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Conventions and Notation
e N={1,2,3,...}, Ngo=NU{0} and N_; = {-1,0} UN.
e d will be a fixed element of N.

« For z € R or z € C? we write |z| for its euclidean norm \/>"%, |z]2, |z|1 =
Sy el and [2]oo = maxieqy ay |@il-

« For a € N¢ we write |a| = 2%, a; and D* or 9% for the operation on (smooth)
functions by

9Uf = 00 .. %S,

where 0; is the partial derivative with respect to the i-th coordinate.

o We write || - ||r for the norm on the LP spaces. See Section [Al As is common,
we will not distinguish between an element in LP with (one of) the function(s) it
represents.

o For the inner product on L? we write (-,-);2 (as not to get confusion with the
notation (-,-) for the pairing between distributions and test functions). So

(oo = [ 19



1 Spaces of differentiable functions and distributions

Let  be a nonempty open subset of R?. The underlying field F is either R or C. We
write Nz () or just N, for the set of neighbourhoods of z in Q.

Definition 1.1. For a function f : ) — F we define the support supp f to be the set
suppf={z € Q:VV e N, JyeV [f(y) # 0]} (1)

Or in words, it is the set of all # such that for all neighbourhoods V' of = there exists
an element y in that neighbourhood such that f(y) # 0. Observe that we also have the
following equalities

supp f = {z € Q: f(z) # 0}
=Q\{UcCQ:Uisopenand f =0on U}. (2)

If F is a set of functions Q2 — F, we write F, for the subset of compactly supported
functions in F, i.e., F. = {f € F : supp f is compact}.

Definition 1.2. o We write C(Q,F) or C(2) for the set of continuous functions
Q — F. We will also write C°(Q) = C(2) and

lellco = sup lp(x)] (v € C(Q)),

observe that ||¢||co = ||¢||Le for ¢ € C(£2).

o For k € N we write C*(Q,F) or C*(Q2) for the k-times continuously differentiable

functions Q — F and || - || : C¥(Q) — [0, 00) for
flles = D N07Flli= (f € CHEQ,F)). (3)
B:1BI<k

o We say that f: Q — F is k-times continuously differentiable if f|q € C*(Q) and if
9% f|q can be extended to a continuous function on Q. We write C*(Q, F) or C*(Q)
for the set of such functions.

Definition 1.3. D(Q) is defined to be the vector space C2°(€2). An element of D(Q) is

called a testfunction.
A linear function u : D(2) — F, is called a distribution if for all compact sets K C 2,
there exist C' > 0 and k € Ny such that

lu(@)] < Cllellex (g € D(Q), suppyp C K). (4)

If u is a distribution and k € Ny is such that for all compact sets K there exists a C' > 0
such that holds, then w is said to be of order k.



1.4. Observe that if u and v are distributions (on Q) and A\, € F, then w : D(Q) - F
defined by w(p) = Au(p) + pv(p) is a distribution.

Definition 1.5. We define D'(f2) to be the vector space of distributions.

Before we consider the topologies we equip D and D’ with, let us give some examples
of distributions.

Example 1.6. Let f be a locally integrable function on 2, also written f € L ().
Then uy : D(Q2) — F defined by

ur(p)= [ fo= [ f@)ew) do )
Q Q
is a distribution and is of order 0.

Definition 1.7. A (positive) Radon measure j on € is a o-additive function (a measure)
on the Lebesgue measurable subsets of 2 (with values in [0, co]) such that u(K) < oo for
all compact sets K C ).

Example 1.8. If F = R let x be a Radon measure on §2. Then u, : D(Q) — F defined
by

up () :/ng dp (6)

is a distribution and is of order 0.

Observe that positive locally integrable functions give rise to Radon measures. But
not vice versa, as the following example illustrates.

One important example to highlight here is the Dirac-§ measure, for which we write
dp (or o if we center it at x). It is defined on measurable sets A by

1 0€eA,

fol4) = {0 0¢ A

Therefore [ ¢ ddg = ¢(0).

1.1. Prove that every function in LP(Q) is locally integrable, where p is an
element of [1, o).

This implies that all element of function spaces like LP or C* represent distributions.
But these examples only represent distributions of order 0, as the following theorem
states.

Theorem 1.9. A distribution u is of order 0 if and only if it is represented by the differ-
ence of two Radon measures, in the sense that there exist Radon measures i1, ta, 43, td
such that u = wy, — upu, +iluu, — up,] (see (6))).



Remark 1.10. Consider d = 1 and F = R. Observe that u; with f(x) = sin(z) forz € R
is of order zero and so there exists two Radon measures i1, p2 such that u = w,, —u,.
Observe however that p; — po is not a signed measure, that is, it is not a o-additive
function on the Lebesgue measurable subsets of R into R as “its” value on R is ill-
defined. This means that the theorem in [7] is stated incorrectly (which states that every

distribution of zero order is represented by a signed (or complex) Radon measure).

You are asked to do the proof of Theorem [I.9] yourself in ExercisdI.3] One might
want to use a partition of unity, which we will present in the following.

First we will prove some facts about the topology on Q (inherited by R?). Moreover,
we use this to prove Theorem which shows that if u, or wy is zero, then p or
f is zero. In other words, the function that maps Radon measures into the space of
distributions y — u, and the function Ll _(Q) — D'(2) given by f + uy are injective.

1.11 (Notation). For z € R? r > 0 we write B(z,r) for the (Euclidean) ball in R?
with center = and radius 7:

B(z,r) = {yERd: lx —y| <r}.

Theorem 1.12. There exists an increasing sequence of compact sets (Kyp)nen such that
K, C K, and K, C ) for alln € N and

Q= J K.
neN
Proof. Observe that if Q = R, then we can take K, to be the closure of the ball around
0 with radius n: B(0,n).
Let us first prove that € is the union of closed sets. Let f : Q — [0, 00] be such that
f(z) is the distance from z to R?\ €, i.e.,

f(x) = inf{|lz —y|: y € R\ Q} (x € Q).

Then f is a continuous function and therefore A, = f_l[%, o0) is a closed subset of €,

Ap C Apyr forall m € Nand Q =, An.
Now it is straightforward to check that K, = A, N B(0,n) satisfies the conditions.[]

The next lemma shows there exist many smooth functions.

Lemma 1.13. Let K be a compact subset of R* and U be an open subset of R such that
K C U. There exists a C* function ¢ : RY — [0,00) such that ¢ is strictly positive on
K and is zero outside U.

Proof. By a covering argument it is sufficient to prove the lemma for K being the set
that consists one point. For this we consider the following function, 1. : R? — [0, 00)
defined by

0 if |z| > e.

1
Ve(x) = {I if |2] < e,

One can prove that this function is C*° by using that lim;_,, p(t)e™t = 0. O



Before we turn to the partition of unity, we recall a definition and some theorems
from topology.

Definition 1.14. Let E be a topological space. A collection of subsets of E, U, is called
a covering of E if YU = E. 1t is called an open covering if each element in I/ is an open
set. If U and V are covers of F, then V is called a refinement of U or finer than U if for
each V € V there exists a U € U with V C U. A covering U is called locally finite if for
all x € E there exists a neighbourhood V' of x such that V intersects only finitely many
elements of U.

1.15 (Partition of unity). There exists a countable covering of €2 of open sets (U, )nen
which closure U, is a compact subset of 2 (by Theorem . We may and do assume
this covering is locally finite, which in particular implies that for all x € X there exist
at most finitely many n such that = € U,,. Now we can find another cover (V},),en such
that V,, C Uy, for all n € N (and Q = U,,.ey V). As V), is compact, by Lemma
there exists a 1, € C*°(£2,]0,00)) such that ¢, > 0 on V,, and v, = 0 outside U,,. Let
us define W = > _np, which is finite and strictly positive everywhere. Then we can

define x, := %a and we obtain

0<xn(z)<1l and an(x) =1 (x € Q).
neN

(Xn)nen is called a partition of unity subordinate to the covering (U,)nen-

1.2. Prove that for any compact set K C 2 there exists a testfunction x
such that y =1 on K.

Theorem 1.16. If i is a Radon measure on §2, then for all open sets U C 2
p(U) = sup{p(K) : K C U, K is compact}. (7)

Moreover,
p(U) =sup{ [ @ djr s € C2(2,[0,1)suppp < U}, )

Consequently, if [ ¢ dp =0 for all ¢ € D(Q), then u = 0. Moreover, if f € Ll .(Q) and
[ fo=0 for all p € D(Q), then f =0 (in Li.).

Proof. follows from Theorem m (8) follows by taking a partition of unity for
an open set U: there exist x, € C*(€,[0,1]) such that >, oy xn(z) = 1y(z), then
[N xndpt [1pp = u(U) as N 1 oo by Levi’s monotone convergence theorem. []

1.3. Prove Theorem One can follow the following steps.

(a) Show that for any testfunction x the distribution yu is represented by a complex
Radon measure (which means pu = p1 — pg + i[ug — p4] for finite (postive) Radon
measures fi1, (42, i3, it4) by using Riesz’ representation theorem (Theorem .
You might also want to use the Hahn-Banach theorem (Theorem |J.2)).



(b) Use the partition of unity to prove Theorem

Knowing about the existence of partitions of unity, we can prove that distributions
are determined by their “local behaviour”, in the sense of the following theorem.

Theorem 1.17. If u,v € D'(Q) are such that for all x € ) there exists an open neigh-
bourhood U of x such that u(p) = v(p) for all ¢ € D(2) with suppp C U, then u = v.

1.4. Prove Theorem

Of course there are also distributions of higher order. You are asked to give examples,
after we define certain operations for distributions. First we make observations that hold
for operations on distributions represented by functions.

1.18 (Notation). For a function f : @ — F and y € R? we define the functions f:
—Q—=Fand 7,f: Q+y — F by

f2) = f(=x),  Tyf(@)=flz—y) (zeR?). (9)

1.19. Let f € Llloc(Q). The following statement follow by applying the change of vari-
ables formulae and integration by parts. (For the notation uy see )

(a) ug is a distribution on —2 and for ¢ € D(-Q2)
= [ o) do = [ f@ea) do=us(g) (1)
(b) w7,y is a distribution on Q +y and for ¢ € D(Q +y)
ursle) = [ S —vpla) dr= [ f@elety) dr=us(Tye). (11

c¢) Suppose f € C*(Q) for some k € N. Let o € N¢ with |o| < k. Then uga is a
0
distribution and for ¢ € D(Q)

Uy f /80‘ ) dz = ( ‘“'/f )% () da = (—1)1%u(8%y).
(12)

(d) Let ¢ € C*°(£2). Then uyy is a distribution and for ¢ € D(2)

us(¢) = [ 0@ f@)pla) dz = ug(by). (13)

(e) Let I : R* — R? be linear and bijective. Then f ol is locally integrable and u fol 18
a distribution on [~1(Q) and for ¢ € D(I71(2))

walg) = [, Follaele) de = qi [ fe)por™ @) do

= I=h. 14
|detl|uf(§0o ) ( )




1.5. Let u € D'(Q2). Check that if one defines w(y) to be equal to the right-
hand side of with “u” instead of “us”, i.e., w(p) = u(p), that w is a distribution

(on —Q). Do the same for (11)), (12), and ([14).

The analogues operations for distributions generalise the previous relations.

Definition 1.20. Let y € R?, a € N4, ¢ € £ and | : R* — R? linear and bijective. For a
distribution u € D’ we define

(a) 1 € D/(—Q) by

u(p) =u(@) (¢ €D(-Q)),
(b) Tyu € D'(Q +y) by

Tyu(e) = uw(T-yp) (¢ € D(Q2+y)),
(c) 9°u € D'(R) by
0°u(p) = (~1)u(0%p) (¢ € D(Q)),

(d) Yu € D'() by

Yu(p) =u(p) (¢ € D(Q)),

(e) uol e D'(I(Q)) by

1

= etee) (e e D))

uol(p)

1.21. Observe that all the above operations are “linear in w”.

1.6. Construct distributions that are of order k, for any & € N. Also con-
struct a distribution that is not of any finite order.

1.7. Let d =1 and let f: R — R be the absolute value function: f(z) = |z|

for x € R. Show that the derivative Duy can be represented by uy for some locally
integrable function g.

1.8. In this exercise we consider dimension one and want to consider the
function = +— % as a distribution. However, there is a problem of defining the integral
of testing it against a testfunction and integrating around zero. Therefore we define the
distribution differently.

(1) First prove that for all ¢ € D(R) the limit

lim
E\LO R\[_E)E} €T



exists and equals — [ ¢'(x)log |z| dz. For this check that « + log |z| is integrable around
zero and conclude that it is locally integrable.
(2) Prove that u : D — R defined by

u(p) := lim #(x) dz
el0 JR\[-ee]

is of order 1. Observe that by (1) v = —Duy, where f(z) = log |z|.

Remark 1.22. In Theorem we basically used the Heine-Borel theorem, as the clos-
ure of a ball is closed and bounded and therefore compact by this theorem. For general
topological spaces, one has the following analogues to Theorem [1.12

Theorem 1.23. [6, (12.6.1)] Let E be a separable, locally compact, metrizable space and
let B be a basis of open sets in E. If U is an open covering of E, then there exists a
countable locally finite open covering (By)nen of E that is finer than U and such that By,
is compact and belong to B.

Theorem 1.24. [6, (12.6.2)] Let E be a metrizable space that possesses a countable
locally finite open covering (Ay)nen. Then there exists a countable open covering (By)neN
such that B,, C A,, for all n € N.

2 Topologies on the spaces of testfunctions and distribu-
tions

In this section we introduce the topologies that we equip D(Q2) and D’'(Q2) with.

2.1. One could equip D(Q2) with the locally convex topology generated by the seminorms
| - ||ox for & € No. With this topology the space D(2) is metrizable but not complete.
Therefore we consider a different topology on D(f2).

Theorem 2.2. Fvery topological vector space with a topology generated by countably
many seminorms is metrizable.

2.1. Prove that D(Q2) equipped with the locally convex topology generated
by the seminorm || - ||o# is metrizable (i.e., prove (/look up a proof of) Theorem but
not complete.

Definition 2.3. [27, Chapter IV] Let & and Y be vector spaces over F and (-,-) :
X x Y — F be a bilinear form that satisfies the separation axioms:

(x,y) =0for all y € Y implies z =0,
(x,y) =0for all z € X implies y = 0.

The weak topology o(X,)) on X is the coarest topology on X such that all maps (-, y)
with y € ) are continuous. This topology is generated by the seminorms x +— |(z, y)| for
y € ). Similarly one defines the weak topology (Y, X) on V.

10



Theorem 2.4. [27, Chapter IV, Theorem 1.2] The dual of the topological space (¥, (Y, X))
is X. This means that if f : Y — F is continuous and linear, then there exists a unique
x € X such that f(y) = (z,y).

Definition 2.5. We define (-,-) : D'(2) x D(Q2) — F by

(w, 0) =u(p)  ((u,9) € D'(Q) x D(Q)). (15)

We equip D(2) with the weak topology o(D(£2), D’'(2)) and D’ (€2) with the weak topology
a(D(Q2),D(Q)), also called the weak* topology.

2.6. As is usual in the literature of topological vector spaces, one writes X’ for the
topological dual of X. Theorem justifies our notation D', in the sense that D’ is
indeed the topological dual of D.

Convergence of sequences in D can be described very explicitly.

Theorem 2.7. [7, Theorem on page 99] A sequence (¢n)nen converges to a ¢ in D(Q)
if and only zf@ and @:
(a) There exists a compact set K C § such that the support of v, and ¢ lies within K
for alln € N.

(b) |len — @llcx — 0 for all k € N.

2.2. Prove the “if” part of Theorem that and imply ¢, — ¢ in

D(Q).

Proof of the “only if” part of Theorem[2.7. Suppose that ¢, — 0 in D(2). We deduce
@ and @ by arguing by contradiction.

Suppose @ is not satisfied. Then there exists a sequence (zj)ken such that no
subsequence converges in (2, and a subsequence (¢, )ren such that ¢, (z;) # 0 and
¢n,(z;) = 0 for j > k. Now let us define a measure with support being equal to the
set of z3’s as follows. We let u = > ;cyaidy;, where the a;’s are chosen such that
Zle aior(x;) = 1; this can always be done inductively. By assumption on the sequence
(zk)ken, this measure is a Radon measure, as any compact set K C 2 contains only
finitely many xj’s. Therefore it defines a distribution. But [ du = 1 for all k, which
contradicts the hypothesis that ¢, — 0 in D(Q).

In order to show @ we show that the following statement holds:

If ¥, — 0 in D(Q), then (1g)ren is uniformly bounded. (16)

In case holds, then (0%pg)ren is uniformly bounded for any choice of a@ € Np.
This implies that these sequences also are uniformly Lipschitz and thus equicontinuous.
Therefore, by applying the Arzela-Ascoli theorem (see Theorem it follows that those
sequences converge uniformly on any compact set. As there is a compact set that contains

11



the support of all the functions, this implies that ||0%pg| e~ — 0 for all a € N¢. This
implies @

To prove the statement let us assume that ¢, — 0 in D(Q) and that 1)y is not
uniformly bounded. Therefore, by possibly passing to a subsequence, we may assume
that |||z > 3* for all k € N. Then we can find a sequence (zj)ren in Q such that

Yr(@r)| = [[¢rll Lo

As 1, converges pointwise to zero, we may and do assume —by possibly passing to a
subsequence— that Zf;ll Yp(z;) < 47%. As we did before let us construct a Radon
measure. We let =3 ;.37 '0;. Then

k—1 )
/%Z)k dp=>"3""p(xi) + 3 () + D 37 i(mi).
i=1 i=k+1
By the assumptions we have | [y du| > —47% +1— 371 > 2. Therefore [ 1)y du does
not converge to zero, which contradicts our hypothesis. O

As we have observed in D' is the topological dual of D. This means that a linear
function u : D(Q) — F is an element of D'(Q) if and only if it is continuous, which means
that u(p,) — u(p) for any net (p,),cr with ¢, — ¢ in D. The next theorem shows us that
it is equivalent to consider only convergent sequences/ to show sequential continuity.

Theorem 2.8. [7, Page 100] A linear function u : D(Q2) — F is a distribution if and
only if it is sequentially continuous, i.e., on, — ¢ implies u(yn) — u(p) for all sequences
(¢on)nen and ¢ in D(Q).

2.3. Prove Theorem

2.9 (D is not metrizable). Let us show that D() is not metrizable. We show that if
there is a metric on D({2), then it generates a different topology. Suppose d is a metric
on D(), such that under the topology of d, D(Q) is a topological vector space. We can
find a sequence of increasing compact sets (K, )neny who’s union equals Q. Let x,, be a
test function that equals 1 on K, for all n. We can and do choose A, € R such that
d(AnXn,0) < 27" Then A, X, converges to 0 but @ of Theorem is not satisfied,
which means that A, x, converges in the topology generated by d but not in the weak
topology o(D,D’).

Definition 2.10. Let X and ) be as in Definition We say that X equipped with
the o(X,)) topology is sequentially complete if for every sequence (z,)nen it holds that
if ((zpn,y))nen is a Cauchy sequence for all y € Y, then there exists an x in X such that
T, — xin X.

2.11. In alignment with Definition m we call D' weak” sequentially complete when it
is sequentially complete (with respect to the o(D’, D) topology). This means that the
following holds: if (up)nen is a sequence such that ((un,¢))nen is a Cauchy sequence,
then there exists a u such that u, — w in D'.

12



2.12. For the proof of the next theorem we introduce the following notation. For a
compact subset K of {2 we write D (€2) for the subset of D(2) of functions with support
in K. The topology on Dk () is defined by the seminorms || - ||ox. Moreover, Dg(Q) is
a complete metric space.

Theorem 2.13. D'(Q) is weak® sequentially complete.

Proof. Suppose that (u,)nen is a sequence such that ((un, ¢))nen is a Cauchy sequence
for all ¢ € D(2). It will be clear what the limit should be: We define u : D(Q2) — F such
that (u, @) = limy, o0 (un, ) for any ¢ € D(2). Clearly u is linear, so let us show that
it is continuous. Let K C Q be compact and D (€2) be as in On this space define
the function ||-||| : Dx(Q2) — F by

llelll == sup [ug ()|
keN

This defines a seminorm as it is the supremum of a family of seminorms. This function
is lower semicontinuous as it is the supremum of continuous functions. Therefore, the
set Sj = {f € Dk(Q) : [|f|l < j} is closed and convex D (). As Ujen Sj = Dr(£2), by
Baire’s Category theorem (Theorem there exists an M € N such that Sy; contains
an open ball of Di (). Let di denote the metric on Dg (£2) and let us write Bg (1, €) for
the ball around ¢ with radius € > 0: {¢ € Dg(Q) : dx (¢, ) < €). Suppose ¢ € D ()
and ¢ > 0 are such that the ball Bi(1),¢) is contained in Sy;. As Sps is symmetric
around zero, also Bi(—1,¢) is contained in Sp;. As Sy is convex, this implies that 0 is
in the interior of Sys. Therefore we assume ¢ = 0. This implies that for such ¢ € Dk (Q)

dr(9,0) < e = |up(p)| < M for all n € N.

Hence |u(yp)] < M for ¢ € Bk(0,¢). This implies that u is continuous on Dk (2). As
the topology on D () is defined by the seminorms || - ||+ this means that there exists
a C' >0 and a k € N such that

[u(@)l < Cllelior@y (¢ € Dr(9)).
This proves that wu is a distribution. O

2.14. We equip the space of locally integrable functions on {2 with the topology defined
by the seminorms || - || 11  with K C Q being compact, where

Il = llelrl = /K el (p e D).

Similarly, LI () is equipped with the seminorms || - ||z» x with K C Q being compact,

defined by [|p|z1 x = [|elk|lL1-

Theorem 2.15. As a function C*(Q) — D'(Q) or as a function Li (Q) — D'(Q), the
map f > uy is continuous and injective.

13



Proof. The injectivity follows from Theorem [I.16] We leave the proof of the continuity
as an exercise (see Exercise [2.4]). O

2.4. Prove the continuity of the functions in Theorem m Think about

a topology on the space of Radon measures such that the function that maps a Radon
measure /4 to the distribution wu, is continuous.

2.16. [7, Page 98] Let 1) € C>°() and o € N&. Observe that the maps

D(Q) = D(Q), ¢ = hd%,
D'(Q) = D'(Q), ur— pd*u,

are continuous.

2.17 (Convention/Notation). As is common in literature, and convenient, is to view
elements of C*(2) and L] () as distributions. That is, not to distinguish f from uy.
However, we still prefer not to write “f(¢)” for “us(¢)” so we will write “(f, ¢)” instead.

The notation “(-,-)” is also commonly used for inner products and this might cause
confusion. Indeed, say we take f,g € D and as mentioned above, view f as the distri-
bution u¢. Then (f,g) = [ fg which is not the same (at least not for general C-valued

functions) as [ fg, which is the inner product between f and g, for which we also write

<f7g>L2'

2.18 (Restriction of a distribution to a smaller set). Suppose U is an open subset
of Q. Then there exists a linear injection

t:DU) — D),

where 1(p)(x) = ¢(z) for x € U and t(¢)(z) = 0 for x € Q\ U, and ¢ € D(U). As
any compact set in U is a compact set in 2 it follows that ¢ is continuous. Let now
p:D'(2) — D'(U) be defined by

(p(u), ) = (u,u(@)) (¢ € DU)).

Then p is also linear and continuous. So D(U) can be continuously embedded in D(2)
and D'(€2) can be continuously embedded in D'(U).

For this reason, we will view p(u) as the restriction of u to D(U). Therefore, when
v e D'(U) we will say “u = v on U” instead of “p(u) = v".

The following theorem is a kind of counterpart to Theorem

Theorem 2.19. [8, Theorem 7.4] Let U be a collection of open subsets of R® with | JU =
Q. Let uy be a distribution on U for allU € U. Suppose that uy = uy on UNV, in the
sense that uy () = uy () for all p € D(RY) with suppp C UNV. Then there exists a
unique distribution u on Q such that w = uy on D(U) for allU € U.
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Proof. By [2.18 we may assume that if U € & and V is an open subset of U, that V € U
(as we can take uy to be the “restriction” of uy to D(V)).

Let (Up)nen and (V,)nen be locally finite covers of Q as in U, and V,, are open,
V, C U, and U, is a compact subset of € for all n € N. For all n we can therefore find
finitely many elements in ¢/ that are subsets of U,, and cover V,,. In this way we can also
obtain a locally finite covering of ) that consists of elements in U.

Therefore we may assume instead that U, is in U for all n € N. Let (xn)nen be a
partition of unity subordinate to (U,)nen (like in [1.15). As (Up)nen is a locally finite
cover, this means for all ¢ € D(Q) that x,¢ is nonzero for finitely many n. Therefore we
can define u : D(Q2) — F by

ulp) =Y uv,(xay) (v € D(Q)).
neN

By Theorem [1.17] it follows that v = uy for all U € U, and also the uniqueness follows
(and so the definition of u does not depend on the choice of partition of unity).

It is left to check that w is a distribution. That it is a linear function on D(2) is
straightforward to check. For the continuity we use Theorem to restrict to sequential
continuity. By Theorem We know that if ¢, — ¢ in D(£2) that there exists a compact
set K that contains the support of all ¢,’s. Therefore, there are only finitely many k
such that ug, (xx@n) is nonzero for some n. That is, there exists a L € N such that
u(pn) = Z,le uy, (Xkpn) for all n € N. As for all £ we have xrp, — Xk, we have
uy, (Xkpn) = wu, (Xky). From this we conclude the continuity of w. O

Remark 2.20 (Regarding the literature on the topologies of D and D’).

In some books like for example [§], the topology on D and D’ are not regarded, but only
convergence of sequences. Now, after we have the knowledge that we can judge whether a
linear map D — T is a distribution by considering whether it is sequentially continuous,
we could say “we could forget about the other nets and consider only convergence of
sequences”. However, this is a posteriori knowledge. Moreover, the topology of D and
D' is not determined by the convergence of sequences, in the sense that neither of those
spaces is first countable. This can be shown as their dimension is not countable, and by
using the Hahn-Banach theorem (Theorem |J.2)).

3 Convolutions

We still consider € to be an open subset of R and make some statements in terms of Q.
But regarding the convolution, we will only consider Q = R?, as we will write.

Definition 3.1. Let f,g : R — F be measurable functions. If y — f(z — y)g(y) is
integrable for all z € R%, then we define the function f * g : R? — R by

Frg@) = [ f@ =)o) dy.
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f * g is called the convolution of f with g. We will say “f % g exists” instead of “y
f(z —y)g(y) is integrable for all x € R%”.

If f and/or g are defined only on a region in R? then we will understand f * g to
be the convolution of the extended functions that are equal to zero outside their domain
in the following sense. Suppose A and B are measurable subsets of R? and f : A — F,
g: B — T, then

frg@) = [T - d.

where

= Jflz) ifxeA, _. v Jalz) ifzeB,
ﬂ@_{o ifod A “@_{o ifo ¢ B

3.2 (Commutativity of the convolution). Observe that if y — f(z—y)g(y) is integ-
rable for all « € R?, then also y — g(z — y)f(y) is integrable and f * g = g * f. Because
of this commutativity we also call f % g the convolution of f and g (instead of f with g).

3.3. Observe also that if both f and g are integrable, that f * g is integrable and || f *
gl <A leligllpe-

The following theorem will be used often later on. It generalises [3.3]

Theorem 3.4 (Young’s inequality). Let p,q,r € [1,00] be such that
1,1 1
Iylon4l
For f € LP(R%), g € LY(R?) we have f * g € L (R?) and
1 gller < I fllzellgllza-

Proof. 1t {p,q} = {1,00} and r = oo, then the inequality follows directly. If p=¢=1r =1
too, as we already mentioned in So we may assume 1 < r < co. Then

1 _p _9g
[f(@ =99 = (1f (@ = y)Pla@)|) 7 |f (@ =)' lgw)]'
So by applying the Generalized Holder inequality (see Theorem [A.4]), with

br=7r, p2= b3 =

(or just the Holder inequality when either p = r or ¢ = r) we obtain

q
T

£ 9@l < ([ 1£G = 9)Plat)* dy) 151557 gl
and so

£l < ([ [ 15 = w)Plotwle dy de) 1515, ol

< [Ifllzellgllze-
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The following is a consequence of the Young’s inequality.
Corollary 3.5. Let p,q,r € [1,00] be such that
1 1 1
+ -+
p q T

For f € LP(RY), g € LY(RY) and h € L' (RY) we have that (f * g)h is integrable and

Jsah=[(sxma=[(r+nyg= [(Fxig. (17)
I % 9)hlzs < 1F o lglaallbllr. (18)

3.1. Prove Corollary

Definition 3.6. We define the essential support of a measurable function f : Q — F by
esssupp f = R\ U{U C R?: U is open and f = 0 almost everywhere on U}.

The above definition is similar to the description of the support of a function as in
. Observe that also, similar to , the essential support is equal to those points
for which each neighbourhood of that point, the function f is not equal to zero almost
everywhere, which we describe differently by saying that the Lebesgue measure of the set
f~YF\ {0}) NV is positive:

esssupp f = {x € Q:VV € ./\/m[[/ L1 m\(opnv > 0]}

As the essential support of f is equal to the one of g if f and g are “essentially the same”
in the sense that f = g almost everywhere, one can make sense of the essential support
for locally integrable functions (in the usual way by identifying an equivalence class with
an element in it).

Of course, for a continuous function f we have

supp f = esssup f.

We recall the following facts about summation of closed sets, Lemma [3.7] and Ex-

ample
Lemma 3.7. Let A, B C R? and A be compact and B closed. Then A+ B is closed.

