Therefore the class 9J1n (Rm) can be identified with a special Borel subset of Rm 
and it shall be equipped with the respecting Borel a-algebra, denoted by :F (we 
suppress the parameters n, m). Any probability Pon [9J1n(Rm),:F] will be called 
a Monte Carlo method on 9J1n(Rm). This approach is equivalent to the following 
(more intuitive) procedure. One chooses any n-subset I of {1, ... , m} at random, 
further weights c = ( c1 , ••• , cm) are randomly chosen and the composition ur,c( x) = 
LiEI cixi gives our random method in W1n(Rm). We shall however provide an 
optimal method, which only chooses the set I of indices at random. 

It is well-known that the mapping (u,x)-+ u(x) is product measurable (where 
B'; is equipped with the Borel-a-algebra, too), cf. [Mat92]. The error of any 
random method P on [9J1n (Rm), :F] is defined as usual by 

( ) 
1/2 

e(S;;',P,x) := j IS;;'(x)- u(x)l2dP(u) 

at any specific element x E B';, whereas 

( ) 
1/2 

e(S;;',P,B';) := sup j IS;;'(x)- u(x)i2dP(u) 
xEB;;' 

characterizes the overall quality of P. We shall look for an optimal method P 
minimizing the above quantity, i.e., 
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It has been proven by the author [Mat92] that under the above assumptions the 
Monte Carlo error emc(S:;", 9Jtn(Rm), Bpm) is equal to the average-case error 

Here µ is any Borel probability on B;' and 

denotes the µ-average-case error. Any probabilityµ maximizing the right-hand side 
in ( 1) is said to be least favorable. 

The aim of this section is the description of both the optimal random methods 
P and least favorable distributions µ for the problems S"' on B;', 1 ::; p ~ oo. 

Let us start with a result for S:;" in case p = 1, similar to the example treated in 
[Mat92]. 

Theorem 1. For any 1 ::; n ~ m we have 

( 1) 

(2) As a special case we have 

Proof: We will prove the equality in (1) by a reduction of the above summation 
problem to the case of the example treated in [Mat92]. The reader is referred to 
the computation carried out there. We know from [Mat92, Thm. 5] that a least 
favorable distribution µ for the average-case may be chosen to sit at the extreme 
points {±e1, ... , ±em} of B'{', where e1, ... , em denotes the unit vector basis in Rm 
i.e., µ is of the form 

m 

µ = L (aj8ei + f3j8-eJ, 
j=l 

for some ai, f3i 2: 0, LJ=l ( ai + /3i) = 1. For such µ and any method 

m 

u(x) = LX1(j)cixi, x E Rm 
j=l 
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we can compute the error 

j IS;'(x) - u(x)l2dµ(x) 
m 

2)ai + ,Bi)lcri - xr(j)cil 2 

j=l 
m 

L Ii Jeri - Xr(j)ci 12 

j=l 

with ti = ai + {3i, j = 1, ... , m. It is easy to see that for any ( /j )~ 1 and choice 
of I the above expression is minimized with respect to ( ci )iEI if ci := cri, j E I 
hence 

inf {t, 'Y;uJ(l - x1(j)), card(I) = n} 

(2) inf {t, -y;uJ(l - l; ), l; E {O, 1 }, t, l; = n} 

a~+ 1 (Da,µ) 

with a;1;+1 ( D"' /t) as in [Mat92, equation 21]. The shift from n --+ n + 1 results from 
the different definition of the quantities. Thus we have carried out the reduction 
process and can rely on the result proved in [Mat92]. D 

Remark 1. The second statement in the theorem can be proven directly, proceeding 
after (2). Moreover, an optimal random method is obtained by a uniform choice of 
n-sets I out of { 1, ... , m} and equal weights c1 = · · · = cm = 1. A least favorable 
distributionµ is the uniform distribution on {±e1 , .•• , ±em}· 

Now we are prepared for the main result of this section. Considerations will 
henceforth be restricted to the case sm, since no. solution is available for the general 
case. 

Theorem 2. For any 1 :'S n < m we have 

(1) e~c(Sm,wtn(lRm),B~) = l+~· 

(2) An optimal Monte Carlo method for the above problem is obtained by a 
uniform choice of n-sets I out of { 1, ... , m} and equal weights 

m 
Coo = C1 = ... = Cm = n + . f n(m-n). 

