Weierstraf3-Institut
fiir Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 — 8633

Influence of anisotropic thermal conductivity in the
apparatus insulation for sublimation growth of SiC:

Numerical investigation of heat transfer

Jiirgen Geiser!, Olaf Klein! and Peter Philip?

submitted: 9th June 2005

1 2

Welerstrass Institute Institute for Mathematics

for Applied Analysis and its Applications (IMA)
and Stochastics University of Minnesota
Mohrenstrasse 39 400 Lind Hall
D-10117 Berlin 207 Church Street S.E.
Germany Minneapolis, MN 55455-0436
E-Mail: geiser@wias-berlin.de USA

klein@wias-berlin.de E-Mail: philip@ima.umn.edu

No. 1034

Berlin 2005

Wl 11Als

2000 Mathematics Subject Classification. 80A20 80M25 74510 76R50 74E10 35160 35J65 657.05.

Key words and phrases. Numerical simulation. SiC single crystal. Physical vapor transport.
Heat transfer. Anisotropic diffusion. Anisotropic thermal conductivity. Nonlinear elliptic PDE’s.

2003 Physics Abstract Classifications. 02.60.Cb 81.10.Bk 44.05.+¢ 47.27.Te.
This work has been supported by the DFG Research Center MATHEON — "Mathematics for key
technologies” (FZT 86) in Berlin and by the Institute for Mathematics and its Applications (IMA) in
Minneapolis.



Edited by

WeierstraB-Institut fiir Angewandte Analysis und Stochastik (WIAS)
Mohrenstrafle 39

10117 Berlin

Germany
Fax: + 49 30 2044975
E-Mail: preprint@wias-berlin.de

World Wide Web:  http://www.wias-berlin.de/



Abstract

Using a mathematical heat transfer model including anisotropic heat conduc-
tion, radiation, and RF heating, we use our software WIAS-HiTNIHS! to perform
numerical computations of the temperature field in axisymmetric growth appa-
ratus during sublimation growth of silicon carbide (SiC) bulk single crystals by
physical vapor transport (PVT) (modified Lely method). As it is not unusual
for the thermal insulation of PVT growth apparatus to possess an anisotropic
thermal conductivity, we numerically study the influence that this anisotropic
thermal conductivity has on the temperature field in the growth chamber. More-
over, we also study the influence of the thickness of the insulation. Our results
show that, depending on the insulation’s orientation, even a moderate anisotropy
in the insulation can result in temperature variations of more than 100 K at the
growing crystal’s surface, which should be taken into account when designing
PVT growth apparatus.

1 Introduction

Silicon carbide (SiC) is a wide-bandgap semiconductor used in high-power and high-
frequency industrial applications: SiC serves as substrate material for electronic and
optoelectronic devices such as MOSFETs, thyristors, blue lasers, and sensors (see
[MCBO04a] for a recent account of advances in SiC devices). Its chemical and thermal
stability make SiC an attractive material to be used in high-temperature applications
as well as in intensive-radiation environments. For an economically viable industrial use
of SiC, growth techniques for large-diameter, low-defect SiC boules must be available.
Recent years have seen steady improvement (see [HBC*04]) of size and quality of SiC
single crystals grown by sublimation via physical vapor transport (PVT, also known as
modified Lely method, see e.g. [Kon95]). However, many problems remain, warranting
further research.

Typically, modern PVT growth systems consist of an induction-heated graphite crucible
containing polycrystalline SiC source powder and a single-crystalline SiC seed (see Fig.
1). The source powder is placed in the hot zone of the growth apparatus, whereas the
seed crystal is cooled by means of a blind hole, establishing a temperature difference
between source and seed. As the SiC source is kept at a higher temperature than
the cooled SiC seed, sublimation is encouraged at the source and crystallization is
encouraged at the seed, causing the partial pressures of Si, Si,C, and SiC, to be higher
in the neighborhood of the source and lower in the neighborhood of the seed. As the
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system tries to equalize the partial pressures, source material is transported to the seed
which grows into the reaction chamber.
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Figure 1: Setup of PVT growth apparatus according to [SSP04, Fig. 4].