Proof. Let (d,)nen be a sequence in A + B that converges to an element d in RY. We
prove that d € A+ B. By definition, for each n there exist a,, € A and b,, € B such that
dp = an + by. As A is compact, (a,)nen has a convergent subsequence. Let us assume
(an)nen itself converges in A to an element a. Then d,, —a,, -+ d —a and as d,, —a,, € B
for all n and B is closed, d — a € B, which impliessd=a+d—a € A+ B. O
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The assumption that A is not only closed, but also bounded (which together is the
same as compact for subsets of R?) is essential as the following example illustrates.

Example 3.8. Let A = Nand B = {-m+ £ : m € Nym > 2}. Then A + B is not
closed as % is an element of A + B for all m € 1 + N but 0 is not.

Theorem 3.9. For any two measurable functions f,g on R? such that f * g exists, we
have

supp f * g C esssupp f + esssuppg.

Proof. Let x ¢ esssupp f + esssupp g, which means that there exists an open neighbour-
hood V of x such that V Nesssupp f + esssupp g = (). This means that for all z € V' we
have z — esssupp f Nesssupp g = (), which in turn implies

z —esssupp f C U{U c R?: U is open and g = 0 almost everywhere on U}.

Hence for all z € V the function y — f(y)g(z — y) is almost everywhere equal to zero
and thus f % g(z) = 0. Therefore z is in the complement of supp f * g (see (2)). O

Remark 3.10. In case we view f and g as in Theorem |3.9| not as functions but as equi-
valence classes of functions (up to equivalence with respect to begin almost everywhere
equal) then we will also view fx*g as such an equivalence class and also write esssupp f*g
instead of supp f * g.

Example 3.11 (esssupp f + esssuppg C supp f * g = esssupp f + esssupp g).
We adapt Example [3.8|to obtain two measurable functions f and g which are not almost
everywhere equal to zero. We define the sets A, B C R by

A:G[n,n—kﬂ, B:Ej {—m—k%,—m—k%}.
n=2 m=2

We define f,g: R — R by
fla) =le|*1a(z),  g(z) = |2[?1p(x)  (z€R).

Then f and g are integrable functions and so f x g exists (and is integrable). Moreover,
supp f = A, suppg = B,

A+ B= G {n—m—i—ln—m—i-z—i—l}
2 m’ m nl

As in Example the set A + B is not closed as 0 is not in A + B but % is for all
m € 1+ N. For each n,,m € 1 + N and 2z € (n—m+%,n—m+%+%) we can show
that f*g(z) # 0, so that as the support of a function is closed, A + B C supp f *g. And
thus in this case A+ B Csuppfxg=A+ B

18



3.12. (a) Let h € L} (R?) and f and g be bounded measurable functions with compact
support. Then fxg exists and is bounded with compact support. Therefore (fxg)h
is integrable and holds.

(b) Observe that in the language of distributions, we can rewrite as

v

(f*g,h)y = (f*h,g) = ((f=h),g) = (f*h.g),

and with the inner product notation

(f g, h)2 = (f 1, g) 2.

Now let us turn to the definition of the convolution of a distribution with a testfunc-
tion. The following observation shows how the definition of the convolution for functions
should be extended to distributions.

3.13. Let ¢ € D(RY) and let f € L (R?). For 2 € R?

loc

fro = [ fwele—y) dy= [ FOT30) dy = ug(T:p).

This lets us naturally generalise the notion of convolution between distributions and
testfunctions:

Definition 3.14. Let u € D'(R?) and ¢ € D(R?). We define the convolution of u with
¢ to be the function R? — T defined by

ux () = u(TzQ) (x € Rd).

3.15. Observe that for a distribution v and a testfunction ¢ the following identities hold.

~ v

(urpy=tux@g  u(p)=uxp0).
Now we turn to the differentiability of the convolution u * .

3.16. As translation and differentiation commute for functions, the same is valid for
distributions: For u € D'(Q2), y € R%, a € N¢ we have

Ty0%u = 0°T,u.

3.17 (Convergence of difference quotients in D and D’). Let ¢; be the basis vec-
tor in R? in the i-th direction. We write “0;” for “0%”. Let ¢ € D(Q) and i € {1,...,d}.
Then

— o (19)

(=T o) - £la=he) = ele)

Let us write ¢, for the function on R? for which 1,(z) equals (for some h one might
have to interpret the right-hand side as the value of the extended ¢ on R? being zero
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outside §2). Observe that there exists a compact set that contains the support of 1)y, for
all h € R such that 0 < |h| < 1. We also have that ¢, (x) — 9;p(x) for all z € Q and
that the set {¢5, : h € R,0 < |h| < 1} is uniformly bounded by the mean value theorem
as for all such h and all z € Q we have that i, (x) = 0ip(x + fe;) for some 6 € R with
|6] < 1. Similarly, the set

{<77wlh 76)80‘cp :heR,0< |h| < 1}

is uniformly bounded. Therefore, by an application of the Arzela-Ascoli theorem (see
Theorem we apply it in the same spirit as in the proof of Theorem we deduce
that 1y, — 0ip in D() as h — 0.

Consequently, we have for any u € D'(1)

<77L6i - 76) u h—0
h

> J;u in D/(Q)

Instead of the distribution u we could have taken a translation of u by z, T;u, and
conclude that = — u(7p) is differentiable for any ¢ € D(€2). Moreover, because of the
identity

h
=u (P g, (20)

we have 0;(u * ¢) = u = (0;¢). Of course, additionally one can continue and iterate the
above for derivatives. Then we obtain the following.

u<7?r+he¢90})L —u(Tap) _ T (T hei TO) u|(¢)

Lemma 3.18. For all distributions u and testfunctions ¢ the convolution u * ¢ is an
element of C>°(R%), moreover, for o € N&

0% (u* p) = ux* (0%) = (0%u) * . (21)

The statement of Theorem [3.9] which states that the support of the convolution of
two functions is included in the closure of the sum of the supports, extends to distribu-
tions (see Theorem [3.21)). For this we need to extend the definition of the support to
distributions.

Definition 3.19. For a distribution v on 2 we define the support suppu to be the set
of x € Q such that for every neighbourhood U of z there exists a ¢ € D(2) with support
in U and u(p) # 0:

suppu = {x € Q: YU € N, Jp € D(Q) [suppy C U, u(yp) # 0]}
Observe that

suppu = Q\{z € Q:3U € N; Vo € D(Q) [supp e C U = u(p) = 0]}.
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3.20. For a continuous function f the support of f equals the support of uy, and for a
locally integrable function g the essential support of g equals the support of u,:

suppus =supp f  (f € C(Q)),
suppug = esssupg  (f € Lip (Q).

Observe moreover that for a € Ng and ¢ € C>(9)

supp 0% C supp u, supp Yu C supp ¥ N supp u.

3.2. Show that if ¢ € D(Q), u € D'() and suppp C Q \ suppu, then
u(yp) = 0.

Theorem 3.21. Let u be a distribution and ¢ be a testfunction. Then suppu * ¢ C
Supp ¢ + supp ¢.

3.3. Prove Theorem

3.22. Observe that Lemmaalso implies that fxg is infinitely differentiable if f € L{
and g € C* (as f* g = us x g). The same is true if not ¢ is compactly supported, but
f is, in the sence that f € L' with compact support and g € C*. This will also be a
consequence of Lemma [6.3] in which we prove that if u is a distribution with compact
support and ¢ is smooth —but not necessarily compactly supported— that the convolution
exists and is a smooth function.

Observe that this, together with Theorem implies that if o, are testfunctions,
then so is @ * 1. As u* ¢ for a distribution u and testfunction ¢ is in C*°(R?), it defines
in particular another distribution. Therefore one can take the convolution of u * ¢ with
another testfunction ¢, and also take the convolution of u with the testfunction ¢ * .
Theorem tells us these convolutions are equal. Before we prove an auxiliary lemma
that considers an approximation of ¢ * 1.

Lemma 3.23. Let ¢,¢ € D(R?). For any ¢ > 0 we define S. € D(R?) as follows. We
take finitely many disjoint measurable sets (F;);cr that cover supp and are of diameter

at most € (and so I is assumed to be a finite index set). For every i we choose a y; € F;
and define

S:@) = 3( DT,

el
Then S. — @ * 1) in D(R?).

Proof. Observe that S., being a finite linear combination of testfunctions is indeed a
testfunction. Moreover, there exists a compact set K such that supp S, C K for all
€ > 0, namely K = supp ¢ 4 supp ¢, S: — ¢ * 1 pointwise, and S, is uniformly bounded
by ||¢llzee||®||z1. Similarly, 0%S; is of the same form but for “0%p” instead of “p”.
Therefore by an application of the Arzela-Ascoli theorem (see Theorem we obtain
that S. — ¢ * 1 in D(RY). O
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3.4. Why is supp ¢ + supp ¢ compact for two testfunctions ¥ and ¢?

Theorem 3.24. Let u be a distribution and o, be testfunctions. Then
(ux @) % = (@ *1h). (22)
Proof. First observe that with S. as in Lemma [3.23]

* (@ x)(x) = u(Te(p * ) = lim u(T:Se)

This follows by applying Lemma [3.23] as follows

u<7;s;>:u(z< / wm_y,«o) =3 o)

icl YT ier VT

—Z/ ) (u* @) x_yz)

el

This in turn is an approximation for ¢ * (u * ¢) by Lemma and so by taking a limit
we obtain . O

3.25. As a direct consequence of Theorem we have for u € D'(R%) and ¢, 1) € D(R?)
(w0, 0) = (ux )+ (0) = wr (95 9)(0) = (u, @ #4).
Compare this with [(2)]

The next question that arises is: “Can one take a convolution between distributions?”.
The answer is not completely yes, in the sense that one can take a convolution if one of the
distributions has compact support (think about taking the convolution of the constant
function equal to 1 everywhere with itself). We will turn to distributions with compact
in the Section But first we focus on the approximation of distributions by smooth
functions formed by mollification.

3.5. Let y € R? and ¢ € D(R?). Calculate d, * ¢.

3.6. For each of the following cases, find u € D'(R?%) and ¢ € D(R?) such
that:

(a) ux* p(z) =0 for all z € RY,

(b) ux* p(x) =1 for all x € RY,

(c) ux p(x) =z for all z € RY,
(z) =

(d) ux* p(x) = sin(zx) for all x € R?,

3.7. Consider the distribution on R given by h = 1jg ), also called the
Heaviside function. For ¢ € D(R) calculate h * ¢, where ¢’ denotes the derivative of .

Calculate the distributional derivative h’ of h. Show that (h* @) = h*¢' = h'* .
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4 Mollifiers

Now we turn to mollifiers and mollifications of locally integrable functions. To prove
their convergence, we recall Lebesgue’s differentiation theorem, which states that almost
all points in R? are Lebesgue points for any locally integrable function f.

Theorem 4.1 (Lebesgue’s differentiation theorem). [17, Theorem 2.3.4] For all

fe L%OC(Rd) almost every point in R? is a Lebesque point, i.e., for almost all points

= 1w -t dy o (23)
B(z,)

4.2 (Notation). For any closed set A C R? we write A. for those points in R? that are
at most at € distance from A, so that

A=A+ B(0,e) = {y e R%: iggya:—y! <e}.

" FOT a f € LY (R?) and a compact set K C R? we will also write ||f||zs(x) for
Tre|ze.

Theorem 4.3. Let f € LY (R?) for some p € [1,00) and ¢ € C.(RY). For e > 0 we

loc

write 1. for the function defined by v.(x) = e~ %p(e ™ x). Then the following statements
hold.

(a) f=*ve(z) =0, ([¥)f(x) for all Lebesgue points x € R of f.

(b) If f is continuous on an open set U C RY, then f x . — ([4)f uniformly on all
compact subset of U.

(©) If f* e = (JO)f in LY, (RY).
Proof. As [, = [ for all € > 0, we have

fxua) = ([ 0)f@) = [ 0o = )(F0) - 1@) dy.

As we can find an ¢ such that suppvy. C B(0,1), we may without loss of generality
assume that suppy C B(0,1). Then

) = ([ @ < Wl [ 176) = 1) dy (24)

T,E

From this @ follows. Suppose f is continuous on an open set U and K C U is compact.
Let § > 0 be such that Ks C U. As f is uniformly continuous on Ky, the convergence in
is valid uniformly for x € K. Hence @ also follows from .

Let us turn to the proof of . Let K C R% be compact. We will show

1f e = (J ) fll ey — 0
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But first we observe that for all h € Lfoc we have

[hox e ()] < / h(y)ve(z —y)| dy < /I(hlle)(y)we(:v —y)ldy  (zeK),
so that with Young’s inequality and as [|1¢||;1 = ||| 1
[(h* ) Ll e < N[l pr 1AL s ([ Le = ([l L Al Lo () - (25)
Let 0 > 0. Take a function g that is continuous on K7 and equals 0 outside K7 such that
1f = gllLe(x,) <0

Then, as |f x e = (JO)f| < |fx e — g Y| + g x e = (J)gl + |([D)g — (J¥) f], we
obtain for € € (0,1) by using

1f b = (SO f ey < I(F = 9) % Yellzoey + 19+ ¥e = ([ V)9l Lo (i)
+ [l llg = Fllze )
< 26l + ([ 10llg + v = (FB)glli=ro
el0 . .
As bym g% %e — ()9l oo (k) — O (take for example U = K7, so that g is continuous
on U and K C U) this implies O

Definition 4.4. Let ¢ be a testfunction such that suppy C B(0,1) and [ = 1 (the
existence is guaranteed by Lemma [1.13]). Such a function is called a mollifier. For € > 0
we define 1. to be the function on R? defined by

ve(w) =e7(2) (v €RY).
Then supp ¢ C B(0,¢) and [ . = 1. For a distribution u we call u. defined by
Ue = U * Pg (26)
a mollification of u (with respect to ¢ of order ¢).

By Lemma we know that u. is a smooth function. For a function f in LI |
also know that f. — f in LY | by Theorem So in particular,

loc?

/fe¢—> /fcp (¢ € D(RY),

we

which implies that f. — f in D’(R%). This “extends” to any distribution, see the following
theorem. This theorem follows by Theorem

Theorem 4.5. Let ¢ be a mollifier and u a distribution. Then u. € C®(R?),
supp us C (suppu)e,

and ue =% u in D'(RY).
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4.1. Prove Theorem

By using the previous theorem, we can actually find u. € C°(R%) such that u. — u
for any u € D'(R?):

Theorem 4.6. D(R?) is dense in D'(RY).

4.2. Prove Theorem

Remark 4.7. By choosing a mollifier ¢ (for example the one of Lemma [1.13)) which is
supported on B(0,1) we can define another mollifier ¢ that is supported in B (—%, %) U

B(3,1) as follows:

¥

3(T_1¥1 + Tiwn).

1
1

As § % 1) = 1), which is zero around zero and thus the inclusion in Theorem does not
need to be an inclusion.

5 Compactly supported distributions

Similar to the spaces D and D’ we introduce the space £ that consists of all smooth
functions and its dual £&. We will see that £ corresponds to the distributions with
compact support.

Definition 5.1. We define £(2) to be the set C°°(Q2) equipped with the topology gen-
erated by the seminorms || - [|cx ¢ with K C © compact and k € Ng given by

I ler s = I klloray = D sup |07 f(x)].

pend:|8|<k TEK

We write £'(2) for the space of continuous linear functions u : £(2) — F. This means
(see for example [4, Theorem IV.3.1]) that u € £'() if and only if there exists a compact
set K, a k € Ny and a C > 0 such that

[u(p)l < Cllivller k(v € E(Q)). (27)
We equip &'(€2) with the weak™ topology o(E'(€2),E(R)).

5.2. Observe that if u € £'(Q) and K C Q is compact, k € Ny and C' > 0 are such that
holds, then the following holds. If ¢ € £(Q2) and suppy N K = @ then u(p) = 0.
Hence suppu C K and so an element of £'(Q) defines a distribution with compact
support. We will prove that a distribution with compact support can be extended to an

element of £'(2) in

Let us recall the Leibniz differentiation rule.
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5.3 (Leibniz’ rule). If k € Ny, f,g € C*(Q) and a € N¢ with |a| < k, then

> (fg)= % (g) 87 1)(0*Pg), (28)
BeNd
BLa

where 8 < o means ; < a; for all i € {1,...,d} and with o! = L, a!,

« ! d o
(5) R [[1 (6)

As a consequence, for x € (2

S @< S <g)\aﬁf )87 g()]

aENg aENd B, WENd
|| <k \a|§k ﬂ-&-vza

< ( DS (g)) S Y @@l o)

aeNg Bend BeNE veNd
la|<k f<a \ﬁlék‘ lvI<k

Hence for C = ZaeNgzla\Sk > B<a (g)

Ifgllce < Cllfllerllgler  (f.g9 € CH(Q)). (30)

5.4. Recall Now with Leibniz’ rule and with the topology on £(2) we conclude for
example also that the map £(2) x D(Q2) — D(Q2) given by (¢, ) — 1¥0%p is continuous
for all o € Ng.

5.5. Observe that extends to the product of a distribution with a smooth function.
That is, if u € D(Q) and ¥ € C*°(Q), then

o (pu) = Y (g) (0%9)(9*Pu),

BeNd
BLa

5.6. Let u be a distribution on 2 with compact support K. We have already seen in
Exercise that if ¢ € D(2) and suppy C Q\ K, then u(p) = 0. Let ¢ > 0 be such
that K. C Q and let x € D(2) be equal to 1 on K. (see [L.1F). As supp(p — x¢) C
Q\ K2 C Q\ K, we have u(yp) = u(xy). Let Ko = supp x. As u is a distribution, there
exist C; > 0 and k € Ny such that |u(¢)| < Ci|¢|cr for all ¢ € D(Q) with supp ¢ C Kp.
This implies for all ¢ € D(2)

lu(p)] = [u(xe)| < Crllxellor-
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By Leibniz’ rule we therefore have with C' = C1C/||x||cx, where C' > 0 is such that
holds,

u(@)l < Cllellce, (v € D(Q)). (31)

Therefore u extends to an element of £'(Q2) (for example by defining the extension v by
v(p) = u(xyp) for p € £). This will be used to prove Theorem [5.7]

5.1. Show that if u € &'() and u # 0, that there exists a ¢ € D(2) such
that u(p) # 0.

Theorem 5.7. The inclusion map D(Q2) — E(Q) is sequentially continuous; D(Y) is
dense in £(Q); and, the map v : E'(Q) — D'(Q) defined by 1(u) = ulpq) is continuous
and injective and its image is the set of compactly supported distributions.

Proof. That D(Q2) — £(Q) is sequentially continuous follows from Theorem The
statement about ¢ follows from and We show that D(Q) is dense in £(Q). Let
P € () and let (xp)nen be a partition of unity. Let K C € be compact and k € N.
By the properties of a partition of unity, there exists an n such that > _; x;n = 1 on
K for some 0 > 0 such that K5 C Q (this you might have even proved in Exercise .
Therefore

= 0.
Ck.K

H¢'— ji: Xnﬂp

m=1

Hence Y 1 Xxm® — ¢ in E. O

In the inequality holds for Ky which is larger than K. The next exercise
proves that it might be that does not hold for Ky = supp u.

5.2. [8, Exercise 8.3] Let (zn,)nen be a sequence of distinct elements and x
be in R such that z,, — x.

(a) Show that there exists a sequence (an)nen in (0,00) such that

Zan:oo, Zan\xn—x|<oo.

neN neN
(b) Prove that u defined by

u(p) = an(p(zn) — () (9 €D)

neN

defines a distribution of order < 1. Prove that the support of u is the compact set
{zn :n e N}U{zx}.
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(c) Show that for all n € N there exists a ¢,, € D such that ¢, = 1 on a neighbourhood
of ; for all i € {1,...,n} and ¢, = 0 on a neighbourhood of z; for all j > n and
»n = 0 on a neighbourhood of x. Prove that for all £k € N

n

”SDNHC'k,suppu =1, u((Pn) = Zai.
=1

(d) Conclude that for K = suppu, does not hold for any k € N.

The following example illustrates that these maps are not homeomorphisms on their
image.

Example 5.8. Let () = R.

o Let ¢ be an element of D such that [ ¢ = 1. Define ¢,, = T, 0, i.e., op(x) = d(x—n)
for x € R. Then ¢,, — 0in £. As for all compact sets K there exists an IV such that
supp ¢, NK = () for all n > N. However, for u the distribution corresponding to the
Lebesgue measure, or equivalently to the constant function 1, we have u(¢,) = 1
for all n, whence (¢, )nen does not converge in D.

e 0, is an element of D" and of &£ for all n € N. We have ,, — 0 in D’ but not in &’,
as we have d,(1) =1 for all n.

5.9. So &£ does not have the same topology as «(£"). However, (&',0(€’, D)) is homeo-
morphic to ¢(&').

So the relative topology of D as a subspace of £ is different from the topology on D,
namely o(D,D’).

5.10. (31) also implies that every distribution with compact support is of finite order.
We will show in Theorem [5.13] that if the derivatives of a testfunction up to that order are
zero on the support of the distribution, that the distribution evaluated in the testfunction
equals zero.

5.11. Let ¢ be a testfunction on Q and a € Q. Suppose that 9%¢(a) = 0 for all a € N¢
with |a| < k. Let £ > 0 be such that B(a,&) C Q. By Taylor’s formula (see Theorem |C.7))
we know that ¢ equals a function 1) (use with | = k + 1) and that there exists a
C >0 (namely C' = 2 aeNg:|al=k+1 |0%¢|loc) such that

[W(x)| < Cle —alT < CF (2 € B(a,2)).

By a repetition of the above argument for the derivatives of ¢, we obtain a C' > 0 such
that for all o € N¢ with |a| < k

10%p(z)| < CeFt1=lel (3 € B(a, ).
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5.12. In[5.6 we have already used that for any compact set K C Q and € > 0 such that
K. C Q, we can find a y € D(Q2) that equals 1 on K. by using
As we have the tools of mollifiers, we can construct such a y in such a way that the
support is within K3.. Moreover, we can construct them for any closed set as follows.
Let F' be a closed set. For € > 0 let x. = 1p, * 1. for a positive mollifier ¢). Then
supp xe C F3. and x. =1 on F.

Theorem 5.13. [7, Theorem on p.102] Let u € D'(Q) be a distribution of order k.
Suppose that ¢ is a testfunction for which

9% =0 on suppu for all a € Ny with |a| < k.
Then u(yp) = 0.

Proof. For convenience we assume € = R? for this proof. Instead one can interpret all
the sets and functions appearing to be the restrictions to Q. Let F' = suppu. For ¢ > 0
let xe = 1, *x 1. for a positive mollifier ¢ as in so that supp x. C F3. and x. = 1 on
F.. Hence, as we have seen in[5.6] u(¢) = u(x-¢) and supp(x-¢) C Fs. and x.¢ = 0 on
F. Let K =suppy and let C' > 0 and k € Ny be such that holds, which implies that

[u(p)] = lulxep)| < Clixeeller (> 0).
We show that ||x-¢l/ck WO, By Young’s inequality we have

IXellzoe < N[ Lpyellzoe 1l = |9l = 1,

and moreover, with C; = EaeNg:|a|§k |0%¢|| 1, because . (x) = e~ %p(2),

10°Xel| o0 < ([T [loo]| 0%l 1 < Cre™lel,
By [5.11| there exists a Cy > 0 such that for all x € F3. and a € N¢ with |a| < k

‘aagp(x)‘ < 02€k+lf|a|_

Therefore by Leibniz’ rule we obtain for all a € N¢ with |a| < k and x € Fy.

0% (xep) (@) < 3 (g)aﬁxa(x)uaa%(xn

BeNd
B<a
- (e rsaa(g ()
BENd ﬂENg
B<a p<a
Therefore || x=¢llcx =9 0 and thus u(p) = 0. O

29



Corollary 5.14. [7, Corollary on p.103] If w is a distribution supported by {x}, then
U= ZaeNg:\a|§k €0 0%, for some k € Ny and ¢, € R.

Moreover, co = (1™ (u), %), where & : x +— x (and thus % : x — ) and with ¢ as
in Theorem [5.7.

Proof. By taking a translation of the distribution, we may as well assume that z = 0.
Let € > 0 be such that B(0,¢) C Q. By Taylor’s formula (see Theorem |C.7)) ¢ = P + 1
on B(0,¢), for a polynomial P of order k given by

1
Ply)= > —0%(0)y",
aENg ’
la| <k

and 1 satisfying 9¢(0) = 0 for all o € Ng with |a| < k. Let x be a testfunction that
equals 1 on B(0, §5) and has support within B(0,¢). Then u(¢) = u(x¢) = u(Px) by the
previous theorem. And thus,

u(p) =u(Px) = 3 L0 p(0)ula"y).
aeNg ’
o<k

Theorem 5.15. £'(Q) is weak* sequentially complete.

Proof. One can follow the lines in the argument as in the proof Theorem as follows:
With d being the metric on £, one replaces “Di” and “dg” by “£” and “d” and follows
the same lines. O

5.16 (£ is metrizable but £’ is not). Theorem [L.12]implies that the topology of £(2)
is generated by a countable number seminorms, so that £(2) is metrizable, see for ex-
ample [4, Proposition IV.2.1].

E'(Y) is not metrizable, as we will show. We show that any metric on £'(2) generates
a different topology. Suppose d is a metric on £'(€), such that under the topology
generated by d the space is a topological vector space. We mimic the idea in [2.9) Let
(zn)nen be a sequence in €2 such that no subsequence of it converges in €, i.e., for each
compact set K there are finitely many elements of the sequence in K. For all n € N
let A, > 0 be such that d(A\,d;,,0) < % Then \,d,;, — 0. But there exists a smooth
function ¢ € £ such that ¥ (n) = % (use the partition of unity , so that Aoz, (¥)
does not converge to 0. This means that A,d,, does not converge to 0 in £'(Q).

6 Convolutions of distributions

In this section we consider only Q = R? and write ‘€’ and ‘D’ instead of ‘€(R%)’ and
‘IKRdy
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6.1. In Section 13| we have defined the convolution between distributions and testfunc-
tions. For u € D’ and ¢ € D we have seen that the convolution u*¢ is a smooth function,
or say an element of £, and its support is included in the sum supp u+supp . As supp ¢
is compact, the sum is compact as soon as u has compact support. And so u * ¢ is an
element of D if u has compact support. Let us formally define the convolution between
an element of £ and an element of £.

Definition 6.2. Let u € £ and ¢ € £. We define the convolution of u with ¢ to be the
function R — F defined by

uxp(x) =u(TpP) (x € ]Rd).

The arguments of extend to u € £ and ¢ € & (as the topology of £ allows us to
consider compact sets only), and we obtain the following.

Lemma 6.3. For allu € & and ¢ € £ we have u* ¢ € £ and for for o € Ng
0% ux @) =ux*(0%) = (0%u) * ¢. (32)

So by Lemma and Lemma we have u * ¢ € £ if either u € D' and ¢ € D or
u € & and ¢ € £. By Theorem [3.21) we have u* o € D if u € £ and ¢ € £&. We can
show that convolution with a distribution is sequentially continuous:

Lemma 6.4. Letu e D andv € &'.
(a) The function D — & given by ¢ — u * ¢ is sequentially continuous.
(b) The function D — D given by ¢ — v * ¢ is sequentially continuous.
(¢) The function & — £ given by 1 — v x 1) is continuous.

Proof. @ and @ are left as an exercise, see Exercise Let us only mention that @

follows from by Theorem
Let K be a compact set, C > 0 and k£ € N be such that

) < Clidllerx (¥ €8).

Let M be an arbitrary compact subset of R and let m € N. It is sufficient to show that
there exists a compact set L, an [ € N and a C’ > 0 such that

loxpllomm <CNYller, (¥ €E).
We have by Lemma with F = ZﬁeNg:\mgm

foxdllema = > sup |P(vxp)(@)= > sup|v(T.0°9)
BeNd:|B|<m *€ BeNgd:|8|<m *EM
<C > sup|T.0°9)|ckx = CE sup || To0° 0|l ohm i
BENS:IB\SmeM xeM

= CE||86¢)HC’9+’",K+M’
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We choose L = K + M, =k+m and C' = CE. L is compact as K x M is compact
in R? x R?, as addition is a continuous function R? x R? — R?% and as the image of a
compact set under a continuous function is compact. O

6.5. Lemma allows us to compose the convolution with v and the convolution with v
and obtain a sequentially continuous linear map D — £ defined by u * (v * ¢). Moreover,
for

(u,0) € (D' x D)U (&' x E)U (€' x D)
and a € R? we have
Ta(ux ) = (Tau) x ¢ = u* (Tap).

In particular, this means that the map ¢ — w * ¢ commutes with translation.
Therefore also the above mentioned composition, the map ¢ — u (v * ¢) commutes
with translation. Theorem [6.6] tells us that there exists a unique distribution w such that
wxp=ux(v*p).
We will show that with the definition of w * v in Definition we have w = u * v.

6.1. Prove Lemma and

Theorem 6.6. [7, Theorem on page 121] Let A be a linear map D — & which com-
mutes with translation, i.e., To(A@) — A(Tap) for all a € RY, and which is sequentially
continuous, then there exists a unique distribution u such that Ap = ux* for all p € D.

Theorem 6.7. [7, Corollary on page 122] Every linear map € — £ which is sequentially
continuous and commutes with translation is of the form Ap = u * ¢ for some uniquely
determined distribution u with compact support.

6.8. Remember in Corollary which tells us that for integrable f and g and a
testfunction ¢ we have (by viewing f % g as a distribution and (u,v) = [ uv)

(g% frh) = (f *g,h) = (g, [ D).
This shows that the definition of v * v as given below extends this relation.
Definition 6.9. For u € D’ and v € & we define u x v to be the distribution given by
uxv(p) =u(@*p)  (peD).
Moreover, we define v x u to be the distribution
vxu(p) =v(ixp)  (peD).
6.10. Observe that for (u,v) € (D' x &)U (' x D'), ¢ € D and = € R? we have

(uxv) % p(x) = ux v(Te) = u(®* Tep) = w(Te(v * @)) = w* (vx @) (2).
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We will now show that u*xv = v *u. As

wxv(p) = (wxv) * 3(0) = ux (vx@)(0),

it is a consequence of the identity in Theorem We will need to extend the
associativity in Theorem [3.24] first.

