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Abstract

Propagation-Separation stands for the main properties of a new class of adaptive
smoothing methods. An assumption that a prespecified type of models allows for
a good local approximation within homogeneous regions in the design (structural
assumption), is utilized to both recover homogeneous regions and to efficiently estimate
the regression function. Locality is defined by pairwise weights. Propagation stands
for the unrestricted expansion of weights within homogeneous regions. Separations
characterizes the restriction of positive weights to homogeneous regions with respect
to the specified model. The procedures have remarkable properties like preservation
of edges and contrast, and (in some sense) optimal reduction of noise. They are fully
adaptive and dimension free. We here provide a short introduction into Propagation-
Separation procedures in the context of image processing. Properties are illustrated

by a series of examples.

Regression is commonly used to describe and analyze the relation between explanatory
input variables X and one or multiple responses Y . In many applications such relations
are to complicated to be modeled by a parametric regression function. Classical nonpara-
metric regression, see e.g. Fan and Gijbels (1996); Wand and Jones (1995); Loader (1999);
Simonoff (1996) and varying coefficient models, see e.g. Hastie and Tibshirani (1993); Fan
and Zhang (1999); Carroll et al. (1998); Cai et al. (2000b), allow for a more flexible form.
In this article we describe an approach that allows to efficiently handle discontinuities and

spatial inhomogeneity of the regression function in such models.

1 Nonparametric regression

Let us assume that we have a random sample Zi, ..., Z, of the form Z; = (X,,Y;). Every
X; is a vector of explanatory variables which determines the distribution of an observed
response Y;. Let the X;’s be valued in the finite dimensional Euclidean space X = R?
and the Y;’s belong to Y C IR?. The explanatory variables X; may e.g. quantify some
experimental conditions, coordinates within an image or a time. The response Y; in these
cases identifies the observed outcome of the experiment, the grey value or color at the

given location and the value of a time series, respectively.



We assume that the distribution of each Y; is determined by a finite dimensional parameter

6 = 6(X;) which may depend on the value X, of the explanatory variable.

1.1 Examples

We use the following examples to illustrate the situation.

Example 1.1 [Homoscedastic nonparametric regression model] This model is specified
by the regression equation Y; = 6(X,)+e¢; with a regression function § and additive i.i.d.
Gaussian errors &; ~ A (0,02). We will use this model to illustrate the main properties
of our algorithms in a univariate (d = 1) setting. The model also serves as a reasonable
approximation to many imaging problems. Here the explanatory variables X; define a
two (d =2) or three (d = 3) dimensional grid with observed grey values Y; in each grid
point.

Example 1.2 [Inhomogeneous Binary Response model] Here Y; is a Bernoulli random
variable with parameter (X;), thatis, P(Y; =1|X;) = 6(X;) and P(Y; =0| X;) =

1 —0(X;). This model occurs e.g. in classification. It is also adequate for binary images.

Example 1.3 [Inhomogeneous Poisson model] Every Y; follows a Poisson distribution
with parameter § = 6(X,), i.e. Y; attains nonnegative integer values and P(Y; = k |
X;) = 6%(X;)e~®Xi) /!, Such a situation frequently occurs in low intensity imaging, e.g.
confocal microscopy and positron emission tomography. It also serves as an approximation

of the density model, obtained by a binning procedure.

Example 1.4 [Color images| In color images Y; denotes a vector of values in a 3 di-
mensional color space at pixel coordinates X;. A 4th component may code transparency
information. The observed vectors Y; can often be modeled as multivariate Gaussian, i.e.
Y; ~ N3(0(X;), X)) with some unknown covariance X' that may depend on 6. Additionally

we will usually observe some spatial correlation.

1.2 Local modeling

We now formally introduce our model. Let P = (P3,0 € @) be a family of probability
measures on Y where @ is a subset of the real line IR'. We assume that this family is
dominated by a measure P and denote p(y, ) = dPs/dP(y). We suppose that each Y; is,
conditionally on X; = z, distributed with density p(-,8(z)). The density is parameterized

by some unknown function #(z) on X which we aim to estimate.



