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Abstract

We devise a finite volume scheme for nonlinear heat transfer in materials
with anisotropic thermal conductivity. We focus on the difficulties arising from
the discretization of complex domains which are typical in the simulation of
industrially relevant processes. For polyhedral domains in two dimensions,
we consider Cartesian as well as cylindrical coordinates. Our finite volume
scheme is based on unstructured constrained Delaunay triangulations of the
domain. For simplicity, we assume that the thermal conductivity tensor has
vanishing off-diagonal entries and that the anisotropy is independent of the
temperature. We present numerical simulations, verifying our finite volume
scheme in cases where a closed-form solution is available. Further results
demonstrate the effectiveness of the method in computing the heat transfer
in a complex growth apparatus used in crystal growth.

1 Introduction

Modeling and numerical simulation of heat transfer in complex apparatus have be-
come powerful tools in aiding the design and optimization of numerous industrial
processes such as crystal growth by the Czochralski method [DNR190] and by the
physical vapor transport (PVT) method [KPS04] to mention just two examples. For
materials with isotropic thermal conductivity, standard techniques are available, in-
cluding the finite element method [CL91] (used in [DNR190]) and the finite volume
method [EGHO00] (used in [KPS04]). The extension of such standard methods to
materials with anisotropic thermal conductivity can be straightforward for simple
geometries (e.g. if the geometry admits a discretization into a structured grid of rect-
angles or parallelepipeds). However, the treatment of anisotropic materials within
complex geometries as they are typical in industrial applications such as crystal
growth (see Fig. 1) is generally much more involved. To the authors’ knowledge,
even for two-dimensional domains, all the methods previously described in the lit-
erature are restricted to simple classes of domains, need to be adapted to fit the
type of anisotropy, or show instabilities for strongly anisotropic materials (see, e.g.,

[ABB98a, ABB98b, BV03, Fai9l] and [EGH00, Sec. 11]).

Our goal 1s the formulation of a finite volume scheme that applies to apparatus
geometries such as the one depicted in Fig. 1, consisting of several different material
domains, some of which have anisotropic thermal conductivity. The scheme should
be stable and accurate for any two-dimensional polyhedral domain discretized into
a constrained Delaunay triangulation (see Sec. 3.1) such as provided by the grid
generator Triangle [She96]. The scheme devised in our present article has the ad-
vantage of yielding accurate results without any further requirements with respect
to the grid, even for very large anisotropy factors (in Sec. 4.3 we present numerical
results for the domain of Fig. 1, where, in {};, the material’s thermal conductivity
in the horizontal direction is 1000 times larger than in the vertical direction).
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Figure 1: Axisymmetric domain representing a growth apparatus used in silicon
carbide single crystal growth by physical vapor transport (PVT). The geometry is
a modified version of [SSP04, Fig. 4].

We consider general two-dimensional polyhedral domains in both Cartesian and
cylindrical coordinates (see Assumption (A-1) below). We will first develop the dis-
cretization in Cartesian coordinates, subsequently describing the necessary modifica-
tions for the case that the two-dimensional domain constitutes the circular projection
of an axisymmetric domain in cylindrical coordinates (see Sec. 3.6). According to
our aforementioned goals, in order to have the flexibility to discretize general poly-
hedral domains, we found our finite volume scheme on an unstructured constrained
Delaunay triangulation (see Assumptions (DA-1) and (DA-3) in Sec. 3.1 below).

The paper is organized as follows: The mathematical model is stated in Sec. 2, the
finite volume discretization is described in Sec. 3, followed by the presentation and
discussion of numerical results in Sec. 4. The discretization in Sec. 3 is first carried
out in Cartesian coordinates, the heart being the treatment of the anisotropic terms
in Sec. 3.3. In Sec. 3.6, we describe the modification in the case of cylindrical
coordinates. Section 4 is divided into three subsections: The tools used in the
implementation are the contents of 4.1, the comparison of our numerical results with
closed-form solutions 1s found in 4.2, and, in 4.3, we report on numerical results for
the complex geometry of Fig. 1.



2 Mathematical model

Stationary heat conduction in potentially anisotropic materials is described by (see,
e.g., [For01]):
—div(Kn(0) V) = frn in Qy (m € M), (2.1)

where 6 > 0 represents absolute temperature, the symmetric and positive definite
matrix K, represents the thermal conductivity tensor in material m, f,, > 0 repre-
sents heat sources in material m due to some heating mechanism, e.g. induction or
resistance heating, {1, is the domain of material m, and M is a finite index set. We
consider the case where the thermal conductivity tensor is a diagonal matrix with
temperature-independent anisotropy, i.e.

o nﬁ‘o(ﬁ) for 2 = 7,

o (2.2)
0 for ¢ # 7,

Kn(0) = (ﬂZ’j(G)), where n;{‘j(ﬁ) = {

kT (8) > 0 being the potentially temperature-dependent thermal conductivity of the
isotropic case, and o/ > 0 being anisotropy coeflicients. For example, the growth
apparatus used in silicon carbide single crystal growth by PVT are usually insulated
by graphite felt, where the fibers are aligned in one particular direction, resulting
in a thermal conductivity tensor of the form (2.2). We apply the finite volume
scheme developed in the present paper to numerically investigate the influence of
the anisotropy in the thermal insulation of PVT growth apparatus in [GKPO05].

Throughout this paper, we make the following assumptions on the material domains

Qo

(A-1) Q= UmEMﬁm’ Qmy N Qm, = 0 for each (my,m,) € M? such that m; # ma,
and each of the sets 2, 2,,, m € M, is a nonvoid, connected, polyhedral,
bounded, and open subset of R2.

The temperature 8 is assumed to be continuous throughout the entire domain Q.
Continuity of the normal component of the heat flux on the interface between dif-
ferent materials m; and my, m; # m,, yields the following interface conditions,
coupling the heat equations (2.1):

(Km1 (0)V 0) [ﬁm1 on, = (KmZ(G) v 6) [ﬁmz oen,, on Qm NQm,, (2.3)

where | denotes restriction, and n,,, denotes the unit normal vector pointing from
material m; to material m,.