Theorem 6.11. Letv e &', p € D andn € E. Then
v (pxn) = (xp)xn=(vxn)*e (33)

Proof. If n € D, then this follows directly from Theorem [3.:24] By Lemma [6.4] the func-
tions €& — & given by n — v * (p*xn), n — (v*p)*xn and (v *n) * @ are sequentially
continuous (for the last, observe that the inclusion D — £’ is sequentially continuous).
Therefore, as D is dense in £ (see Theorem , we obtain as a consequence The-
orem by a limiting argument. O

Theorem 6.12. Letu € D', v e & and ¢ € D. Then

ux(vxp)=vx*(uxp). (34)
Consequently, u* v = v * u.
Proof. Let also 1) € D. Then by Theorem [3.:24] Theorem [6.11] and by the commutativity
of convolution of functions (see
(us (vrp)) s th =us((vip)r) =ux(*(vxp)) = (ur)x(v*p)
= (wxp)*(uxy) =v*(p* (uxy)) =v*((u*)xp)
=vx(ux () =v*(ux(px)) =vx((uxep)*y)
= v ((ux0) % 1) = (v (w 9)) %4

By taking 1 a mollifier, from the above identity by a limiting argument one obtains
(using Theorem [4.5)). O

6.13. We will from now on write @*u for the function uxy for u € D'(R%) and ¢ € D(R?).
Theorem 6.14. For u € D' andv € £
supp u * v C Supp u -+ supp v.

Proof. Let x € suppu *v. For all € > 0 there exists a ¢ € D supported in B(z,¢) such
that uxv(p) # 0, i.e., u(0* ) # 0. Therefore supp u N (supp ¥ * ) # (. Let y be in this
intersection. By Theorem [3.21] we know that there exists a z € suppv and w € supp ¢
such that y = —z+w. Then w = y+ 2z € suppu+suppv and |z —w| < €. As we can find
such w for each ¢ and supp u 4+ supp v is closed, we conclude that x € suppu -+ supp v.[J

Remark 6.15. One can also define the convolution of two distributions, where instead
of assuming that one of the two has compact support the map ¥ : R x R? — R¢,
Y(x,y) = x + y is proper on supp u X supp v, meaning that X ~'(K) Nsuppu x suppv is
a compact subset of R% x R? for all compact sets K C R%. The details can be found for
example in [8, Section 11].
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7 Fundamental solutions of PDEs

Definition 7.1. We call an map P : D'(Q2) — D'(Q) a linear partial differential operator
in R? with constant coefficients if there exists an m € N and ¢, € F for o € N¢ with
|| < m such that

P = Z 0%,

aENg
lo|<m

Often, the following notation is also used. When we take p : R* — F the polynomial

p(x) = Z cax®,
aENg
|a|<m

then it is common to write ‘p(9)’ for ‘P’, so that one interpret p(d) as the formal poly-
nomial evaluated in 0. One also uses ‘D’ instead of ‘0’ in literature, so that one writes
‘p(D)’ for ‘P

One says a distribution E is called a fundamental solution of P if PE = ¢ (the Dirac
measure at zero).

Fundamental solutions can help to find distributional solutions to partial differential
equations of the form Pu = v as the following theorem illustrates.

Theorem 7.2. [8, Theorem 12.2] Let P be a linear partial differential operator with
constant coefficients and E a fundamental solution of P. For all v € £'(R?) we have

P(E *v) =v = E % (Pv).
Proof. This follows by the fact that 0%(E xv) = (0%E) x v = E % (0%). O

7.3. Observe that if F is a fundamental solution of a linear partial differential operator
with constant coefficients P, and if u € D'(R?) satisfies Pu = 0, then E + u is also a
fundamental solution of P.

Let us consider the example where we consider P to be the Laplacian A (which equals

=1 07)-

Example 7.4. Let F be the function on R? (for d > 2) defined by E(0) = 0 and

1 2—d d 2’
B = { Taw T 47 (33)
5= log || d=2,

where V is the n — 1 dimensional volume of the sphere {z € R?: |z| = 1} (observe that
2w = V3). Then F is the fundamental solution of A (see Exercise [7.1)).
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7.1. (a) [8, Problem 4.5] For i € {1,...,d} let v; be the function on R?
defined by v;(0) = 0 and
T

vi(z) = G (z € RT\ {0}).

Prove that v; is locally integrable on R? and that in D’
d
Z 8Z-v7; = Vd5,
i=1

where Vj is the d — 1 dimensional volume of the sphere {z € R?: |z| = 1}. (Hint:
Observe that (9jv;, @) = —lim.g fRd\ B(0,c) v;0;p and apply integration by parts
(see Theorem [E.1J).)

(b) [8, Problem 4.6] Prove that E as in is locally integrable on R? and that E is
the fundamental solution of A, i.e., AE = § (first you might want to prove that
0;F = cv; for some ¢ € R).

7.5. With E being the fundamental solution to A as defined in (35), we conclude that
for v € £'(RY) we have a solution to the Poisson equation

Au =,
given by E x v.

Definition 7.6. A function f € C?(Q) is called harmonic, or an harmonic function if
Af =0. A distribution u € D'(Q) is called harmonic if Au = 0.

7.2. For F = C and d > 2, check that for all k € Ny the polynomial z
(z1 + iz2)* is harmonic.

For d = 1, observe that for f € C?(Q2), Af = 0 if and only if f(x) = a + bz for some
a,bel.

As is mentioned in [7:3] for any harmonic distribution v we have that F + u is a
fundamental solution of A. We will prove that any harmonic distribution is actually
(represented by) a harmonic function in C°°(R%). This statement is called Weyl’s the-
orem. We prove a generalisation, for which we introduce the singular support, which
indicates “where a distribution is smooth”.

Definition 7.7 (Singular support). For a distribution u in D’(Q) we define the singu-
lar support as those points at which there exists no neighbourhood of that point on which
the distribution is (represented by) a smooth function, for which we write sing supp u, so
that

singsuppu = {z € Q: VU € N [uly ¢ C(U)]}
=0 \ {:U eN:3JU e N, [[U|U € COO(U)]]}v

where u|y is written for the element D'(U) given by p(u), with p as in
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Observe that sing supp v C supp u, which basically means that “where u equals zero
it is smooth”. The singular support satisfies the same rule as the support does for
convolutions:

Lemma 7.8. [8, Theorem 11.16] Let u € D'(R?) and v € £'(RY). Then
sing supp u * v C sing supp u + sing supp v. (36)

Proof. Let us write A for singsuppu and B for singsuppwv. Let 6 > 0 (be such that
Bs € Q) and x € D(2) be such that x is equal to 1 on A% and 0 outside As (see .
Then us := (1 — xa)u is (represented by) a smooth function and so u = u; + ug for
U] = XAU, and suppu; C As. Similarly, we can write v = v; + v9, where suppv; C Bs
and vy is (represented by) a smooth function. Then

U*V = U] * V] + U * V2 + U *x V] + U9 * V2.

The last three terms are smooth (by Lemma [3.18 and Lemma , and the support of
uy * v1 is included in A5 + Bs (Theorem [6.14)), which in turn is included in (A + B)as.
Therefore

singsuppu x v C (A + B)s.

As ¢ is chosen arbitrarily and the set A4 B is closed (see Lemma [3.7), we have N5 (A+
B)s = A+ B and conclude (36)). O

We will now consider a generalisation of fundamental solutions, in the sense that we
consider distributions that are “a fundamental solution modulo a smooth function”.

Definition 7.9. Let P be a linear partial differential operator with constant coefficients.
A distribution E is called a parametriz of P if there exists a ¢ € £(R?) such that
PE =6 +1.

Theorem 7.10. [8, Theorem 12.4] Let P be a linear partial differential operator with
constant coefficients. Suppose E is a parametriz of P with singsupp E = {0}. Then for
all open @ C R?

sing supp u = sing supp Pu (u € D'()). (37)

Proof. Similar to [3.20] we have singsupp Pu C sing supp u, which basically means that
‘Pu is smooth where w is’.

First suppose that u has compact support, so that we may assume u € &'(2). Let
Y € £(R?) be such that PE = § + . Then

Ex(Pu)=(PE)*su=(0+v¢)*u=u+vy=*u.

Therefore singsuppu = singsupp F * (Pu) as ¢ * u € £(R?) by Lemma Therefore,
by Lemma

sing supp u C sing supp F + sing supp Pu = sing supp Pu,
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as singsupp E = {0}.

Let = € Q\ singsupp Pu. Let x € D(Q2) be equal to 1 on an open neighbourhood U
of z. Then P(xu) = Puon U (by which we mean that the restrictions to D(U) as in[2.18]
are the same). Therefore x € Q \ singsupp P(xu). As yu has compact support we have
sing supp P(xu) = sing supp(xu) and so yu is smooth on a neighbourhood of z, and so
isuas xyu=wuonU. Sox € Q\ singsuppu from which we conclude . O

7.11. Let P and E are as in Theorem [Z.10l This theorem tells us that the solution u to
Pu = v for a v € £(R?) is smooth where v is, in the sense that if U is open and vlp
is smooth, then u|y is smooth. Therefore, in particular we obtain Weyl’s theorem as a
consequence.

Theorem 7.12 (Weyl’s Theorem). [7, Page 127]
Every harmonic distribution is (represented by) a smooth harmonic function.

Example 7.13. For t > 0 we define the function h; : R — R by
he(z) = (dmt)~2e~alel (2 € RY). (38)

Then (see Exerise [7.3) it solves the heat equation on (0,00) x R%:
Othi(z) = Aghi(zx) ((t,x) € (0,00) x RY), (39)

where A, denotes the Laplacian acting on the z variable(s) only, i.e., A, = Y%, 92 .

7.3. Show that is satisfied for h; as in .

7.14. Observe that
1 1.2 d
/ hi(x) dz = </ (4mt)"2e” 3t ds) =1,
Rd R
which follows by the fact that
/ e dg = NS
R
This can be proved using polar coordinates:

2 00
(/ e dx) = / / e~ @) gy dy = 277/ re™™ dr
R R JR 0

1
= 271'/ —e *ds =m.
0o 2

From this we can show that

(hey2) 2% 0(0) (€ Cu(RY). (40)
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Indeed,

(his o) = (0) = [ ha(a@)(p(@) — 9(0)) do.

R4

T

By a substitution y = Vi we have

[ (@) (e@) = 9(0) de = [ m)(e(Viy) = ¢(0) dy.
So that by the Lebesgue dominated convergence theorem we indeed obtain .

7.4. Calculate the limit in D'(R?) of d;hs as t | 0.

Example 7.15. Define E : R“1 — R by

E(t,z) = {ht@) (t,z) € (0,00) x R,
) (t,x) € (—o0,0] x RY.

Then (see Exercise [7.5) E is a fundamental solution of 9; — A, (one also says, E is a
fundamental solution of the heat equation).

Definition 7.16. The gamma function is the function I' : (0, 00) — (0, 00) given by

I'(s) = /Ooo t57 et dt (s € (0,00)).

It is sometimes also defined on the complex plane for those numbers for which the real
part is strictly positive. By partial integration it follows that I'(s+1) = sI'(s). Therefore
I'(n) = (n—1)!. Moreover, I'(3) = /7.

7.5. (a) Calculate [;° hi(x) dt for x # 0 (in terms of the gamma function).
(b) Show that lim¢ g [pa ht(2)@(t, ) dz = ¢(0) for any ¢ € D(RIH).
(c) Show that F is locally integrable.

(e) Calculate supp(9; — A,)E.
(f) Estimate the order of (0; — Ag)E.

(g) Show that FE is a fundamental solution of 9 — A, (Hint: Observe that
((0r — A)E, @) = limpyos sj0 — fST Jra he(x) (0 + Ag)p(t, x) dz dt and apply integ-
ration by parts.)

(h) Conclude that if v € & (R%*!) is smooth on an open set U, then so is the solution
u of (0r — A)u = v.

)
)
(d) Calculate singsupp FE.
)
)
)

Remark 7.17. In [8] Section 12] one finds references for the proof of the statement that
every linear partial differential operator with constant coefficients, of which at least one
coefficient is nonzero, has a fundamental solution.
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8 Sobolev spaces

loc
that LP is continuously embedded in D', as L? is continuously embedded in Lllocz This
follows by Holder’s inequality, which implies that for all p, ¢ € [1, oc] such that % + % =1
one has || f||11 x < [|fllzrl|1k]|ze for f € LP and any compact set K.
In this section we will consider Sobolev spaces as subspaces of D'. These spaces
are subsets of LP for which not only the function itself, but also its derivatives (in the

distributional sense) up to a certain order are all included in LP.

In Theorem we have seen that L! is continuously embedded in D’. This implies

Definition 8.1. Let p € [1,00] and k € Ng. We define the Sobolev space of order k and
integrability p, denoted W*P(Q), by

WEP(Q) = {u e D'(Q) : 9%u € LP(Q) for all 3 € N& with |3| < k}.

In some literature, for example in [9], the definition of a Sobolev space looks a bit
different and does not use the language of distributions. In that case, the 8° is interpreted
as the weak derivative and “u € D'(£2)” is replaced by “u € LP(2)” and the part “9° €
LP(Q)” instead reads somehow like “0°u exists (as a weak derivative) and is in LP(Q)”.
Let us give the definition of such weak derivatives.

Definition 8.2. Let u,v € LL () and o € N&. v is called the a-th weak partial deriv-
ative of u if v = 0% in the distributional sense, i.e., if

[ve=[u-(-0lore (pec@).
Lemma 8.3. Letu € Li (). If u has an a-th weak partial derivative, then it is unique.

Proof. This is a consequence of Theorem [1.16 O

8.1. Consider Q = (0,2), u,v € Li () given by
€ (0,1 € (0,1
1 ze(1,2), 2 ze(1,2).

(a) Show that u has a weak derivative that is in LP, so that u € WP(Q) for all
p € [1,00].

(b) Show that v has no weak derivative, but calculate its distributional derivative.

(c) Give an example of an element u € W1P(0,2) such that the function v defined on
R by v(z) = u(x) for x € (0,2) and v(z) = 0 for other x, is not in W1P(R).

Definition 8.4. We equip the Sobolev space W#?(Q) for p € [1,00) with the norm

1
lalweo = (D2 19%ul,)”,

BENG,|B|<k
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and for p = oo with the norm

||l w|[prr,00 = max IEEI
BENG:|BI<k
8.2. Verify that || - ||yy«» indeed defines a norm on W*P(Q).
Definition 8.5. Let X be a normed space and || - [|1, ]| - ||2 : X — [0, 00) be norms on X.
They are said to be equivalent if they define the same topology.
Two norms || - ||1,]| - |2 are equivalent if and only if (see for example [4, Proposition

II1.1.5]) there exists ¢, C' > 0 such that
dlfle <llfllz <Cllflh - (FeX)

8.6. As any two norms on R? (as it is a finite dimensional normed space, see [4, The-

1
orem II1.3.1]) are equivalent (observe that @ +— %, |z;|, = — (X% |z;P)? and z +—
maxf:1 |z;| are norms on RY), the following functions are norms that are equivalent to
| - llywe» for any k € Ny and p € [1, o]

u— max (0%, uwe— > (0|
peNp IBI<k BeN I61<k

The order of the Sobolev space determines the ‘regularity’ in the same way that the
k of C* does; as also here taking a derivative 9% decreases the order by |a|:

Theorem 8.7. [9, p.247, Theorem 1(i),(iii)] Let u € W*?(Q). Then

(a) 0%u € WElelP for all o € N¢ with |a| < k and 9°%(0%u) = 0°+Pu for all a, 8 € Nd
with |a| +|5] < k.

(b) If U is an open subset of , then u|y € WFP(U).
Proof. We leave this for the reader to verify. O

Observe that W9P(Q) = LP(€2), so that the Sobolev space of 0-th order is a Banach
space. This extends to any order:

Theorem 8.8. [9, p.249, Theorem 2] For all p € [1,00] and k € Ny, WEP(Q) is a
Banach space.

Proof. Suppose that (uy)nen is a Cauchy sequence in W*P(Q). Then (0%up)nen is a
Cauchy sequence in LP(Q2) for all « € N& with |a| < k. As LP(Q) is a Banach space,
there exist u(® € LP(Q) such that d%u, — u(® in L for all such a.

Let us write u for u(®). We are finished by showing that 8%u = u(® for all such «, as
this implies u,, — u in W*P(Q). This follows by testing against a testfunction ¢, using;
if f, = fin LP, then [ f,o — | fe (which follows by Holder’s inequality):

(0%, ) = /U (=Dllovp = nll_{lgo/un (=)o = ggngo/aaun o= (ul®, ).
As this holds for all ¢ € C>°(Q), we have 9%u = u(® (by Theorem . O
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Definition 8.9. Let k € Ny and p € [1, 00].
(a) We write Wg’p(Q) for the closure of C°(Q) in W*P(Q).
(b) We write H(Q) = W*2(Q), || | = || - e and HE(Q) = W5(Q).

Remark 8.10. One interprets I/VéC P(Q) as the subspace of W*P(Q) of elements that
vanish at the boundary of €, in symbols; u = 0 on 0.

Similar to Theorem in which we showed that W*? is a Banach space by using
that LP is a Banach space, one can show that H* is a Hilbert space because L? is:

Theorem 8.11. Let k € Ny. (-,-) g : H¥(Q) x H¥(Q) — F defined by
(u,v) gr = Z (0%, 0“v) 12,

aeNg:|o|<k

is an inner product on H¥(Q), so that H*(Q) (and HE()) equipped with this inner
product is a Hilbert space.

Proof. We leave it for the reader to check that (-, -) ;7 defines an inner product. The rest
follows from Theorem [8.8 and because (u,u) g = ||ul|%, for u € H*(Q). O

There is a lot of theory on Sobolev spaces, which we will not treat here. Sobolev spaces
play a central role in the theory of partial differential equations, and we still want to show
one application of the theory. One classical reference for PDE theory, which contains a
whole section on Sobolev spaces is [9] (see Section 5). There are different estimates that
are useful, of which we present one important example; the Poincaré inequality.

Theorem 8.12. [18, Theorem 12.17] Let Q be a bounded open subset of R%. There for
all p € [1,00) exists a C > 0 such that

lullze < CIVullze — (u€ WP ().

8.13. Consider the context of Theorem As for functions f : R¢ — R? we interpret

1
| fllee = ([ |f|P)?, with | f| being the composition of the euclidean norm with the function
f, we have

IVulle = (/ VulP)r = (/(fj Ouf2)5)7.
Observe that for p = 2 -
IVedis = (f 96} = (f 30
But view of [8.6] for all p € [1, 00] there exists a M >Z_0 such that
IVl e < M(/zdj 1DyulP)7 .
i=1

In this way one can reformulate Theorem for the desired form of the norm on the
right-hand side.
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9 Solutions of elliptic PDEs in Sobolev spaces

In this section we will show the existence of solutions to elliptic equations. The notion
of solution will be defined in the language of Sobolev spaces. Let F = R and 2 be a
bounded open subset of RY. We will consider the following Dirichlet boundary problem

{Lu:f on §2,

41
u=0 on 0, (41)

where f: Q — R is given, 92 denotes the boundary of 2 and L is the following second-
order partial differential operator (with variable coefficients), with a; j, b;,c: Q@ — T,

d d
Lu(z) = = Y 8i(aij(2)0u)(z) + > bi(x)du(z) + c(z)u(z)  (z € Q). (42)

i,j=1 i=1

This problem is called a Dirichlet boundary problem because of the condition that u =0
on OU; this zero-boundary condition is called a Dirichlet boundary condition. As the
operator L is defined by , one says that the PDE Lu = f is in divergence form.
Observe that with b; = b; — 2?21 0ja;; we have Lu = Lu, with

d d
Lu(z) = = Y aij(@)05u(x) + > bi(2)0iu(z) + c(x)u(z)  (z€Q).
i,j=1 i=1

The PDE Lu = f is said to be of nondivergence form.

9.1 (Assumption). We will assume the following symmetry for the operator L, namely
that a;; = aj; for all ¢ and j. Moreover, we assume that a; j, b; and ¢ are in L>°(Q2) for
all i and j, f € L?(2) and that the operator is assumed to be elliptic.

Definition 9.2. The partial differential operator L is called elliptic if there existsa 8 > 0
such that

d
Z ;i (2)yiy; > 0)y|? (z € Q,y e RY. (43)
ij=1

Observe that —A is an elliptic operator.

We will consider a bilinear form associated to L. This bilinear form arises by integ-
ration by parts, or by the interpretation of Lu as a distribution, the bilinear form equals
the function (u,v) — (Lu,v). Namely:

Definition 9.3. (a) We define the bilinear form associated to L by B : H(Q) x
H} () — R by

d

d
B(u,v) — /Q 3 i (Oiu) (Brw) + 3 bi(0)w + cuv.

i,j=1 i=1
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(b) A ue H}(RQ) is called a weak solution to the Dirichlet boundary problem if
B(u,v) = (f,v)z (v € Hy()).

Remark 9.4. As one sees, the Dirichlet boundary condition of has been put on the
space in which one considers the solution to be, namely in H}(€2), for which already had
the interpretation that u = 0 on 9Q for u € H}(f2) as is mentioned in Remark

We can use tools from functional analysis to prove that under certain conditions
there exists a weak solution of the Dirichlet boundary problem . Let us first recall
the Riesz-Fréchet theorem.

Theorem 9.5 (Riesz-Fréchet). [5, Theorem 13.15] Let H be a Hilbert space over F
with inner product (-,-). If f : H — F is a bounded linear functional, then there exists a
unique a € H such that

f(z) = (a,z) (xr € H).

Theorem 9.6 (Lax-Milgram). [9, 6.2.1, Theorem 1] Let H be a Hilbert space over R,
with inner product (-,-) and norm || - ||. Let B: H x H — R be a bilinear map. Suppose
there exist ¢,C > 0 such that

|B(u,0)| < Cllulllvll (w0 € H), (44)
cllul|* < B(u,u) (ue H). (45)

Let g : H — R be a bounded linear functional. Then there exists a unique w € H such
that

B(u,v) = g(v) (veH).

Proof. 1If B(u,v) = B(v,u), then B defines another inner product on H and so the
theorem follows directly by the Riesz-Fréchet theorem.

As for uw € H the map v — B(u,v) is a bounded linear functional, the Riesz-Fréchet
theorem implies that there exists an element in H, for which we write A(u), such that

B(u,v) = (A(u),v) (veH).

We will show that A is a bounded linear bijection (it is actually even a homeomorphism).
By a straightforward calculation one checks that A is linear. Moreover,

||Au|]2 = (Au, Au) = B(u, Au) < C||ul|||Aul| (u€ H).

Therefore ||Aul| < C|lul| for uw € H, so that A is bounded.
Let us first show that A is injective and its range is closed in H. This follows from

(), as
clull < Bu,u) = (Au,u) < || Aull]Ju].
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Now, let us prove that A(H), the range of A, equals H. As A(H) is closed we have
A(H) + A(H)*+ = H (where A(H)* are those elements that are orthogonal to A(H)),
so it is sufficient to show that A(H): = {0}. Let w € A(H)*. Then 0 = (Aw,w) =
B(w,w) > c||w|>. So w = 0.

By Riesz-Fréchet theorem, there exists a unique w € H such that g(v) = (w,v) for
all v € H. Therefore, with u = A~ w, we have B(u,v) = (w,v) = g(v) for allv € H. O

Let us verify the assumptions of the Lax-Milgram theorem for B as in Definition

Theorem 9.7. Let B be as in Definition @ under Assumption . There exists a
v>0 and c,C > 0 such that

|B(u,0)] < Cllullg ol (u,v € Hy(Q)), (46)
clullfpn < Blu,w) +9llullz (u € Hy(%)). (47)

Proof. we obtain as for u,v € H}(Q)

d d
Buo)| < Y oo~ [ Dozl + Y lodles [ 10adlol+ el [ 10lloo]
i=1

1,j=1

i,j=1 i=1

d d
< (Z lagjllzee + > [bsllzo + HcllLoo) llull o o] -

On the other hand, for # > 0 as in we have

d d
0> [ 10wl < [ 3 a(0rm)(@yu)
i—17% Q=1
a 2
= B(u,u) /Q;bluﬁzu /ch
d
< Bluw) + 3 [bilee | [ovulul + el [ o2
i=1

As ab < ea® + ébz for any a,b € R and € > 0 we have

1
/\BiuHulgs/ |8iu]2+—/ .
Q Q de Jo

Now take € small enough such that &|[b;]|z < ¢. Then by the Poincaré inequality (see

Theorem (and [8.13)) we have Bl|ul/%, < Z§:1 Jo |0iul?* and thus

0. 2 0 & 2 1 2
ﬁQHuHHl < 2i251/§2|82u| < B(u,u) + (|J¢||p~ + 4€)/Qu
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Now we can prove that under certain conditions (41f) has a weak solution.

Theorem 9.8. [9, 6.2.2 Theorem 3] There exists a v > 0 such that for all 8 > v and
f € L*(Q) there exists a unique weak solution u € H{(Q) of the Dirichlet boundary
problem
Lu+ fu=f on{ (48)
u=20 on 0f).

Proof. We apply the Lax-Milgram theorem to Bg, the bilinear operator corresponding
to the elliptic operator Lg given by Lgu = Lu + [u:

Bg(u,v) = B(u,v) + B{u,v) 2 (u,v € H}(Q)).

Observe that for f € L2(Q) the map g : H}(2) — R given by g(v) = (f,v)2 is bounded
and linear, because [v[|2, < |[v[|%,. So the Lax-Milgram theorem implies the existence
of a u € H}() such that Bg(u,v) = (f,v) 2 for all v € H} (), which means that u is a
weak solution to (48)). O

There are more theorems on weak solutions of elliptic Dirichlet boundary problems,
see [9, Section 6.2] (for example see the Fredholm alternative). Also, one can show that
the solutions have a certain regularity that depends on the regularity of the coeflicients
a;j, b, ¢, see [9, Section 6.3].

9.1. Show that one can choose v = 0 in Theorem and Theorem in

case b, = 0 for all 7 and ¢ = 0.

10 The Schwartz space and tempered distributions

We introduce the Schwartz space in this section, which is the space of smooth functions
that quite rapidly decay at infinity. This space is suitable for the Fourier transform,
as the Fourier transform maps the Schwarz into itself (let us mention that in £ there
are functions which do not have a Fourier transform as for this a function needs to be
integrable, and on the other hand, the only smooth function with compact support that
has a Fourier transform with a compact support is the zero function). We will turn to
that later and first discuss here the topological properties of the Schwartz space and its
dual, the space of tempered distributions. As our underlying space we consider R? (only).
For this reason we can leave out the part “(R?)” in the notation of function spaces or
spaces of distributions.

Definition 10.1. The Schwartz space S (or S(R?)) is the space of functions ¢ € C>
such that ||¢||x.s < oo for all & € Ny, where || - ||;.s is defined by

lollks = D sup(L+[a))*10%(z)] (o€ C). (49)

ala|<k zERC
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llollks < oo is a seminorm on S for all £ € Nyg. A function in the Schwartz space will
also be called a Schwartz function. The space S is equipped with the topology generated
by the seminorms || - [|x.s-

We write 8’ (or S’'(RY)) for space of continuous linear maps S — C. This means that
u € & if and only if u is linear and there exists a k € Ny and a C' > 0 such that

lu(@) < Clelrs (v eS).

An element of §'(R?) will also be called a tempered distribution.
&' is equipped with the o(8’,S) topology.

Observe that a smooth function ¢ is in the Schwartz space if the function and all its
derivatives are decaying faster than any polynomial.

10.1. Let ¢ € C™. Show that ¢ € S if and only if lim, ., P(z)p(z) = 0

for all polynomials P.

10.2. There are different choices of seminorms that one can take, which generate the
same topology. The seminorm as in is the same as in [2]. In [7] instead the following
seminorms are used

g sup |(1+ |z 0% ()| (50)

ala|<k z€R?

is used. Basically because of the following inequality, the topologies generated are equi-
valent.

L4z < (14 |2))? < 2(1 + |z|?) (x € RY).

10.2. Convince yourself of the statement in m

It will be clear that all compactly supported smooth functions are Schwartz functions.
We will give a central example of a Schwartz function that is not compactly supported.

Definition 10.3. A function f : R? — R is called a Gaussian function if there exist
a,beR, a>0,ycR?such that

flz) = be Iyl

Example 10.4. An example of a C'*° function without compact support that is a Schwartz
function, is a Gaussian function. Indeed, for f as in Definition @ for a € Ng with
la| = k one has |8°f(z)| < |b](2a)F|z — y|Fe~**=¥ so that because (1 + |z + y|)¥ <
(1+ JyD* (1 + |=[)*,

I/

ks < Bl(2a(1 + [y]))* sup (1 + |z|)?Fe " < oo, (51)
z€R4
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10.5 (Notation). For A € R we write [, : R? — R for the linear function that multiplies
the vector by the scalar . It is of course bijective in case A # 0. For a function f : R? — F
we will also write “I) f” for the composition f oly, which is the function z — f(Az). For
a distribution u we also write “Iyu” instead of “u o[

10.6 (Some norm estimates and convergence facts).
(a)

lellex < llelles (v €S).

(b) Let K C R? be compact and M = sup,cf |z|, k € N. Then

lellks < (L+ M) llplen (¢ € D,suppy C K).
(c) By p.3|for all £ € Ny there exists a C > 0 such that

Ifelks < Cllfllerllelrs  (f€CFp€S).

(d) For any function y in C* we have 9°(Lyy) (z) = )‘|a‘(aa><)()\3«") one has [lxy|lox <
x|l for A € [—1,1]. Hence

Nx) flles < lIxllox | fliks (f €S, xeCr xe[-1,1]).