Controlling the temperature distribution in the vicinity of SiC seed and source is es-
sential due to its influence on the crystal’s quality and growth rate [CZP*01, SSP04].
However, owing to the high temperatures, experimental verification of the correlation
between the design of the growth apparatus and the temperature distribution inside
the growth chamber is extremely difficult and costly. In consequence, the development
of numerical models and software and their application to PVT growth of SiC crystals

has been an active field of research in recent years, see, e.g., [KKZ100, MZPD02, Phi03,
KPS04, MPC*04] and references therein.

PVT growth apparatus are usually insulated by graphite felt, where the fibers are
aligned in one particular direction, such that the thermal conductivity of the insulation
is described by an anisotropic tensor (see Sec. 2 below). The anisotropy factor between
the directions parallel and perpendicular to the fibers is usually in the range 1-4 [BSS05].

To the authors’ knowledge, the influence of the insulation’s anisotropy on the tem-
perature distribution in the growth chamber has not been previously studied in the



literature. Our results presented in Sec. 4.2 below show that neglecting the anisotropy
of the insulation’s thermal conductivity can lead to an error of more than 100 K in the
temperature at the crystal seed’s surface. The model presented in this article together
with its implementation in the software WIAS-HiTNIHS thus provides an improved
tool in simulation-aided PVT growth apparatus design, especially suitable for tailoring
anisotropic thermal insulation.

The paper is organized as follows: In Sec. 2, we describe the mathematical model
of the heat transfer, focusing on the description of heat conduction in the presence
of materials with anisotropic thermal conductivity. The employed numerical methods
and the implementation tools are provided in Sec. 3. Our numerical experiments are
presented in Sec. 4, where the general setting is detailed in 4.1, and numerical results
showing the influence of anisotropic thermal conductivity in the apparatus insulation,
also varying the insulation thickness, are reported on and discussed in 4.2.

2 Modeling of anisotropic heat transfer and induc-
tion heating

The numerical results of Sec. 4 below are based on our previously published model
of heat transport in induction-heated PVT growth systems (see [Phi03, KPS04] and
references therein). The model has been augmented to allow for anisotropic thermal
conductivity in the thermal insulation of the growth apparatus as described in the
following. In the stationary case, heat conduction in potentially anisotropic materials

is described by (see, e.g., [For01]):

divgm = fm, (2.1a)
Am = —Kn(T)VT in Qp, (2.1b)

where the index m refers to a material that can be either the gas phase or a solid
component of the growth apparatus, q,, denotes heat flux, f,, denotes power density
(per volume) caused in conducting materials due to induction heating, K,, denotes the
potentially anisotropic thermal conductivity tensor, T' denotes absolute temperature,
and €2, is the domain of material m.

As described in the Introduction, the PVT growth apparatus is usually insulated by
graphite felt, where the fibers are aligned in one particular direction, resulting in a
bias towards heat transport parallel to the fibers as compared with the perpendicular
direction. Assuming that the fiber alignment and the resulting anisotropy do not vary
with the temperature, the thermal conductivity tensor is a diagonal matrix of the
following form:

Kn(T) = (K,m-(T)), where £75(T) = {0 fori 4. (2.2)
kT (T') being the potentially temperature-dependent thermal conductivity of the iso-

tropic case, and o/ being anisotropy coeflicients.
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Apart from the modified, potentially anisotropic heat flux g, according to (2.1b) and
(2.2), all interface and boundary conditions are exactly as described in [KPS04, Sec.
2.4]. In particular, the temperature is assumed to be continuous throughout the ap-
paratus, and radiative heat transfer between surfaces of cavities is modeled using the
net radiation method for diffuse-gray radiation as described in [KPS04, Sec. 2.5], where
a band approximation model is used to account for the semi-transparency of the SiC
single crystal. The growth apparatus is considered in a black body environment (e.g.
a large isothermal room) radiating at room temperature Tyoom, such that outer bound-
aries emit according to the Stefan-Boltzmann law. For the two blind holes, we use black
body phantom closures (denoted by I'iop and 'bottom in Fig. 1) which emit radiation at
Troom. We thereby allow for radiative interactions between the open cavities and the
ambient environment, including reflections at the cavity surfaces.