We consider two types of outer boundary conditions, namely Dirichlet and Robin
conditions. To that end, we decompose 0} according to (A-2):

(A-2) Let I'pir and Trop be relatively open polyhedral subsets of 0{ such that
0 = I'bir U T'Rob, I'pir U T'rob = 0.



The boundary conditions then read

0 = Op;, on I'pir, (2.4a)
—(Km(ﬂ) \V4 9) o n,, = & (0 — Oextm) a.e. on ['rop, N O, m € M, (2.4Db)

where n,, is the outer unit normal to Q,,, fp;; > 0 is the given temperature on I'p;,,
fext,m > 0 is the given external temperature ambient to I'rop N O, and &, > 0 is

a transition coefficient.

We restrict ourselves to the simple interface and boundary conditions (2.3) and (2.4),
respectively, since they suffice for our purpose of formulating and numerically verify-
ing a finite volume scheme in situations with anisotropic thermal conductivity. For
the isotropic case, many different interface and boundary conditions are considered
in the finite volume schemes treated in [EGHO00]. For finite volume schemes with
nonlocal interface and boundary conditions due to diffuse-gray radiation between
cavity surfaces, which are particularly relevant to high-temperature crystal growth
applications, we refer to [Phi03, KP05].

In the case of transient heat conduction, the time derivative 85’5—56) must be added
in (2.1), where ¢,, represents the internal energy of the respective material, and
and f,,, in general, depend on time ¢. Since time dependence is decoupled from the
anisotropy issues considered in this paper, we restrict ourselves to the stationary

case. Extending the scheme to the transient case can be accomplished in the usual

way, see, e.g. [EGHO00, Ch. IV], [FL01, KP05].

3 Finite volume discretization

3.1 Discretization of the domains

Using a constrained Delaunay triangulation to discretize polyhedral domains, fol-
lowed by a Voronoi construction to define finite volumes, is a well-known procedure
(see [FLO1, Sec. 3.2] and references therein). Here, we briefly review some definitions
and properties that are subsequently used in the formulation of the finite volume
scheme for the anisotropic case.

Following [FLO1, Sec. 3.2], an admissible discretization of material domain Q,,,
m € M, consists of a finite family ¥,, := (0m;)icr,, of subsets of §,, satisfying a
number of assumptions, subsequently denoted by (DA-x).

Notation 3.1. For d € {1,2}, let \; denote d-dimensional Lebesgue measure.

(DA-1) For each m € M, ., = (Om;)ic1,, forms a finite conforming triangulation
of Q. In particular, for each ¢+ € I, om,; is an open triangle. Moreover,
letting I := |J

e M In, ¥ := (0i)icr forms a conforming triangulation of .



(DA-2) For each m € M, the triangulation ¥,, = (Om;)icr,, respects I'p; and
I'Rob in the sense that, for each ¢ € I, either A\{(I'pi N Oom;) = 0 or
)\1(]-‘Rob N 60’m,¢) = 0.

For each oy, 4, let V(opm,) = {'uzm,] 1] € {1,2,3}} denote the set of vertices of oy,
and let V := UmEM,iEIm V(om,) be the set of all vertices in the triangulation. One
can then define the control volumes as the Voronor cells with respect to the vertices.

Using || - ||2 to denote Euclidean distance, define
forallve V: wy :={z €Q: ||z —v|2 < ||z — 2|2 for each z € V'\ {v}},
(3.1a)
forallm € M: wmyi=wy N, Vi :={2€V: wn, #0} (3.1b)

Letting T := (wy)vev, Tm := (Wmw)vev,,, m € M, T forms a partition of Q, and 7y,
forms a partition of {2,,.

Remark 3.2. Since 7 is a Voronoi discretization, each intersection OJw, N Ow,,
(v,2) € V2, v # 2, is contained in the set {z € Q : |[v —z|2 = ||z — z|2}. In
particular, ||:::||_2 = n,, far.egwmareng: where Oreg denotes the- regular boun.dary of a
polyhedral set, i.e. the points of the boundary, where a unique outer unit normal

vector exists, Opegl := 0; and n,, [ 8regwanBregws 18 the outer unit normal to w, restricted

to the face Oegwy N Oregw; (see Fig. 2).

Notation 3.3. If A C R?, then conv A denotes the convex hull of A. For each pair
of points (z,y) € R? x R? let [z,y] := conv{z,y} denote the line segment between
z and y.

(DA-3) For each m € M, the triangulation ¥, has the constrained Delaunay prop-
erty: If Vi := U,er, V(0my); then, for each (v,2) € V2 such that v # z,
the following conditions (a) and (b) are satisfied:

(a) If the boundaries of the Voronol cells corresponding to v and z have a
one-dimensional intersection, i.e. if A (Owm » N Owp, .) # 0, then [v, 2] is
an edge of at least one o € %,,.

(b) If [v, 2] is an edge of at least one o € %,,, then the boundaries of the
corresponding Voronoi cells have a nonempty intersection, i.e. Owp, , N

Own, . 7 0.
Also see Fig. 2, Rem. 3.4, and [FL01, Sec. 3.2].

Remark 3.4. Due to the two-dimensional setting, (DA-3) can be expressed equiv-
alently in terms of the angles in the triangulation: For each m € M, if v is an
interior edge of the triangulation 3,,, and a and ( are the angles opposite to ~,
then a+ 8 < w. If y C 00, is a boundary edge of ¥, and « is the angle opposite
7, then a < 7/2.



0o = conv{v,z,uo}, o] = conv{v,z,ul}, 0y = conv{v,z,uz}

------ Interior boundary of Voronoi cells
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Figure 2: The pictures show the Voronor cells of the triangulation vertices
Ug, U1, U2, U, 2. In (a), the triangulation violates the constrained Delaunay property
(o1 + oz > m, cf. (DA-3) and Rem. 3.4); in (b) the constrained Delaunay property
is satisfied if, and only if, the edge [v, 2] is not a material interface (7/2 < oy,
a; + oy < 7r).

The following Rem. 3.5 allows the incorporation of the interface condition (2.3) into
the finite volume scheme (see (3.8) below).

Remark 3.5. Using Rem. 3.2, it is not hard to show that (DA-1) and (DA-3) imply
the following assertions (a) and (b):

(a) For each m € M, the set V,, defined in (3.1b) is identical to the set V., defined
in (DA-3).