A global parametric structure simply means that the parameter § does not depend on the
location, that is, the distribution of every “observation” Y; coincides with Py for some
0 € ® and all 7. This assumption reduces the original problem to the classical parametric
situation and the well developed parametric theory applies here for estimating the under-
lying parameter 6. In particular, the maximum likelihood estimate 6= 5(Y1, oo Yy) of

6 which is defined by maximization of the log-likelihood
L(6) = 3 log (%, 0) (1)
=1

is root-n consistent and asymptotically efficient under rather general conditions.

Such a global parametric assumption is typically too restrictive. The classical nonpara-
metric approach is based on the idea of localization: for every point z, the parametric
assumption is only fulfilled locally in a vicinity of z. We therefore use a local model

concentrated in some neighborhood of the point z.

The most general way to describe a local model is based on weights. Let, for a fixed
T, a nonnegative weight w; = w;(z) < 1 be assigned to the observations Y; at X,
1 =1,...,n. When estimating the local parameter 6(z), every observation Y; is used
with the weight w;(z). This leads to the local (weighted) maximum likelihood estimate

(z) = argoup > wi(z) log p(¥:, 0). 2)

6O

i=1

Note that this definition is a special case of a more general local linear (polynomial)
likelihood modeling when the underlying function @ is modelled linearly (polynomially)
in z, see e.g. Fan et al. (1998). However, our approach focuses on the choice of localizing
weights in a data-driven way rather than on the method of local approximation of the

function 6.

A common example of choosing the weights w;(z) is defined by weights of the form
w;(z) = Kioe(l;) with I; = |p(z, X;)/h|?> where h is a bandwidth, p(z,X;) is the Eu-
clidean distance between z and the design point X; and Kj.. is a location kernel. This
approach is intrinsically based on the assumption that the function 6 is smooth. It leads
to a local linear (polynomial) approximation of #(z) within a ball of some small radius
h centered in the point z, see e.g. Tibshirani and Hastie (1987); Hastie and Tibshirani
(1993); Fan et al. (1998); Carroll et al. (1998); Cai et al. (2000a).

An alternative approach is Localization by a window. This simply restricts the model to
a subset (window) U = U(z) of the design space which depends on z, that is, w,;(z) =
1(X; € U(z)). Observations Y; with X, outside the region U(z) are not used when

estimating the value #(z). This kind of localization arises e.g. in the regression tree



approach, in change point estimation, see e.g. Miiller (1992); Spokoiny (1998), and in
image denoising, see Qiu (1998); Polzehl and Spokoiny (2003) among many others.

In our procedure we do not assume any special structure for the weights w;(z), that is,
any configuration of weights is allowed. The weights are computed in an iterative way

from the data. In what follows we identify the set W(z) = {wi(z),..., wn(z)} and the

local model in z described by these weights and use the notation
W(z),0) = sz ) logp(Y;, 6).

Then 5(3:) = argsupg L(W(z),0). For simplicity we will assume the case where 6(z)
describes the conditional expectation E(Y|z) and the local estimate is obtained explicitly

as

= sz(m)Yl/sz(m) (3)

The quality of estimation heavily depends on the localizing scheme we selected. We
illustrate this issue by considering kernel weights w;(z) = Kioc(|p(z, X;)/h|?) where the
kernel Kj, is supported on [0,1]. Then the positive weights w;(z) are concentrated
within the ball of radius A at the point z. A small bandwidth A leads to a very strong
localization. In particular, if the bandwidth A is smaller than the distance from z to the
nearest neighbor, then the resulting estimate coincides with the observation at z. The
larger bandwidth we select, the more noise reduction can be achieved. However, the choice
of a large bandwidth may lead to the estimation bias, if the local parametric assumption

of a homogeneous structure is not fulfilled in the selected neighborhood.

The classical approach to solving this problem is based on a model selection idea. One
assumes a set of bandwidth-candidates {hr} to be given, and one of them is selected in
a data-driven way to provide the optimal quality of estimation. The global bandwidth
selection problem assumes the same kernel structure of localizing schemes w;(z) for all
points z and only one bandwidth A has to be specified. In the local model selection
approach, the bandwidth h may vary with the point z. See e.g. Fan et al. (1998) for

more details.

We employ a related but more general approach. We consider a family of localizing models,
one per design point X,, and denote them as W; = W(X,) = {w;1,..., Win}. Every W,
is built in an iterative data-driven way and its and support may vary from point to point.