Induction heating causes eddy currents in the conducting materials of the growth ap-
paratus, resulting in the heat sources f,, of (2.1a) due to the Joule effect. Assuming
axisymmetry of all components of the growth system as well as of all relevant physical
quantities, and, furthermore, assuming sinusoidal time dependence of the imposed al-
ternating voltage, the heat sources are computed via an axisymmetric complex-valued
magnetic scalar potential that is determined as the solution of an elliptic partial differ-
ential equation (see [KPS04, Sec. 2.6]). To prescribe the total heating power, we follow
[KP02, Sec. I1], ensuring that the total current is the same in each coil ring.

All simulations presented in this article are performed for an idealized growth apparatus,
treating all solid materials as homogeneous and pure, neglecting effects such as the
sintering of the SiC source powder, changes in the porosity of the graphite, and Si
accumulation in the insulation. Furthermore, it is assumed that the gas phase is made
up solely of argon, which is a reasonable assumption for simulations of the temperature

distribution [KPSWO01, Sec. 5].

3 Numerical methods and implementation

For the numerical computations presented in Sec. 4 below, the nonlinear partial differ-
ential equations arising from the mathematical heat transfer model described in Sec.
2 above are discretized using the finite volume method. The used scheme, includ-
ing the discretization of nonlocal terms stemming from the modeling of diffuse-gray
radiation, was previously described in [Phi03, KP05]; modifications to allow for the
anisotropic thermal conductivity are treated in [GKP05]. Also in [GKPO05], for some
simple anisotropic test cases, we verified the accuracy of our finite volume scheme, com-
paring the numerical results with known exact solutions and determining the numerical
convergence rate.

The finite volume discretization of the nonlocal radiation terms involves the calculation
of visibility and view factors. The method used is based on [DNR*90] and is described
in [KPSWO01, Sec. 4].

The discrete scheme was implemented as part of our software WIAS-HiTNIHS which



is based on the program package pdelib [FKLO01]. In particular, pdelib uses the grid gen-
erator Triangle [She96] to produce constrained Delaunay triangulations of the domains,
and it uses the sparse matrix solver PARDISO [SGF00, SG04] to solve the linear system
arising from the linearization of the finite volume scheme via Newton’s method.

4 Numerical experiments

4.1 General setting

All numerical simulations presented in the following were performed for a growth ap-
paratus shaped according to [SSP04, Fig. 4], which is displayed in Fig. 1. For radius
and height of this apparatus, we use 10.1 cm and 45.3 cm, respectively. Moreover, we
place this apparatus inside 5 hollow, rectangular-shaped copper induction rings, where
the coil’s lower and upper rim are at 19.5 cm and 40 cm, respectively. The geometric
proportions of the coil rings are provided in Fig. 2.

2.9 cm
growth
: turns of copper 1.5 cm
container induction coil
«—— 5.1 cm 1.2cm

<l.6cm>

Figure 2: Geometric proportions of induction coil rings.

As shown in Fig. 1, the considered apparatus consists of six materials: insulation,
graphite crucible, SiC crystal seed, gas enclosure, SiC powder source, and quartz. Ex-
cept for the insulation and for quartz, the material data used for the above materials
during the following numerical experiments are precisely the data provided in the ap-



pendices of [KPSWO01] and [KP03], respectively. The material data we use for the insu-
lation are also provided in [KPSWO01, App. 2.2], except that, here, we use anisotropic
thermal conductivities as described below. The material data we use for quartz are
provided in Appendix A below. In particular, for the isotropic parts i (T') of the
thermal conductivity tensors (cf. (2.2)), for gas enclosure, graphite crucible, insulation,
and SiC crystal seed, we use the functions given by (A.1), (A.3b), (A.4b), and (A.7b)
in [KPSWO01], respectively; for «2_(T') (SiC powder source), we use [KP03, (A.1)], and