(b) Let I' be a one-dimensional material interface: ' = 08, N 00, A1 (I") # 0. For
each v € V, if some w, has a one-dimensional intersection with the interface
I', then it lies on both sides of the intersection; in other words, Gregwm NI =
Oregwr,n N T, in particular, A;(Owm, NT) # 0 if, and only if A, (Owm, NT) # 0.
However, Fig. 2(a) shows that this can generally not be expected in cases where
the constrained Delaunay property is violated: If the edge [v, w] =: T' constitutes
a material interface, then both w,, and @,, have one-dimensional intersections
with T', but lie on just one side of T'.

Integrating (2.1) over wy,, and applying the Gauss-Green integration theorem yields

_/M’W(Km(e)va) on, = /wm fms (32)

where n,,  , denotes the outer unit normal vector to wp, .
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3.2 Approximation of integrals, interface and boundary con-
ditions

The finite volume scheme is furnished by using the interface conditions (2.3) and
boundary condition (2.4a) together with (3.2), and by approximating integrals by
quadrature formulas. To approximate § by a finite number of discrete unknowns #6,,
v € V, precisely one value 6, is associated with each control volume w,, where 6,

can be interpreted as §(v) (cf. [FLO1]).
On outer vertices v € Vp;, 1=V N fDi,, the value of the solution is known from the
Dirichlet condition (2.4a):

6, = Opir(v) for each v € Vp;,. (3.3)

It remains to formulate a system to determine 8, for v € Vopi, := V' \ Vir.

The boundary of each control volume wy,, can be decomposed into three parts:
Owm » = (awm,v N Qm) U (6wm,v N 69) U (6wm,,, N (0Qm \ GQ)), (3.4)

where the first part lies in the interior of the material domain (dashed lines in Fig.
2), the second part coincides with part of the outer boundary, and the third part
intersects material interfaces.

Remark 3.6. Simple geometric considerations show that the conditions (DA-1) and
(DA-3) guarantee that the discretization 7 respects interfaces and outer boundaries,
and that there is a vertex v € V in each of the integration domains wy,, occurring
in (3.4). More precisely:

(a) For each v € V: If there is m € M and an edge [a, b] of a simplex of ¥,, such
that [a,b] C 0Q,, and A;(w, N [a,b]) # 0, then v = a or v = b.

(b) For each v € V, m € M: If wy, # 0, then v € Wp,. In particular, if
(m,m) € M?, W, # 0, and wyp # 0, then v € Wy, N W -

However, note that Rem. 3.6(a),(b) can generally not be expected for triangulations
that violate the constrained Delaunay property: For example, if, in Fig. 2(b), the
edge [v,w] constitutes a material interface, say Q; := oy, Q5 1= 03, [v,w] = 00 N

0€Qs, then wyy, # 0 and wa,, # 0, but us ¢ wa ., -

By (DA-2) and by Rem. 3.6(a), control volumes w, of non-Dirichlet verticesv € V_pj,
can not have one-dimensional intersections with I'p;;. Thus, for v € V_p;;, up to null
sets with respect to A;, (3.4) reduces to

Owmy = (Owmy N Qn) U (Owmy N Trop) U (0wmy N (02 \ 8Q)). (3.5)

We proceed by employing the Robin condition (2.4b) on Owm, N 'ropb followed by
the approximations 8 & 6, and fexsmy & (A1(Owm N FROb))_l . fawmmFR . Oext,m, the
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second of which will be further discussed in Section 3.4 below:

o / (Km(a) v 0) b n""’m,'u = / f‘m (0 - aext,m)
Bwm, »M'Rob Owm,vMNI'Rob (36)
~ E‘m (e'u - aext,m,'u) Al(awm,v N FRob)-

In the next step, we combine terms of the form fa n(50 \an)( m(0)VO)en,, B by
using the interface conditions (2.3). The set Owy, ,N (89 \0Q) is decomposed further
into the intersections with the boundaries of all the particular material domains. Up

to A;-null sets:

Owmy N (02m \09Q) = | ] Owmw N O N 0D, (3.7)

meM\{m}

According to Rem. 3.5, for each (m,m) € M? with m # ™, one has A\ (Owm» N
0Qm N 0Qy) # 0 if, and only if, A (Owmy N 0D N 0Qp) # 0. This justifies the
second equality in the following computation (3.8). For each v € V_p;:

—ZL (Kn(®)V8) o nsr,

meM Y wm, N (80m\89)

w_y Z/ (Km(6)V6) o n,,,

mEM e\ fm} Y O0mvN80mn8Ns

__ > ( / (Km(8)V 6) ® 1o,
Bwrm, y BN BN,

(m,m)eM?:
m#£m,

A1 (Bwrm, o NBNRNEN,5)#£0

[V
w
~—

+/ (Kn(6)V 6) o n%w) i)
aw,;,‘,wﬂaﬂmﬂaﬂﬁ.,‘

3.3 Approximation of heat flux term, anisotropy

Notation 3.7. For each m € M and each (v,w) € M2, let Ympw := Owmy N Owm
denote the interface of the two Voronol cells inside the material domain 2, (of
course, in general, Y, ,» can be empty).

To approximate the heat flux integrals faw na. (Km(0)VO)en,, ,, the set Owpm N

Q,, 1s also partitioned further, namely into the interfaces with all neighboring
Voronoi cells. Up to null sets with respect to A;:

awm,v N Qm == U '-Ym,'u,'wa (39)

wEnb, (v)

where nb,,(v) := {w € Vo \ {v} : Mi(Ympww) # 0} is the set of m-neighbors of v. For

example, in Fig. 3, Ow: , 1s decomposed into v1 4.4, ; V1,00, a0d V1,44, -

8



a1 = conv{v,w,u}, 02 = conv{v,w,us}

U2

Figure 3: Illustration of the decomposition of Gw ,.

The decomposition (3.9) reduces our task to approximating (K, (6) V6)e n,, on
Yrm,ww- According to the assumed form (2.2) of the K,,(6), the approximation can
be broken down into two parts: (a) Approximation of the temperature-dependent,
isotropic part. (b) Approximation of the temperature-independent, anisotropic part.