V m-1 

Proof: We shall prove the upper bound by computing the error of the method 
described in (2). The case n = 1 shall be omitted since it is easier to handle. So let us 
fix 2 :'S n < m. The uniform choice of n-sets I can be characterized as a probability 
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p on \P( n ), the collection of all n-subsets of {1, ... , m }, i.e., p = (~) I:rE<:JJ(n) 8 I. Let 
us consider the error of the random method P, obtained from p by 

P(u ) = {p(I) 
I,c Q 

Given any x EB'::, we calculate 

e( sm, P, x )2 = 

(3) 

, if C = C00 

, if C -:j:. C00 

It is easy to check that 1 - 2c00 ;; + c;, ~~:-=:.\\ 0 and 1 - 2c ..!!. + c2 ..!!. OOm oom 

( 
m ) 2 • Thus we obtain 

1+Jn(:_-n1) 

(4) 
m1/2 

= sup llxll2 
1 + . /n(m-1) llxlloo=l V m-n 

(5) 
m 

l + Jn(m-1)' 
m-n 

which completes the proof of the upper estimate. 
We turn to the lower estimate and shall construct a probabilityµ on { +1, -1 }m E 

B'::,, which provides the µ-average-case error 

e(Sm,Wln(Rm),µ) = m . 
l +. /n(m-1) V m-n 
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This probability will turn out to be a mixture of probabilities ft/, l = 0, ... , m 
which themselves are uniform distributions on all vectors x E { + 1, -1 }m, satisfying 
L:;j'=1 xi = m - 2l, i.e., exactly l of their components are equal to -1. The following 
lemma describes properties of these measures and can be proven by straightforward 
computation. 

Lemma 1. For any choice of m and l = 0, ... , m we have 
(1) 

J m- 2l 
xjdµ/(x)= m , 

(2) 

j = l, ... ,m, 

'if j = k 
'if j :/; k 

(3) For any method u( x) = L;iEI CjXj, x E JR m we have 

2 ( l) 2 2( m - 2l) 2 ~ ( m - 2l)2 - m (~ ) 
2 

e(Sm, u, µI) = m - 2 - L.J Cj + ---- L.J Cj 
m jEI m(m - 1) jEI 

+ ( _ (m - 2l) 2 - m) ~ ~ 
1 ( ) L.J c1 • 

m m - 1 iEI 

Observe that e(Sm,u,µ/)2 = e(Sm,u,µ:_1) 2 • Using the above identities we con-
struct the desired µ as follows. Put {J := Jnc;:_-,_i) and w := 1".;_~. Let ( wt);:0 , w1 2: 
0, L:~o w1 = 1 be chosen such that 

m 

l:w1(m- 2l) 2 = w. 
l=O 

This is possible since 0 < w < m 2 • Having fixed such choice of ( w1 );:0 let µ be 
defined as 

m 

µ:= l:w1µ1'. 
l=O 

Let us now fix any method u1,c E 9Iln(lRm) and put s := L;iEI Cj. We conclude, 
using topic (3) of Lemma 1 that 

m 

e(Sm, u,µ) 2 = L W1e(Sm, u,µ!) 2 

l=O 

2w s2(w - m) m2 - w ~ 2 
w - -s + + L.J ci . 

m m(m-1) m(m-l)iEI 

To minimize this with respect to the choice of u E wtn(JRm) we can sequentially 
minimize over ( ci )iEI for fixed s and I, choices of I, card(!) ~ n and choices of s 
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and arrive at 

> inf{w- 2ws+ ( 32 )(w(n-l)+m(m-n))} • m mn m -1 
. f{ 2 m(n-l)+(m-n)(l+,6) 2 } 

w I~ 1 - ms + m2n( m - 1) s 

w ( l - m(n - l)nl7r: ~)n)(l + ,6)) 

1 : fi ( 1+ fi - ( m :~ ~; ~) · 
Since ,6 2 - 1 = m(n-l) we obtain m-n 

e(Sm,9J1n(Rm),µ)2 2: 1: ,6' 

which proves the lower bound. Moreover we can see, that the lower bound is attained 
for any method u(x) = cL,iEixi where c = * = n+~· D 

Another look at the proof of the foregoing Theorem 2 gives rise to 

Corollary 1. For 2 :::=; q :::=; oo we have for 1 :::=; n < m 
1/ q' 

emc(Sm,9Itn(Rm),B;') = J ' l + n(m-1) 
m-n 

where this bound is attained with the same method as described in topic (2) of 
Theorem 2. 
Proof: A look at the proof of the upper bound in Theorem 2, see equation (3) gives 
an individual error for the method P00 

Thus, analogously to ( 4) we have 

To prove the lower bound define Tq : Rm --+ Rm as 

Tq(x) := m-lfqx, x E Rm. 