for k2,(T) (quartz), we use (A.lc) from Appendix A below.
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As mentioned in the Introduction and in Sec. 2 above, the thermal conductivity in the
insulation of PVT growth apparatus is typically anisotropic and has the form (2.2).
In Sec. 4.2 below, we will assess the influence of the insulation’s anisotropic thermal
conductivity on the temperature field in the growth apparatus. To this end, in the nu-
merical experiments reported on in Sec. 4.2, we vary the anisotropy coeflicients (o, al)
of the insulation while keeping (a*, a7*) = (1, 1) for all other materials m € {2,...,5}.

The angular frequency used for the induction heating is w = 27 f, where f = 10 kHz.
The prescribed average total power is P = 10 kW.

4.2 Numerical results

Within the general setting described in the previous section, we conduct two series of
numerical experiments. In the first series, the growth apparatus is exactly as in Fig.
1 with the dimensions as specified in the previous section. In the second series, we
study the influence of increasing the thickness of the insulation, as this is a possibility
to compensate for additional heat loss caused by the anisotropic thermal conductivity.
We consider the details of the second series after the following discussion of the first
series.

The first series consists of five numerical simulations, varying the anisotropy coefficients
(al,al) in the insulation. The five numerical experiments will be referred to as experi-
ments (a) — (e). In experiment (a), we consider the isotropic case, i.e. (al,al) = (1,1)
throughout ;. Experiments (b) and (c) use (of,al) = (4,1) and (o}, al) = (1,4)
throughout ;, respectively. As mentioned in the Introduction, such anisotropy factors
are found in physical growth experiments [BSS05]. In a reasonable apparatus design,
one would try to take advantage of the insulation’s anisotropy, using different orienta-
tions of the insulation material for different parts of the apparatus (e.g. one orientation
for the side walls and a different orientation for top and bottom). To assess the impact
of using such different orientations for the insulation, for the two remaining numerical
experiments (d) and (e), we divide the insulation region €2; of Fig. 1 into five subregions,
denoted by numbers 1,...,5 in Figures 3 — 7. In experiment (d), we set (o, al) = (4,1)
in insulation regions 1, 5, and (e}, al) = (1,4) in insulation regions 2, 3, 4. In experi-
ment (e), we set (af,al) = (4,1) in insulation regions 1, 2, 4, 5, and (al,al) = (1,4)
in insulation region 3. The settings of the (o), al) during the experiments of the first
series are compiled in Table 1 together with computed temperature values and with
references to figures depicting the computed temperature fields.



Exp. | Figure Ins. (ai , ai Tonax Tiop Thottom Teced Teource
regions [K] [K] [K] [K] (K]

(a) |3, right | 1,2,3.4,5 | (1,1) | 2552.46 | 2433.35 | 2199.65 | 2497.48 | 2523.53

(b) 4,left | 1,2,3,4,5| (4,1) 1835.39 | 1800.1 | 1599.3 | 1815.71 | 1828.74

(c) |4, right |1,23,45 | (1,4) |2458.72 | 2312.67 | 2148.59 | 2380.57 | 2416.46

(d) | 5, right 1,5 (4,1) |2522.80 | 2401.21 | 2183.3 | 2464.89 | 2492.48
2,3,4 (1,4)

(e) 5, left 1,2,4,5 (4,1) | 2515.55 | 2393.51 | 2171.62 | 2457.21 | 2485.11
3 (1,4)

Table 1: Computed temperature values for first series of numerical experiments, varying

the anisotropy coefficients (o, ol

ature Tmax and temperatures at points of particular interest (see Fig. 1)).