The method of constructing such localizing schemes is discussed in the next section.
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2 Structural adaptation

Let us assume that for each design point X; the regression function 6 can be well ap-
proximated by a constant within a local vicinity U(X;) containing X,;. This serves as

our structural assumption.

Our estimation problem can now be viewed as consisting of two parts. In order to efficiently
estimate the function 6 in a design point X; we need to describe a local model, i.e. to
assign weights W(X;) = {wi1,...,Win}. If we knew the neighborhood U(X;) by an
oracle we would define local weights as w;; = w;(X;) = Ix,cu(x; and use these weights
to estimate 6(X;). Since 8 and therefore U(X;) are unknown the assignments will have
to depend on the information on # that we can extract from the observed data. If we
have good estimates 1’9\1 of 6(X;) we can use this information to infer on the set U(Xj;)

by testing the hypothesis
H:0(X;)=0(X;). (4)

A weight w;; can be assigned based on the value of a test statistic T;;, assigning zero
weights if 5]- and 0; are significantly different. This provides us with a set of weights
W(X;) = {ws1, ..., Win} that determines a local model in X;.

Given the local model we can then estimate our function 6 in each design point X, by (2).

We utilize both steps in an iterative procedure. We start with a very local model in each

point X; given by weights
wl) = Kioe(1))  with 1) = | X; — X;{/h©) (5)

The initial bandwidth k(%) is chosen very small. Kj.. is a kernel function supported on
[-1,1], i.e. weights vanish outside a ball Uz-(o) of radius h(®) centered in X,. We then
iterate two steps, estimation of #(z) and refining the local models. In the kth iteration
new weights are generated as

wl = Kio(l{) Ke(s¥) with (6)
1 = X - Xjl/h® and sl =T/ (7)
The bandwidth A is increased by a constant factor with each iteration k. The test
statistic for (4)
o) (8)
(k)
1

the statistical difference of the current estimates in X; and X;. In (8) the term K(6,6’)

T = NP @t

27 7

with N; = ZJ- w;; is used to specify the penalty s This term effectively measures

denotes the Kullback-Leibler distance of the probability measures Py and Py .



Additionally we may introduce a kind of memory in the procedure, that ensures that
the quality of estimation will not be lost with iterations. This basically means that we
compare a new estimate é;(k) gz(k_l)

with the previous estimate to define a memory

parameter 7; = Km(mz(-k)) with

2

m® = 713 Koo (1)@, 9. (9)
7

This leads to an estimate

%) = n8®) (X) + (1 — m)a Y, (10)

2

2.1 Adaptive weights smoothing

We now formally describe the resulting algorithm.

e Initialization: Set the initial bandwidth A(®), & = 0 and compute, for every i the

statistics

Nz-(k) = ng-c), and Sz-(k) = ngc)YJ (11)
3 3

and the estimates

gk — g N (12)

2

using 'wz(]l-) = Kloc(lz(-]l-)) .Set k=1 and Al = cgo).

e Adaptation: For every pair 4, j, compute the penalties

B = X - X;|/h®), (13)
s = A — ANty gy, (14)

k
¥ ] 2

(k)

Now compute the weights w,;;’ as

w) = Kioe(1))) Ku(s))

13
and specify the local model by w® = {wz(f), .. .,'wz(:)} .

2

e Local estimation: Now compute new local MLE estimates 6(%)(X;) of 6(X;) as

09 (x) = SB/N®  with B = ngc)’ s = ng“)Yl
7 ]



e Adaptive control: compute the memory parameter as 7; = Kme(mz(-k))) . Define

5()?1_) = 7]1'5()!'? +(1- 7;1-)5(;1_‘1) and

g 2N + (1 - ) N

2

N

2

e Stopping: Stop if A¥) > hy .., otherwise set h(*¥) = ¢,A(*=1)  increase k by 1 and

continue with the adaptation step.