(e) Let x € D have values in [0, 1], x = 1 on the unit ball. Then (see Exercise [10.3])

o (Lx\)f— finLPasA]O,for feLP.
e (Lhx)f—finSasA]0,for fes.

(f) Let (Xn)nen be a partition of unity, i.e., x, € C(R%,[0,1]) and 3, ey mn(x) = 1
for all € R%. Suppose that supyey || S0 xnllcr < oo for all k € Np. Similar to

()] (see Exercise [10.3)) we have
o« (N xn)f = fin LP as N — oo, for f € LP.
e N xn)f = finSas N — oo, for feS.

10.3. Prove and Hint: Observe that

(1 + [a)*!
sp (14 ]aHlg(e)] < sup LHIT
z€R:[z|> + zeRd L+ X

l9()]-

Bonus: In is the condition that supyey || 301 Xnllor < oo for all k € Ny necessary?
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10.7 (Multiplication). For all £ € N there exists a C' > 0 such that (for example by
10.6)

Ifollks < Clfllesllglrs  (frg€S),

so that multiplication of functions as a map & x § — § is continuous.
Because of this, if u € 8’ and f € S, then fu is a tempered distribution, defined by

(fu, ) = (u, f).

Before we turn to the topological properties of S, let us recall the following definition.

Definition 10.8. For k& € Ny U {oo} we write CF for the subset of C* that consists
of those functions that are bounded and for which their derivatives up to order k are
bounded, which means f € C’f; if and only if f € C* and 9°f € C, for all a € N& with
la] < E.

10.9. Observe/remember that Cf is complete under the norm || - ||cx for k& € No.
Moreover, observe that S C Cé“ for all k € Ny and

1lles < 1 Fllks.

Theorem 10.10. The space S (equipped with the seminorms || - ||x,s) is a complete sep-
arable metrizable space and D is dense in S.

Proof. As S is equipped with a countable number of seminorms, it metrizable, see for
example [4, Proposition IV.2.1]. The completeness follows easily from the fact that S is
continuously embedded in the complete space C’f for all k, see m That D is dense in
S follows from [10.6(e)l Let us prove the separability. For this, let ¢ be a mollifier. We
know that ¢ * 1. — ¢ in || - || ox-norm for all k € Ny and ¢ € D by Theorem [4.3|[(b)] (and
Lemma . Because the support of ¢ * 1. is included a compact set for all € € (0,1),
the convergence ¢ * 9. — ¢ also holds in S, i.e., with respect to the seminorms || - [|x.s.
Hence D = {p* 1. : ¢ € (0,1)NQ, ¢ € D} is dense in S (but not yet countable). By
Lemma [3.23] we know that for each € and ¢ there exist a sequence of Riemann type sums
that converge to ¢ * 1., in other words, there exists a sequence (pg)xren in

n
R:{Zaﬂ;idjg:nEN,al,...,anEQ,yl,...,ynGQd,SE (O,I)OQ}
i=1
such that py koo, @ * 1. in S. Hence R is dense in D (in the topology of S) and D is

dense in S, so that the countable set R is dense in S. 0

10.11. By [10.6(b)| every tempered distribution restricted to D defines a distribution.
Observe also that for all k € Ny and compact set K C R?

lellcr i < llelles (v €S).

Therefore every u € £ restricted to S defines a tempered distribution.
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Theorem 10.12. The following inclusion maps are continuous
D — (S,0(8,8)), (8,0(8,8") — (E,0(E,&)), S =€,

The inclusion map D — S is sequentially continuous.
The map ¢ : 8" — D' defined by 1(u) = u|p is continuous and injective.
The map v : &' — 8" defined by 1(u) = uls is continuous and injective.

Proof. For the sequential continuity use Theorem[2.7] For the other continuity, see [10.11}
That the ¢ maps are injective follows as D is dense in S; similarly D and thus S is dense
in £. O

In Example [10.15 we show that none of the embeddings in Theorem is a homeo-
morphism on its image. But first we state two elementary facts on integrability of
x +— (14 |z|)* and integrability of k — (1 + |k|)®, from which we conclude integrability
properties of Schwartz functions.

Lemma 10.13. The functions R* = R, z — (1+|z|)® and z — (1+|z|?)2 are integrable
if and only if a < —d.

Proof. As 1+|z|? < (1+|z|)? < 2(1+|x|?), is it sufficient to only consider z + (1+|x|)%.
Integrating the function on B(0, 1) always gives a finite integral. It will be clear that o < 0
is required. By changing to spherical coordinates and observing that (2r)* < (1+r)* < r®
for & < 0 and r > 1, we see that (1 + |z|)® is integrable if and only if [°rd=1+® dr is
finite. The latter is of course the case if and only if o < —d. O

Lemma 10.14. The functions Z¢ — R, k +— (14|k|)* and k — (1+|k[*)2 are summable
if and only if a < —d.

Proof. We consider the function k — (14 |k[?)2 only (this is sufficient by the inequality
L+ k2 < (14 k)% <201 + |K|?). We write |2] = ([z1],..., [2q]) for € R? where
|x1] is the largest integer that is smaller or equal to x;. Then Y ,cza(1 4 |k|?)2 =
Joa(1+][x]?)% dz. Note that |z — |z]| < V/d. Therefore, if |z| > 2v/d we have

slel < ol = Vd < ||e]| < ol +Vd < §a].

Hence, 1(1+ [z[?) < (14 ||z][*) < 2(1 + |z|?) for those z and so the statement follows
by Lemma [10.13 O

10.4. Prove that Y-, .y nd, € S'(R). Moreover, if p : R — F is a polynomial,
show that ), .y p(n)d, is a tempered distribution. What about p(x) = e*?

Example 10.15. We consider only one dimension, i.e., d = 1 for convenience.

(a) Asin Examplelet On = %’77@ forn € N, where ¢ € D with [ ¢ = 1 and ¢(0) = 1.
Then ¢, — 0 in &, but (¢, )nen does not converge in S: Indeed, u = 3, cyndy, is
a tempered distribution (see Exercise [10.4)) and u(¢,) = 1 for all n.
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(b) Let fu(z) = e (142 By Example m limy, o0 || fnllk,s = 0 for all & € Ny. Let

¢ € D be nonzero and define ¢, = f,Tn¢. Observe that ¢, € D. By [10.6(c)
|Ynlles < llollckllfulles — 0 as n — oo for all & € Ny. Hence ¢, — 0 in S.
However, 1, does not converge in D by Theorem

(¢) 8, — 0in S8’ but not in &’.

(d) Consider the element of &’ given by a,d,, where a,, = e, Then a,d, — 0 in D’
but not in & (and not in &'), as for ¢(z) = e~*" we have a,0,(p) = 1 for all n.

Remark 10.16. Observe that even if we equip D with the topology generated by the
seminorms (|| - ||cx )ken, it is not continuously embedded in S. This follows from Ex-

ample [10.15][(a)] as also ||¢n||cx — O for all k € Ny.

Theorem 10.17. [7, Page 137] The space S’ is weak* sequentially complete.

Proof. The proof is very similar to the proof of Theorem [2.13] and uses the fact that S is
a metric space: One replaces “Dg (2)” and “dg” by “S” and “d”, where d is the metric
on S. =

10.18 (S8’ is not metrizable). [7, Page 137] only mentions this, no arguments.

Lemma 10.19. Let p € [1,00). For all k € N such that pk > d we have (1+|z|) ™% € L?
and

I lze < 1+ Jae) ™Iz - s

Hence S is continuously embedded in LP. Moreover, S is dense in LP. As

I llzee =1~ llos,

S is also continuously embedded in L*.

Proof. Let f € S and p € [1,00) (note that || - ||z~ < || -|lo,s). By definition of || - [|x.s we
have

1f@)] < I fllks(L+]z))™ (xR,

whence by picking k large enough such that pk > d, by Lemma it follows that
| fllze < C|fllk.s with C being the || - ||p-norm of # — (1 + |z|)~%. The denseness

follows by Lemma [A13] O

10.20. Observe that LlloC is not a subset of S’ as for example the function elz® is not
in 8'(R) (see Exercise [10.5). However, LP is a subset of &’ for all p € [1,00] and is
continuously embedded, see Theorem [10.21

10.5. Verify that 2 — e*l” is not in S'.
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We present the analogue statement to Theorem [2.15] in Theorem [I0.21 but first
introduce the following notation.

Theorem 10.21. Let p € [1,00]. We have LP C S’, moreover the function LP — §’,
[ = uy is continuous and injective.

Proof. The injectivity follows from the injectivity of LP — D’ and as D is dense in S.
Let f € LP(R%). Then by Hélder’s inequality, with ¢ € [1, co] such that % + % =1,

ur@) = [, 6| <17 lellelin < Ol leles,
where k£ € Ny and C' > 0 are as in Lemma [10.19 O

Definition 10.22. A function f : R¢ — F is said to be of at most polynomial growth if
there there exists a C' > 0 and a k € Ny such that

[f@) <O+ (zeRY). (52)

We write C5° for the set of C* functions f such that for all a € N¢, the function 9% f
that are of at most polynomial growth.

10.6. Show that holds if and only if there exists a polynomial p : R — R
such that |f(x)| < p(|z]).

10.23. Observe that f € C7° if and only if for all m € Ny there exists an k € Ny such
that

a(f) == > sup (1 +Jz|)7*|0" f(z)] < oc. (53)
aeNd z€R4

o] <m
Let k,m € Ny. By Leibniz formula for example , there exists a C' > 0 such that
for all f € Cp° and p € S

Z sup (1 + |z|)™|0%(f)(z)]

d
aENg z€R

laj<m

<o Y sup(+[a) Mo f@)]) (X sup (1 + 2] 00) (@)),
acnd TERY BeNd zeR?
0 0
|| <m [BI<m

for all f € Cg° with qx(f) < oo and ¢ € S,

[felims < Car(H)llllmins- (54)
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Therefore

feECy, 98§ = fpeSs, (55)
feCrueS = fueS. (56)
Moreover, if f, € Cg° for alln € N and f € Cg° and qi(fn — f) 272, 0 for some k € N,
then
fap = foin S (p€ES),
fou 222 fuin & (ue 8.
10.24. Coming back to[10.20f There are more functions that are representing tempered
distributions than those in LP spaces. For example, by , as 1 € &', we have
/
cyr cS.

Moreover, locally integrable functions that are of at most polynomial growth are rep-
resenting tempered distribution (as we have seen in Exercise exponential growth is
“too fast”).

10.7. Verify

10.25 (Summary of embeddings). If X and ) are two topological spaces, we write
X — Y for “X is continuously embedded in Y”, i.e., X C )Y and the inclusion map
X — Y is continuous.

S— I[P & Lemma [10.19] and Theorem [10.21
D = (D,o(D, D)) — (S,0(8,8")) — (£,0(E,&")) Theorems [5.7| and [10.12

D — S (sequentially) Theorem [10.12
S—¢€& Theorem |10.12
=8 <7D Theorem [10.12

11 Fourier Transforms

Still we consider as our underlying space R? and leave out the notation “(R%)” in funtion
spaces or spaces of distributions. We also allow F to be either R or C, and leave out
the notation “F” of the function spaces unless it matters. Let us first introduce some
auxiliary lemmas.

Lemma 11.1. Let f € L'. Then for all a € R?

lim | Tof — Tof |1 = 0.
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Proof. If f is the indicator function of a rectangle in R? (see Definition , then it
is easy to see that the above limit holds. Therefore it follows that for any finite linear
combination of such indicator functions, the above limit holds. As the linear span of
indicator functions of rectangles is dense in L', see Lemma by a 3e argument one
can finish the proof. O

Lemma 11.2 (Lemma of Riemann-Lebesgue). Let g € L'(R). Then

1
<5lg=Trglr  (aeR,a#0)

/g(l_)e—%riam dz
R

Proof. Let a € R, a # 0. As e™ = —1 we have

/ g(x)e—QmaiU dx = / g(x _ 7)6—27r1a($—ﬁ) dr = — Tig(x)e—Qmaa: dz.
R R 2a R 2a
Therefore
. 1 ‘
/ g(x)€—2ma$ dr = — / [g(x) _ Tig(x)]e_%”‘“ dl‘,
R 2 R 2a
so that the desired inequality follows. 0

Definition 11.3 (Fourier transform of a function). Let f € £'. The Fourier trans-
form of f, f:R? — C is given by

FO = [ 9 ) da. (57)

where (z,€) is the inner product on R? (the notation (-,-) is of course also used as the
pairing between distributions, but we assume there will be no confusing arising).

In case g € L' equals f almost everywhere, then f = §. This allows us to define the
Fourier transform of an element of L' as the Fourier transform of one of its representatives

in £ and will use the formula also for f € L.

11.1 (Voorbeeld 15.8). [23] Calculate the Fourier transform of the func-
tion f: R — R given by f(x) = max(1 — |z|,0).

11.2. Let f € LY(R?) (for some d € N). Show that if |£,| — oo, then

~

f(&n) = 0.

11.4 (Notation). Let g : R — F be a function. Suppose there exists an L € F such
that for all & > 0 there exists an M > 0 such that |g(z) — L| < ¢ for all 2 € R? with
|z| > M. Then we will write “lim,_,o g(z)” for “L".
Theorem 11.5. If f € L', then f € Cy(R%,C), limj¢| 00 f(€) = 0 and

[fllzee < Nz
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Proof. For the convergence we refer to Exercise [[1.2] The countinuity follows by Le-
besgue’s dominated convergence theorem. The bound on the norm is easy. O

Definition 11.6 (Fourier transform as a function). We write F for the linear func-
tion L' — Cy(R?,C), f — f and call this map the Fourier transform.

Theorem 11.7. [23] Stelling 13.4] [30, Chapter 5 Proposition 1.8] [7, Page 142]
Let f,g € L'. Then f§ and fg are integrable and

[1i=[1s (58)

Proof. The integrability follows by Theorem The identity follows by Fubini’s the-
orem. N

11.3. Check that (58) holds.

11.8 (Notation). We will use the bold symbols € and @ to denote the identity maps
on R?, which means € : € — ¢ and x : x — .

By substitution rules for integration we obtain the following.

Theorem 11.9. (a) Let f € L' and y € RY. Then

F(Tyf) = e7*me0 , Tof = F(emev ). (59)

(b) Let1:RY — R be linear and bijective. Then

1

_ - f .
rdets)’ ° M

F(fol)=

where 1, is the transpose of 171, which means that (I"'y, &) = (y,1.(£)) for all
z, & €RY,

In particular, for A € R\ {0} (for the notation see
Faf) = 1y f.
Or, differently written F(f(Ax)) = |X|~4f(%).

11.4. Verify the statements of Theorem

Theorem 11.10. [23] Stelling 13.5] Let g € L*(R).
(a) If xg € LY(R), then § is continuously differentiable and

“im

§' = F(—2rizyg). (60)
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(b) If g is the indefinite integral of a function h € LY(R) (which means that for any
a,b € R with a <b, g(b) — g(a) = f; h), then h = 2mwi&g.

In particular, if g is continuously differentiable and g’ € L*(R), then F(g') = 27i&g.

Proof. @ Let a,b € R, a < b. Then, by Theorem m

b
/ F(—2mixg) :/.7:(—27ria:g)]1[a7b]
a R

:/ —27izg () F (jgy)(z) dz
R
—2mibx 6727riaz

= / —27izg(x) ¢ dz
R

—2mix

As the Fourier transform of an integrable function is continuous, we conclude that § is
continuously differentiable with derivative given by .
@ For £ € R we have by applying integration by parts

h(€) - 2mig(§) = lim /N h(z)e ™8 4 g(x)(—2mig)e 2™ dx
—oo J_N
= ]\}i_I)noo(g(N)e—%riNﬁ _ g(—N)€27riN£),

Therefore it suffices to show that lim, | g() = 0. As g is the indefinite integral
of h, which means for example that g(y) = ¢g(0) + [ h(z) dz, both limy_, g(y) and
lim, o g(y) exist. By the integrability of g, these limits need to be equal to zero. [

11.11 (Note to Theorem [11.10][(b)). If g € L*(R) is not an indefinite integral of an
integrable function, but almost everywhere differentiable and its derivative is equal (there
where it exists) to an integrable function h, then § might not be equal to (27ri€)ﬁ, e.g.,
take g = 1[,p). Indeed, g is almost everywhere differentiable with derivative 0 but its
Fourier transform is given by

—27ibg __ ,—27iag
e — §#0,
F(Liap)(€) = { 2mig

b—a £E=0.
11.12. Let us compute the Fourier transform of a Gaussian function in one dimension,

with the help of Theorem [11.10]
Let g : R — R be the Gaussian function given by g(z) = e, By Theorem |11.10

d

Ge016) = F(=2mize™)(§) = miF (De™") (§) = —27°€3(6). (61)

As §(0) = Jp e dz = /7 (see 7.14) we have §(£) = Ve ™€ as this is the unique
solution to the ordinary differential equation (61]).
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We can so to say ‘apply’ Theorem [11.10[to any of the directions in R%, to obtain the
following.

Theorem 11.13. Let k € Ny.
(a) IfxPf e L' for all B € N& with |8] < k, then f € C* and
0°f = F((—-2rim)’f) (B NGB < k).

() If f € L*NCF and 3P f € L' for all B € N with |B| < k, then € f is continuous
and bounded and

(2rig)"f = F(8°f).
11.5. Verify that Theorem [11.13| follows from Theorem |11.10

11.14. Observe that if@ holds for all k, which means that f € L' NC> and 0°f € L!
for all 8 € N¢, then £€7f is not only continuous and bounded but also integrable for all
3 € N&: This follows from Lemmaas also (1+1]€])4T1¢7 f is bounded for all § € N4.

As we have also seen that Schwartz functions are integrable, and also their derivatives
as they are again Schwartz functions, Theorem implies that f is a Schwartz function
if f is a Schwartz function. The Fourier transform actually forms a bijection on the
Schwartz functions, which follows from the inversion theorem, Theorem

First we turn to Fourier transform of Gaussian functions.

Theorem 11.15. Leta > 0, y € R? and f : R? — R be the Gaussian function f(x) =
e*“‘m*mz, then f € L' and

fley=(5) e s, (62)

11.6. Prove Theorem

Theorem 11.16. The Fourier transform F forms a linear homeomorphism S(R?,C) —
S(R?, C) with

f@) = F()=2) = | fOemedde (@ eR?). (63)

Proof. Let us first prove that F is bijective by proving . Let f € S and z € R?. Let
g="T_2f. Then j = fe2™@£€) by Theorem Therefore, it is sufficient to show
for x = 0, which means it is sufficient to show

F0) = [, F(&) de.
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Let h; be as in Example [7.13] i.e.,
he(z) = (dmt)~2e~ 2l (2 € RY).
Observe that by Theorem we have §; = hy for (take a = tr?t)
gila) = e 4™tz e RY).
By Theorem [11.
[ @) do = [ F©a©)

As f is continuous and bounded, the left-hand side converges to f(0) as ¢ | 0 by .
As f is an element of S it is integrable, therefore by Lebesgue’s dominated convergence
theorem we have that the right-hand side converges to [pa f(§) d¢ as t | 0, because
gi(€) T 1ast ] 0forall &£ € R

Let m=d+1. As C := [pa(1 + |z|)™™ dz is finite by Lemma we have

1 fllze < 1l = /Rd(l + )" (L [2)) 7" f ()] dz < Ol fllms  (f€S).  (64)
Let k € Ng. By Theorem [11.13|for k € Ng and o € N¢ with |a| < k.

(e leiorf=F((1- ) (izmiors) ).

n—oo n—0o0

Now if f, == 0in S, then (27iz)®f, ———> 0in S for all & € N&. Hence for all o € N¢

‘ (1- A)g ((2riz)* £)

472

n—0o0

— 0,

m,

Therefore by

S sup (14162710 ()] 2= 0,

aeNg oeRd
lal<k
and thus || fullk.s —= 0 (remember [10.2). O

11.17. With the "notation at hand we could instead of also write

hrx¢

F(F)(~a) = f(~a) = f(z) = F() ().

Actually, " commutes with the Fourier transform by Theorem [11.9] i.e.,

f=Ff (ferb).

Be aware however, that in some literature the symbol ~ is used as a symbol for the
Fourier inverse.
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Actually, the previous theorem extends in the following way, in the sense that the
Fourier transform is a bijection on a larger space.

Theorem 11.18. [23, Stelling 15.9] Suppose that f is integrable and that f is too (so
both f and f are in L'). Then

A

flx)=F(f)(—x) = » ]?(5)627ri<5’:’5> d¢ for almost all x € R%. (65)

Consequently, F also forms a bijection on {f € L' : f € L'},
Proof. For all ¢ € S we have by Theorem [I1.7] and Theorem [T1.16]

[ Fhe=[ o= [ 17@)= [ ro= [ Fe
R4 Rd Rd Rd Rd
Therefore, by Theorem we have F( f ) = f almost everywhere. OJ

11.19. Observe that by Theorem the set {f € L' : f € L'} is included in Cj, (where
Cy is viewed as subset of L>).

11.20. With f being the complex conjugate of f, observe that for f € L'(R%)

f=1r
Therefore, as a consequence of Theorem [11.7] we have
(£ 9012 = (F.9) 2. (66)

By the above observation and the Fourier inversion formula, we obtain the following
identity, which is due to Parseval and Plancherel.

Theorem 11.21. [23, Stelling 19.7] [Parseval, Plancherel] F extends to an isometric
isomorphism from L? into L?, so that in particular

Ifllze = 1fllzze (f € L*). (67)

Proof. As C, is dense in L? (see Lemma [A.13)) and a subset of L! it is sufficient to show
for f € C.. Let f € C.. By Theoremm (see also[11.20)) we have

1172 = s Fore = (F, F Pz = (F, Fhre = 1117

11.22. For f € L' and ¢ € S we have by Theorem [11.7]
/ [ = / fe.

So that with the notation of Example [I.6] we have
ui(p) = up(@).

This relation lies at the basis for the definition of the Fourier transform of a tempered
distribution, see the next definition.
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11.23. Before we define the Fourier transform, let us first mention the following. As the
Fourier transform of a real valued function is complex valued function (and in general not
a real valued function), we have to be able to evaluate a tempered distribution in functions
in S(RY,C). If u € &'(R%R), then u naturally extends to a tempered distribution in
S'(R?,C) as follows. Every function ¢ € S(R? C) can be decomposed in a real Ry and
imaginary part S¢ in S(R?,R), so that ¢ = Ry + iS¢. Therefore we can extend u to an
element 7 in 8'(R%, C) by defining

u(p) = u(Re) + 1u(Sp).
Then @ € S'(R%, C). We will from here on also write “u” for “u".

Definition 11.24. Let u be a tempered distribution. We define the Fourier transform
of u, 4 by

W) =u(@)  (ped).
We will also write F for the map &’ — &'.

Example 11.25. The function 1 represents a Schwarz distribution, and so does dg. We
calculate their Fourier transforms. For ¢ € § we have

(Bor o) = 80(9) = 2(0) = [ ¢ = (L),

o) = [ 6= 00 = G0,

where we used the inversion formula in the second line. Hence
5o = 1, 1=26.

The following theorem is a consequence of Theorem [T Theorem and The-
orem [11.16l

Theorem 11.26. The Fourier transform F : u — 4 forms a linear homeomorphism
S'(R%,C) — S'(R%,C). Moreover,

u=F(@) (ueS(RYC)),

and forue S, B e N¢, y e R%, [ : R - R? a linear bijection and \ € R,

F(8%u) = (2mig)Pa, Pt = F((— 2m) u), (68)
F(Tyu) = e *mvq, Tyi = F(&m V), (69)
1 1

where L, is the transpose of I~ as in Theorem [11.9 and similar to “Ixu” is written
for “uoly”
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12 Convolution of tempered distributions

We first introduced the Fourier transform, as we will use this to prove statements about
convolutions. The following theorem shows the key relation of the Fourier transform with
convolution that we will use.

Theorem 12.1. Let f,g € L'. Then fxg € L' and
F(f+g9) = fa.

Proof. By Young’s inequality, Theorem we have f x g € L'. Therefore, by Fubini’s
theorem, we have for ¢ € R?,

F(f *9)(€) = /R Frglaye e
L, L f@gta—y) dye 629 do
Rd Rd

L@ [ gla = e da ay
Rd Rd

where we used Theorem [T1.9 O

As a direct consequence, by Theorem and as multiplication is a continuous
operation on S (see [10.7)):

Lemma 12.2. Let p,p € §. Then
Floxy) = ¢,  Flop) =@ # . (71)
Consequently, ¢ x ¢ € S and the function S x S = S, (f,g) — f * g is continuous.

Definition 12.3. Let u € §’ and ¢ € S. We define the convolution of u with ¢ to be
the function R? — T defined by

uxp(x) =u(TpP) (x € ]Rd).

Similar to Lemma [3.18 and Lemma we have that the convolution between a
Schwartz function and a tempered distribution is smooth, as we will see in Theorem [12.5
However, it need not be a Schwartz function as will be clear from the following exercise.

12.1. Compute the convolution of the tempered distribution 1 with the

Schwartz function e~ 1%

Let us consider the convergence of difference quotients as we did in [3.17]
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12.4 (Convergence of difference quotients in & and 8’). Observe that for f € S,
je{l,...,d} and h € R\ {0}

(P )=

Therefore we have the following convergence in S

T-he; —To\ , n
(=) 7 =% 0,1, (72
if and only if the following convergence holds in S, where §; = (£, ¢;)
627rih§j -1 & hes0 o
( ; ;= omig, f (73)

We simplify the notation for the moment “by substituting ¢t = 2w&;”. For h € R\ {0} let
us write gp, for the function R — C given by

-1
gn(t) = P it (t € R).
Then

n ieiht_ n =
d ():{( 1) L,

—agnl(t .
dtngh inhn—lelht n>2.

As el —1 =it foh et dr,

eiht -1 ‘ ‘ h eirt —1dr ) h rr eiut du dr
gn(t) = P it = ltOT - (1t)2 Jo Jo - 7

and therefore we obtain

. i n=o,
o] < SIAll =1,
|h|"t n > 2.

From this we obtain for k¥ € Ng and h € R with |h| < 1, that for all a € N¢ with |a| < k

2mih€; 1
o ( - mgj)

. < (2m)*1hl(1 + )

and thus by Leibniz rule
2mih€ ;
e i—1 . A
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So that and hold.

Consequently, we have for any u € &’

(Eeih_%>u h=0 Ou in S’

As in the identity is also valid for u € &’ and ¢ € S. Therefore 9;(u * p) =
u * 0.

So the convolution between a tempered distribution and a Schwartz function is
smooth. Moreover, it is of at most polynomial growth:

Theorem 12.5. [7, Theorem on page 151] [24, Theorem I1.7.10] Let u € 8" and ¢ € S.
Then u * ¢ is smooth and of at most polynomial growth, that is u* o € CF°. For all

o € N
0% u* @) =ux* (%) = (0%u) * . (74)
Moreover, the map S — &, ¢ — u * @ is continuous.

Proof. That the convolution is smooth is proven in[12.4] The fact that ux is of at most
polynomial growth basically follows by the inequality (1 + |z 4+ y|) < (1 + |z])(1 + |y|)
and together with the continuity this is left as an exercise. O

12.2. Finish the proof of Theorem m

So convolution with a tempered distribution is a continuous operation and it com-
mutes with translation. Like in Theorem and Theorem [6.7] also each such operation
is a convolution:

Theorem 12.6. [7, Theorem on page 151] Let A be a linear map S(R?) — £(R?) which
commutes with translation, i.e., Tp(Ap) — A(Thy), and which is continuous, then there
exists a unique tempered distribution u € S' such that Ap = ux ¢ for all ¢ € D(RY).

Theorem 12.7. [T, Theorem on page 151] Let u € 8’ and ¢ € S. Then in S’
F(u* @) = ¢, F(pu) = @ * .

Proof. As uxp is of at most polynomial growth, it is a tempered distribution (see [10.24)).
As ¢ is a Schwartz function, also ¢u is tempered.
First let us consider ¢ € D. By and using that ¢ = @, for ¢ € S with ¢ € D

(Fluxp), ) = (ux o, ) = (u, @ x) = (u, o+ 1))
= (u, F(¢y)) = (@, ) = (1, 9).

As D is dense in S and the Fourier transformation is continuous, also {1) € S : ¢ € D} is
dense in § and therefore from the above we obtain that F(ux* ) = @4 for all u € 8’ and
@ € S. Again by the density of D in S and by continuity of the Fourier transform and
the map ¢ — u * ¢, we conclude that F(u * ¢) = $u also for ¢ € S. The other identity
then follows by the first (Exercise [12.3). O
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12.3. Prove that the identity F(¢pu) = @ x4 holds for all w € 8’ and p € S
by using that F(u * ¢) = ¢ holds for all u € §' and ¢ € S.

Like in Theorem [3.24 we have the following associativity rule.
Theorem 12.8. [7, Theorem on page 151] If u € 8" and ¢,1) € S then
wk () = (ux p) 4. (75)
Proof. By Theorem [12.7] and Lemma we have
Flux (% 0)) = Flo* )i = pia,
F((ux ) * ) = pF(u* ) = .
As the Fourier transform is injective on &’ (by Theorem , we have . UJ

Remark 12.9. One other way to prove Theorem is by extending Theorem by
a limiting argument: the identity holds in case ¢ and v are testfunctions, and every
Schwartz function can be approximated in the topology of S by testfunctions, see for

example @

As a tempered distribution is a distribution, we can convolve it with a distribution
with compact support in the sense of Definition[6.9} Remember that every compactly sup-
ported distribution is a tempered distribution (so that its Fourier transform is defined).

We will show that such convolution is a tempered distribution for which the Fourier
transform equals the product of the Fourier transform of each of the distributions. But
first, we will show that the Fourier transform of a compactly supported distribution is a
smooth function.