) in the insulation regions 1,...,5 (maximal temper-

In Figure 3, we show the computed heat source field (left) as well as the computed
temperature field (right) for experiment (a), i.e. for the isotropic case. Due to the
well-known moderate skin effect occurring during RF heating, the heat sources are
concentrated close to the surface of the graphite crucible. The depicted temperature
field shows that the maximal temperature is established close to the surface of the
powder source. Together with the cooling effect of the upper blind hole, this results
in the necessary temperature difference being present between SiC source and crystal
seed.
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Figure 3: Heat source field (left) and temperature field (right) computed for experiment
1 al (1,1) (cf. Table

(a) of first series of experiments, i.e. for an isotropic insulation (o, ;) =
1). In the heat source field, the isolines are spaced at 1.5-10° W /m?; in the temperature

field, the isotherms are spaced at 50 K.

Z,

Figures 4 and 5 show the computed temperature fields for the anisotropic cases (b)
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— (e) of the first series. Comparing each of these temperature fields to the result of
the isotropic case (Fig. 3) shows that the overall temperature is lower in all of the
anisotropic cases. This is also seen in each of the particular temperatures tracked in
Table 1. The lower temperatures are expected, since setting either a! = 4 or ol =4
in any of the insulation regions results in improving that region’s thermal conductivity
by a factor of four in either the radial or the vertical direction. Thus, the thermal
insulation becomes less effective, resulting in a lower overall temperature. This effect is
especially dramatic in experiment (b), where a} = 4 throughout the insulation. Here,
originating from the heat sources in the outer region of the graphite susceptor, the heat
is radially transported to the outer side wall and radiated off, reducing the temperature
in the growth chamber by almost 600 K. When constructing the growth apparatus, one
would therefore always want to orient the insulation at the side wall (region 3) such
that the preferred direction of thermal conductivity is in the vertical direction as in
experiments (c) — (e). The right picture in Fig. 4 as well as Table 1 show that in case
(c) (ol = 4 throughout insulation), the temperature Tieeq at the surface of the seed
crystal is still more than 100 K lower than in the isotropic case (a). However, one
can once again improve the insulation’s effectiveness by radially orienting the preferred
direction of heat transport in the top and bottom regions 5 and 1 (experiments (d) and
(e), see Fig. 5 and Table 1). In these cases, Tseeq is merely 30 — 40 K lower than in the
isotropic case (a). The orientation of the corner pieces 2 and 4 has only a small effect
with a slightly improved insulation in case (d) (i.e. (o, al) = (1,4) in 2, 4) as compared
to case (e). Thus, according to our results, (d) this is the design we recommend for the
construction of PVT growth apparatus.

1800 K

i 0 i
H D E; 2400@
i 0 i
i 0 ) 0
i 0 i

~ OO0 Od

1600

2

Figure 4: Computed temperature fields for experiments (b) (left) and (c) (right) of first
series of experiments, i.e. for anisotropic insulations with (o}, al) = (4,1) (left) and
(ar,al) = (1,4) (right) (cf. Table 1). The isotherms in both pictures are spaced at 50
K.
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Figure 5: Computed temperature fields for experiments (e) (left) and (d) (right) of first
series of experiments, i.e. for anisotropic insulations with (o}, al) = (4,1) in regions 1,
2, 4,5 and (af,al) = (1,4) in region 3 (left); and with (a},al) = (4,1) in regions 1,
5 and (o;,al) = (1,4) in regions 2, 3, 4 (right) (cf. Table 1). The isotherms in both
pictures are spaced at 50 K.

Another important observation when comparing Figures 3 — 5 is the stability of the
qualitative form of the temperature field in the inner growth apparatus: While the
absolute level of the temperature is noticeably reduced in the anisotropic cases (b) -
(e), the shapes and distances of the isotherms are very similar in cases (a) and (c) -
(e), the temperature field merely being shifted to the lower temperature level (in case
(b), the temperature reduction is sufficiently large to flatten the isotherms near the
axis). The qualitative similarity of the isotropic and anisotropic temperature fields is
particularly clear in the close-ups shown in Fig. 6, comparing the temperature fields in
the seed crystal’s vicinity for the isotropic case (a) and the anisotropic case (e).