2.2 Choice of parameters - Propagation condition

The proposed procedure involves several parameters. The most important one is the scale
parameter X in the statistical penalty s;;. The special case A = oo simply leads to
a kernel estimate with bandwidth Apmay. We propose to chose A as the smallest value
satisfying a propagation condition. This condition requires that, if the local assumption
is valid globally, i.e. 6(z) =6 does not depend on z, then with high probability the final
estimate for hpmay = 00 coincides in every point with the global estimate. More formally

we request that in this case for each iteration &
B[ (X) - 6] < (1+ o) E|§®(X) - 0| (15)
for a specified constant « > 0. Here

09(X:) = 3" KioclP)Y/ 3 Kioo(12) (16)
7 7

denotes the nonadaptive kernel estimate employing the bandwidth A(*) from step k. The
value A provided by this condition does not depend on the unknown model parameter 6
and can therefore be approximately found by simulations. This allows to select default
values for A depending on the specified family of the probability distribution P = (Fy, 8 €

©) . Default values for A in the examples below are selected for a value of o =0.1.

The second parameter of interest is the maximal bandwidth hp.x which controls both

numerical complexity of the algorithm and smoothness within homogeneous regions.

The scale parameter 7 in the memory penalty m; can also be chosen to meet the prop-

agation condition (15). The special case 7 = co turns off the adaptive control step.

Additionally we specify a number of parameters and kernel functions that have less
influence on the resulting estimates. As a default the kernel functions are chosen as
Kioe(z) = Kme(z) = (1 — 22)4 and K, (z) = e ®I,¢5. If the design is on a grid, e.g. for
images, the initial bandwidth k(%) is chosen as the distance between neighboring pixel.

The bandwidth is increased after each iteration by a default factor c, = 1.25'/4.



3 An illustrative univariate example

We use a simple example to illustrate the behavior of the algorithm. The data in the

upper left of Figure 1 follow a univariate regression model
Y, = B(X,,) + €;. (17)

The unknown parameter, i.e. the regression function, 6 is piecewise constant, the errors
g; areiid. N(0,1) and the observed X; =4 form a univariate grid. In this situation the
statistical penalty takes the form
1 - -
B L gy geeny (18)

2 3

where 02 = 1 denotes the variance of the errors. A robust estimate of the variance is

obtained from the data using the interquartile range (IQR) as
7% = (IQR({Yis1 - Yi}iz1,..,n-1})/1.908)? (19)

and used as a plug-in for 2. The propagation condition (15) suggests a value of X = 4.7.

We employ a value of 7 = co disabling the adaptive control step.

We have four regions, differing in size and contrast between them, where the function
f is constant. The regression function is displayed as a black line in the upper right of

Figure 1.

The lower part of Figure 1 illustrates the evolution of weights w,; with iteration. The

horizontal and vertical axis correspond to index ¢ and j, respectively. The upper row

provides Kloc(ll(-;-c)) for iterations k=0 (h=1), k=7 (h=5), k=13 (h=18) and

k=23 (h=169). The central row shows the corresponding values Kst(sz(-’-c)) . The grey

7
(k)

scale ranges from black for 0 to white for 1. The weights w,;” (lower row) used in the

algorithm are the products of both terms.

The left row corresponds to the initialization step. Here the location penalty effectively
restricts the local model in X; to the point X; itself. If computed the stochastic penalty
would contain some weak information about the structure of the regression function. When
we reach step k = 7 the location penalty allows for positive weights for up to 16 observa-
tions, and therefore less variable estimates. At this stage the test (4) shows a significant
difference between estimates in points within the third homogeneous interval and estimates
in locations outside this interval. This is reflected in the statistical penalty and therefore
the weights. In step k& = 13 also the second interval is clearly identified. The last column,

referring to the 23th iteration and a final bandwidth of A = 169 shows the final situation
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Figure 1: Adaptive weights smoothing for a simple univariate regression problem: data
(upper left), regression function (black) and estimates 8k) for k =7 (h =5, blue),
k=13 (h =18, green) and k = 23 (h = 169, red) (upper right). The lower part displays
the contributions of the location penalty (upper row) and the stochastic penalty (central

row) to the weights (lower row) w;; in iteration steps £ =0,7,13 and 23 (columns).



where the statistical penalty reflects the complete information about the structure and

determines the weights. The influence of the location penalty has almost vanished.

What we observe in the iteration process is an unrestricted propagation of weights within
homogeneous regions. Two regions with different values of the parameter are separated as
values of the statistical penalty s;; increase with decreasing variance of the estimates 5,
and é; and a large enough contrast [0(X;) — H(Xj)‘z . The iteration k where this occurs
depends on the size the homogeneous regions, i.e. the potential variance reduction, and

the contrast.