Lemma 12.10. Let v € . Then v € C5°.

Proof. Let x € C° be equal to 1 on (suppv)s for some § > 0, so that v = yv. Then
0= F(xv) = X * 0.

As x is a Schwartz function, so is X. Therefore © € C5° by Theorem O

As a direct consequence:
Lemma 12.11. Let f € S, then
supp f is compact = f € (Ofie (76)
Regarding Lemma we can actually characterize the Fourier transforms of com-

pactly supported distributions explicitly. For this we recall the notion of analytic function
or holomorphic function.

63



Definition 12.12. We say that a function f : C* — C is entire or call it an entire
function if it is holomorphic everywhere in C¢, by which we mean that for alli € {1,...,d}
and x € C? the following limit exists

o F@ o he) = (@)

h—0 h

The proof of the following theorem requires a little work, the proof can be found in
Rudin’s book on Functional Analysis for example.

Theorem 12.13 (Paley-Wiener). [24] Theorem 7.23]
(a) Ifve &, R>0, suppv C B(0,R), v has order k and

f(2) = (v, e (ze Y, (77)
then f is entire, flga = 0 and there exists a C > 0 such that
f(2)] <O+ [2)ke (2 ec?). (78)

(b) Conwversely, if f is an entire function on C* which satisfies for some k € Ny
and C > 0, then there exists a v € £ with support in B(0, R) such that holds.

is also called the Fourier-Laplace transform of v. More on this topic see for
example [10, Section 10].

Theorem 12.14. Ifv € £ and © has compact support, then v = 0.

Proof. We know that ¢ is entire, which implies that it is analytic, meaning that for each
point zg € C? there exist (aq) aeNd such that > aeNd aq(z — 29)® is convergent and equals

(%) for all z € C%. Therefore, if it is zero on an open set, it is equal to zero everywhere
(as the coefficients a, are determined by derivatives by Taylor ’s theorem). O

12.15. Observe that as the Fourier transform of a Gaussian function is again a Gaussian
function, and therefore its support is the whole R?, we conclude from the Paley-Wiener
theorem that Gaussian functions cannot be extended to entire functions on C¢ that
satisfies . Indeed, if we consider the Gaussian function f : R¢ — R given by f(z) =
e 17 for z € R?, then it is the restriction to R? of the function g : C* — C given by

g(z) = i ez (z € CY).

|
0 n.

For a € R we have g(ia) = ¢’ from which we see that is not satisfied.

In Definition [6.9] we defined the convolution between distributions u and v, of which
at least one has compact support, by

uxv(p) =u(dxp) (peD).

This extends to convolution between a tempered distribution and a distribution of com-
pact support, see Definition |12.17, Let us first check that the map ¢ — u(0* ) is indeed
a tempered distribution.
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12.16. As ¥ is a smooth function of at most polynomial growth for a distribution v with
compact support, and multiplication with such functions is a continuous operation on
the Schwartz space (see @D, the function ¢ — ¢ is continuous as function § — S.
Therefore, as vk = F~(0¢$), the function S — S given by convolving with v, ¢ — v p
is continuous. Therefore, if u € §’, the function & — F given by ¢ — u(0x¢p) is continuous
and therefore is a tempered distribution.

For the definition of v * u, we have already showed in Theorem that ¢ = uxpis
continuous as function § — £. Therefore ¢ — v(u * ¢) defines a tempered distribution
as well.

Definition 12.17. For u € 8’ and v € £ we define u*v to be the tempered distribution
given by

uxv(p) =u(®xp) (p€S).
Moreover, we define v * u to be the tempered distribution
vru(p) =v(ixp) (p€S).

12.18. Asin[6.10] if u and v are tempered distributions of which at least one has compact
support and if ¢ is a Schwartz function, then

(u*xv)*xp=mux*(vxp).

This follows by as D is dense in S and as the convolution with a tempered distribution
is a continuous operation on S.

Theorem 12.19. Letu €S’ andv € E'. Thenu*xv =v *xu and
F(u*v) = di.

Proof. That u % v = v * u follows by Theorem [6.12] because D is dense in S.
For ¢ € § we have

(Fluxv),¢) = (uxv,@) =u*v*@0) = (u, (vp)).

Now v ¢ = F Y F(v* @) = F (b)) = [F(dp))]", therefore

65



13 Fourier multipliers

We will now turn to the definition of a Fourier multiplier. The idea is that we multiply
on the level of the Fourier transform. Formally, if ¢ is a function and v a tempered
distribution we will define o(D)u by F~!(c#). We will consider different conditions for
which this formula makes sense.

Definition 13.1 (Fourier multiplier). For o € C3° we define o(D) : &' — &’ by
o(D)u = F (o) (wed),
and call the function or operation o(D) a Fourier multiplier.

Example 13.2. By Theorem [11.26] we have %u = o(D)u for o = (27i¢)? and Tu =
o(D)u for o = e~2mEY) e,

Pu = (27i€)? (D)u, Tyu=e D)y (BeNd,yeRY). (79)

By the commutativity of multiplication, we obtain that also Fourier multipliers com-
mute. Moreover, if F~!(o) is compactly supported, then the Fourier multiplier of o equal
convolution with F~1(0):

Lemma 13.3. Let 0,7 € C°. Then
7(D)o(D)u = (o7)(D)u = o(D)r(D)u (wed).

Consequently, Fourier multiplier commute with partial differential operators with constant
coefficients and with translations. Moreover,

o(D)(lhu) = [(0oL)(D)u]oly  (ue S, A>0). (80)

If o € S orif o € CF° is such that 6 € £, or equivalently, if o can be extended to an
entire function on C%, then

o(D)u=F You)=F o) *u (ue 8.

13.1. Prove (80).

We extend the notation of a Fourier multiplier in case ¢ is only smooth on set that
contains the support of .

13.2. Let ¢ be a mollifier function and F' be a closed set. Show that ¢, x 1 g
is a smooth function and that all derivatives are bounded, i.e., ¥, * 1p € C¢°.

13.4. Let F be a closed set in R? and suppose that ¢ : R* — F is smooth and of at
most polynomial growth on Fs5 for some § > 0 (the latter means that o1y is of at most
polynomial growth).
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Let x,1 € Cp° be smooth functions R? — [0, 1] that equal 1 on Fs and 0 outside Fs
(that such functions exist follows for example by see for the properties Exercise.
Then ox and ot are in Cp°.

Suppose that u € D’ and suppu C F. Then we know that oxu = oiu by Exercise
Therefore we can define the multiplication of u with o to be equal to oxu, as this is
independent of the choice of x.

We use this to define the Fourier multiplier of ¢ by being the Fourier multiplier of

ox:

Definition 13.5. Let F C R< be closed and o : R? — F be smooth on F3s for some
6 > 0. Let x be a smooth function that equals 1 on Fj5 and equals 0 outside Fys. We
define the Fourier multiplier

o(D):{ueS :suppi C F} - {ue S8 :suppa C F}, o(D)u = F Hoxi),

so that o(D)u = (ox)(D)u for all w € §’ with suppa C F.
If o instead is a smooth function that is only defined on F3j, we can define the Fourier
multiplier in an analogues way as it does not matter how o is defined outside Fyy.

We will show that the so-called Bessel potentials are examples of Fourier multipliers
in Moreover, we show that the fractional Laplacian is an example of a Fourier
multiplier in the sense of Definition [13.5] in [13.9

But first we give some other examples of Fourier multipliers, or that can be interpreted
as Fourier multipliers.

13.6 (*Other Fourier multipliers). There are some other operations that we could
consider to be Fourier multipliers.

(a) Let uw € §" and v € £'. We have seen that © € C;° and therefore du and thus
F~1(tu) defines a tempered distribution (as we always wrote multiplication of
distributions u by functions f as fu, we write du and not ut). We could also write
u(D) for the function & — &' given by u(D)v = F~!(tu). Observe that as F~*(u)
is a tempered distribution, by Theorem [12.19| we have

F YN ou) = FHu) *v. (81)

Ezxample. Observe that convolution is a special case of such Fourier multiplier as
uxv=F1(a0) = v(D).

(b) Consider u € L? and o € L' with 6 € L'. By Young’s inequality we know that the
convolution of an L' function with a L? function is again an L? function, so that
F~Y(o)*u € LP. As u also represents a tempered distribution, 4 is also a tempered
distribution. We can also argue that taking the convolution with F~1(o) can be
seen as a Fourier multiplier. However, a priori the multiplication of o with @ is not
defined as a (tempered) distribution, as o need not be smooth. However, let us
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argue that the identity still makes sense in this case. By Corollary [3.5] equation

and Theorem m
(F (o) *u, @) = (u, F(0) x ) = (u, F(eF ' ())).
Therefore we could also define

o(D): LP — LP, o(D)u = F (o) * u.

13.7. Observe that the Fourier multiplier definition in[I3.6[(a)]does not allow —in general-
for composition of Fourier multipliers, as u(D)v may not be compactly supported. For
example, if w would be also tempered, the composition of Fourier multipliers w(D)u(D)v
would equal be F~1(duw), but then one would need to make sense of uw.

13.8 (Bessel potentials). Let us consider the following partial differential equation for
a given g € §":

(1-A)u=yg.

We can write (1—A) as a Fourier multiplier (by for example (79))), namely (1—A) = o(D),
for

o() = (L+4n’lgf’) (€ RY).
As this function is strictly positive, we can divide by it: We define 7 : R — R by
(€)= (1 +4n%g) ™ (€eRY.
It is not too difficult to show that 7 € C7°. As 7o =1,
w=F Yrot) = 7(D)o(D)u =7(D)(1 — A)u = 7(D)g.

So we could view 7(D) as the inverse of the operator (1 — A).
With the use of the Fourier multiplier, one defines the operator (1 — A)® for s € R by

(1 —-A)°u=c*(D)u, (82)

where 0%(¢) = (0(€))* for ¢ € R? (observe that with this notation 0=* = 79). Even
though for s < d the function 7° is not integrable on R?, the Fourier inverse of it as
a tempered distribution is represented by a function that is smooth on R\ {0}. The
function (on R%\ {0}) F~1(7*) is also called a Bessel potential. For more on Bessel
potentials we refer to [31, Section 7.7], [9, Section 4.3] and [12, Section 6.1.2]. In the
last reference, not the function F~1(7%) but the operator (1 — A)~¢ is called a Bessel
potential. We come back to Bessel potentials in [13.13] and [13.15]
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13.9 (Fractional Laplacian). As ¢ and 7 in are in Cp°, the Fourier multipliers
(D) and 7(D) are defined on the whole of §’. Let us give an example of a Fourier
multiplier in the sense of Definition m For s € R the function o* : R?\ {0} — R given
by

o*(¢) = |2me[*, (€€ R\ {0})

is in C3°(R?\ {0}). For k € N that the operator A* equals the Fourier multiplier 02*(D)

(where 0% can actually be viewed as a smooth function on the whole of R?). Let s € R.

We define the fractional Laplacian for v € S’ with suppa € R%\ B(0,0) for some § > 0
by

In the rest of this section we get back to Sobolev spaces and describe them in terms
of Fourier transforms and Fourier multipliers.

13.10 (Sobolev spaces described by their Fourier transforms). In Theorem|8.11}
we have seen that H*, being the Sobolev space given by

HY =W = {u e D' : 9%u c L*(Q) for all § € N& with |3 < k}.

is a Hilbert space with norm

1
lulge = (> l0°uliz)®  (wve HY),

aeNd:|a|<k
It turns out that H* be described using Fourier transforms (see Exercise|13.3)) , as follows
HY={ue S : (1+€)*u e L?}, (83)

moreover, the norm is equivalent to u + [|(1 + |€])¥@]|;2, which means there exists a
C > 1 such that

1 N
clulles < 11+ €D allz < Cllullgr  (ue HY). (84)

To prove the Multinomial theorem might be beneficial.

Theorem 13.11 (Multinomial theorem). For x = (x1,...,14) € F? and k € N

(r1+-+a)h= D <z>xa (85)

aeNg:|a|=k

where with o! = aqlas! - - - ay!,

BN KK
al ol aglag!cay!”
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Proof. This follows by induction on the induction. For d = 1 the formula is trivial for all
k € N. For d = 2 it is the usual binomial formula. Suppose holds for a fixed d € N

and for any k € N. Then for y =21 +--- 4+ 24 and z = (x1,...,24) we have
k k m,.k—m
(y+zap)* = D <m>y Tgt
meENg:m<k
= 1
meENg:m<k m a€eNg:|a|=k @
as for 8 = (ai,...,aq,k —m) we have || = k and
kY (m\ _ k! m! [k
m)\a) (k—m)mlai!---aq \B)’
it follows that is valid also for for d + 1. O

13.3. Show that holds and show the existence of a C' > 1 such that
holds.

The above equivalence of norms lets us extend the notation of H* spaces to non-
integer values of k, as follows.

Definition 13.12. For s € R\ Ny we define the fractional Sobolev space H® by
H ={uecS:(1+¢)% e L?}, (86)
and define a norm on H® by
lullgs = (L +1&D)%all 2 (uwe H?).

13.13. As
1
V2
also the norms u — ||(1 4 |€])%@|| 2 and u — ||(1+ |€[?)24| 2 are equivalent. Therefore,

by by Plancherels equality and by the definition of (1 —A)® as in (82)) we have that || - ||z
is equivalent to u — ||(1 — A)2ul| .

I+E)<A+[EP)2<A+[¢)  (€eRY,

Example 13.14. We have already seen that § = 1. As (1 + |€])® is in L2 if and only if
2s < —d by Lemma |10.13] it follows that § € H?® if and only if s < —%.

13.15 (Bessel potential spaces). We have only considered a generalisation for the
Sobolev space W*P for p = 2 but for any p one can actually define fractional Sobolev
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spaces, or also called Bessel potential spaces. In [32, Section 1.2] for example, is shown
that (with the definition of (1 — A)% by (82))
WhP = {f eS8 :(1-A)sfe P}, (87)

and that || - ||yyx» is equivalent to

fr (1= A% f 1. (88)

Similar to Definition [13.12 one defines the fractional Sobolev space Hp for s € R by
replacing “k” in by “s”:

Hy={ues:(1-A)iue L}, (89)
and define a norm on H;’ by
lullgy = 11— A)2ulr  (weS).

Then Hllf = WP and by Plancherel’s identity it follows that HS = H°.

14 Bernstein and the Hormander-Mikhlin inequalities

In this section we consider Fourier multipliers of tempered distributions of which their
Fourier transform has compact support, either in a ball or annulus. By Lemma we
know that these tempered distributions are C;° functions. We will prove the Bernstein
inequality and the Hérmander—Mikhlin inequality. In the next section we will define
Besov spaces by the Littlewood—Paley decomposition. In we have seen that
a tempered distribution u can be written as the sum over x,u, where x,, is a certain
partition of unity. The Littlewood—Paley decomposition happens on the level of Fourier
transform, one decomposes a tempered distribution u to be the sum over y,(D)u for
a certain partition of unity x, of which each function is either supported in a ball or
annulus.

Definition 14.1 (Annulus). An annulus in R? is a set of the form {z € R?:r < |z| <
s}, for s, € R with 0 < r < s. We will write

Alr,s) ={z e R%: r < |z| < s},
and A°(r, s) for its interior {z € R?: r < |z| < s}.

Before we turn to the Bernstein inequality, we prove how a tempered distribution
with Fourier support in an annulus can be described as a convolution of a function with
the k-th order derivatives of u.

Lemma 14.2. Let A be an annulus and B be a ball around the origin in R?. Let x € CX®
be equal to 1 on Bs for some 6 > 0. Let ¢ € C° be supported in an annulus and be equal
to 1 on As for some 6 > 0. Let k € Ny.
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(a) If u is a tempered distribution with supp @ C B, then for all o € N&
0% = hq * u,

where ho = 0°F ~1(x).
(b) If u is a tempered distribution with suppa C A, then

u = Z Jga * 0%u,

a€eNg:|al=k

where
k
go = (a) F ((~2mi6)” 2 %)

(¢) There exists a C > 0 such that for all r € [1, 0]

lhallzr, Igallr < C*1 (o € NG, |a] = k).

Proof. |(a)| follows from the fact that @ = xa.
For |(b), as @ is supported on an annulus, we can divide (and multiply) by |27&|?*.

By the multinormial theorem (see Theorem [13.11] take z; = |&;|? = (—i&;)(i&)):

2me = Y (S)(—%i&)“(%i&)“ (€ €RY). (90)

a€N? : |a|=k

With this we have by Lemma and as (27i€)*(D) = 0,

Y aeNd: o= 2 —27i€)*(2mi&)™
u:mu:( No|k<22r<§|2k ) ))@)u

_ (EaeNgwak (5)(‘27“5)a) (D) 0.

|2m&[

By Corollary with C1 = 1+ ||(1 + |2]?)~?||;1 (which if finite by Lemma
10.13|), we have for all f € S

Fllzr < 1Flpr + 1 Fllzee < Coll (L + [2]*)2 fl o

Let o € NY, |oo| = k. We first consider the bound for hy. As |||z < || f]l11, by we
have

1L+ ) hallpoe < II(1 = A)(27i€) x| 1.
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By the Multinomial theorem (Theorem [13.11]) we have
d d
N o 1 (B
BENET:|B|=d =1
As ZﬁeNdH,lm_d (g) < (d+1)%, for Cy being the Lebesgue measure of the support of x,
4l 8=

11 = A)(27i€) x| < Ca(d + 1)) (2mi€) x| o
and by Leibniz formula there exists a C5 > 0 (only depending on d) such that

” (QWié)aXHCQd < C3|| (27Ti£)a‘|02’1(suppx) HX”CZd'

As |a| = k, by applying Leibniz formula & times, for C4 > 0 given by

d .
Cy = max 12771& | 24 (supp x)

we have
H (27Ti€)a”02d(suppx) < C;’»fC!f

Therefore by choosing C' > 0 large enough (for example C' = C; + Cy(d + 1)% + C5 + Cy)
we obtain the bound for h,.

For g, the factor (’;) can be bounded by d*. The rest is very similar to ho: by
following the lines above with x = |[27€&|~2*¢, we have

lgallzr < d*C*1[12m€] 7> ]l coa.

By applying Leibniz formula again on the last term k times, we get another factor MF*
for M = H‘QT[-E’iQHCQd(supp(i))' O

Now we will use the descriptions of u and d%u by the convolutions in Lemma [14.2
together with the Young’s inequality in Theorem [14.3

14.1. Show that for f € L? and A > 0

liafllze = X% | flles (91)
where Iy f(z) = f(Az) (as in[10.5).

Theorem 14.3 (Bernstein inequality). [2, Lemma 2.1] Let A be an annulus and B
be a ball around the origin in RY. There exists a C > 0 such that for all k € N and
p,q € [1,00] with ¢ > p and any u € LP we have for all A > 0

1 1
suppi C AB= max |[|0%/|a < C’kH)\Hd(E*E)HuHLp, (92)
a€eNg:|al=k
supp @ C A = C 7 I\Fllu||pp < max 0% e < CFFIN¥|Ju| 1o (93)
aeNd:|a|=k
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Proof. First we argue that we may restrict to the case A = 1. Let C denote either A or
B. If supp & C AC, then supp v C C for v = l%u as © = A\,4. For the norms we have for

a € Nd with |a] = k
4 fe —k o —k+2 qa
[ollpe = Arllullre,  [[0%0][Le = A1 (0%0)|[La = A7 a[|0%u] La-

Hence, we may indeed assume A = 1.

e Assume that supp@ C B and h, be as in Lemma @ so that 0% = hq * u.
Let r € [1,00] be such that % +1= % + %. By Young’s inequality (Theorem and
Lemma there exists a C' > 0 such that

10%ullze < [Ihalprllullze < C*Ful|y.

e The upper bound in follows immediately from . Let g, be as in Lemma @
By Young’s inequality

lule < 3 ||gauL1Haauums( max ||a“u||m)( )y ||gauL1).

aeNg:|al=k

a€Nd:|a|=k a€eNd:|a|=k
So that the lower bound follows by Lemma O

14.2. Let u € CfF (see Definition i for some k € N. Let p € C be

supported in an annulus A, so that py :=1 1p is supported in AA. Show that there exists
a C' > 0 such that

loA(D)ullzee < CHHATF |lullen.

14.4 (Towards Besov spaces). As we see from Exercise[14.2] if a function has bounded
derivatives of a certain order, this implies a decay on the L° norm of the Fourier multi-
plier of a function py that is supported in AA as A — co.

One could also say that by multiplying the Fourier transform @ by py, one takes the
frequencies of order A\. The bound then gives a control of the frequencies of this order.
In the theory of Besov spaces, this control on the frequencies is the behind describing the
regularity of a distribution. We will get back to this later. Observe that this agrees with
the fractional Sobolev space H® introduced in Definition in which we also obtain
the regularity s by describing a control on the frequencies of the distributions.

We will now turn to a lemma that describes the effect of certain Fourier multipliers
on LP norms distributions with support in annuli or balls (Lemma . This will later
be used to describe the increase of decrease of regularity with respect to certain Fourier
multipliers.

Let us still first introduce some notation and auxiliary facts:
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14.5. Let us write [} = )\_dl% for A > 0. The * notation agrees with the fact that [} is

the adjoint of [, as an operator on L2, i.e.,
(If.g)re = (f.hg):  (f.9€L?).
By Theorem we know that for a distribution u € &',
F(lyu) =01a F(lju) = lza. (94)
Observe that by
Al = fllee (A>0.feLh. (95)

Definition 14.6 (Mikhlin norm). Let m € R and k = 2|1+ £]. For 0 € C*(R?\ {0})
we define its Mikhlin norm of order m € R by

My(0) = max sup  |z]l*17™|8% (2)].
aeNg:|a|<k zeRrd\ {0}

Observe that M, (o) < oo if and only if there exists a C' > 0 such that
0% (2)| < Clz[™ 1 (z e R\ {0},a € N§, |af < k). (96)
In the case that the norm is finite one can of course take C'= 9, (o) in (96)).

14.7. Observe that for m < 0 and for o € § the Mikhlin norm 9,,(o) is finite as every
derivative decays faster than polynomially.
Moreover, observe that we have the following scaling relation

My (Ino) = XM,y (0) (0 € C*(RY\ {0})). (97)
14.3. Is the Mikhlin norm 9t,,(o) also finite for all ¢ € S and m > 07

Lemma 14.8 (Hormander-Mikhlin inequality). [2, Lemma 2.2] Let m € R and k =
211+ 4].
(a) Let A be an annulus in R%. There exists a C > 0 such that for all p € [1,00],
A>0, all 0 € C®(RI\ {0}) and all u € LP

supp @ C A = |loe(D)u|lrr < CMp (o) N 1| e (98)

(b) Let B be a ball around the origin. There exists a constant C such that for all
p€[l,00], A >0, all 0 € C®(RY) and all u € LP

supp @ C AB = |lo(D)u|zr < CO (o) A" ||| 2o (99)
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Proof. The proof of @ and @ are very similar. Without loss of generality we may
assume M, (o) < co. For @ assume that ¢ € CZ° is supported in an annulus be such
that ¢ = 1 on As for some § > 0 and for @ assume that ¢ is instead supported in a ball
such that ¢ =1 on B;.

Let A > 0. Let u € LP be such that its Fourier transform is supported in AA. Then
U= (l%gb)a and thus

o(D)u = (al%qﬁ)(D)u = f_l(al%¢) * U
By Young’s inequality we have ||o(D)ul|zr < ||.7:_1(al%¢)||L1||uHLp. As by

FHolrg) = F (11 (b)) = 11 (9hro),

1
A
by it suffices to show that there exists a C' > 0 such that

IF " (dlao) || 11 < CD (o) A™.

Observe that g =1+ %J is the smallest integer such that (1 + |:1:|2)_% is integrable.

We multiply and divide by this function to estimate the L' norm by the integral of
k

(1 + |z|?)~ 2, for which we write M, and the supremum norm of the rest

k
2

IF~ (@)l < M1+ |2*) 2 F~H(dlro) || oo

With ¢, g € R being such that

E
2

(1-(2m)2A)2(fg) = > Capd*f -89,

a,BENG:|al+]8|<k

we have by Theorem and Theorem |11.26

11+ [22) 2 F (o) e = [F7H(1 = (27)2A)2 (6130)) 1=

< 3 lcap| - 0% - 9Plro | 11
a,BENS:|a|+|B8]<k
< > |Ca] - ||aa<z>||L1£ sup  [9°1ha(€)].

a,BENE: o] +|8]<k Esupp ¢
We estimate the latter by

sup [0°Lo (€)= sup A|0Fo(Ae)| < sup AP, (o) agm 1Al
£€supp ¢ £€supp ¢ £esupp ¢

< \N"M,, (o) sup ]f\m_w‘.
§€supp ¢

Hence from the above estimates we conclude that there exists a C that only depends on
d, m, ¢ (which only depends on A or B) and k, such that and hold. O
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Remark 14.9. We called Lemma[I4.8|the Hérmander-Mikhlin inequality as it is strongly
related to what in literature is called the Hormander—Mikhlin multiplier theorem, see [29]
for example, or [19] (in Russian) or [16] for the work of Mikhlin and Hérmander. As un-
fortunately happens with names from languages with different alphabets, we also found
instead of Mikhlin the names Michlin or Mihlin.

Their theorem dealt with the case m = 0. See for example also [I7, Theorem 5.5.10]
(which looks again a bit different). We decided to call the norm the Mikhlin norm as
that seems to align with the literature and it seems that the Héormander and Mikhlin
statements are slightly different.

14.4. The upper bounds in the Bernstein inequalities can also be proved
using the Héormander—Mikhlin inequalities, as follows. Prove that there exists an M > 0

such that for all £ € N and o € N¢ with |a| = &,
My ((2miz)*) = M*.

Conclude the upper bounds in and for ¢ = p from the Hérmander-Mikhlin
inequality.

Let us regard the applicability of the Hérmander—Mikhlin inequality for the Fourier
multipliers we have considered in and namely (1 — A)% and (—A)%. For o =
|27r2|® the Mikhlin norm of order s is finite (as we will see), but for (1 + |z[2)? it is not
for s and m being strictly positive, as the function at zero equals 0 but ||™ equals zero
for m > 0. However, if we apply the Fourier multiplier only to those v € LP that have the
support of their Fourier transform bounded away from zero, we can still obtain a bound
like . We state the exact statement in Lemma after extending the notion of
the Mikhlin norm to a seminorm that only considers the space R? without a ball at the
origin.

Definition 14.10 (Mikhlin seminorm). Let m € R and k = 2|1 + %J For o €
CF(RE\ {0}) we define its Mikhlin seminorm of order m € R on the complement of a
ball of radius 6 by

My p(o) = max sup []*7™9% (2)].
a€Ng:[a| <k zeR\ B(0,0)

14.11. As for the Mikhlin norm, 9, g(0) < oo if and only if there exists a C' > 0 such
that

0% (2)| < C|z|™ e (x € R\ B(0,0),0 € N, |o| < k). (100)

Moreover, as o is smooth on R?\ {0}, if 90%,,, ¢(c) is finite for some § > 0, then it is finite
for all 6 > 0.

Lemma 14.12 (Hormander-Mikhlin inequality 2). Let m € R, k = 2|1 + %J and
6 > 0. Let A be an annulus in RY. There exist C > 0 and a > 0 such that for all
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p € [l,00], A >0, all 0 € C®(RY\ {0}) and all w € LP which Fourier transform is
supported in \A,

loD)ullrr < CMypya0(0) A" ||| Lp- (101)

Proof. Without loss of generality, we may assume that there exists a § > 0 such that
M,,0(0) < oo (so that this is actually finite for all ). Let r,s € (0,00), r < s be such
that A = A(r,s). Let x € Cgo(Rd) be equal to 1 on R?\ B(0, %7“) and 0 on B(0, %r).
Then o(D)u = (ox)(D)u and by Leibniz formula there exists a C' > 0 such that

M (ox) < lIxllerM,, or (o).
Therefore (101) follows from Lemma [14.8|[(a)} O
14.13. For o € C*(RY) there exists a 6 > 0 such that M,, 9(0) < oo if and only if

max  sup (1 + |z))/"0% (z)| < oo,
a€eNd:|a|<k zcRrd

(see Exercise [14.5) or equivalently, there exists a C' > 0 such that for all o € Ng with
la] <k

0% (z)| < C(1+ |zl (2 e RY).
14.5. Prove the statement in (14.13
Lemma 14.14. Letl € R. For allx # 0

8a|x|l _ >ieo Q%(-T)|x|l_2(n+i) if |a] = 2n for some n € Ny,
=0 Q%z‘+1($)|$|l_2(n+z+l) if |a] =2n 41 for some n € Ny,

where Q% (z) = > :18|=k ck7a7ﬁx5 for some cj o5 € R. Consequently,
My (|]!) < oo.

Proof. First note that d,,|x|' = Oy, (2% +--- + xg)% = l|z|'~22; for all | € R. Moreover,
for all multi-indices 3 we have

0, o o] = (B~ VP cilall +laerlall =2 it B2 1,
o laB+ei|p|i=2 if 8; =0,
This argument can be used to proof the statement by induction. O

Lemma 14.15. Let m € R and [ € N. Then

M1 ((1+ |2])™) < 0.
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Proof. Let a € Ng. We will use Theorem Let g(y) = (1 +y)™ for y € (0,00). Then
for ke N

Dkg():{(1+y)m_k k¢ {m+mn:neN}
0<(1+y)™* ke{m+n:necN}L

On the other hand, by Lemma [14.14] we have for all § € Ng that there exists a cg > 0
such that D? |z|' = cglz|'~18. Hence if 1 < k < |a| and b € (N4)*\ {0}, by + -+ b, =
then

k
HDbi ‘x’l < ’x‘lk—m\

i=1

And so ‘Dkg(ml) K Db |xyl] < (1 + |z|Hy™F|z|*=1el for all k with 1 < k < |a| and all
x. Let > 0. Then there exists a C' > 0 such that for all k¥ with 1 <k < |af:

L+ |2y < Cla|™ ™ (22 |z| > 0).