Summarizing the results of the first series of experiments, it is important to account
for an anisotropic thermal conductivity when calculating the temperature field in PVT
growth systems, since, even for realistic anisotropies of factor four, temperature changes
can be significant in the growth chamber. Choosing the orientation of the insulation
wisely can minimize the anisotropy-related heat loss. Even in experiment (d), showing
the smallest differences when compared with the isotropic case (a), the temperature
at the seed crystal’s surface is reduced by some 35 K, which can be significant when
fine-tuning the temperature field, e.g. to ensure the growth of a particular SiC polytype.
On the other hand, the anisotropy-related heat loss mainly shifts the temperature field
of the inner growth apparatus to a lower overall temperature, leaving its overall shape

9



5
Figure 6: Close-ups showing the computed temperature fields in the vicinity of the SiC

seed crystal for experiments (a) (left) and (e) (right) of first series of experiments, i.e.
for an isotropic insulation (al,al) = (1,1) in regions 1 - 5 (left); and for an anisotropic
insulation with (al, i) = (4,1) in regions 1, 2, 4, 5 and (a},al) = (1,4) in region 3

(right) (cf. Table 2). The isotherms in both pictures are spaced at 5 K.

almost unaffected. In particular, the temperature gradients between crystal source and
seed do not depend significantly on the insulation’s thermal anisotropy.

In the thermally anisotropic insulation, whenever o} or ol is larger than 1, the heat is
conducted faster in the corresponding direction. Thus, more heat is radiated off into
the ambient environment, resulting in the above-discussed reduced overall temperature
in the growth chamber. The idea is now to compensate for this effect by using a thicker
insulation, which is the case considered in our second series of numerical experiments.

Increasing the thickness of the thermal insulation of the growth apparatus is the only
difference to the first series of numerical experiments. For the second series, 3 cm of
insulation were added at the side wall and 5 cm of insulation were added at the top of
the apparatus such that the new apparatus has a radius of 13.1 cm and a height of 50.3
cm. The geometric proportions of the coil rings are still as specified in Fig. 2, but now
with respect to the new apparatus.

As did the first series, the second series also consists of five numerical experiments

denoted by (a) - (e), varying the anisotropy coefficients (al,al) in the insulation.

As in the first series, we choose (af,al) = (1,1) throughout ©; for (a) (isotropic
case); (ar,ai) = (4,1) throughout Q; for (b); (al, i) = (1,4) throughout Q; for (c);
(o,al) = (4,1) in insulation regions 1, 5, and (e, al) = (1,4) in insulation regions 2,
3, 4 for (d); (a},;) = (4,1) in insulation regions 1, 2, 4, 5, and (a},c.) = (1,4) in
insulation region 3 for (e). The settings of the (a;,al) during the experiments of the
second series are compiled in Table 2 together with computed temperature values and,

where applicable, with references to figures depicting the computed temperature fields.

In Figure 7, we present the computed temperature fields for experiments (a) and (e)
of the second series. Comparing the isotropic cases (a) of both series (see Fig. 7 (left),
Fig. 3 (right) and cases (a) in Tables 1, 2), the temperature at the seed crystal’s surface
Tieeq 1s Taised by almost 300 K due to the thicker insulation. The temperature difference
between source and seed is reduced, as radiative heat transfer becomes more effective
in the growth chamber (cf. [KPSWO01]). Moreover, the thicker insulation leads to larger

temperature differences between the isotropic case (a) and the anisotropic cases (b)

10



Exp. | Figure Ins. al,al Tnax Tiop Thottom Tsced Tsource
regions ® | K | K| E | K

(a) 7, left | 1,23,45 | (1,1) |2813.23 | 2711.15 | 2406.76 | 2773.97 | 2789.8

(b) 1,2,3,4,5| (4,1) |2001.92 | 1970.49 | 1761.28 | 1986.69 | 1995.66

(c) 1,2,3,4,5 | (1,4) |2678.27 | 2563.32 | 2331.39 | 2627 | 2648.88

(d) 1,5 (4,1) |2745.01 | 2642.8 | 2375.33 | 2703.82 | 2721.32
2,3,4 (1,4)

(e) |7, right | 1,245 (4,1) |2719.13 | 2609.78 | 2358.83 | 2673.7 | 2693.34
3 (1,4)

Table 2: Computed temperature values for second series of numerical experiments
(thicker insulation), varying the anisotropy coefficients (o}, ) in the insulation regions
1,...,5 (maximal temperature Tpax and temperatures at points of particular interest

(see Fig. 1)).