It is easily seen that llTq : z: --+ l;'ll = 1. Let µ be any least favorable distribution 
for B: and put µq := µ o Tq- 1 , be the image distribution of µ under Tq. Hence 
µ(B'J') = 1 and we have for any method u E 9J1n(Rm) 

e(Sm,u,µq) = m-l/qe(Sm,u,µ), 
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from which the proof can be completed. D 
We turn to the optimal error for sm on balls B;', 1 < p < 2. We are, however, 

not able to compute the exact error, as done before, but we can provide an estimate 
which reflects the right asymptotics with respect tom, n EN. The inherent difficulty 
in case 1 < p < 2 can be seen from equation (3) and 

sup llxll2 = {l 1/2-1/p 
llxllp=l m 

,l::;p::;2 
,2::;p::;oo 

Given two functions f, g : N X N ---+ ~ the asymptotics f ::::: g means that there are 
constants 0 < c < C < oo, such that cf(m,n)::; g(m,n)::; Cf(m,n),m,n EN. 

Theorem 3. Let 1 ::; p ::; 2. Then we have for 1 ::; n ::; m 

(1) 

(2) An almost optimal Monte Carlo method Pp is obtained from uniform sam-
pling of I E i:p( n) with weight Cp = n+(m-:)m-2/p · 

Remark 2. The extremal cases p = 1, 2 can be compared with the results in (2) of 
Theorem 1. and Corollary 1. 
Proof (of the theorem): We shall start with the individual error, computed in (3), 
which represents the error of any method P, consisting of uniform sam piing and 
weighting with equal weight c. Hence 

e(Sm p Bm)2 
' , p sup {llxll~n(m-n) +(txi) 2 (1-2c~+c2 n(n-l) )} 

llxllp=l m(m - 1) j=l m m(m - 1) 

{ ( ) 
2 } 2 n(m - n) m n 2 

::::: sup llxll 2 2 + Lxi (1- c-) . 
llxllv=l m j=l m 

If we substitute the value of Cp and observe that I LJ=l Xj I ::; m 1/P', x E B;' we 
obtain the upper estimate. 

To prove the lower estimate we have to choose an almost least favorable distribu-
tion on B;', appropriately. So, let µ1 be the uniform distribution on {±e1 , •.• , ±em} 
and µ2 be the two-point distribution one = m- 1/P(l, ... , 1) and -e. Thus µ1 and 
µ2 are concentrated on B;'. Further, let w ·- m2+(mn;:~m2I•), hence 0 < w < 1. 
Finally defineµ:= wµ1 + (1- w)µ2. 
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To estimate the error with respect to this measureµ choose any method u(x) = 
LiEI cixi and let s := LiEI ci. We have 

e(Sm, u, µ) 2 we( Sm, u, µi)2 + (1 - w )e(Sm, u, /L2) 2 

w ( ~ ) w(m - n) 1 - w - n - 2s + c2 + + -- ( m 2 - 2sm + s2 ) • m 1 m ~h jEI 

Minimizing sequentially over (ci)iEI for fixed sand I, choices of J,card(J):; n 
and choices of s we arrive at 

( m ) 2 • { wn ( s) 2 m - n 1 - w ( )2 } e S , u, µ 2: mf - 1 - - + w-- + -- m - s . 
s m n m m 21P 

This is minimized at s = n+(m~)m-2/v , hence cP := ; as stated_ in (2) in the 
formulation of the theorem. The choice of such cP, denote the respective method 
by up for a moment, provides the error 

( sm )2 - m - n 1 m - n 
e ,up,µ - (2-m-2/P')(n+(m-n)m-2/P') 2: 2(n+(m-n)m-2/P')' D 

3. APPLICATIONS TO MONTE CARLO INTEGRATION 

In this section we are going to apply the results of Section 2 to the simplest 
integration problem Int: C(O, 1) -r JR. with Int(!) := f0

1 J(t)dt, J E C(O, 1). This 
is natural, since one can expect that for large m the functionals ~Sm tend to Int. 
The class of possible (deterministic) methods shall be 

which means, that any u E Wln (C(O, 1)) , which is of the form u = L.7=1 cioE.i 
acts as u(f) = L.7= 1 cjf(~i), f E C(0,1). One can prove that Wln(C(0,1)) is a 
Borel set in the space of finite measures on (0, 1), equipped with the weak topology. 
According to the definition in [Mat92] any probability Pon Wln (C(O, 1)) will be 
called a Monte Carlo method, the error of which on B(O, 1), the unit ball of C(O, 1) 
in the supremum norm llflloo := maxtE[o,11 lf(t)i will be defined as 

and 

e(Int, P, B(O, 1)) := sup (j I Int(!) - u(J)i2dP( u) 
l\fl\oo=l 

) 
1/2 

emc(Int, 9Jtn ( C(O, 1)), B(O, 1)) :=inf { e(Int, P, B(O, 1) ), P(Wln ( C(O, 1))) = 1} . 