Approximation of the temperature-dependent, isotropic part

m

™ (6) on Ymww by the arithmetic mean

We approximate &

S (O) b (KT (00) + R (6). (3.10)

Other approximations instead of (3.10) are available through using the antideriva-
tive of kI or by using upwind (s. [FLO1, Sec. 6.4]). While the theoretical results
in [FLO1] establish desirable stability properties for these approximations in the
isotropic case, according to our numerical results presented in Sec. 4.3 below, the

simple approximation (3.10) works sufficiently well for our purposes.

Approximation of the temperature-independent, anisotropic part

It remains to approximate (A, V §) o N, , O VYmww, Where A, is the constant
diagonal matrix

m m o fori =7,
Ap = (al}), a;; = {0 for i 4 . (3.11)

The idea is to devise the approximation such that it is exact provided that 6 is affine
on each o € ¥ and provided that ¥ has the strong Delaunay property (all angles

9



are less than or equal to m/2). If  is affine on o € X, then

Vol,= > 6(v) Vo, (3.12)

vEV (o)

where ¢y, : 0 — [0,1], v € V(0), are the affine coordinates on the triangle o with
respect to its 3 vertices.

Given m € M, (v,w) € V2, v # w, such that [v,w] is an edge of some o € %,,, let
2m.,'u,'w = {U S Zm . {’U,’U}} g V(U)} (313)

be the set of triangles in %, having [v,w] as an edge. Since %,, is a conforming
triangulation of Q,, by (DA-1), if [v,w] is a boundary edge, then ¥, , . has precisely
one element; otherwise, it has precisely two elements, lying on different sides of [v, w].
For each 0 € ¥, w, let H, ., » be the half-space that lies on the same side of the line
through [v,w] as 0. Even though (DA-3) guarantees A;(VYmow) # 0, Fig. 3 shows

that 4, can lie entirely on one side of [v, w]|. However, letting
2’Y'm,,'u,'u/ = {U E Em,'u,'w : A1(-EI-'U,'u),a' m Fy'm,,'u,w) ?é O}, (314)

we can decompose Ym v according to

’ymyv:w = U a m Pym,'u,'w- (315)
gEYX

Ym,v,w
For example, in Fig. 3, 71,44 1s decomposed into o1 N 1 4.0 and T2 N Y1 4.

Using (3.12) together with Rem. 3.2 yields, for each o € &

Ym,v,w*

w —v

(AnV8), en,, | = 6(0) (Am V ¢0)

Ym,v,w
eV (o)

(3.16)

*— .
lw =]

If we were to assume that 7., is an Ap-orthogonal grid as defined in [ABB98a,
1.e. Ymo'w ® Am(v' —w') = 0 holds for all v',w’" € V}, such that [v/,2'] is an edge
of at least one o € %,,, then we would have the relations A,, V ¢,, ¢ (w —v) =
A — 0)a/lw — o2, Am ¥ e 8 (0 — 8) = || Am(w — o/ — vlls, and
AV ¢on o (w—v)=0foru € V(o) \ {v,w}. These relations would imply

_ 6(w) = 6(v) | Am(w — ») |5

Ym,v,w

(AmVO)|, en,, |

, (3.17)

[w—=wvlz  w—wvl
corresponding to the approximation used in [EGHO00, Sec. 11.1] under the A,,-or-
thogonality assumption. We also note that the approximation considered in [Fai91]
reduces to (3.17) for an Ap-orthogonal Voronol grid. In the usual isotropic case,

where af* = af* = 1, the second factor on the right-hand side of (3.17) becomes
equal to 1, resulting in the usually used approximation of the isotropic case.

Providing a grid ¥,, such that the corresponding 7,, is A,,-orthogonal would allow
to use the simpler approximation in (3.17) that only depends on the two values

10



of § in v and w, but, in contrast to (3.16), not on the value of § in the third
corner of o. Unfortunately, for a; # aa, Am-orthogonality of 7, only holds if,
for all Voronol cells wm », the part of the boundary Owm, lying inside §,, consists
only of horizontal or vertical line segments. This is a quite strong restriction for
the mesh ¥,,, which could be avoided if, in the definition (3.1) of the Voronoi
cells, one were to replace the Euclidean distance with the norm || - [[,-1 given by

||'u||AT-n1 := y/AZ'v e v for all vectors v. However, this would entail many additional
difficulties for practical computations, as, for example, many formulas had to be
adapted, and, more importantly, when dealing with different anisotropy values in
the different (2,,, one had to find a way for the grid generator to provide a grid
Y, for Q such that, for each m € M, the subgrid ¥,, of ,, is appropriate for
dealing with Voronoi cells defined with respect to the norm | - [|,-:. To avoid
these additional problems that arise if one wants to ensure that (3.17) constitutes
an accurate approximation, we prefer to use the slightly more complicated formula

(3.16).

Combination of the temperature-dependent and temperature-independent
parts

Combining the approximations of the temperature-dependent and the temperature-

independent parts, we are now in a position to state our approximation of the heat

flux integral K..(8)V8)e n, .. Combining (3.10), (3.15), and (3.16) yields
g Ymv w m,v g

[ym,m (Km(0)VO)en,,,,

1 m m
~ Z 5 (K’iso(g'v) + K’iso(aw)) (3]_8)
a'EEwm,w’w
w—v
Z 61’7 (Am \Y ¢a’,'ﬁ) o M Al(H'u,w,a' N ’Ym,'u,'w)-
sev(o) 2

Remarks on triangulations involving obtuse angles

Consider the case where the triangulation 3,, satisfies the constrained Delaunay
property, but not the strong Delaunay property, i.e. where there is an interior edge
such as [v,w| in Fig. 3, with opposing angles oy, a,, 7/2 < a;, a; + a; < 7.