The upper right plot in Figure 1 additionally displays the intermediate estimates 5(’“), k=
7,13,23 corresponding to the weighting schemes illustrated.

4 Examples and applications

We now provide a series of examples for adaptive weights smoothing in various setups.

4.1 Application 1: Adaptive edge-preserving smoothing in 3D

The algorithm described in subsection 2.1 is essentially dimension free. It can be easily
applied to reconstruct 2D and 3D images. We illustrate this using a 3D-MR image of
a head. The upper left image in Figure 2 shows the 130th slice of the noisy data cube,
consisting of 256 x 192 X 256 voxel. The image is modeled as

Y, = 0(X,) + e, (20)

with X, being coordinates on a 3D-grid and errors &; again assumed as i.i.d. Gaussian
with unknown variance o?. The parameter of interest §(X;) describes a tissue dependend
underlying grey value at voxel X;. Special interest in these images is in identifying
tissue borders. Denoising, preferably using an edge-preserving or edge-enhancing filter is

a prerequisite step here.

We apply the AWS algorithm from subsection 2.1 using a maximal bandwidth Amax = 5.
The error variance is estimated from the data. The default value of A provided by
condition (15) for smoothing in 3D with Gaussian errors is A = 5.9. The upper right
image provides the resulting reconstruction. Note that in the smoothed image the noise is
removed while the detailed structure corresponding to tissue borders is preserved. Some
deterioration of the image is caused by the structural assumption of a local constant model.

This leads to some flattening where 6(X;) is smooth.

10



Figure 2: 3D Magnetic resonance imaging (MRI): Slice 130 from a 3D MR image (upper

left) and its 3D-reconstruction by AWS (upper right). The lower row shows the result of
applying an edge detection filter on both images.

In the bottom row of Figure 2 we provide the absolute value of a Laplacian filter applied
to the original noisy image and to the reconstruction obtained by AWS, respectively. We

observe an essential enhancement of the tissue borders.

4.2 Examples: Binary and Poisson data

For non-Gaussian data the stochastic penalty s;; takes a different form in (13). The
definition is based on the Kullback-Leibler distance K between the probability measures
P; and Pj . For binary data this leads to

i j

(k-1) 5-1) ke1)

N; - 6, - 1-6

sy = P (é;(k Vlog é\z(k—l) + (1= 8 log 1.7 jk-l)) (21)
3 Rt
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Figure 3: Binary images: Artificial image containing 4 circles with different grey values

(left), binary image generated by Bernoulli experiments with pointwise probabilities pro-
portional to the grey values in the left image (center) and reconstructed image of pointwise

probabilities (right).

while for Poisson data we get

(k1)

plk=1)
(k) _ N; A(k—1) 2 Nk-1) | A(k-1)
S5 T Ty <0i log p-1) ; +0; ) (22)

J

In both cases a special problem occurs. If the estimates @; or 51 attain a value at the
boundary of the parameter space, i.e. 0 or 1 for binary data or 0 in case of Poisson data,
then the Kullback-Leibler-distance between the probability measures Py and ng will
equal oco. Such a situation can be avoided by a modification of the algorithm. One solution
is to initialize the estimates with the value obtained by the global estimate and to replace
the estimate é\gk_l) in (21, 22) by 1/9;(;-“_1) =(1- 0.5/Nz-(k_1))5§-k_1) + 0.5/Ni(k_1)5z(k_1) for

all following iteration steps.

We use a simple artificial example to demonstrate the performance of the procedure. We
start with the image displayed on the left of Figure 3. The image of size 256 X 256
is composed of 4 regions with distinct grey values. The central image is generated by
pixelwise Bernoulli experiments with probabilities 0.08,0.3,0.6 and 0.94, respectively,
for the four regions. The image in the right of Figure 3 provides the reconstruction
obtained by AWS using a maximal bandwidth hpax = 100. The value of X\ selected by

our propagation condition is A =5.9.

The noisy image in the left of Figure 4 is constructed using the same image structure.
Now each grey value is a Poisson count with intensity 0.4,1.5,3 and 4.7, depending the
location of the pixel within the image. The right image again provides the reconstruction.
A maximal bandwidth hAmax = 50 and the value A = 5.4 provided by the propagation

condition (15) for 2D-Poisson images are used.