Hence with Theorem [D.1]

|a|

0% (x)] < >

k=1

k
D*g(lz|') [T 8" |2l'| < lalClaf™ 1 (2« |2| > 6).

=1

Remark 14.16. In [2, Lemma 2.2], the o is not assumed to be infinitely differentiable,
but have k-th order derivatives. However, in that case one has to justify the formula
o(D)u = F~Y(oa). For u € LP -to me- it is not clear whether 4 (with compact support)
is such that one can make sense of ot as a tempered distribution. If @ is given by a Radon
measure (or of order 0), then o@ would be again a Radon measure and with compact
support, therefore a tempered distribution. Observe that 1 € L and that 1 is not
represented by a function but by do.

15 Besov spaces defined by Littlewood—Paley decomposi-
tions

We write “N_;” for the set {—1,0,1,2,...}. Next we introduce the notion of a dyadic
partition of unity, which consists of one function that is supported in a ball and equals
1 on a smaller ball around zero and of functions that are supported in annuli which are
scaled versions of each other.

Remember that a function f : R? — F is called radial if that f(z) = f(y) for all
z,y € R? with |z| = |y].

Definition 15.1. Let B be a ball around zero and A be an annulus. Let x and p be C*°
radial functions with values in [0, 1], x supported in B and p supported in A. We say
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that (x, p) forms a dyadic partition of unity if for p_; := x and p; := p(277-) =l p we
have

1
SopO=1  5< Y pEP<1 (EeR), (102)
jEN_, jEN_;
li —j| > 2= suppp; Nsuppp; =0  (i,j € Np). (103)

(pj)jen_, will also be called a dyadic partition of unity.

15.2. Next, we show the existence of a dyadic partition of unity. For this we take the
annulus A = A(2, 8) so that (103)) follows directly from the fact that supp p; C 2°A.
Indeed, if k € Ny and 284N A # (), then %- > 2’“%, ie.,

25
ok < 3 < 22 which implies k < 1.
Therefore
li—j|>2=2AN2YA=0 (i,j €Z). (104)

Theorem 15.3. [2, Proposition 2.10] There exist C* radial functions x and p such that
(x, p) forms a dyadic partition of unity, where x has support in the ball B = B(0, %) and

p has support in the annulus A = A(%, %) Moreover,

: 1 ,
Yo =1 S<Yp@n?<1 (@eRN\{0).  (105)
= jEL
Proof. Let a € (1,%) and C = A(L,2a). Then, as (,2a) > [1,2], we have
U 27¢ =Rr%\ {0}, (106)
JEZ

Let 6 be a smooth radial function supported in .4 that equals 1 on Cs for some ¢ > 0. By
(T04)) for each ¢ € R\ {0} there exists an ¢ > 0 such that #(277-) is nonzero on B(¢,¢)
only for finitely many j € Z. Therefore the function S : R? — R defined by

S =) 6(277) (£€RY),

JEZ.

is smooth. As 6(277.) is one on 2/C for all j € Z, by (106) it follow that S(&) > 0 for
¢ € R%\ {0}. We define the functions , p : R — R by

p<§>:§((§), O =1- T eV (€er)
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Then p and x are radial functions because both # and S are. Moreover, they are smooth,
as # is smooth and S is smooth on R%\ {0}. For ¢ € R?\ {0} we have Siezp(2776) =

58 = 1. As supp6(27-) c B(0, ) for j € N, it follows that

"

suppx C B(0,3), > p(277¢) =1 (£€R'\ B(0,3%)),
Jj€Ng

and in particular 7,y | pj = 1 with the notation for p; as in Definition

We are left to show that % <Yjez p(277€)? for all £ € R\ {0} and % < Yjen_, p;(€)?
for £ € R%  Let us write $,qq = > jeaz+1P(27 7)) and Sepen = > ez P(27 7). As
the functions p(277.) for j being odd have d15301nt support by -, we have Eodd =
> jeazsr p(2774)2. Similarly, 332,., = 3 jcoz p(277-)%. Therefore, for £ € R4\ {0},

1= (Soad(§) + Seven(€))? < 2(X244(8) + T2pen(€)) =2>_ p(277€)*.
JEZ

O
15.4. As we have seen in the proof, to form a dyadic partition of unity it is sufficient to
consider only a function supported on an annulus with certain properties. In the sense
that such function also can be said to “form a dyadic partition of unity”. In other words,

a dyadic partition of unity (p;)jen_, is generated by po, as p; = po(277-) for j € Ny and
p—1=1=3 N, Po(277+).

Lemma 15.5. Let (pj)jen_, be a dyadic partition of unity. Let x = p_1, p = po and
write Aj = p;(D). Then

feS=A;feS, uweS=Aues, uvel’P= AjuclLl (jeN_),

and

Z pi  (J €N, (107)
j=—1
o Ajf=f nS (feS), (108)
JEN_3
Z Aju=u inS (uwed8), (109)
JjEN_1
18 fllze < IFH ) leall fle (5 € No, f € LP), (110)
J
YA <IFTON e (J €Ny, feLP). (111)
Jj=-1 Lp

15.1. Prove Lemma 1 (Hint: Use -.
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15.6 (The notation “} iy _,”). Let u; € ' for j € N_;. We write

PR

JjeN_;

to denote that u is the limit of the series independent of its reordering, which means that
for each bijection g : N_; — N_; we have

w=lim Y uy,). (112)

This will however not be of any importance, so one may as well interpret it as Z?’;l uj.

(Hint: Use [10.6][(T)} to prove the condition observe that

N
sup || > pgmller < sup H >, pjl|  + sup >, pj
NeN n=1 jE2Ng—1 Ck NeN jE2Ng Ck
j€{q(n):ne{l,...,N}} je{q(n):ne{l,...,N}}
< s lpgllos + sup oyl <2 sup oyl
j€2Ng—1 j€2Ng JjeEN_;

where we used that [|f + gl[cr = || fllcx V |lg|lcx for f and ¢g with disjoint support. )
In these lecture notes we interpret for example ||ul|z» for u € S’ that is not represented
by a LP function to be equal to infinity.

Definition 15.7 (Besov Space). [2 Definition 2.68] Let a € R and p, ¢ € [1,00]. Let
(pj)jen_, be a dyadic partition of unity. We write p = pp and A; = p;(D). A; is also
called a Littlewood-Paley block. We define the nonhomogeneous Besov space Bﬁq[p] to be
the space of all tempered distributions u such that

Jullsg g = | (Fol8s0len) | <o (113)

—1||pq

”

Here we wrote “|| - [|z” as an abbreviation for “[| - ||y The parameter o can be
interpreted as a “regularity parameter”. See for example Exerc1se [15.2) for the implication
that “being of a certain regularity” implies “being also of lower regularity”.

We will drop the notation “[p]” later, as the space does not depend on the (choice of)
dyadic partition of unity, this follows from Theorem we mention this in

15.2. Let p,q € [1,00], @, 3 € R. Show that By [p] C ng[p] for § < o and
By lp] C By lp] for € > 0.

In the proof of Theorem we use Young’s inequality for /P spaces:
Theorem 15.8 (Young’s inequality for /P spaces). Let p,q,r € [1,00] be such that
1.1 _ 1
lylo14l
For f € (P(Z), g € t4(Z) we have f*g € {"(Z) and

1 * gller < 1 Fllevllgllea
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Proof. Follows in the same way as Theorem [3.4] but with applying Holder’s inequality
to the sequence spaces ¢P(Z), which means the underlying measure space is Z equipped
with the counting measure. O

Theorem 15.9. Let a € R and p,q € [1,00]. Let B be a ball around zero and A be an
annulus.

(a) There exist C > 0 such that for all dyadic partitions of unity (pj)jen_, and
(0})jen_, with supp p—_1,suppo_1 C B and supp po,suppog C A, and for allu € &’

| (2l

< (2los Dyulls)

JeN_1 FEN_1||gq

1a

(b) Then there exist C' > 0 and m € Ng such that for all sequences of smooth functions
(uj)jen_, with

supp@_1 C B, suppi; C 27 A for j >0, H <2jaHuJ-HLp> , H < 00,
JEN_1|pq
ui= Y ien , Uy exists in S,

) < C| (P lulin) oy | Bells  eS) (114)

JeN-IH

and for all dyadic partitions of unity (p;)jen_,

< CH(QJ'“HujHLp)

279 5(D 115
H( o >uum)j€N_1H@ il (115)

(¢) If « > 0, then there exist C > 0 and m € Ny such that for all sequences of smooth
functions (u;)jen_, with

< 0. (116)

supp @i; C 2'B for all j € N_y, H(Qjo‘Huj”Lp)jeN )
_ 0

one has that u := 3 ;cn | uy exists in S, (114) holds and (115)) holds for all dyadic
partitions of unity (p;)jen_, -

(d) If « =0 and q = 1, then there exist C > 0 and m € Ny such that for all sequences
of smooth functions (uj)jen_, with (L16) one has that u:=3";cn , u; exists in &',
(114) holds and for all dyadic partitions of unity (p;)jen_,

(117)

sup [lo;(D)ull s < C||(lusllze)jen

JjEN_1 ¢

Proof. @ follows from @
Let (uj)jen_, be as in@
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e First we prove that for all bijections ¢ : N_; — N_; the sum Z}]:—1 Ug(j) CON-
verges in S’ as J — oo and prove . By Theorem it suffices to prove that
o521 [ug, )| < oo forall p € S. Let p € S. Let k € Ny be such that & > —a. For all
j € Ny we have by Lemma, [14.2

BENE:|B|=k

And thus

(ujo0) =275 (=% DT (w20l g) * %),
BENG:|B|=k

By Holder’s and by Young’s inequality, with r € [1, oo] such that % + % =1,

i o
ujo @) <27Mluglle > 127%(aigp) 11 107l e
BeNE:|8|=k

By Lemma [10.19] there is an n € N and a C; > 0 such that

1870 < C1|0%

n,S < 01”30||n+k78~
By 1279(19;G5)|| .1 = ||ggl| 1. Therefore with

Cr= > lgslu,

BENG:|8l=k
we have for all j € Ny

[(uj, ©)| < C1C2277¥ ||| Lo ||l n-ss
< 010,271 (k+a) (QjaHUjHLP)

| Ielnss.

We may assume that the above also holds for j = —1, as by a direct application of
Holder’s inequality we have

[(u_1,0)| < [Ju_1|lrellellzr < Ctl|u—1]|rr|l¢|

(27wl 20 )

n,S

< Clzk'-f—a

N

As k + a > 0, there exists a C' > 0 such that (114 holds with m =n + k. 3
e Let now (pj)jen_, be a dyadic partition of unity. We prove (115). Let B be a ball

around zero and A be an annulus such that

suppp_1 C B, supp po C A. (118)
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Let N € N be such that
WANA=2ANB=2ANA=2ANB=0 (j>N). (119)

We write A; = p;(D). Then Aju; = 0 for all i,j € N_j with |[i — j| > N. As 2079« <
21N for i, € N_y with |i —j| < N, by (I10) and (I11)) (for j = —1) there exists a C' > 0
such that for all j € N_4

' N ‘ J+N '
2Ajulle < Y0 2% Al <C Y 2wl
i=(j—N)vV—1 i=(j—N)v—1

For k € Z let ay = 1|_y,n)(k) and b, = 2k ||y || » for k € N_y and by = 0 otherwise.
Write a = (ak)gez and b = (bg)gez. Then
J+N '
Z 2ZQHUZ'HLP = (CL * b)J (] S Z)
i=(j—N)v—1

Therefore by Young’s inequality of Theorem [15.8]

| @ lasullr)sen

pqyy S Cllax bl < Clalag)bllaa),

as [|bl|ga(z) = H(QjaH“J'HLP)jeN_l and ||al|g1(z) = 2N + 1 this finished the proof for

(b))

e Suppose that o > 0 and (u;)jen_, is as in By Holder’s inequality we obtain

£4(N_1)

i) < Nl lellin < 279 (20aslzn) | el
JEN_1||pq

which is summable as o > 0. || can be obtained in the same way as above.
Let N again be such that 22 ANB =0 for j > N (as in (119))). Then Aju; = 0 for all
j > i+ N and so by (110) and (111)) there exists a C7 > 0 such that

2 Ajull e < ST 20D Ay
ieEN_1:i>j—N
<Cp Y 20700 | = Cy(ax b)(H),
ieEN_1:i>j—N

where aj, = 280 ny(k) for k € Z and by = 2"|juy||z» for k € N_y and by, = 0
otherwise. So that again with Young’s inequality, we obtain the desired bound as

(N-1Da oNa

2
lalla = 3> 2k= 3 oMo = oo = T
k€Z:k<N keNg o o

. @Ifollows again by applying Holder’s inequality and the estimate || Ajullpr <> 2ien_, 1Al ze.00
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Remark 15.10. In general the inequality (115) only holds in this direction. E.g., let
ug = —u1 # 0 in LP be supported in AN 2A4 and u; =0 for j ¢ {0,1}. For this example
the left-hand side of (115|) is zero and the right-hand side is not.

15.11. Suppose p and o form dyadic partitions of unity and that o € R, p,q € [1, 0]
By Theorem [15.9|[(a)] it follows that there exists a C' > 0 such that

1
SNl o) < lullsg,[o] < Cllullgg, i (weS).

Therefore By [p] = By ;[o] and their norms are equivalent. For this reason we will write
“Byp,” instead of “By [p]” and “| - [|pg " instead of “| - [|pa (" of course the norm
depends on the choice of partition, but as our statements only consider estimates, the
choice of partition is irrelevant for our purposes.

For the rest of this section we fix (y and) p and also the annulus .4 and ball B such
that supp p C A and supp x C B.

In Theorem we will show that Besov spaces are Banach spaces. Moreover, one
could say that they are sequentially compactly embedded in &’. In other words, every
bounded sequence in a Besov space has a subsequence that converges in S’ to an element
of that Besov space. Moreover, the norm of the limit is bounded from above by the lim inf
of the norm of the subsequence. This is similar to the statement in Fatou’s lemma, in [2]
they also call this the “Fatou property”.

We will first prove this sequentially compact embedding for LP and M, after making
the following observation.

15.12. Let p € (1,00]. Then LP is isometrically isomorphic to (L)', the dual of L4, for
q € [1,00) being such that % + % = 1. Moreover,

[ollzr = sup{[(v, /) : f € L9, [| fllLe <1} (v € LP).

Let M the space of signed (F = R) or complex (F = C) Radon measures (see Defini-
tion and , is the dual of Cy, the space of continuous functions that vanish at
infinity (see Definition [H.9)). Moreover,

[ellve = sup{[(, /)| : f € Co,[[fllco <1} (e M).

Lemma 15.13. Let p € (1,00|. Let X be either the Banach space LP or M. If (up)nen
is a sequence in X that is bounded in the X norm, then it has a subsequence (Un,,)meN
that converges in S’ to an element u, which is also in X and

Jullx < liminf [, (120)

Proof. Let 9 be either Q) = L? or ) = Cy (see [15.12)), so that X is isometrically iso-
morphic to the dual of 2), )’ and

lullx = sup{[(u, /)| : f €D, [[fllg <1} (ueX). (121)
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In either case there exist £ € N and C' > 0 such that |- |9 < C|| - ||x,s, see Lemma [10.19
Let (un)nen be a sequence that is bounded in X. Without loss of generality we assume
|lunl|x < 1 for all n € N. Then

[{un, @) < lunllzllelly < Clielles  (neN,peS8). (122)

Therefore, for each ¢ € S the sequence ({un, ¢))nen is bounded in F and hence has a
convergent subsequence. Let D be a countable dense subset of S (see Theorem [10.10)).
We may assume that D is a Q-linear space (first of all we may assume that QD = D, then
we can take the countable union of the countable sets D, D+ D, D+ D+ D, ...). By a
Cantor’s diagonal method we find a subsequence (uy,, )men such that (uy,, ,¢) converges
as m — oo for all ¢ € D. We define v : D — F by

(u,0) = lim (un,,p) (¢ €D).

As each u,, is linear, u is Q-linear. By (122)) we have

[(u, o) < llelly < Cliellk,s,

so that u extends continuously on the whole of S, as an element of &', and moreover,
also extends to an element of )" and thus to X. As S is dense in 2) we may replace “9)”

in (121)) by “S”, and obtain

lullx = sup{lim inf [(up,, ©)| : ¢ € S, [plly < 1}
< sup{liminf [[un, [z[l¢lly : ¥ € S, llelly <1}

< lgrl)lglofHuangg.

15.3. Show that the statement in Lemma |15.13|for p = 1 does not hold.

15.14. For p = 1, we still have the following: If (u,)nen is a sequence in L' that is
bounded in the L' norm, and there exists a compact set K such that supp i, C K for
all n € N, then there exists a subsequence (uy,, )men that converges in &’ to an element
u, which is also in L' and holds for X = L.

First of all, that the limit in &’ is actually in L' follows from the fact that it is a
(signed or) complex Radon measure by Lemma and because suppu C K, so that
u € Cp° (by Lemma . To obtain (120)), it is sufficient to show that || f||a = || f]l 1
for f € L'.

There exists a sequence of functions (f,,)nen in C.(R%,[0,1]) such that f,(z) — 1 for
those x such that u(xz) > 0, f,(z) — 0 for those x such that u(z) = 0 and f,(z) = —1
for those = such that u(x) < 0. By Lebesgue’s dominated convergence theorem

(w fu) = [ ufa = Jullps.
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Theorem 15.15. Let a € R and p,q € [1,00]. The function || - |[pg, : By, — [0,00)
defined as in is a norm. By, equipped with this norm is a Banach space that is
continuously embedded in S'. Moreover, if (un)nen is a sequence in By, that is bounded
in the By, norm, then it has a subsequence (un,, )men that converges in S’ to an element

u, which is also in By, and
lullgg, < timinf [lu,,, | 5,

Proof. By its definition it follows rather immediately that || - || g is a semi-norm. That
it is a norm follows from the following: If ||lu[[gg = 0, then Aju = 0 and so p;a = 0 for
all j € N_1, whence supp@ = () and so @& = 0 and thus v = 0. That By, is continuously
embedded in S’ follows from in Theorem We will prove that B, is complete
after proving the “Moreover” statement.

Let (un)nen be a sequence that is bounded in Bj,. Without loss of generality we
may assume that |un| e, <1 for all n € N. Then

[Ajun|lr <27 (n€N,j€N_y).

By applying Lemma [15.13] to (Ajup)nen for each j, and applying Cantor’s diagonal
argument, we find a subsequence (up,,)men of (un)nen such that there exist u; € S’ for
all j € N_; such that

Ajun,, "= uj,  ugllpe < liminf |Ajun,, | <277 (j € Noy).

As the support of the Fourier transform of Aju,, is in the annulus 274 (or ball B), so is
the support of @; for j € Ny (for j = —1).

By Theorem it follows that u:= 3 ;cn | u; exists in S’ and that there is a
C > 0 such that

Jullag, < € (20l

JEN_1]|pq

<c H (27 lim inf | A, 1)

JEN_1|[pq

.. ja ' B ..
< Clim inf ‘(2 HA]U"’”HLP)jeN_lH@ = Clim inf [un,. | Bg, -

To prove that By, is complete, we assume that the sequence (un)nen as above is also
Cauchy. Let u be the limit of the subsequence as above. It suffices to show that u, — u
in By, Let ¢ > 0and N € N be such that m,k > N implies |[uy — uml|pg, < e. Let
k > N. Apply the above limiting argument to the sequence (u, — u)nen, so that for
some sequence (N, )men in N

|u—ukllBg, < C'lim inf [un,, —ukllBg, < Ce.

Therefore, u, — u in By . O
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For a negative regularity index o the Besov norm is equivalent to the function that

replaces “A;” in the norm by “>>7_ | A

Theorem 15.16. [2, Theorem 2.33] Let o < 0 and p,q € [1,00]. For u € §" we write
Sju=3"__, Aju for j € N_y. Then we have for u € S’

u€ By, = [(ZSjullrr)jen_ lles < oo.
Moreover,
(1+2%) Yullgg, < 1[Sjuller)jen i lles < (1 =27 ullpg,  (ueS). (123)
Proof. For the inequality on the left—hand side of :
29| Ajul| r < 27%([|Sjull Lo + 27207018, yul| 1)
Therefore

lull B, < (1 +2)[[(2*(1S;ullr)jeri_, lles-

p.qa —

For the inequality on the right hand side of ([123]):

J J
2% Sullpr < 27 3 [ Ajull e = Y 207092 Ajul pr = (a ) (j),

i=—1 i=—1

where a,b : Z — R are given for j € Z by

20 j € No, 20| Ajullr j €Ny,
Hence, by Young’s inequality Theorem [15.8

127185l o) jen_ lles = lla* bllea < llaller[[bllea = llallgr |ull g, -

As o < 0 we have [lallp =3 ey, 27 = (1 —2%)7% O
Example 15.17. We will consider in which Besov space the Dirac delta, dp, lies. Note
that A;dp = F~1(p;) so that for i > 0 and p € [1,00) see and Exercise m

140l o < il = 2“lpll 1

_i(d_ _
|Aiollr = 17 (pi)l2r = 27~V F .

A1) (1-1)-

- —d
Therefore, g € By, and 0y € Bp 4 * for all q€[1,00) and € > 0.

15.4. Show that for ¢ > 0 the function z — §, is continuous in Bfgo but
that it is not continuous in BY . Hint: Use (but show) that for any ¢ € S\ {0} and
z € R%\ {0}, there exists an x > 0 such that

limsup || Taz¢ — ¢l 1 > &
a—r 00
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16 Embeddings of Besov spaces and Sobolev spaces

The following lemma also justifies that one can view « as the regularity, as the regularity
decreases by the number of derivatives one takes.

Lemma 16.1. For ally € N& there exists a C > 0 such that for all o, B € R, p1,p2, q1, G2 €

[1, 00], with
p2>p,  @>q  B<a—d(L -, (124)
one has
|0l o < Cllullsg,,,  (ueS). (125)

In particular, By, ., 1is continuously embedded in Bﬁzm.

Proof. This follows by Bernstein’s inequality, Lemma as A;07 = J7A; it implies
that there exists a C' > 0 such that

. 11
18,07ul| e < €2 PG5 || A o
Therefore

/
HWUHB;;@ < Cfull B+~ 1) (ues).

P1,92

By monotonicity of the norm || - ||ge in g (see [A.6) and by monotonicity of the norm
| - [IBg, in a (see Exercise 15.2) we obtain (125). O

16.2. Observe that the third condition in [I24] can be rewritten as

d d d d
a——>pF-— or a+— >+ —.

p1 p2 b2 b1
So given that u is an element of B ,, one can obtain that u is also in a Besov space
with a larger parameter than p; at the cost of a smaller regularity parameter than c.

An alternative presentation to (125 is

d
1

«
107 ul (u € Bprgi')-

a+%—\'y\ S CHUH a+%

p2,492 P1,91

On the other hand, observe that one can always “increase” the second parameter ¢,
without the need to change the regularity parameter. The following lemma states that
one can also decrease the second parameter by paying the littlest amount of regularity.

Lemma 16.3. For all q1,q2 € [1,00] and € > 0 there exists a C' > 0 such that for all
aeR andp e l, 0]

lull pg—s < Cllullsg, — (wes), (126)

that is, By, is continuously embedded in By =.
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Proof. If q1 < g2, then this follows directly from Lemma m (even for e = 0). Therefore
we assume q; > qo. The case ¢ = oo has already been treated in Exercise Let
u € Bpyr and a; := [|Ajul|rr. Then by Hélder’s inequality (observe that £ + 4142 =1)

1

ag
lull poe = 1@ a)sen o = ( > 2—J€q2<2waj>q2>

JEN_1
a1—-42 1
 aian 142 ‘ a1
< Z 2_]€q1—q2 Z (2]04@].)(11
JeEN_1 JEN_;
= [[(277%)jen_y | e [[(27%aj)jen_, llear -
q1—492
So that with C' = [|(277¢)jen_, || a2 we have (126)). O
q1—q2

16.4. Let a € R, p,q € [1,00]. Let us show that C2° is a subset of By, by using

Bernstein’s inequality. Let k& € N be such that £ > «. By Bernstein’s inequality (The-
orem [14.3)) and (110) there exist Cy,Cy > 0 such that for all v € §" and j € Ny
|Ajul|pr < CFF127R max  ||0PAjul| e
ﬁENg:\ﬁ\:k
< CHLCy27%  max  ||0Pul|Ls.
BeNE:|B|=k

As the LP norm of A_ju is also bounded a multiple of ||ul/zr (see (111)), and as
(2(e=k)7) ;| is in £9, we obtain that there exists a C' > 0 such that for all u € S’

lullBg, < C | llullr + max  [[0%u] s (127)
’ ﬂENg:|B|:k
1
< C|suppu|?||ul|ox, (128)

where | supp u| is the Lebesgue measure of supp u. By the above estimate, we in particular
obtain that D is sequentially continuously embedded in By ;: If ¢, — ¢ in D then ¢, — ¢
in By ,. Moreover, as we can bound the right-hand side of by the Sobolev norm,
we have also obtained part of the following theorem (by observing that k& > « is sufficient
for ¢ = o).

Theorem 16.5. Let o, € R, k € Ny and p,q € [1,0]. If a < k < 3, then
B k,
By, C W™ C By,

and there exists a C > 0 such that

g, < - llwes < CIl-

1
20l < <Cll- g, (129)
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Moreover,

By, c WP C BE

p,007

and there exists a C > 0 such that
1
S0 g < U < O g, (130)

Proof. By We obtain that W, is continuously embedded in By, if £ > «, and where
we may take k = « in case a € Ny and ¢ = oo.

Let us first consider k£ = 0 and show that Bg ¢ is continuously embedded in L? for
B > 0 orif (3,q) = (0,1) (remember that WP = LP). By Hélder’s inequality (for ¢?
spaces: Corollary IE , for r € [1, 00] being such that 1 = % + %,

[e.@]
lullze < D7 27727 Asull e < 1277 )ieny ller 127 Al o )ien_s llea-

i=—1

As B> 0or (8,q) = (0,1) (and thus r = o0), we have M := [|[(27%")ien_, |ler € (0, 00).
For general k € Ny, by the above estimate and by Lemma [T6.1] there exists a L > 0 such
that for all v € N& with |y| < k

107ullr < M[07ull gs < LM|Jul| g+ < LM|Jul| giss.
P.q p.q P.q

From this we conclude (129) and (130)). O

We have already seen that D is sequentially continuously embedded in By,. In
Theorem @ we will show that D is also dense in By, in case p and g are both finite.
For this we will use the following lemma.

Lemma 16.6. [2| Lemma 2.73] Let a« € R and p,q € [1,00]. Suppose ¢ < oo. Then
Z;-]:_l Aju— uin By, as J — oo for allu € By,.

16.1. Prove Lemma m

Theorem 16.7. [2, Proposition 2.74] Let o € R, k € Ny and p,q € [1,00]. Suppose
p <00 and q < occ. Then D is dense in By, and sequentially continuously embedded and
D is dense in WFP and sequentially continuously embedded.

Proof. That D is sequentially continuously embedded in By, we have already seen in
That it is also sequentially continuously embedded in W follows by Theorem
Let ¢ > 0 and u € By, By Lemma there exists a J € N_j such that for

uy = Z}]:_l Aju one has |juy — UHB;},q < &. As the Fourier support of uy is compact, us

is smooth (see Lemma [12.11). Therefore C°° N By is dense in By, (for all a € R) and
therefore by Theorem C>®NWHkP is dense in WHP (for all k € Np).
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Let 6 € C2° be equal to 1 on B(0,1) and have support in B(0,2). Write 65 = 6(%-).
As Opuy € C° for u € C*° we show

(0 — Dusllpg, 2% 0 for u € C® N BS, and a € R, (131)
10k — Dug|lyprr 2222 0 for u € C° N WH? and k € Ny. (132)

By Theorem 16.5: (131) follows from (132). Let & € Ny and u € C*° N WHP. Then by
Leibniz rule (see @ there exists a C' > 0 such that

(0 — Duyllyrs < C  max max 87 (0r — 1)0°us| e
BENE:|B|<k veNd:|y|<k

For all v € N¢ the function 07(fr — 1) converges pointwise to zero as R — oo. As
this function is uniformly bounded in R and d%u; € LP, which can be concluded from
Bernstein’s inequality, by Lebesgue’s dominated convergence theorem we obtain ((132]).0]

Let us show that D is not dense in case both p and ¢ equal infinity.

16.8. We have seen that C2° C By, for all a € R, p,q € [1,00]. Therefore, if ¢ € C°,
then for all @ € R and p € [1,00] there exists a C > 0 such that ||Ajp||L» < C27% for
all j € N_; and therefore

lim 2%(|Aj¢||» = 0. (133)
J—00

In particular, if ¢ € [1,00] and ¢ is in the closure of D in By, then (133)) holds.

Example 16.9 (D is not dense in B L> C By ). Let d =1 and (pj)jen_, be

00,007 J
a dyadic partition of unity. Let a > 0 be such that pg(a) = 1 and thus p;(a2?) equals 1
if i = 7 and zero otherwise. Let v € S’ be given by

1
V= ) Z da2n + 0_g2n.
neN

Then v = F0 and u := ¥ is given by

u= Z cos(2ma2"™-).

neN
By assumption we have Aju = F~1(pjv) = F (0495 + 6_q9/) = cos(2ma2’-). Therefore
|Ajullree =1 for all j € N_; and thus

lullpy, _ =1

Therefore u cannot be in the closure of D, see[16.8
Let us show that u is not locally integrable and therefore in particular not an element
of L*°. Let us consider the function w : R — R given by

w(zx) = Z 27" cos(m2"x) (x € R).
neN
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Then in distributional sense, u is the derivative of 5 lgaw w is a Weierstrass function,
as Hardy showed, see [15]. This means that w is a contlnuous function that is nowhere
differentiable.