Then approximation (3.18) is generally not exact for piecewise affine § even if
ki = 1 and A,, is isotropic. For instance, in Fig. 3, on o2 N 71,44, the flux
(AmV ) e mn,, [,,,, is approximated by (A4, V) [, eny, [4,,. , which is, in
general, different from (4, V) [,, en,, [4,,. . One could modify (3.18) to be
always exact for piecewise affine 6, albeit at the cost of making the implementation
of the scheme more difficult. The simpler approximation used here, which is used
in many papers dealing with finite volume schemes (see, e.g., [EGH00, FKLO01]), is

vindicated in the light of the numerical results presented in Sec. 4 below.
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At this point, we would like to draw attention to an algorithmic pitfall that can arise
when implementing formula (3.18) in the presence of both anisotropy and obtuse
triangles. Let o; and o, be triangles belonging to ¥,, such that [v,w] is a common
edge of o1 and o0,. According to (3.14), this means ¥m,w = {01,02}. When
implementing (3.18), one is faced with the task of computing A (Hywe N Ymuw),
i.e. the length of ym 4w on both sides of [v,w|, where we recall that ymw is the
interface between the Voronoi cells wy, , and wy, . Program packages suitable for the
implementation of finite volume schemes such as pdelib [FKL01] provide functions
that compute approximations of (3.18) using loops over all relevant pairs ([v,w], o)
and approximations Ay ywe of A1 (Hywe N Ymuw)-

If the angles in oy and o, that are opposite to [v,w] are both acute, then v 4w has
parts of positive length on both sides of [v, w|, and the approximations Ay v we, and
Am,vw,o, as computed by pdelib are quite accurate. However, if one of the angles, say
the one in oy as in the situation depicted in Fig. 3, is obtuse, then 7, .. lies entirely
on one side of [v,w] such that A\j(Hywe, N Ymww) = 0, and the approximations
Amvw,e, a0d A ywo, as provided by pdeltb are no longer good approximations of
M(Hywo, N Ympw) and A (Hywe, N Ymow), respectively. In fact, Ay pwo, will be
negative and A, 4w o, Will be larger than A;(Hy w0, N Ymww) such that the sum gives
the correct value A w0, T Ampw,es = A (Hyw,eop VYmuw)- 10 the isotropic situation,
the behavior of the pdelib functions is still quite appropriate, since, in this case, the
factor in front of A;(Hywe, NYmww) and the factor in front of A1 (Hyw,ep N Ym,pw) 0
(3.18) are both equal to W. Thus, multiplying with A\, 4 we, for o1 and with
Am v,w,0 TOT 03 and summing up the results afterwards leads to a good approximation
of the last line in (3.18). However, in the anisotropic situation, the factors in front
of M(Hywe, N Ymuww) and A (Hywe, N Ymyw) are different. Hence, in order to
get an accurate implementation of (3.18), in the pdelib loops over the relevant pairs
([v,w], o), one can no longer multiply by the standard pdelib approximations A, 4 w0
For example, in the abovedescribed situation, one has to use 0 instead of A,y w0,

and one has to use Apm yw,o; + Ampwe, 10stead of Ay w0, -

3.4 Approximation of the source term and of the external
temperature

For the approximation of the source term, assuming that the f,, are at least inte-

grable, let
o I

v )‘2 (wm,'u)

fm (3.19)

be a suitable approximation on wm,. In general, the choice will depend on the
regularity of fm, (for f, continuous, one might choose fm, = fm(v), but fm. =
()\z(wm,u))_l -fwmw fm for a general f, € Ll(Qm)). However, a suitable approxima-
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tion should satisfy

(fm,v A2 (W) — / fm> — 0 for diam(wm,) — 0. (3.20)

Similarly, depending on the regularity of the external temperature fext m, in the ap-
proximation of the Robin boundary condition, one may choose fextm v := Oext,m(v),
Bextmv 1= (A1 (Owmy NTRop)) ™" - fawmmfnob fext,m, or any other suitable approxima-
tion such that

(cht,m,v A1 (Owmp N Trob) — / ﬁcxt,m) — 0 for diam(wm,)— 0.
Owm ’umFRob

(3.21)

3.5 The finite volume scheme

At this point, all preparations are in place to state the finite volume scheme in (3.22)
below. The terms in (3.22b) arise from (3.2) after summing over m € M, using
the decompositions (3.5), (3.7), (3.9), (3.15), as well as (3.8), and employing the
approximations (3.6), (3.18), and (3.19), respectively. One is seeking a nonnegative
solution (6,),ecv to the following nonlinear system:

6, =bpir(v) for each v € Vpy, (3.22a)
0= Z é-m (e'u - gext,m,'u) Al(awm,v N FRob)
meM
1
- Z Z 5 1so +K’150(9 ))
mEM wenbm (v)

05 (Am V o) ® ———— X\ (Hymo N Voo
> Z ¢)||w—v||2(” Ym0

a'EEWm v,w HeV (o

— Z fmw A2(wmy) for each v € Vopy, =V \ Vi, (3.22Db)

meM

3.6 Modifications for the axisymmetric case

Suppose that each material domain Q,,, m € M, is axisymmetric, and, in cylin-
drical coordinates (r,?, z),  and each f,,, m € M, are independent of the angular
coordinate ¥. Starting with the model equations (2.1), (2.3), and (2.4) in three
dimensions, one can then use the circular projection (r, ¥, z) — (r, z) to reduce the
model as well as the finite volume scheme to two dimensions.

It was shown in [Phi03, Sec. 3.6] how symmetry conditions together with a change
of variables can be used to reduce the space dimension in a finite volume scheme.
In the case of cylindrical coordinates, the change of variables merely yields a factor
r in the integrands occurring in (3.6), (3.8), (3.18), and (3.19), and thus in the
corresponding terms in (3.22b).

13



4 Numerical experiments

4.1 Implementation

In the following Sections 4.2 and 4.3, we present numerical results obtained using the
axisymmetric version of scheme (3.22) (cf. Sec. 3.6). The scheme was implemented
as part of our software WIAS-HiTNIHS' which is based on the program package
pdelib [FKLO1]. In particular, pdelib uses the grid generator Triangle [She96] to
produce constrained Delaunay triangulations of the domains, and it uses the sparse
matrix solver PARDISO [SGF00, SG04] to solve the linear system arising from the
linearization of (3.22) via Newton’s method. The Dirichlet condition (3.22a) is
implemented employing the penalty method.