— (e) (compare Tables 1 and 2), making it even more important to account for the
anisotropic thermal conductivity to compute accurate temperature fields. Otherwise,
the calculations of the second series confirm the results of the first series: Orienting
the insulation differently in the regions 1 — 5 according to case (d) results in the small-
est temperature difference as compared with the isotropic case (a) (however, here the
difference in Tseeq is still some 70 K (Table 2), about twice as much as for the thinner
insulation). As for the thinner insulation, the temperature fields in the inner growth
apparatus are qualitatively very similar in the isotropic and anisotropic cases (with the
exception of case (b)). For the cases (a) and (e), this can be seen in Fig. 7.

Summarizing these phenomena, thickening the insulation results in higher tempera-
tures in the growth apparatus and leads to more prominent differences between the
isotropic and the anisotropic situation (cf. abovedescribed decrease for Tyeeq). Thicken-
ing the insulation can be used to partially compensate for the effect of the insulation’s
anisotropic thermal conductivity. In any case, an optimal insulation design needs to
take an anisotropic thermal conductivity into account.

5 Conclusions

Based on a model describing the heat transfer in PVT growth systems, including RF
heating, heat conduction allowing for anisotropic thermal conductivity tensors, and ra-
diation between cavity surfaces, we used our simulation software WIAS-HiTNIHS to
conduct numerical investigations of the temperature field established in PVT growth
apparatus. Using realistic values of anisotropy coefficients, it was shown that neglect-
ing the anisotropy of the thermal conductivity in the apparatus insulation, can lead to
significant errors, when calculating the temperature field in the growth chamber. For a
fixed heating power, the temperature differences between the isotropic and anisotropic
cases can reach several hundred Kelvin, depending on the orientation of the thermal
insulation. Even for an optimized orientation of the insulation, the temperature dif-

11
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Figure 7: Computed temperature fields for experiments (a) (left) and (e) (right) of

1 1

second series of experiments, i.e. for an isotropic insulation (e, a;) = (1,1) in regions

1 - 5 (left); and for an anisotropic insulation with (a},al) = (4,1) in regions 1, 2, 4, 5

and (a},al) = (1,4) in region 3 (right) (cf. Table 2). The isotherms in both pictures

r) Tz

are spaced at 50 K.

ference at the seed crystal’s surface was still between 35 and 70 K, depending on the
insulation’s thickness. This difference can be sufficiently large to result in the growth of
unwanted SiC polytypes. Thickening the insulation can be used to partially compen-
sate for the effect of the insulation’s anisotropic thermal conductivity. The qualitative
form of the temperature field in the growth chamber and, thus, the temperature gra-
dients between SiC source and seed were not significantly affected by the insulation’s
thermal anisotropy. In particular, the presented results show that the software tool
WIAS-HiTNIHS, augmented by the presented capability to account for materials with
anisotropic thermal conductivities, constitutes an improved tool for computer-aided
PVT growth system optimization.
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A Appendix: Material data for quartz

The material parameters used for electrical conductivity o2"#™ mass density p
1sotropic thermal conductivity x; , and emissivity

quartz
)

quartz gduartz

o of quartz are

oduart (T = (), (A.la)

uartz kg
T T2\ W
quartz _ _ . -3+ . -6 1
Koo o (T) = <1.82 1.21-10 K +1.75-10 K2> oK (A.1lc)
T
™ (T) = 0.82 4350 107° . (A.1d)
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