12



Figure 4: Poisson images: Image generated by Poisson experiments with pointwise inten-
sities proportional to the grey values in the left image of Figure 3 (left) and reconstructed

image of pointwise intensities (right).

Note that for both our binary and Poisson image the underlying structure is completely
recovered and therefore near optimal estimates of the probabilities and intensities are

obtained.

4.3 Example: Denoising of digital color images

In digital color images the information in each pixel consists of a vector of three values.
Each value is a intensity in one channel of a three dimensional color space, usually the
RGB space. Additionally each pixel may carry some transparency information. Ideally
the image is recorded in RAW-format to avoid artifacts caused by lossy image compression

and discretization to a low number of color values.

If the image was recorded under bad light conditions, employing a high sensitivity of the
sensor, such images can carry a substantial noise. This noise is usually spatially correlated,

i.e. colored. Additionally we observe a correlation between the noise components in the

three RGB channels.

An appropriate model to describe such a situation is given by
Yinin = 0(X;) + Eipyiu (23)

where the components of X; = (ip,1%,) are the horizontal and vertical image coordinates.
Y;;hyi‘" !

L = [ c — [ [
0, Va.re,hﬂv =) and Eeih,i’ueih_'_l,i’u = Eeihﬂ-weih,i”_

6(X;) and ¢, ;, take values in R3. The errors follow a distribution with Eg;, ;, =
, = p for each color channel c¢. The

covariance matrix X may vary with the value of 6;, ;, .

13



Figure 5: Color images: Image of the Concert Hall at Gendarmenmarkt in Berlin, Ger-

many. The image has been deteriorated by colored noise in all color channels (upper left).
Shown are MAE-optimal reconstructions by AWS (upper right) and nonadaptive kernel
smoothing (lower left). The lower right image illustrates in each pixel X, the sum of

weights N, = Zj w;; arising for the final estimate.

The algorithm from subsection 2.1 can be applied in this situation with a statistical penalty

() _ N7V o) e T o teen)  gteen)
sy = gy (0 =0y ) TT(eTT -6 ). (24)

The model can often be simplified by transformation of the image to a suitable color space.
We observe that a transformation to the YUV or YIQ space uncorrelates the noise between
channels, so that a diagonal form of 3’ seems appropriate under such transformation. In
this case error variance can be estimated separately in the three color channels accounting

for the spatial correlation.

Figures 5 and 6 provide an example. The upper left image was obtained by deteriorating
an digital image showing the Concert Hall at the Gendarmenmarkt in Berlin. The image

resolution is 1600 x 1200 pixel.

14



Table 1: MAE and MSE in RGB space for the images in Figure 5 and Figure 9.

Noisy image AWS reconstruction Kernel smoothing local quadratic PS

MAE 3.62e-2 1.91 e-2 2.25 e-2 1.70 e-2
MSE  2.06 e-3 8.34 e-4 1.12 e-3 6.03 e-4

The original image was transformed from RGB into YUV space. In YUV space the
values in the three channels are scaled to fall into the range (0,1), (—0.24,0.19) and
(—0.17,0.46) , respectively. In each YUV channel colored noise with p = .36 and standard
deviation ¢ = 0.08,0.01 and 0.012, respectively, was added. The resulting noisy image,
in RGB space, is shown in the upper left of Figure 5. The upper right image provides
the reconstruction by our procedure, using a maximal bandwidth Apay = 6. The spatial
correlation p = 0.36 is assumed to be known. The error variance is estimated from the
image taking the spatial correlation into account. The statistical penalty selected by the
propagation condition (15) for color images with spatially independent noise is A = 6.90.

This parameter is corrected for the effect of spatial correlation in each iteration.

The lower right image contains in each pixel X; the value N;,i.e. the sum of the weights
defining the local model in X;, for the last iteration. We clearly see how the algorithm
adapts to the structure in the image, effectively using a large local vicinity of X; if the
pixel belongs to a larger homogeneous region and very small local models if the pixel X;

belongs to a very detailed structure.

Finally we provide the result of the corresponding nonadaptive kernel smoother, i.e. with
A = o0, and a bandwidth of A = 3.1 a comparison in the lower left of Figure 5. The
bandwidth has been chosen to provide a minimal mean absolute error. Table 1 provides
the mean absolute error (MAE) and the mean squared error (MSE) for the three images
in Figure 5.