We will derive to a contradiction by assuming that w is locally integrable by the
use of Lebesgue’s differentiation theorem (Theorem |4.1]). For notational convenience we
assume a = 1 (otherwise replace “u” by “/ 1 u” in the following). As we will show, w is the

indefinite integral of u, and therefore théamentioned theorem implies that w is almost
everywhere integrable, which clearly is a contradiction to the fact that it is nowhere
differentiable.

We show that w is the indefinite integral of u, that is

/bu:w(b)w(a) (a,b € R,a <b).

Let a,b € R and a < b. Similar to the Heaviside function (see Exercise in the
distributional sense we have that D1, = dq — dp. Let ¢ be a mollifier. Then 9. * 1j4
converges almost everywhere to 1j, by Theorem @ As it is bounded, by Lebesgue’s
dominated convergence theorem we have

/abu = lim{u, the * Ljg ) = hm(w Pe * Ligp))
= —lim(w, e « Dl ) = ~lim{w, g » (0 — )
= tim (w, Tove) — (w, Tatte) = limw » (6).(6) = w  (9):(a)
= w(b) — w(a),
where for the last equality we used that w is continuous and Theorem @

Due to the following lemma we easily show in Theorem [16.11| that B3y = H®, where
H® is as in Definition [[3.12

Lemma 16.10. For all o € R there exists a C' > 0 such that
2ip;()? <C(1+162)"  (jeN1,E€RY). (134)

Moreover, for all a € R there exist ¢,C > 0 such that

c(1+167)" < 2 0P <o(1+167)"  (cer). (139)

JEN_3

Proof. First we give the proof for @ > 0. Let a > 0 be such that B(0,a) Nsuppp = 0.
Then for j € Ny we have

a222j

pi(€)? < (”'5.’2>a (€ €RY),
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Hence ([134) follows as p_ is bounded.
This also implies the upper bound in (135)) as p;(£) and p;(§) are only both nonzero

if|z‘—j\<1 by-
By (102) and it follows that

JeN_1

where [,0? > ={¢eR?: 0; 2(¢) > 1}. Let b > 2 be such that [p]2 > 1] c B(0,27b) for
all j € N_j. Then for £ € [p ? > 1] (note that as b > 2 one has b2/ > 1 for all j € N_y)
+1¢

1 |2 1+ b%2% 1 5
- <2220} <<
1 ( 20227 ) =1 ( 20227 1 =Pl
so that the lower bound in ((135)) follows.
Now we give the proof for a < 0. Let b > 2 be such that supp p; C B(0,27b) for all
j € N_1. As p; <1 the bound in (134)) follows as for £ € supp p; C B(0,27b) one has
1+ |¢]2 < 2b?2%. Let a > 0 be such that [p? > §] C B(0,27a)° for all j € Ng. Then for

€€ lp; =]

1( a222 \™" 1( a22% \ ° _1

N0 < \v7537 3 - < pj (*5)2:

4\ 1+ [¢ 4 \1+2%a 4
which implies the lower bound in ((135|). O
Theorem 16.11. For all a € R we have

ng - Ha,
with equivalent norms.

Proof. By the Plancherel formula (Theorem [11.21])),

lullBg, = D 2*YllpiDullz> = > 2°lpsall?,

jEN_; JEN_1
= [ X 2P de.
R4
JEN_1
The rest follows from Lemma [I6.101 O

16.12. In particular, Theorem [16.11| implies L? = BY,. However, there do not exist

s €R, p,q € [1,00] such that L' = B, ,, see Exercise

16.2. Show that there do not exist s € R, p,q € [1,00] such that L' = B5 |
Hint: Use the property of Theorem [15.15| and Exercise [15.3)

16.1. Is each tempered distribution in a Besov space? That is, does the
following equality hold?
sS= U UB;

p,q€[1,00] sER
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17 *Besov spaces related to other spaces®

In this section we give an overview of other spaces and embeddings between those and
Besov spaces.

Definition 17.1 (Ho6lder spaces). Let Q be an open subset of R? and k € Ny. We
write also C*0(Q) for C*¥(Q). Let a € (0,1].

e A function f: Q — F is a-Hélder continuous if there exists a C' > 0 such that
[f(@) = fyl < Clz—y|* (2,5 €Q). (136)

o C%(Q) is defined to be the space of a-Hdlder continuous functions Q — F. The
Holder coefficient of a function f is given by

flovag = sup D ZIWI

z,yeQ:x#y ’x - y|a
o C*2(Q) is defined to be the space of functions  — F that are k-times continuously

differentiable for which their derivatives of order k are a-Holder continuous.

We already defined CF(f2) to be those elements of C*(Q) for which || - |o is finite,
similarly we define

I fllora) = Ifllova@ = Iflorey + D, 10°flcoa  (f€CH*(Q)), (137)

BENg:|ﬁ|zk
k, , .

() = {f € C*(Q) : || fllgra) < oo} (138)
17.2. For the rest of this section we consider @ = R?% and write “C*®” instead of
“Ck’a(Rd)”.

Observe that C%! consists of all the Lipschitz functions and that for k € N, C{;H -
bt

For s € (0,00) \ N it is also common in literature to write C* for C**, where k = |s|
and a = s — |s].

17.1. Can you classify the space of a-Holder functions with o > 1, that is,
which functions f satisfy (136)) for a > 1.

In Definition we introduced the Sobolev spaces W*P for k € Ny and p € [1, 00].
In Definition [13.12] and [13.15] we introduced the fractional Sobolev or Bessel-potential
spaces H, for s € R\ Ny and p € [1, 00]. We will now consider Slobodeckij spaces, W*?
with s € (0,00) \ N as subspaces of W*P with k = |s] in a similar way as C* or C% is
defined to be a subspace of C*, where (with a = s — k).
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Definition 17.3 (Slobodeckij spaces). Let p € [1,00) and s € (0,00) \N. Let k € Z
and a € (0,1) be given by

For f € W*P we define

1w = | Fllwr + ( /R /R 30‘f ﬁff,f I dy>;

aENd\ |=k

We define the Slobodeckij space WP by
WP = {f € WE - || fllwsr < o0}
Definition 17.4 (Zygmund spaces). Let s € R. Let k € Z and « € (0, 1] be given by
k=1s—1], a=s—k, (139)
in other words, k is such that s — k € (0,1]. We define || - [|cs : C* — R, by

> [(Tn = 1)%0° £l co

sup y
gend|1—k hERA\{0} |h|*

[flles = I llen +

and the Zygmund space C* by
C*={f €C*:||flles < oo}
Observe that
(Tw = 1)?g(x) = (T = )(Th — Dg(x) = (Th = V)g(z — h) = (Tr, — 1)g(2)
=g(x —2h) = 29(x — h) + g(x).

Definition 17.5 (Besov—Lipschitz spaces). Let s € (0,00). Let k € Z and « € (0, 1]
be as in (139). For p,q € [1,00) we define for f € WkP

T — 120°07, \*
1£llag,, = Ifllwss + > (/ u<h|h|d>+aqf||L dh>,

BENE:|B|=k
> sup [(Th — 1)*0°f |7
fend ok RERA\{0) [h|*

1f1lag o == I e +

For g € [1,00] we define the Besov-Lipschitz space A}, to be the set of for which the
above norm is finite:

Apq=1{F €WHP 1 flla;, < oo}
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The Triebel-Lizorkin spaces are defined as the Besov spaces, but with the “LP” and
“¢9” norm interchanged:

Definition 17.6 (Triebel-Lizorkin spaces). Let (p;)jen_, be a dyadic parition of
unity. Let s € R. For p € [1,00) and ¢ € [1, o0] we define

HuHinq = H H(2js,Aiu‘)j€N—1 HE‘I HL”7

for example, for ¢ < oo this means

1
P P
HUHFqu = [/Rd< Z QqJS\Aiu(x)\q)q del

JEN_1

We define the Triebel-Lizorkin space F;, to be the set of tempered distributions for
which the above norm is finite:

F .= {fue S : HuHqu < oo}

Remark 17.7. As for Besov spaces, the norm of F};, depends on the choice of dyadic
partition, but the space itself does not. This is shown in [33] Section 2.3.2].

17.8. Let us summarize for which parameters we have either continuous embeddings or
equality between spaces with equivalent norms. Here, “A C B” means that the space A
is continuously embedded in B, and “A = B” means that A and B are the same space
with equivalent norms.

(a) [33, p.90, (9)] Cf =C? for s € (0,00) \ N (C? is as in [17.2)).
(b) [33, p.90, (9)] WP = A7 , for s € (0,00) \ N and p € (1, 00).
c) |23 p. = or sc R and p e (1,00).
88] HS = Fy, for s € R and p € (1

33, p. = P for k€ N and p € (1, 00).
d 88] HY = W for k € Nand p € (1
(e) [33, p.89] BY, C LP C By, for p € [1,00).
(f) [33, p.89] BY,; C Cp C BY, -
(g) B3, p.90, p.113] A} , = B, , for s >0, p € [1,00) and q € [1, oq].
(h) [33, p.90, p.113] C* = B3, ., for s > 0.
() B3, pAT) B inipy © Foa C B
(G) 1

;max{p,q} for s € R, p € [1,00) and ¢ € [1,00].

33, p.60] For s1,s2 € R, p1,p2,q1,q2 € [1,00]:
B3, (RY) = B2 (RY) if and only if s; = so and p; = pa, q1 = ¢o.
For p1,p2 < oo:

P (Rd) = [%2 (Rd) if and only if s1 = s9 and p; = pa2, q1 = qo,

PLa1 P2,q2
o (R?) = B2 . (RY) if and only if s1 = 53 and p; = p2 = q1 = qo.
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Observe that we can combine some of the above to obtain:
Cy=C"= B (s € (0,00) \ N),
WP =A) ,=B,,=F;, (s € (0,00) \N,p € (1,00)).
HE =W'? =FF,  (keN,pe (1,0)).
17.9. In we mentioned that there is no Besov space that is equal to L'. We can

generalise this as follows: For r € [1,2) U (2,00) there are no s € R, p,q € [1,00] such
that L™ = BS,,.

17.2. Let r € (1,00). Show that By = L" if and only if p = ¢ = r = 2 and
s =0. Hint: H? = L" (see [13.15).

Remark 17.10. The proof of C* = BS, , for a € (0, 1) can also be found in [20, Lemma
8.6].

18 Fourier—multipliers on Besov spaces

We will use the Hormander—Mikhlin inequality to show that under some conditions,
Fourier multipliers map Besov spaces into other Besov space. We will only need the
version of the Hérmander—Mikhlin inequality, Lemma The following lemma shows
that the condition of Lemma [I4.12] can be described in a different way.

Lemma 18.1. Let 0 € C* and m € R. Then there exists a 0 > 0 such that M, ¢(0) <
oo if and only if

max  sup (1 + |z))/"0% (z)| < oo, (140)
a€eNg:|a|<k zeRrd

i.e., if and only if there exists a C' > 0 such that
0% ()] < CA+|z)™ 1 (2 e R aeN ol <k). (141)

Proof. We have already seen that 9, g(0) < oo for all § > 0 (see|14.11)). Hence we may
take 6 = 1. We have IM,,, 1 < oo if and only if there exists a C' > 0 such that

|8ag(:17)| < C|m’m—‘a| (w c Rd, ’fL’| >1,a€ Nd, |Oé| < k‘) (142)
As
1 d
SAtla) <lal <1+lal (xR Ja] > 1),
(142) is equivalent to

0% (z)| < C(1+ |z))™ 1™ (z e R [a] > 1,a € Ng, |a] < k). (143)
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Let us show that (143)) is equivalent to (141]).
As1 <1+ |z| <2forall z € B(0,1), there exists an C; > 0 such that

1< C(1 4 |z)mlel (x € B(0,1),a € N, |a| < k).

As o is smooth, its restriction to B(0, 1) is bounded in C*-norm. Let Cy = lollcx (B(0,1))-
Then

0%0(2)] < C2 < C1Co(1 + [a)™ 11 (2 € B(0,1),a € N§, o] < k).
This shows that ((143]) is equivalent to (141)). O

Now we show that if the condition in Lemma [I8.1] is satisfied for o that it forms a
continuous map between Besov spaces.

Theorem 18.2. [2, Theorem 2.78] and [13, Lemma A.5] Let m,s € R, p,q € [1,00]. Let
o € C° be such that (140) holds. Then there exists a C' > 0 such that

loD)ullgrm < Cllullsg, — (u€ Bj,). (144)

In other words, o(D) forms a continuous operator By, — B,.™. Moreover, if F(o) € L',
then there exists a C > 0 such that

Ixo)(D)ul| gs—m < CA™V Dlull;,  (u€ By,

A>0). (145)
Proof. By Lemma and Lemma there exists a C' > 0 such that
1(30)(D)Asullzs < CH™A™[Agulle (€ Noyue ). (146)
Therefore, by Theorem for it is sufficient to show
lo(D)A yullis < CIIA yulls  (ueS), (147)
and for it is sufficient to show
|(Ixa)(D)A_1ul|r < C||A_qul|Le (ue S \>0). (148)
Let ¢ € Cg° be such that ¥ = 1 on supp p—1. Then
c(D)A_1u = o(D)Y(D)A_1u = (o) (D)A_1u = FL(o9)) * u.
Hence, by applying Young’s inequality we obtain with C' = || F~ (o)1, which is
finite as o) € C° C S and thus F~!(ov) € S C L.

If F(o) € LY, then (148)) holds with C' = ||F~1(0)|| 1 as this equals || F (o)1 for
all A > 0. O
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18.1. Let B € R, p,q € [1,00] and v € N¢. In Lemma we have seen that

there exists a C' > 0 such that
Y _ < / )
0%l o < Cllullpe (weS)
Show that this can also be derived from Theorem [18.2

Example 18.3. Let us also apply the above to the Bessel-Potentials, (1 — A)% for
s € R. By Lemma we have that for o(z) = (1 + |z[>)2, M, 1(0) < co. Therefore,
by Theorem we have that (1 — A)3, being o(D), maps By, continuously into By *.
Of course, if we take s = 2, as one should expect, (1 — A) lowers the regularity by 2.

19 Paraproducts

In this section we consider the definition of a product of two distributions (for which this
product makes sense). Let u,v € §’. As (see Lemma [15.5)

u = Z Au, v= Z A,
iEN_1 i€EN_1
formally the product of u, v should equal
uy = Z Ajuljv.
4,JEN_1

This decomposition, that is the series on the right-hand side, will be further decomposed
in terms of two ‘paraproducts’ and a ‘resonance product’ (see Definition (19.1]).

19.1. Does it hold that

J
= li A Aju?
Vo= fim 2L Awigp

Definition 19.1. For u € §’ and j € N_; we write

J
Sju: Z Aju (j ENfl), S_ou =0, S_su=0.

i=—1

Moreover, we will use the following -a priori formal- notations for u,v € §':

co Jj—2 00
uQ U= Z Z Ajuljv = Z S;j_oulAjv,
j=—1i=—1 j=—1
co g+l

u@u= Z Z Ajuljv.

j=—li=j—1

If u©@wv exists in &', then it is called the paraproduct of v by u. If u® v exists in &', then
it is called the resonance product of u and v. We also write u @ v := v @ .
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Remark 19.2 (About notation). In many textbooks one writes “T;,v” for the paraproduct
instead of “u@v” (for example in [2]). In this sense one views T, as an multiplying oper-
ator. Also “II(u,v)” or “R(u,v)” is written for the resonance product. In the application
to SPDEs in the authors of the paper [13] wrote “u < v” and “wov” for the para- and res-
onance product, respectively. The latter notation changed in the SPDE literature, with
some authors creating new symbols, for example “<” and “=" with a circle around it. In
the latter case, “<” with a circle around it is then used for the sum of the paraproduct
and the resonance product, for which the authors of [13] used “=<".

For this in our notation we could write . The following table presents the latex
commands for the symbols used in these notes.

\varolessthan S)
\varogreaterthan S
\varodot ©)

\mathrlap{\varodot } {\varolessthan}

19.3 (Intuition behind the bound on paraproducts). In Theorem ?7 we will bound
the Besov norm of the paraproduct u @ v. The idea is as follows. Let us say that u is
of regularity « if it is in some By, space for some p,q € [1,00]. It will turn out that we
need some restrictions for the different parameters p, ¢ for v and v but this we forget for
the moment and concentrate on the regularity.

Suppose u is of regularity a and v of regularity 8. Then the regularity of u @ v for
strictly positive a equals the regularity of 5. The idea behind this is that if one multiplies
a low frequency function with a high frequency function, the frequency of the product
has a frequency equal to the highest frequency. For an illustration see Figure [1| and
In case the regularity of w is strictly negative, then the regularity of the product is the
sum « + . So that the low frequencies of u still worsen the regularity of u @ v.

0 T n

) i

Figure 1: A function with high and low Figure 2: The product of the functions
frequency. with high and low frequencies.

Theorem 19.4. [2 Theorem 2.82], |21, Lemma 2.1] Let p,p1,p2,q,q1,92 € [1,00] be

1 1
such that o + > <1 and

_ 1, 1 1 1,1
- o q_mln{l’q1+q2}’
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For C = ||F1()|zr >0 and all a« €R

luevlsg, < Clulle o]z, — (wved). (149)

p,q —

Foralla <0 and 8 €R

o ollgoea < (1 =27 ullsg, , Ioll g (wveS). (150)
Proof. Let u,v € 8’ We will invoke Theorem for the functions S;_sulv =
5;31 AjuAjv with j € N_j. Observe that S_3uA_jv = 0 and S_ouAgv = 0, and so

their Fourier transform is trivially supported in any ball. Let us check that for j € Ny
the Fourier transform of S;_ouAjv is supported in 23 A for some annulus A.

Let a,b > 0, a < b be such that suppp = A(a,b). Then in particular supp p—1 C
B(0,b) and so supp p; C B(0,27b). We write A = A(a,b) and B = B(0,b).

As F(AjulAjv) = (pitt) * (p;0), we have (see Theorem and Lemma [3.7)):

supp F(Ajuljv) C 27(27IB+ A) (i € N_y,j € Np). (151)

For all i € N_; with i < j — 2 we have 277 < 272 and thus 278 C 27°B. As
supp po N supp p2 = O we have AN 224 = () and thus 228N A = (). Therefore A :=
A+ B(0,272b) is an annulus and

j—2
supp F ( Z AmAﬂ;) c2A (7 € Np).
i=—1
By Holder’s inequality (Theorem [A.3)) and by (111),
18520l < IS5-sullzm [ Azl < IFLCONe ullios NAsellin € Noa).

By this and Theorem one obtains ((149)).
By Hélder’s inequality (Corollary , we get

| (8,0t o0

< H <2ja||5j72u||Lp1 QjBHAjUHLm)j

jEN_1 ¢4 eN_; va
< jo . JB A A
N ‘ (2 HSJ 2u”Lpl)j€N_l a1 <2 ” ]UHLPZ)J'EN—l 092
By Theorem [15.16
' ' 22a
jo ) _ 92a jo . o
H<2 HSJ‘WHLm)jeN,l P (2 ”Sju”Lpl)jENIHZ‘H < Togalvllg, o,
as so we conclude (150) by Theorem [15.9] O

19.2. Can we show that (150) does not hold in case & = 0?7 For example,

can we take u = v equal to the example in Example [[I plan to look at this, but
maybe you want to provide me the answer before I possibly include this in the notes]]

103



| » NS
sin(x) \/ sin” () sin?(z) = ! — %cos(?:l:)

Figure 3: The sine function and its square and the decomposition of the square of the
sine function in a low and high frequency function.

19.5 (Intuition behind the bound on the resonance product). In Theorem m
we consider the resonance product of v and v. Let us use the language as in [19.3], with u
of regularity a and v of regularity 5. The block of A;u has a frequency of the order 27
and A;v of 27% so that the product is of frequency 2-*@+#)  This already indicates
that the regularity of the resonance product should be a + 5. The term “resonance” is
used as one considers the outcome of two ‘systems’ that interact with the same or similar
frequency, but also as this may ‘strengthen’ the outcome. Let us for example consider the
product of two sine functions. As is illustrated in Figure [3] we see that the product can be
decomposed in terms of a function with lower and one with higher frequencies. Therefore
the frequencies of A;ul;v range from zero frequencies up to the order 2i. Hence the k-th
Littlewood-Paley block Ay (u ® v) possibly contains information of A;u for i inbetween
0 and 2i. In order to ‘deal’ with that it makes sense to impose the condition o + 5 > 0
in order to have some summability (such condition is also assumed in Theorem [15.9(c)|
on which the proof of Theorem relies).

Theorem 19.6. Let o, € R and a+ 3 > 0. There exists a C > 0 such that for all
P,P1,P2,4,41,q2 € []‘700] such that le + piQ < ]-7 with

_ 1,1 1 11
=5 T 5 7 =min{l, - + -},

we have in case o + 3 > 0,
[u ool oo < Clullpg, o Il (w8, (152)

and in case a+ 3 =0 and {q1,q2} = {1,000},

lu®ollsy < Cllullsg (u,v e S). (153)

g0 ol

Proof. Let u € By, ,,v € 352,q2-

We define A_su := 0 and
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so that u®v =3 ;cn | Rj. Then

supp IA%J- C supp pj+itl * p;O C supp pj+i +supp pj C 2B.

for some ball B around the origin: Indeed, if B; is a ball around the origin such that
supp p—1 Usupp po C Bi. Then pji; +supp p; C (2771 4 29)By C 273y, so that we can
take B = 3B;. Observe that {q1,¢2} = {1, 00} is equivalent to ¢ = 1. Therefore, in case
a+ > 0, we can use Theorem [15.9(c) and in case o + = 0 and {q1,¢2} = {1,000} we
can use Theorem @ to obtain that it is sufficient to show the existence of a C' > 0
such that

| @+ R;l| o) jen

o < Clullzg, o ol

This follows by Holder’s inequality (both Theorem and Corollary [A.7)):

| @ DRyl o) jen_

i=—1

1
" < (2](04-&-5)” Z Aj—i-iUHLmHAjUHLp?)
JEN_1]|pq

1
< (230‘ Z HAJ‘#’“”””) H<235HA3‘UHLW}j&N1 0o
i=—1 JEN_1 || pay
<27 +1+29 ‘(2ja|\Aa’“HLm)jeNl Heql Ils,.,, (o4

O

The following is basically the same as Corollary 2.1.35 of Jorg Martin’s thesis. Such
statement that combines the estimates on the paraproducts and resonance products is
missing in [2].

Theorem 19.7. Let a,f € R\ {0} be such that o + 5 > 0, o < 3. Let § > 0. There
exists a C' > 0 such that for all p,p1,p2,q,q1,q2 € [1,00] such that p% + ]%2 <1, with

1_ 1 1 1_ - 1 1
1*7 = 171+1T2’ E —mln{l,qflJrqu}, (155)
we have
lu-vllppos < Cllullsg, , Iollpe — (woes), (156)
and, for all r > q1
|l - UHBZO;’T < C”UHB,‘,’LH HU”BEQ,qQ' (u,v € S’), (157)
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Proof. Let § > 0 and r > ¢;. Observe that 5 > 0 by assumption. By Theorem [19.6
and Theorem there exists a C; > 0, by Theorem there exists a Cy > 0 and by
Lemma there exists a C3 > 0 such that for all u,v € &’

lu© |l gars < Cullullsg, , I0ll5e - (158)
C1|lu v < C1020s]||u v a>0

o olp < lullrevllsg, , < C10Cs]lullBg, , 10lBg, ) ; (159)
P |l vllggrs < Chllullsg, , lIvligs a <0,

luGvllges = llveullges < Cillollgs llullsg, ,, < Cillvllgg  llullsg . (160)

luevllsg, < Cillvllzelullsg, , < CLOCsvllge lullsg, (161)

(156]) follows then from (158)), (159)) and (160f). For r» > ¢; we also have r > ¢ and thus
| - || go+s < C3|| - || go+s, S0 that by combining (158), (159) and (161)) we obtain (157).
p,T p,q

19.8 (The notation <). As we have seen in a couple of proofs, keeping track of which
constant comes from which statement can became quite administrative. The benefit is
that one actually sees where things come from and on which parameters they depend.
However, when one reaches a higher number of constants, say 10, at the moment that
C1o appears one can probably not tell the different constants apart any ways. For this
reason often the notation “<” is used. The usage is as follows: For families (a;);er1, (b;)ier
in R for an index set I, one write a; < b; to denote the existence of a C' > 0 such that
a; < Cb; for all 1 € I. With this notation could instead read

p1,r

luevllsg, < llollrellullsg, . < lvllgs | llullsg -

Now, we however do have multiple parameters on the left and right-hand side: «, 8 and
»,7,P1,q2,q1- But the C7,Cy and Cj introduced in that proof depend on « and 3, which
one now does not see in the notation. One way to overcome this is to write “S, 3" For
families (aia)icraca, (bia)icraca We write a; o Sq i o to denote that for all o € A there

~Q

exists a C' > 0 such that a; o, < Cb; for all i € I. But of course it might be that there
are many parameters that change the C, or in other words, which the C depends on.
Another way how some authors overcome this is to write “a; o S b; o uniformly in i € 17,
which means the same as “there exists a C' > 0 such that a; , < Cb;, for all ¢ € I”.

If we will use the notation “<”, then it will be in proofs, without the dependence on
the parameters. From the statement in the theorem or lemma (of the order of the “for
all” and “there exists”) it will be clear on which parameters the constant depends and
on which not (as we fix the dimension for example, basically one should a priori assume

that the constant depends on the dimension).

We turn now to a specific case of products between Besov spaces with p = ¢ = oco.

19.9 (Notation). In we have mentioned that the Zygmund space (Definition [17.4])
C? for s > 0 equals BS, .. It is common, and therefore we will follow this convention,
to write C* for B3, , for all s € R. As the norms || - |lcs and [ - ||ps, _ are equivalent
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for s > 0, and as we are interested in bounds of norms, as is mentioned in [I5.11] for the
dependence of the Besov norm on the choice of partition, we do not distinguish between

the norms as we consider statements about estimates on those norms: In other words,

when reading “|| - |lcs” one may as well read “|| - ||ps. "

19.10. By Leibniz rule (see|5.3)) we have seen in that the product of two C* functions
is again in C* and that the product map

Ckxck—c*  (f,9) — fg,

is a bilinear continuous map. It follows that if k,m € Ny that the product of a C*
function and a C™ function is a C*" function and

CF x C™ = C*™, (f,9) = fg,
is a bilinear continuous map with
1£gllcrnm < I fllcsllgllem — (f € CF g€ C™).
The following theorem states something similar for the C* spaces.
By taking p = p1 = p2o = q1 = ¢gg = r = o0 in we obtain the following

consequence of Theorem which is widely used in the theory of SPDEs. See for
example [14, Proposition 4.14] and [I3, Lemma 2.1 and text below].

Corollary 19.11. Let a,3 € R and a+ > 0. IfueC* andv € CP, thenuww =u-v =
u@uv+u®u+usuv is an element of C*"?. Moreover, the map

CYx CP =, (u,v) — uv,
is a bilinear continuous map and there exists a C' > 0 such that
Ju-vligans < Cllullealivles  (uv € S). (162)
19.12. The product map in Corollary agrees for a, € (0,00) \ N with the map
C*x CP = C, (f,9) = fg,
as for those o and  we have C* = C* (see .

The following corollary is another consequence of Theorem and Theorem |19.6
and is left as an exercise:

Corollary 19.13. Let a € (0,00). There exists a C > 0 such that for all p,q € [1, 0]
luvlisg, < C (lullsg, vl + lule=lvlsg,)  (u,v€S),

pr,q —

Consequently, L° N By, is a Banach algebra under the norm (C'V 1)(|| - [|pe + | - [| By, )-

107



19.1. Prove Corollary

Another consequence is the following:

Theorem 19.14. Let o, € R\ N and o+ 8 > 0. For u € H* and v € H? we have
ww € WAL Moreover, the product map H® x HP — Weathl, (u,v) — uv is bilinear
and continuous, moreover there exists a C' > 0 such that

[wvllwanss < Cllullme vl s

19.2. Prove Theorem (Hint:

Remark 19.15. In [25, Theorem 4.3.1] one can find that certain conditions are necessary
for such product embeddings.

19.3. In [26, Theorem 4.3.6] is stated a similar estimate on the product as
in Theorem How do they relate to each other, is the one a consequence of the other
or do the describe different cases?

20 The heat kernel and heat equation
In Example we have seen that F : R4t — R given by

he(z) (t,z) € (0,00) x R,

Bt z) = {o (t,2) € (—o0,0] x RY,

where

ho(x) = (4nt)"2e 3l ((1,2) € (0,00) x RY), (163)
is the fundamental solution of the partial differential operator 9, — A, , also called heat
operator. hy is also called the heat kernel (at time t).

In this section we consider the heat equation and solutions described by the heat
kernel. We write “A” for “A,”.

20.1 (Heat equation with initial condition). The following equation is called the
heat equation with initial condition f (which is also called “heat equation”)

(164)

Ou=Au  on (0,00) x R,
u(0,-)=f on Rda

where f € §'. We have already seen that the function (0,00) x RY — R, (¢,z) +— hy(z)
satisfies the heat equation (9; — A)hy(x) = 0 on (0,00) x R% In Lemma we will
show that hy x ¢ — ¢ in S ast | 0 for ¢ € S. Because of these facts, u defined by

{u(t,m) =hy* f(z)  (t>0),

w0, = f (165)
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is a solution to the heat equation with initial condition f such that ¢ — wu(¢,-) is in
C(]0,00),S"). Observe that u is smooth on (0,00) x R%. If f € Cj, then u is also
continuous as a function on [0, 0c) x R? by and therefore u is a classical solution to
this partial differential equation.