4.2 Comparison with closed-form solutions
4.2.1 Single-material domain
For the verification of our finite volume scheme, we consider the following axisym-

metric Dirichlet problem, written in cylindrical coordinates (r,z) in the domain

Q={(r,2): 0<r<02,-02<2z<0.2}:

10 0o 0 0o )
— ;E (’l" (o' E) — E (az $> = 0 mn Q, (413,)
8(r,2) = Opu(r,2) = = — 12 — L 2 o0 (4.1b)
r,z) = Opi(r, 2) 1= ar'r’ o z on . .

The Dirichlet problem (4.1) has the obvious closed-form solution

6(r,z) = 1irz — iz2 on . (4.2)

Ay Qy

We present the results of two numerical solutions of (4.1), one with (a,,a,) =
(1,10) and one with (a,,c,) = (10,1). In both cases, the numerical solution is
computed using our finite volume scheme (3.22), modified for the axisymmetric case
as described in Sec. 3.6. We vary the fineness of the grid, subsequently referred to
as grid level [, where a higher level means a finer grid. In practice, we use the grid
generator Triangle [She96] to control the fineness of the grid: If &' = (o?);c 1 denotes
the triangulation of Q for grid level [, then Triangle guarantees that the area of the
triangles o! is bounded by our prescribed value A':

)\2(011-) < A' foreachic I (4.3)

1

We calculate the discrete Ly-error €7 between the numerical solution 6% of grid

'High Temperature Numerical Induction Heating Simulator; pronunciation: ~hit-nice.

14



level I and the exact solution # given by (4.2):

L. _
€r, =

> vol(wh)((bhum(v) = 6(v) ),

eV

(4.4)

where v € V! are the vertices of the triangulation of grid level [, and vol(w!) :=
fwl rdrdz is the r-weighted area of the Voronor cell corresponding to the vertex v.

To determine the order of our numerical scheme, for grid levels [ > 1, we define the
numerical convergence rate p}_ as follows (cf. [Krs97, LeV02]):

b o= (In(ed) — In(ez)/ (n() — Tn(A=1), (45
where h' is the maximal edge length actually occurring in grid level I:
Bt = max{”’u —z[|2 ¢ [v, 2] is edge of ol i€ Il}. (4.6)

Tables 1 and 2 show the dependence of the Lj-error 622 and of the numerical con-
vergence rate pj_on the grid level | as computed for our two numerical solutions
of (4.1): We choose A% := 41075, A" := (1/4)* A% 1 € {0,...,4}. As described
above, the grid generator then guarantees (4.3). For each grid level [, we determine
the actually occurring maximal edge length A' according to (4.6). We find that we
have the approximate relation 2v/A! &~ Al (see values for A’ in Tables 1 and 2). The
case (a,,a,) = (1,10) is depicted in Table 1, whereas the case (a.,a,) = (10,1) is
depicted in Table 2. In both experiments, one can observe second order convergence:
The error 1s approximately proportional to the square of the maximal edge length in
the space discretization. This coincides with theoretical results in [Bey98, CLZ02],
where, for a finite volume approximation of an isotropic elliptic equation with an
H?(Q) solution (in [Bey98]) or with a differentiable right-hand side (in [CLZ02]), a

second order convergence is proved.

level number | max edge length Ls-error numerical convergence rate
[ of triangles h! e ok,
0 3117 1.407 1072 9.7146 10~7
1 12446 6.7177 1073 2.6754 10~7 1.7443
2 49669 3.5017 1073 7.0362 10~8 2.0501
3 198212 1.7503 1073 1.857 1078 1.9210
4 795195 8.998 10~* 4.5971 107° 2.0983

Table 1: Ly-error and numerical convergence rate of the finite volume scheme for
the numerical solution of (4.1) with anisotropy coefficients (e, a,) = (10,1).

In Figures 4 and 5, we present isolevel plots of our two numerical solutions of (4.1)
in comparison with the isolevel plots of the corresponding exact solution. In these
plots, even for the coarsest grid, the numerical solution is virtually indistinguishable
from the exact solution.
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level number | max edge length Ls-error numerical convergence rate
[ of triangles Rt €, ok,
0 3117 1.407 10~2 6.8619 10~
1 12446 6.7177 1073 1.7805 10~ 1.8248
2 49669 3.5017 1073 4.8672 1078 1.9907
3 198212 1.7503 1073 1.3105 1078 1.8921
4 795195 8.998 10~* 3.1317 107° 2.1513

Table 2: Ly-error and numerical convergence rate of the finite volume scheme for
the numerical solution of (4.1) with anisotropy coeflicients (e, a,) = (1, 10).

Exact solution 0

=9
o

. . 0
Numerical solution 6.,

Levels:
1: 0.0
2: -0.009
3: -0.018
4: -0.027
5: -0.036

e s (R —
- —¢ ——1 @ 38—
— =" """ -
e 0 RS, e
EEER e S| 090909090 0 EEEEGEE -y
w0
B e
————— .|
.. e 0 -
—a 01—
EEEeE ey 090 090 0 iimmen
et 0000 | S
??

Figure 4: Isolevel plots on Q = (0,0.2) x (—0.2,0.2) of the numerical solution 62,
(grid level 0: 3117 triangles) (left) and of the exact solution 6 (right) of the Dirichlet
problem (4.1) with anisotropy coeflicients (e, &,) = (10,1). The difference between

neighboring isolevels is 0.003.