With the above notation we can state 
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Theorem 4. For every n E N we have 

An optimal Monte Carlo method can be chosen to be of the form Pn := Cn I:j'= 1 8t,i' 
where (~J )7= 1 is an independent uniformly distributed sample in (0, 1) and Cn := 

1 
n+fo' 
Proof: Pn is clearly a Monte Carlo method on 9Jtn ( C(O, 1) ). It provides an error at 
f E B(O, 1) 

e(Int, Pn, !)2 J'' ·!I Int(!) - Cn t f(~j )12d6 · · · ~n 
J :=l 

(6) (1- 2ncn + n(n - l)c;) I Int(J)i2 + nc; Int(J2 ). 

Since Cn is chosen satisfying 1 - 2ncn + n(n - l)c; = 0 we arrive at 

1 
e(Int, Pn, B(O, 1)) = focn = Vn 1+ n 

It remains to prove i+fo to be a lower bound. Roughly one could think of Rm to be 
mapped to a space of step functions, x E Rm -t I:j=1 XJX[i=!.,i...)· Such a mapping 
would easily lead to the desired lower bound. However, since step functions are not 
continuous we shall make use of a pertubation argument. To this end, given any 
0 < c: < ~let 'Pe E C(O, 1) be a piecewise linear continuous function, defined as 

Given m E N let 

,O~t<c: 

,c:~t<l-c:. 

,1-c:~t:Sl 

fj(t) := <p(mt - j + 1), t E (0, 1],j = 1, ... , m 

be a family of m continuous functions with almost disjoint support, supp fJ 
[~, ~]. Further we define Tem : Rm-> C(O, 1) by 

m 

T;"(x) = Lxjf1 , x E Rm. 
j :=l 

It is dear that Tem is linear and llTem : l':, -> C(O, 1)11 = 1. Moreover one has 

1- c: . 
Int oTm = --Sm, 

e m 

and, if u E 9Jtn (C(O, 1)), then u o Tem meets at most n coordinates, thus u o Tem E 
9Jtn(Rm). 
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Now, given any distribution vrn on B;;:, putµ';':= vrn o (T.rnr 1 , the image of vrn 
under Tern· The above arguments imply, given any method u E 9Itn (C(O, 1)), 

e(Int, u, µ';') e(Int oTern, u o Tern, vrn) 

(1- ESrn Trn rn) e -- ,uo e ,v . 
m 

Consequently, 

eavg(Int, 9Jtn (C(O, 1)), B(O, 1)) > eav g ( 1 - E 5m' 9Jtn (JR m)' B;) 
m 

for any m and E < ~- Thus 

1- E eavg(sm' 9Jtn(Rrn), B;n, 
m 

eavg (Int, 9Jtn ( C(O, 1)) , B(O, 1)) 

1 
sup--=== rn 1 + . /n(rn-1) V m-n 

1 
l+fo' 

which completes the proof of the theorem. D 
It seems worth to discuss some of the properties of the Monte Carlo method Pn, 

constructed above. 
First, notice that the sequence of distributions µ';' can always be chosen to be 

symmetric. This implies that the linear method constructed in the proof above is 
optimal among all affine methods u of the form u(x) :=a+ LjEicjf(~j), f E 
B(O, 1). To see this, take any u of the above form, u =a+ u0 ,u0 E 9Jtn (C(O, 1)) 
and compute . 

/1 Int(J)-u(J)l2$;'(J) j I Int(J)-uo(J)-al 2dµ';(f) 

j I Int(- J)-uo(-J)-al 2dµr;'(J) 

j 1Int(J)-uo(J)-aj 2 +Jint(-J)-~o(-J)-aj 2 dµ';(J) 

j I Int(!) - uo(f)l2dµ';(J) + a 2 , 

which is minimized for a= 0. Secondly, a look at the optimal Monte Carlo method 
Pn described in Theorem 4. shows that it is biased. Precisely, 

J u(J)dPn( u) = ncn Int(J) = . n fo Int(J). 
n+ n 

This is a "slight" underestimation, while the usual "crude" Monte Carlo method 
(with c = ~) is unbiased. 
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Finally, let us mention, that the same optimal Monte Carlo error as stated in 
Theorem 4 is obtained for continuous functions on the s-dimensional unit cube 
[O, 1]3, thus reproving the independence of the dimension. 
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