Observe that if f = &g, then u(t,z) = hy(z) for (t,z) € (0,00) x R For this reason
the heat kernel is also called the fundamental solution to the heat equation. Moreover, for
t>0,as hy(x) = E(-,x)*do(t) (for which we could write formally [p E(s,x)do(t—s) ds),
we see that hy * f(2) = E* (89 x f)(t,x), where 6y x f is the distribution on R x R? given
by

(0 % f,0) = (f,0(0,-))  (p€SRxRY).
20.1. Verify that u defined in ((165)) for f € C}, solves the heat equation and

is smooth on (0,00) x R% and continuous on [0,00) x R% (Hint: This follows from a
couple of results from Section

20.1. It kind of would make sense to let hg = dg, also because of Lemma [20.2
Then we would have that hA(t,z) = hy * f not only for ¢ > 0 but also for ¢ = 0. However,
E(0,-) = 0. What would happen if we instead take E'(t,-) = E(t,-) for t # 0 and
E'(0,-) = d0?

For the proof of Lemma [20.3| we will use the following fact:

Lemma 20.2. For all k € Ng and t > 0, y — |y|*hi(y) is integrable.

20.2. Prove Lemma m

Lemma 20.3. Let o €S. Then hy x o — ¢ inS ast 0.

Proof. As derivatives of Schwartz functions are Schwartz functions, it suffices to show
that forall k e Npand p € S

£10

sup (1 + |z])*|hy * o(a) — (z)| = 0.

z€Rd

Let k € Ng and ¢ € S. For all 2 € R? we have

(14 |2])*lhe * p(2) — p()] < (1 +[a])* /Rd he(y)le(z —y) — o(x)] dy.

By one can easily show (Exercise|20.1]) that we supremum over z in B(0, 1) converges
to zero. Therefore we may consider the complement, the z with |z| > 1. We split the
integral into two parts, the integral over B(0, §) and over its complement. Observe that
for y € B(z, %) we have |y| > 1|z|. Therefore, by Taylor’s theorem (Theorem we
have

sup |p(z —y) —p(x)] < sup  max [9%(2)|ly]
y€B(0,3) zGB(z,%)QENOﬂa\:l

1
< [elle+1,s (1 + Sl2) 7yl
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As x> (1+ |z)¥(1 + 4|2|)* is bounded, we see there exists a C' > 0 such that
/ hi(y)le(z —y) — (x)| dy < C/ lylhi(y) dy = C\/?f/ lylhi(y) dy,
B(0,3) R? R

which converges to zero as t | 0 (because is y — |y|hi(y) integrable by Lemma [20.2)).
On the complement we bound |p(z —y) — ¢(x)| by M which is two times the supremum
norm of ¢ and obtain

!y\k +(y) dy.

Lo mlote ) — el ay < a2
RNB(0,5)

As z — (1 + ’$|)k|$|_k is bounded uniformly in z for |z| > 1 and [ga |y|*he(y) dy =
\[ Jra ly¥h(y) dy SAZNY) (see Lemma [20.2|) we conclude that hyx ¢ — ¢ in S ast | 0.0

Remark 20.4 (Stochastic analogue). Another common definition of a heat kernel is
pi(w) = 2nt)"2e 2l ((t,2) € (0,00) x RY),

so that py = h L This is the common choice in stochastics, as this is also the density of
a normal distributed random variable with variance ¢. In other words, it is the density
of B, where (Bt):>0 is a Brownian motion. So instead of our language, we could have
used “py” instead of “h;” if we also used “%A” instead of “A”. This also relates to
the fact that %A is the generator of the Brownian motion. In this way, one can also
represent the solution to the heat equation in the following stochastic way. If E, is the
expectation corresponding to the probability space in which (B;)¢>0 is a Brownian motion
with By = z, then u(t,z) = E,[f(By)].

This is a special case of the Feynman—Kac formula, which describes solutions of
parabolic partial differential equations in terms of diffusion process, which in turn satisfies
a stochastic differential equation. For more details see for example [I1], Section 6.5].

20.3. Let A > 0. Show that if u is given by (165|) that the function v given
by v(t,z) := u(\t,z) for (t,z) € (0,00) x R? satisfies v = AAu. From this one can
verify the statement in Remark about replacing “h;” by “p;” and “A” by “%A”.

20.5. For t > 0 we will now write H; : &’ — &' for the function given by

[ f t>0,
Htf_{f t=0.

For ¢t > 0, Hyf € C3°. For ¢ > 0 we will consider in which Besov space the function Hyf
lies, when f is in the Besov space B, .
H, is a Fourier multiplier, by Theorem [I1.15] Indeed, we have

he = FHge) = Gr,
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for
gt(fﬁ) _ 6—47r2t|r\2 (.’E e Rd),
and therefore for g = ¢1

Hi = g:(D) = (I 49)(D).

Therefore, we can apply Theorem m For i € {1,...,d} we have that 9;g(z) =
—8ntz;g(x). Therefore, inductively we obtain for a € N¢ that 9°g = Pg, where P
is a polynomial of order |/, hence bounded in absolute value by a multiple of (14 |x|)!e.
Moreover, as (1 + |z|)™g is bounded for all m € R, we have we obtain the following.

Theorem 20.6. Let s,m € R, p,q € [1,00]. There exists a C > 0 such that

|Hoflggim < CO 5 VDIflls;,  (F € Byt > 0).

So we have that H;f € By, for all s € Rif f € By, for some a € R. A similar
statement holds for Sobolev spaces:

20.4. Let p € [1,00], f € LP and t > 0. Show that H,f € LP. Moreover,
show that H;f € W*P for all k € Ny.

20.7. For a normed space X, the space of continuous functions on [0, 7] with values in
X, for which we write C([0,T], %), is equipped with the supremum norm

lullcqorx = sup u@)llx  (uwe ($HOT),

s€[0,T
Equipped with this norm, C([0, 7], X) is a Banach space.

20.8. If the initial condition f to the heat equation ({164 is in a Besov space By, for
some o € R, p,q € [1,00], then by Theorem the solution u as in (165|) satisfies

lulleqor,Bg,) <00 (T >0).

Actually u is in C([0,T], By,©) for all ¢ > 0 (see for example Lemma 4.5 in the lecture
notes of N. Perkowski on SPDEs, this considers p = ¢ = 00). Moreover, we have for
m R

sup 2 [[u(t)| gatm < 0. (166)
te(0,7) P

20.9 (The heat equation with additive noise). Let ¢ be a tempered distribution on
R x R? such that supp¢ C [0,00) x R? and for all mollifier functions 1 € D(R x R%)

and z € RY, (¢, 7{0@)1&5) 8¢—0> 0. In this way we regard & as a tempered distribution on
(0,00) x R, which “is zero” on {0} x R%. Let f be a tempered distribution on R?. Let
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us regard £ as a noise term, often also called potential. We consider the heat equation
with additive potential/noise:

{&gu =Au+¢  on (0,00) x RY, (167)

u(0,-) = f on R%.
A solution is given by (at least if F % £ exists and is a function)
Ex(£+ 00 x f)(t,x) ((t,z) € (0,00) x RY),

which we can also view (at least formally, see Question as a solution to (0 — A)u =
&4 9y x f. Moreover, we can interpret convoluting with E to be the ‘inverse’ of 0; — A.

A ¢ as above is also called a space—time noise. If it is independent of its time variable,
by which we mean that 7 5§ = &, then we call § a space noise. If the last is the case,
then u : [0,00) x & given by u(0,-) = f and

u(t, z) :/Ot Ho(€ + 60 % f)(x) ds :/01t Ho&(x) ds + Hy+ f(z) ((t,2) € (0,00) x RY),

is a solution that is smooth on (0, 00) x R%. Such u is also called a mild solution to (167)).

20.2. How can we interpret E x (£ + dp X £)(0,-)? Do we have E x (£ + dg %
f)(t,-) = fin 8 ast ] 07 Depending on the answers, can we interpret E * (£ + dp X f)
as a continuous function on [0,00) with values in &’? Is the condition on § the ‘right’
one, that it “is zero” on {0} x R

20.10. In the course on SPDEs by N. Perkowski it is shown (in Theorem 4.6) that if
feco? and ¢ € C([0,T],C%), then

[ulleqo,r,cotey < 00

Moreover, by replacing C* by the closure of D in C* (which is the interpretation as in the
lecture notes by N. Perkowski), lets call it C2, one also has continuity: u € C([0, T],C&+2).

20.11 (The heat equation with multiplicative noise). Let £ and f be as in m
We consider the heat equation with multiplicative potential/noise:

{&u = Au-+£&u  on (0,00) x RY (168)

u(0,-) = f on RY,

Here we are possibly dealing with a product that is ill-posed, as a priori u is a distribution
and we cannot multiply two distributions in general. We can find a solution by finding a
u that satisfies

u(t,x) = /Ot Hy(¢u)(z) ds + Hy * f(z)  ((t,z) € (0,00) x RY).
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As for the heat equation with additive noise, such u is also called a mild solution to .

Such mild solution can be derived via a fixed point argument (by taking the right—
hand side as the outcome of a map ® acting on v and showing that this map has a fixed
point). We consider a different equation which has a similar flavour as the heat equation
in 20.14]

20.3. What about uniqueness of distributional solutions? About uniqueness
of mild solutions?

Remark 20.12 (The stochastic heat equation). In stochastics, £ is often regarded
as a random variable and and are called the stochastic heat equation with
additive noise and stochastic heat equation with multiplicative noise, respectively. Also
often “stochastic heat equation” is abbreviated by “SHE”. The stochastic heat equation
with multiplicative noise is also called the parabolic Anderson model. The interpretation
is as follows. ¢ being a random variable means it is a measurable map Q — S’, where Q
is the underlying space of a probability space. A (distributional) solution to for example
is then also a random map Q — (S')[%%). For example one could say u is almost
surely a solution to (167). This means that when we write “u,” for “u(w)”, that for
almost all w (that means for all omega in a set of probability one), u,, is the solution to

Opuy, = Auy, + &, on (0,00) X R,
uw(o) ) = fw on Rda

where we have also written “£,,” for “{(w)” and also allowed the initial condition f to be
random.

In general, £ is assumed to be white noise, either space—time white noise or space
white noise. White noise is a totally uncorrelated noise, which informally means that
the outcome of it at some point in space (and time) is independent from the outcome
of a different point in space (and time). It can be shown that space-time white noise is

. .. —1-2—
almost surely (which means for almost all realisation) an element of Boo co?s  and space
_d_
white noise is almost surely in BOO?OO,EU, for all € > 0; where the w is a “weight” and B?

p?q7w
is a “weighted Besov space”.

Instead of considering the heat equation with multiplicative noise, let us consider a
different type of equation which we solve by a fixed point argument. First we recall
Banach’s fixed point theorem.

Theorem 20.13 (Banach’s fixed point theorem). Let (X,d) be a complete metric
space. Suppose that ® : X — X is a contraction, i.e., there exists a ¢ € (0,1) such that

d(®(x), @(y)) < cd(z,y).

Then there exists a unique point x, in X such that ®(z.) = x.. Moreover, by defining
®! = @ and ¥ = ® o ®*! for k € N with k > 2, we have for each x € X that

lim ®F(z) = x,.
k—o0

113



20.14. Let £, € 8§’ and consider the following partial differential equation
(1—A)u=uf+1.
We define (at least formally)
®(u) = (1 - )" (u +v),

and want to show that ® has a fixed point under some conditions on £ and 1.
First of all, let us observe that by Theorem [18.2] see also Example for all
p,q € [1,00] and « € R there exists a C; > 0 such that

-1 /
10— A) Mullsg, < Cillwllge (weS).
In order to have our ® mapping By, into itself, let us considera =1,p=¢=2,7¢ € H!

and ¢ € C™1%9 for some ¢ > 0 (where H® = B34 and C* = BS, ). By Theorem here
exists a C'y > 0 such that

[€ull -1 < Collull g [|€lle-1+s-
Therefore we have
[2(u) |z < Cullug + ||
< CiCollullg||€lle-145 + Col @l (uwe HY),
which shows that ® maps H! into itself, and
[®(u) = @(v) [l g1 < CrCollu —v]gl€ll-14s (w0 € HY).

Therefore, if [|€]|o—145 < (C1C2)71+°, @ is a contraction map on H' and hence possesses
a unique fixed point. Alternatively, for each ¢ € C~11° and ¢ € H~! there exists an
a € (0,00) such that the equation

(1-Ayu=aué+1

has a unique solution.

20.5. We have shown that ® is a contraction map on By, in case
B Y
g € Bthl’ w € Bp%‘h’

and ||§||BB]D1 " is small enough, with p1 = ¢y =00, p=¢=pas=q, 8= -1+, 7= -1
and o = 1.

Which other choices can be made for those parameters so that one still obtains a
contraction map? For example, with p; = gq1 = 00, p = ¢ = ps = ¢2 consider for which
other «, 3, the map is a contraction. And, for p =p; =ps =q¢= ¢ = ¢2 = 00, do we
need § > 0 or does § = 0 suffices?

What can you say if instead one considers

(1— A)u=ug + v,

for s € R?
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A Preliminaries on L? spaces

Let (X, A, 1) be a measure space. Let F be either R or C.

Definition A.1. We say that a subset A of X is an (u-)null set, if there exists a B € A
with A C B and pu(B) = 0. We write A° for the complement of A in X, so that A° = X\ A.

Definition A.2. Let p € [1,00). L£P(u) is the space of measurable functions f: X — F
for which

1@ auta) < .

We say that two measurable functions f and g are equivalent, written f ~ g if there
exists a null set A € A such that f = g on A°. We write LP(u) for the space that
consists of all equivalence classes in £P(u), in formula LP(p) = LP(u)/ ~ or when we
define [f]. ={g € LP: g~ f} for f € LP, then

LP(u) = A{[fl~ : f € LP(u)}.

1f v = (/If(x)|p d,u)ll’.

Similarly, we define £>° to be the space of measurable functions f : X — F for which
there exist a null set A such that f is bounded on A¢. In other words, those functions
that are almost everywhere (abbreviated “a.e.”) bounded. We define

[ fllee = inf{M >0:|f| < M a.e. }.

We define

Similarly as for p € [1,00), we define

L®(p) ={f]~ : f € L2(W)},
and write for f € L*°(u) and g € f (the following is independent of the choice of g)

[fllzoe = llgllzoe-

We say that a function f : Q — F is locally integrable if fl is an integrable function
for all compact sets K C Q. We write £} (Q) for the space of all locally integrable
functions and L%OC(Q) for the space of their equivalence classes similarly as for £ and
LP. Similarly, we write L () for the space of functions that are locally in LP(Q).

But from now on we ‘identify’ functions f with their equivalence class [f]~, and so
use also consider elements of LP as functions.

Theorem A.3 (Holder’s inequality). [2, Theorem 1.1] Let p,q,r € [1,00] satisfy
1 1 1

p g
If f € LP(u) and g € L9(p), then fg € L™ (1) and

19l < £ zellglla-
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Theorem A.4 (Generalized Holder inequality). Letn € N andpy,...,pp, 7 € [1,00].
Suppose

1 1 1

Y41 Pn r
Forie{l,...,n} let f; € LPi(n). Then fi--- fn € L" and

11 Suller < Ml fallzer - ([ fnllzon-

Proof. Let q € [1,00] be such that

1 1 1
= 4.4 .
q p1 Pn—1

Let g = f1--- fn_1. If g € L9, then by the Holder inequality, as % + pin = %

lgfallr < llgllzall full Lon-

From this one can finish the proof by an induction argument. O
Lemma A.5. We have LP(u) C L' (u) + L>®(u) for all p € [1,00].

Proof. Let f € LP(u). Then [[f| > 1] has finite measure. Define f1 := f1(s< and
fo = f]1[|f|>1]. Then f; € L™ (u) and with Holder’s inequality we have

I f2llr < N fllee Iy psyllze < oo,

foqulsuchthat%—l—%:l. O

A.6. [5, Exercise 5.17) Let 1 < p <r < oco. If x € (P, then 2 € ¢" and ||z|[;r < ||2]|e.
Moreover, if x € fP then = € cy.

Corollary A.7 (Holder’s inequality for /P spaces). Let p,q € [1,00] and r € [1, 0]
be such that
1 1 1
min{l, -+ -} = —.
{ , q} .
If f € P and g € 01, then fg € (" with
1fgller < 1 fllerllgllea-

Proof. Suppose that ]% + % > 1, in the other case we can apply Holder’s inequality
immediately. Then both p and g are finite, and we can find p, § with p < § < oo,
q < ¢ < oo such that

+2=1,

el =
| =

Let f € (? and g € 7. Then f € 7 and g € (7 and [[fgller < ||fllerllglles < [Ifllevllgllea- O
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Theorem A.8 (Log-convexity of L norms). Let p,r be such that 1 < p < r < 0.

Then LP(u) N L™ () C LY(p) for all ¢ with p < q <r and with 6 € [0,1] such that
1 6 1-6
+ .

qQ P r

we have
e < WS NFIEY (FeLPn L)

_0q | (1-0) : o .
Proof. As1= ?q + ~—>4, we obtain by Holder’s inequality,

_ — 1-6
1£150 = [ 1£P31908 < A g A e = DAL,

[ (1-0)q
Lemma A.9 (Young’s inequality for products). For p,q > 0 with ;1) + % =1,

1 1
ab < —af + —b? (a,b>0).
p q

In an other formulation; if 6 € [0,1] then a®b'=% < fa + (1 — )b for all a,b > 0.

Proof. As the exponential function is convex, we have for p, ¢ as above and a,b > 0,

1 1 1 1 1 1
ab = exp ( log a? + - log bq) < —exp (loga?) + —exp (logb?) = —a? + —b1.
p q p q p q

Corollary A.10. Let p,q € [1,00] be such that %—i—% =1. Then L*(p) NL>®(u) C LP(p)

and

1 1 -
1f] e S};”f”Ll"‘ng“Loo (f € L' N L>).

(1-06)

Proof. Note that 6 = % is such that % = g + ~—=. Apply Theorem [A.8 to obtain

o0

1 1
[ lle < WFIZ N fl| e Then apply Lemma |A .9}

O

A.11 (Notation). Let d € N. We write B(R?) for the Borel-o-algebra on R?. If y is
the Lebesgue measure on the measurable space (R%, B(R9)) and p € [1, 00|, then we write

LP(R?) instead of LP(u).

Definition A.12. We call a set of the form Hle[ai, bi], where a;,b; € R and a; < b;, a

rectangle (in RY).

Lemma A.13. Let p € [1,00).
(a) C.(RY) is dense in LP(RY).
(b) C®(RY) is dense in LP(RY).

(c) Let R denote the set of rectangles in R:. The linear span of {14 : A € R} is dense

in LP(RY).
Observe that ((b))) follows from ((a)|) by the Stone-Weierstrass Theorem.
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B Preliminaries on topological spaces (incomplete of course)
Definition B.1 (Neighbourhood of a point). We say that a set S is a neighbourhood
of a point z, if there exists an open subset U C S, with x € U.

C Taylor’s formula

C.1 For one dimension

Let us first recall the fundamental theorem of calculus.

Theorem C.1. [22, §15] Let g : [a,b] — R be continuous. Then

= [ o) dy = (o)

The following is a direct consequence.

Corollary C.2. If f € Cl[a,b], then

C.3. If f € C?, then we have

) =@+ [ e d

)+ [ 1w
a)+/$ (f'(a)+/y £(2) dz) dy
=fla)+(x—a)f +/ / f"(z) dz dy.

This can be iterated:
For f € C*[a,b], we have

and thus

~ 9 1y f(a) + RE y(2),

where by Fubini

Y1 Yk—1 k}
R}, (z) / / / D” f(yx) dyx dyg—1--- dy1

/[b] {(y:a<yp<yp_1 <<y <z} (Y ) DF f(yy) d
:/ / / / dyr dys -+ dyg—1 D" f(yx) dys
a Y Y Yk—1 Y2
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By induction one can easily see that

T rr T (:E _ yk)k_l
o dyndye e dygr =
/yk /yk—l Y2 (k - 1)!

So we have obtained the following.

Theorem C.4. Let f € C*[a,b], then

k-1 T — i T (p— k—1
)= Y S )+ [ Dk )
=0 ' @
ko(x—a) i T (g —q)kl
=3 0t s+ [t S o sl dy
Let
L = max |D" f(y)
M = max |D* f(y) — D* f(a)]
y€la,b]
Then
=L gy
|f(:r)—Z($ D fla)| < fie - a),
k i
|f(w) > Ot )| < Bt
=0 ’ :

C.2 Taylor expansion in higher dimensions

Definition C.5. Let f € C*(U,RP) for U C R% open. Let a € U. The Taylor polynomial
of order of order k at the point a, written T}fa, is given by

Th() = 3 6% f(a)@ - a)*

alal<k
The remainder of order k at the point a is given by Rkﬂ(x) = f(z) — T]]{a(:v).

Lemma C.6. [8, Lemma 6.1] Let f € C*(U,R%). Then for 1 € {0,1,...,k} and a,h €
R% and t € R such that a + th € U we have

1 & h®

a:lal=j
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Theorem C.7 (Taylor’s Formula). [8, Theorem 6.2] Let f € C*(U,RP) for U Cc R?
being an open ball. Let a € U. For alll € {1,...,k} and x € U

T —a)® 1 _Sl—l
f(a;):T}jal(a:)—&— Z ( a!) /0 (1(1—1)! 0“fla+ s(x —a)) ds (169)

Tz —a)® — st
= T}lcya(fL') + Z ( ) /01 (:l(l — i)' [0%f(a+ s(x —a)) — 0%f(a)] ds. (170)

!
Q!
o:|a]=l

a:lal=l

For a,x € U let us define

T —a)® 1 —g -1
Réga(w) = > ( = ) /0 (:l(l — i)' (0%f(a+ s(x —a)) —0“f(a)) ds. (171)
o:|a]=l ’ :

The map U xU — R given by (a,z) — Réc’a(m) is in C*=, and for every compact K C U
and every € > 0 there exists a § > 0 such that

’Rl,a(ﬂﬁ)\ <elz —af forxz,a € K and |x — a| <.

Moreover, for alla € U the map R?a :U — R isin CF and 8“le7a(a) =0 for all « € N¢
with |af < 1.

Proof. Let g be the one-dimensional function given by ¢(t) = f(a + t(x — a)). Then by
Theorem

-1 i 7 l 1 g
t d d
9(t) = z‘ ar? +/ 1 R A
So that with Lemma one obtains and ( - O

D Multivariate chain rule for mixed derivatives

The following theorem is a special case of the Faa di Bruno formula (in which the codo-
main of g is allowed to be of higher dimensions than one).

Theorem D.1 (Chain rule for multi-index differentiation). Let a € N¢ and let
m = |al. Assume m > 1. Let U C R be open, g : U — R and f : R? — U both be
C™-functions. Then there exist ¢yq € R for a € (N&)* such that

k

lgo fllx) =D Drg(f(x) DY  cma]]0"f(2)
k=1 ac(Ng\{0})* =1
al+--+ap=a

Proof. We give a proof by induction. In case m = 1, then the formula follows by the
chain rule for one derivative.
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Let m € N and assume that the formula holds for all 3 € N& with |3| = m. Let
o € N¢ be such that |a| = m + 1. Then we can find a e € N¢ and |e| = 1 and 3 € N¢
with |8| = m such that « = e + .

For k € {1,...,m} and b € (Ng\ {0})* with by 4 --- + b, = 3 we have

o° (D g(f(x))) = DM g(f(2))0 f (x),

k k
o° (H b f@)) =Y *f@)- I " f)
i=1 j=1 ie{l,...k\{j}

Hence
0°9°[g o f](x)
m k
=YD g(f(x) YD Of(@)emy [[ 07 f()
k=1 be(N\{0})k =1
bi+--+b=8
m k
+> DFg(f(x) D empd 0T f@)- [ 0"f(w)
k=1 be(NM\{o}* J=1 ie{l,....k}\ {7}
bi+-+b=8
=D"g(f(z)) D emp0f(x) [ 0" f(z)
be(Ng\{o})™ =1
bit-Fbm=0

m—1 k-1
FX D G| X et fa) [[ @)
k=2 =1

be(NG\{0})

b1+ +bg_1=p
k
Y e @ [ )
be(NA\{0})* J=1 ie{l,...kN\ {7}
bi4-+by=0
+ D g(f(2))0* f ().

Note that for b € (Nd)*~1 with b; + ---b,_1 = (8 one has (for example) (b1,...,bg,e) €
(N&)* and of course 8+ e = a. Also for b € (N@)* with by + --- 4+ by = S one has
(biy. . bj+e,....by) € (N and by + -+ +bj +e+ -+ b = B+e = a. From this
we can conclude that there exists ;41,4 for a € (Ng\ {0})* with a; + - -+ + ay = a such
that the chain rule holds for m 4+ 1. Why do the constants not depend on the choice of
e and f.... consistency left to prove. O

E Integration by parts

Theorem E.1. [, Appendiz C.2, Theorem 2] Let Q be a bounded open set with C!
boundary 02. We write o for the d — 1 dimensional “surface” measure on 0S). For
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f,g€C) and i€ {1,...,d} we have

/Ufaz‘gz—/[]gaif-i-/aljfgni do,

where n(x) for x € QU is the outward pointing normal vector and n; its i-th component.

F The Stone-Weierstrass Theorem

Theorem F.1 (Stone-Weierstrass, algebra version). [J, Theorem 6.14] Let K be a
compact topological space. Let D be a linear subspace of C(K) with:

(a) if f,g € D, then fg € D;

(b) if F=C: if f € D, then f € D;

(c) ifx,y € K and x # y, then there is an f € D with f(z) =0 and f(y) = 1.
Then D is dense in C(K).

G The Arzela-Ascoli Theorem

Theorem G.1 (Arzela-Ascoli). [7, Page 3] Let X be a compact metric space. Suppose
F' is an infinite collection of functions that X — F that is equicontinuous and uniformly
bounded, i.e.,

Ve>030>0Vfe FVr,ye X [dz,y) <d=|f(z)— fly)| <e], (172)
IM >0Vz e X Vf e R [|f(x)] < M]. (173)

Then there exists a sequence (fp)nen in F' that uniformly converges to a function f €

oX).

H Riesz representation theorem

Definition H.1. Let (X,.A) be a measurable space. A (positive) measure on A is a
countably additive function p : A — [0,00] such that u(0) = 0. A signed measure is
a countably additive function p : A — R such that p(0) = 0. A complex measure is a
countably additive function p : A — C such that p(0) = 0.

Theorem H.2 (Hahn-Jordan Decomposition). [{, Theorem C.1] Let p be a signed
measure on a measurable space (X, A). Then there exist positive measures i, 2, meas-
urable sets Ey, Es € A such that E1 N Ey =0 and By UEy; = X, u1(E2) =0, puo(Ey1) =0
and pt = p1 — po. These measures py and po are unique, and one writes also p* for uy
and u~ for ps. The sets By and Es are unique up to puy + po—null sets.

Consequently, if p is a complex measure, then there exist positive measures i1, b2, 43, 4
such that

= 1 — p2 +i[ps — pal. (174)
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Definition H.3. If u is a positive, signed or complex measure, we define its total vari-
ation |u| to be the function A — [0, oo| given by

n n
|| (A) = sup{z |u(E;)| : By, ..., E, are pairwise disjoint and in A and U E; = A}.
i=1 i=1

Theorem H.4. [J, Proposition C.3] If u is a positive measure, then |u| = p.
If u is a signed measure, then |p| is a positive finite measure and |u| = p+ — pu=.
If i is a complex measure, then |u| is a positive finite measure then || < S0, ;.

Definition H.5. We say that a positive measure p is inner regular if
w(A) =sup{u(K): K C A, K is compact},
and is outer reqular if
w(A) =inf{u(U): A C U,U is open}.

Definition H.6. Let X be a topological space. It is also considered to be a measurable
space equipped with the Borel-o-algebra. We define M(X,R) and M(X,C) to be the
set of signed and complex measures on X, respectively, such that their total variation is
inner and outer regular. We define || - || s : M(X,F) — [0, 00), which is called the total
variation norm, by

lallae = 1l (X)) (p € M(X,F)).
Theorem H.7. [, Proposition C.12] || -||m is a norm on M(X,F).
H.8. If X =R?, then every Radon measure is inner and outer regular.

Definition H.9. Let X be a locally compact space. We write Cy(X,F) for the continu-
ous functions X — F that vanish at infinity: f € C(X,F) is in Co(X,F) if for all e > 0
there exists a compact set K such that |f| < e on X \ K. Cy(X,F) is equipped with the
norm || - [|co (for which we sometimes also write || - ||, )-

Theorem H.10 (Riesz(-Markov-Kakutani) representation theorem). [/, Theorem
C.18] Let X be a locally compact space. For p € M(X,F) define ¥, : Co(X,F) = F by

W)= [Fdu (FECX,F)).

Then ¢, € Co(X,F)" and the map M(X,F) — Co(X,F), p — VU, is an isometric
isomorphism.

H.11. Of course if X be a compact Hausdorff space, the Cy(X,F) = C(X,F).
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I Baire’s category theorem

Theorem 1.1 (Baire’s Theorem). [5, Theorem 11.1] Let X be a complete nonempty
metric space and let Uy,Us, ... be dense open subsets of X. Then the intersection of
those sets, (,en Un is dense in X.

J Hahn-Banach Theorem

Definition J.1. Let X be a vector space and ¢ : X — R. Then q is called a sublinear
function if

(a) q(z +y) < q(x) +q(y) for all z,y € X,
(b) g(Az) = Ag(x) for all z € X and A > 0.

Theorem J.2. [J, Theorem II1.6.2] Let X be a vector space over R and q: X — R be a
sublinear functional. Let M be a linear subspace of X. If f : M — R is a linear function
such that f(x) < q(z) for all x € M, then there is a linear function F' : X — R such that
G|y = f and F(x) < q(z) for all x € X.
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