4.2.2 Multi-material domain

For further verification of our method, we consider an axisymmetric Dirichlet prob-
lem with a closed-form solution, where the rectangular domain 2 decomposes into
four materials Q,,, m € {1,2,3,4}, each material having different anisotropy coeffi-
cients (Qm,r, @m,.). More precisely, in cylindrical coordinates (r, z), we consider the
following domains (see Fig. 6):

0 ={(r,2):0<r<01,0<2<0.1}, Q={(rz):01<r<020<2z<0.1},
Q3 ={(r,2):0<r<01,01<2<02}, Qu={(r,2):01<r<02,01<2<0.2},
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Numerical solution 69, Exact solution 6

Levels:
1: -0.003
2: 0.0
3: 0.003
4: 0.012
5: 0.018

Figure 5: Isolevel plots on Q = (0,0.2) x (—0.2,0.2) of the numerical solution 62,
(grid level 0: 3117 triangles) (left) and of the exact solution 6 (right) of the Dirichlet
problem (4.1) with anisotropy coeflicients (e, ;) = (1,10). The difference between

neighboring isolevels is 0.003.

and, given positive coefficients (@m r, @m ) and real coefficients (am, bm, Cm, fm) for
each m € {1,2,3,4}, we consider the Dirichlet problem

10 00 0 00 .
T Lo (’f' Qpm,r E) " B2 (am,z E) = fm in O, (4.72)

Qm,r 0 Qe 0
(5 L))o (5 L)oo e

(4.7b)
8(r, z) = Opir,m(7,2) := am > +bm2z’+cn on 00N 0N,
(4.7¢)
where 6 is required to be continuous throughout Q. From the ansatz
0(r,2) = amr® + bm 2’ + cm on 0, mc{l,2,3,4}, (4.8)

it is readily verified that (4.8) provides the exact solution to (4.7) if the coefficients
Cmry Om, 2y @m, bm, Cm, and f,, are chosen as follows:

Qyr = 2, Qg r = 1, Qg = 4, Qg p = 2,
Q. = 1, Qy, = 2, Qaz . = 3, Qg2 = 6,
a =1, ay = 2, az =1, aqg = 2, (4-9)
by =1, by =1, by =1/3, by = 1/3,
¢ =0, ca = —1/100, 3 =2/300, ¢4 = —1/300,
f1=-10, fo=-12, fa=—18, fa = —20.
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The values (4.9) are the ones we use in our numerical experiments.

As in the previous Sec. 4.2.1, we compute numerical solutions 8 _ for grid levels [
of increasing fineness to determine the numerical convergence rate. As before, we
choose the area bounds A° :=4-1075, A' := (1/4)" A°, 1 € {0,...,4}, enforced by the
grid generator. For each grid level [, we determine the actually occurring maximal
edge length h! according to (4.6) and compute the numerical convergence rate pﬂ;Z
according to (4.5). Here, the discontinuity in the diffusion coefficients (Qm s, Qm,-)
across material interfaces results in the solution’s gradient being discontinuous across
material interfaces as well. In consequence, as compared to the results of the previous
section, we lose one order of convergence, as can be seen from the values of the
discrete Lj-error 622 and the numerical convergence rate pi—JZ collected in Table 3:
The error is approximately proportional to the maximal edge length in the space
discretization. This corresponds to the order of convergence proved for some finite
volume schemes in [EGH00, BMO96]. Moreover, since the solution is in H'**(Q)
for all s < 1/2 but not for s = 1, one may expect, after considering [Bey98, Satz
4.2.25], that one has convergence of order h® for all s < 1, but not convergence of
linear order.

In spite of the reduced convergence rate, Figure 6 shows that, as in the previous Sec.
4.2.1, even for the coarsest grid, the numerical solution is virtually indistinguishable
from the exact solution.

level number | max edge length Ls-error numerical convergence rate
[ of triangles Rt €, o,
0 1557 1.271 1072 2.5600 10~°
1 6148 6.803 1073 1.2825 1075 1.1059
2 24813 3.4106 1073 6.3352 10~° 1.0214
3 99428 1.793 1073 3.1972 107° 1.0635
4 398130 8.925 10~* 1.6108 10~° 0.9827

Table 3: Lj-error and numerical convergence rate of the finite volume scheme for
the numerical solution of (4.7) with the coefficients chosen according to (4.9).

Further tests with various sets of coefficients also confirm the convergence of our
scheme. Thus, the next step is the application of the method to a complex geometry
of a realistic application, where a closed-form solution is no longer available. We
consider such an application in the following Sec. 4.3, namely the crystal growth
apparatus presented in the Introduction (see Fig. 1).

4.3 Results for complex geometry

In this section, we apply the axisymmetric version of scheme (3.22) (cf. Sec. 3.6) to
compute numerical solutions to the nonlinear stationary anisotropic heat equation
(2.1) on the axisymmetric domain {2 depicted in Fig. 1. The radius is 12 cm and the
height is 45.3 cm. As described in the Introduction, this domain represents a growth
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Numerical solution 62 Exact solution 6 Levels:

1: 0.005
2: 0.020
Q4 3: 0.040
4: 0.060
5: 0.080

\Ql‘ \
Figure 6: Isolevel plots on £ = (0,0.2) x (0, 0.2) of the numerical solution 89, (grid
level 0: 1557 triangles) (left) and of the exact solution 6 (right) of the Dirichlet
problem (4.7) with the coeflicients chosen according to (4.9). The difference between

neighboring isolevels is 0.005.

apparatus used in silicon carbide single crystal growth by the PVT method. As
shown in Fig. 1, Q consists of six subdomains Q,,, m € {1,...,6}, representing the
materials insulation, graphite crucible, SiC crystal seed, gas enclosure, SiC powder
source, and quartz. Aiming to use realistic functions for the isotropic parts L, (6)
of the thermal conductivity tensors (cf. (2.2)), for gas enclosure, graphite crucible,
insulation, and SiC crystal seed, we use the functions given by (A.1), (A.3b), (A.4b),
and (A.7b) in [KPSWO1]; for & _(6) (SiC powder source), we use [KP03, (A.1)], and

for k2.(0) (quartz), we use

6 2\ W
6 _ . i -3 7 i —6 - R
K3 (6) = <1.82 1.21-107 2 +1.75 - 10 K2> 2 (4.10)

Hence, all functions 2 () depend nonlinearly on #. As mentioned in the Intro-
duction, the thermal conductivity in the insulation is typically anisotropic in PVT
growth apparatus. In the numerical experiments reported on below, we therefore
m m)

T7aZ

vary the anisotropy coefficients (a}, al) of the insulation while keeping (o
(1,1) for all other materials m € {2,...,5}.

Heat sources f,, # 0 are supposed to be present only in the part of 2, (graphite cru-
cible) labeled by “uniform heat sources” in the left-hand picture in Fig. 7 satisfying
54 cm < r <6.6 cmand 9.3 cm < z < 42.0 cm. In that region, f, is set to the
constant value f; = 1.23 MW /m?, which corresponds to a total heating power of
1.8 kW. This serves as an approximation to the situation typically found in a radio
frequency induction-heated apparatus, where a moderate skin effect concentrates
the heat sources within a few millimeters of the conductor’s outer surface.