Figure 6 provides a detail, with a resolution of 340 x 545 pixel, from the noisy original
(left), the AWS reconstruction (center) and the image obtained by nonadaptive kernel
smoothing. The AWS reconstruction produces a much enhanced image at the cost of
flattening some smooth areas by its local constant approximation. On the contrary the
nonadaptive kernel smoother suffers from a bad compromise between variance reduction

and introduction of blurring, or bias, near edges.

15



Figure 6: Color images: Detail from the images in Figure 5, noisy original (left), AWS

reconstruction (center) and kernel smoothing (right).

4.4 Example: Local polynomial Propagation-Separation (PS) approach

Models (17) and (23) assume that the grey or color value is locally constant. This as-
sumption is essentially used in the form of the stochastic penalty s;;. The effect can be
viewed as a regularization in the sense that in the limit for A,., — 0o the reconstructed
image is forced to a local constant grey value or color structure even if the true image is
locally smooth. This is clearly to be seen in the detailed reconstruction in the center of
Figure 7 where especially the sculpture looks cartoon-like. Such effects can be avoided if
a local polynomial structural assumption is employed. Due to the increased flexibility of

such models this comes at the price of a decreased sensitivity to discontinuities.

The Propagation-Separation approach from Polzehl and Spokoiny (2004b) assumes that
within a homogeneous region containing X; = (is,1,), i.e. for X; € U(X;), the grey

value or color Y; can be modelled as

hJu
Yingo = 0(Xi) '@ (n — iny Ju — i) + € 5o, (25)

where the components of ¥(éy,4,) contain values of basis functions

bims ms (ks 80) = (6n)™ (8,)™ (26)

for integers mi,my > 0, m; + my < p and some polynomial order p. For a given local
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Figure 7: Artificial local smooth image, original (left) and noisy version (right).

model W(X,) estimates of 8(X;) are obtained by local Least Squares as
B(X:) = B Y wis®(jn — ihy Ju — in) Vi o, (27)
3

with
Bi = > wisU(jn — in v — in)¥ (Jn — iny o — i) - (28)
J

The parameters 6(X;) are defined with respect to a system of basis functions centered in
X, . Parameter estimates a(X]-,,-) in the local model W (X ) with respect to basis functions

o~

centered at X; can be obtained by a linear transformation from 6(Xj;), see Polzehl and

Spokoiny (2004b). In iteration k a statistical penalty can now be defined as

]‘ Ak— Nk— — —_
st = 5 (0D (X) = 0-D(X) T B (0D () - BV (0,). (29)

In a similar way a memory penalty is introduced as

m® = (0 () - 9% (X)) TBY (@ () - 04 () (30)

* 7202

where B; is constructed like B; employing location weights Kl(lg-c)) . The main param-
eters A and 7 are again chosen by a propagation condition requiring free propagation of
weights in the specified local polynomial model. A detailed description and discussion of
the resulting algorithm and corresponding theoretical results can be found in Polzehl and

Spokoiny (2004b).

We use an artificial example to illustrate the behavior of the resulting algorithm. The left

image in Figure 7 contains grey values

f(z,y) =051+ sign(z® — y*){sin(7¢)L{r>0.5p + sin(w7/2)1pco.53 ]
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Figure 8: Reconstructions of the noisy image from Figure 7. Upper row: nonadaptive
smoothing, central row: structurally adaptive reconstructions, bottom row: pointwise sum
of weights used in the structurally adaptive reconstructions. Left column: Local constant
smoothing, e.g. kernel smoothing and AWS, central column: Local linear models, right
column: local quadratic models. All reconstructions use MAE optimal values for the

bandwidth or maximal bandwidth, respectively.

with ¢ =4/1275-1, y=3/127.5—-1, r = /22 + y? and ¢ = arcsin(z/r) in locations
1,7 =0,...,255. The image is piecewise smooth with sharp discontinuities along diagonals
and a discontinuity of varying strength along a circle. The noisy image in the right of

Figure 7 contains additive white noise with standard deviation ¢ = .2.
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Figure 9: Local quadratic reconstruction of the noisy image from Figure 5.

The upper row of Figure 8 provides results obtained by (nonadaptive) kernel, local lin-
ear and local quadratic smoothing (from left to right) employing mean absolute error
(MAE) optimal bandwidths. The second row gives the reconstructions obtained by the
corresponding AWS and Propagation-Separation approaches, again with MAE optimal
maximal bandwidths Apmqs . The mean absolute error and mean squared error (MAE) for
all six reconstructions together with the employed values of A or hm,., are contained in
Table 2. No adaptive control (7 = oo ) was used for the adaptive procedures. The local
constant AWS reconstruction, although clearly improving on all nonadaptive methods,
shows clear artifacts resulting from the inappropriate structural assumption used. Also
the quality of this result heavily depends on the chosen value of Ana.. . Both local linear
and local quadratic PS allow for more flexibility describing smooth changes of grey values.
This enables us to use much larger maximal bandwidths, and therefore to obtain more
variance reduction without compromising the separation of weights at edges. Best results
are obtained by the local quadratic Propagation-Separation algorithm. The bottom row
of Figure 8 again illustrates the sum of weights in each pixel generated in the final step of

the adaptive procedures.
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Figure 10: Upper row: Detail of the original image and same part from its noisy version.

Bottom row: Local constant and local quadratic reconstruction.

We now revisit the example from Figure 5. The reconstruction in Figure 9 is obtained by
applying the local quadratic Propagation-Separation algorithm with parameters adjusted
for the the spatial correlation present in the noisy image. The maximal bandwidth used is
hmaz = 20 . The statistical penalty selected by the propagation condition for color images
with spatially independent noise is A = 35. This parameter is again corrected for the
effect of spatial correlation in each iteration. Both MAE and MSE of the reconstruction

are significantly smaller than for local constant AWS, see Table 1.

The detailed view offered by Figure 10 allows for a more precise judgment on image
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Table 2: MAE optimal value of A, MAE and MSE for the images in Figure 8.

local constant local linear local quadratic

non-adapt. AWS (p=0) non-adapt. PS (p=1) non-adapt. PS (p=2)

h, hmaz 5.5 6 5.5 15 10 25
MAE 3.27 e-2 3.02 e-2 3.30 e-2 2.10 e-2 3.44 e-2 1.88 e-2
MSE 3.52 -3 2.17 e-3 3.52 e-3 1.64 e-3 3.52 e-3 1.64 e-3

quality for one of the most structured regions in the image. We provide the same segment
of size 300 x 300 pixel of the original image, its noisy version and both the local constant
and local quadratic reconstructions. The local constant reconstruction in general provides
more contrast, at the cost of introducing artifacts in smooth regions, see e.g. the sculpture.

Local quadratic PS gives a better result with respect to optical impression, MAE and MSE.

5 Concluding remarks

In this article we present a novel adaptive smoothing procedure that has some remarkable
properties and a wide potential for applications. We have illustrated with a variety of
examples that the approach is essentially dimension free, working in 1D, 2D and even 3D
situations. It automatically recovers regions of homogeneity, with respect to a local con-
stant or local polynomial model. As a consequence borders between homogeneous regions
are preserved and even enhanced. If the specified local model allows for a good approx-
imation of the unknown function 6 this also allows for a significant variance reduction

without introduction of bias.

In areas where the function 6 is smooth the procedure based on a local constant model is,
for large hmax , likely to produce a local constant approximation. Nevertheless such a bias
introduced at a certain iteration k& will be balanced with the variability of the estimates

at this iteration. The effect can also be avoided by choosing an appropriate value of hpayx -

In Polzehl and Spokoiny (2004a) theoretical results are obtained for the case that P is a
one-parameter exponential family. This includes results on propagation, or free extension,
of weights within interior sets of homogeneous regions and rates of estimation in regions
where the parameter function 6 is smooth. Conditions are given for the separation of two
homogeneous regions depending on their size and contrast. It is also shown that, up to a
constant, at any point the procedure retains the best quality of estimation reached within
the iteration process. Related results for the local polynomial Propagation-Separation

approach can be found in Polzehl and Spokoiny (2004b).
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In the form presented here the procedure is, for dimension d > 1, entirely isotropic. It
can be significantly improved by introducing anisotropy adaptively, i.e. depending on the
information about 8 obtained in the iterative process, in the definition of the location

penalty.

A reference implementation for the adaptive weights procedure described in subsection 2.1
is available as a package (aws) of the R-Project for Statistical Computing R Development
Core Team (2005) from http://www.r-project.org/ .
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