The interface conditions are given by (2.3). Here, our main goal is to illustrate
the effectiveness of our finite volume scheme of Sec. 3 to compute the temperature
field in a realistic complex geometry involving materials with anisotropic thermal
conductivity. If the anisotropy in the thermal conductivity of the insulation is
sufficiently large, we expect the isotherms to be almost parallel to the direction
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with the larger anisotropy coefficient. Since using the Dirichlet boundary condition
(2.4a) can suppress such an alignment of the isotherms, we opt to use the Robin
condition (2.4b) on all of 09 instead. For m € {1,2,6}, we set fext,m = 500 K and
&m = 80 W/(m?K) (recall from Fig. 1 that Q;, 3, and {6 represent the insulation,
the graphite crucible, and quartz, respectively, and, thus, the outer materials of the
apparatus).

The setting of this section constitutes a compromise between showing a realistic
situation and staying within the scope of the simple model of Sec. 2. More realis-
tic computations of heat transfer in PVT growth apparatus involve simulations at
higher temperatures, computing the heat sources by solving Maxwell’s equations,
and including nonlocal radiative heat transfer between cavity surfaces as well as
Stefan-Boltzmann emission conditions. For results of such numerical simulations,
also applying the finite volume scheme developed in the current article to handle
anisotropic thermal conductivity, we refer to our paper [GKPO05].

We now present results of 7 numerical experiments, varying the anisotropy coef-
ficients (o, al) in the insulation. In each case, we use a fine grid consisting of
61222 triangles. We start with the isotropic case (a},al) = (1,1) depicted on the
right-hand side of Fig. 7. Figure 8 shows the computed temperature fields for the
moderately anisotropic cases (a},al) = (10,1) (left), (al,al) = (1,10) (middle),
(al,al) = (10,1) in top and bottom insulation parts, (a},al) = (1,10) in insu-
lation side wall (right). Figure 9 shows the computed temperature fields for the
strongly anisotropic cases (al,al) = (1000,1) (left), (al,al) = (1,1000) (middle),
(oy,al) = (1000,1) in top and bottom insulation parts, (a;,al) = (1,1000) in insu-
lation side wall (right). The maximal temperatures established in the 7 experiments
are collected in Table 4.

ai ai maximal temperature
(K]
1 1 1273.18
1 10 1232.15
1-10, mixed 1-10, mixed 1238.38
10 1 918.35
1 1000 1063.58
1-1000, mixed | 1-1000, mixed 1030.45
1000 1 706.36

Table 4: Maximal temperatures for the 7 numerical experiments discussed in Sec.
4.3, depending on the anisotropy coefficients (a}, al) of the insulation (cf. Figures 7

- 9).

Comparing the temperature fields in Figures 7 - 9 as well as the maximal temper-
atures listed in Table 4, we find that any anisotropy reduces the effectiveness of
the thermal insulation, where a stronger anisotropy results in less insulation: As we
keep the total heating power fixed at 1.8 kW in each experiment, lower tempera-
tures in the apparatus indicate a less effective thermal insulation. Here, the effect
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uniform heat sources

Figure 7: Left: Location of the heat sources. Right: Computed temperature field

for the isotropic case a! = a! = 1, where the isotherms are spaced at 80 K.
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Figure 8: Computed temperature fields for the moderately anisotropic cases
(ar,al) = (10,1) (left, isotherms spaced at 50 K); (a},al) = (1,10) (middle,
isotherms spaced at 80 K); (a},al) = (10,1) in top and bottom insulation parts,

(al,al) = (1,10) in insulation side wall (right, isotherms spaced at 80 K).
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Figure 9: Computed temperature fields for the strongly anisotropic cases (al, al) =
(1000,1) (left, isotherms spaced at 10 K); (a!,al) = (1,1000) (middle, isotherms
spaced at 80 K); (o}, al) = (1000, 1) in top and bottom insulation parts, (a},al) =
(1,1000) in insulation side wall (right, isotherms spaced at 80 K).

that a stronger anisotropy results in a less effective insulation i1s expected, since
raising the anisotropy coefficients of one direction to a value above 1 improves the
insulation’s thermal conductivity in that direction. Similarly, when reducing one of
the anisotropy coefficients to a value below 1, a stronger anisotropy would result in
improved insulation.

It can also be seen from Figures 7 - 9 and Table 4 that the insulation’s effectiveness
depends strongly on the orientation of the anisotropy: Raising c; to 10 and 1000
has a much more pronounced effect than raising o} to 10 and 1000. The reason
1s that a large thermal conductivity in the radial direction results in heat being
effectively transported from the region of the heat sources to the vertical boundary
of the apparatus. When constructing the apparatus it is thus important to use
the insulation material such that its preferred direction of thermal conductivity is
parallel to the side wall. Changing the anisotropy orientation in the top and bottom
parts of the insulation (right-hand side in Figures 8 and 9) seems to have little
effect on the overall temperature field. However, the temperature field inside the
top and bottom parts of the insulation is affected considerably by changing the
parts’ anisotropy. In particular, one can clearly see the expected alignment of the
isotherms with the preferred direction of thermal conductivity. Moreover, for the
strongly anisotropic cases (Fig. 9), the isotherms’ alignment is quite prominent in
all three considered cases.
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5 Conclusions

We have constructed a finite volume scheme suitable for the solution of nonlinear
heat equations with anisotropic thermal conductivity on complicated polyhedral do-
mains. The discretization of the space domains is facilitated by unstructured grids,
namely triangulations satisfying the constrained Delaunay condition. The finite
volume scheme is described for Cartesian coordinates as well as for cylindrical coor-
dinates to allow the application to axisymmetric geometries. The scheme has been
verified in comparison with exact closed-form solutions, showing second order con-
vergence in a single-material domain and first order convergence in a multi-material
domain with jumping thermal conductivity coeflicients. Furthermore, the finite vol-
ume scheme has been applied to compute the heat transport in a complex crystal
growth apparatus using various anisotropic thermal conductivities in its insulation,
demonstrating the effectiveness of the method in realistic applications.
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