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Introduction

The aim of these notes is to give a self-contained precise introduction into the spaces of
distributions, Sobolev and in particular Besov spaces. For the latter we rely on the Fourier
transform on tempered distributions. Those spaces are commonly used in the theory of
partial differential equations, hence also some sections are devoted to applications to
partial differential equations.

The first part of these notes concentrate on introducing the essentials of distribution
spaces; their topologies, convolution and mollifiers and the Fourier transformation on
tempered distributions. There is a lot of good literature on the theory of distributions,
for example [Don69] (quite an old fashioned way of writing and no inner references,
though quite complete), [DK10] [Fri98] (both good introduction to distribution spaces,
comparable to the first part of these notes, approach the theory without requiring know-
ledge on topology), [Str03] (similar the previous two, though different from the taste
of the author, very sparse on topological issues), [Hor66] (is more an introduction into
topological vector spaces, with distributions a final section), [Leol7] (a brief introduction
to distributions in order to be able to introduce Sobolev spaces and also Besov spaces,
but without using the Fourier transformation).

The second part of these notes concentrates on Besov spaces. The notes differ from
the literature in that the proofs contain more details and rigour. Other references in
which Besov spaces are introduced are [BCD11] (these notes have a lot of overlap with
Section 2 of that book, which focusses less on the details but contains more content
on the applications), [Grald] (contains a brief introduction into Besov spaces, but also
contains many more function spaces), [Sawl8] (contains most of the contents of these
notes, though written in a different style), [ST87] , [Tri83] , [Tri92] , [Tri78] , [Tre06] (all
very extensive books on function spaces, containing also Besov spaces, also the style here
differs from the one in these notes).

Acknowledgements The first version of these notes was written for the course
“Theory of Function Spaces and Applications” in spring 2020 at the FU Berlin (online).
Five strong students followed the course and gave valuable feedback on the lecture notes.
Special thanks go to A.C.M. van Rooij, who carefully read the lecture notes and gave a
lot of feedback and suggestions.



Conventions and notation

e N=1{1,2,3,...}, No=NU{0} and N_; = {—1,0} UN.

e dis an element of N.

« ) is a nonempty open subset of R%.

o [Fis either R or C.

e For z € R? or 2 € C? we write |z| for its Euclidean norm />°% | |22, |z|1 =
S o] and |z]o = maX;e(1,.. d} il

o For a,b € R we write a Vb = max{a,b} and a A b = min{a, b}.

o For z € R% r > 0 we write B(x,r) for the (Euclidean) ball in R? with centre x and
radius r:

B(z,r) ={y e RY: |z —y| < 7r}.

(See also [1.7])

o For a set A C Q we write A° for its interior and A for its closure, see also

e We write V for the gradient of a function, which is the vector consisting of first
derivatives

vf:(alfv aadf)'

o For a set A C Q we write 14 for the indicator function of A, see Definition [2.4]

o We write || - ||zr for the norm on the LP spaces. See Section |Al As is common, we
do not distinguish between a function in £P and its corresponding equivalence class
in LP.

o For the inner product on L? we write (-,-) 2 (to avoid confusion with the notation
(-,-) for the pairing between distributions and test functions). So

(oo = [ 19

o (Notation of limits of partial sums) Suppose (v,)nen is a sequence in a topological

o N
vector space X. We say that Y.°°, v, exists if Y | v, == v for some v € X
and write Y o2 ; v, for v.

If I is a countable set and v; € X for ¢ € I, then we say that
> v
iel

exists, if there exists a v € X such that for each bijection ¢ : N — I, >°>° ;v
in X, and write ;. v; for v.

q(n) =V



1 Spaces of differentiable functions and testfunctions

In the next section, Section [2| we introduce the objects called distributions, which play
the central role of this text. A distribution can be viewed as a sort of generalised function.
As we will see, many functions like for example all continuous functions “are” or “can be
viewed” as distributions. Moreover, the distributions, like the differentiable functions,
form a vector space on which operations like translation, multiplication with differentiable
functions and differentiation are defined and follow the usual formal rules of calculus.
With the important difference that all distributions are differentiable, in the sense that
a derivative of a distribution always exists as a distribution.

This is a huge advantage which makes the theory of distributions very suitable as a
tool for (partial) differential equations, of which we will see a little bit for example in
Section [Tl

In this section we consider the space D(Q) of testfunctions on €2, which are smooth
functions with compact support. A distribution, as defined later in Definition is a
linear function D(§2) — F with certain continuity properties. In this section we show
that the space D(2) is not empty, and on the contrary, is large enough in the sense that
a compact set K and a closed set F' with K N F = () can be separated by a testfunction
in the sense that there exists a testfunction which equals 1 on K and equals 0 on F
(Lemma . Moreover, the notion of a partition of unity will be introduced which will
show its use multiple times (Definition [1.10)).

Remember that € is a nonempty open subset of R? and that the underlying field F
is either R or C.

Before we define the notion of a testfunction in Definition [I.5] we introduce some
definitions and recall a fact about the space of k-times continuously differentiable func-
tions.

Definition 1.1. Let f : 2 — F be a continuous function. We define the support of f,
supp f, to be the closure in €2 of the set

{z e Q: f(x) #0}. (1.1)

This means that it is the set of all z such that for all neighbourhoods V' of = (open set
that contains z) there exists an element y in that neighbourhood such that f(y) # 0.

Let A C . We say that f vanishes on A if f =0 on A, i.e., f(x) =0 for all z € A.
Let U be the collection of all open subsets of 2 on which f vanishes. Then U := JU is
the largest open subset of  on which f vanishes, and supp f = Q\ U.

If F is a set of functions Q — [, then we write F. for the subset of compactly
supported functions in F', i.e., F, = {f € F': supp f is compact}.

Definition 1.2. o We write ¢; for the basis vector in R% in the i-th direction, for
ie{l,...,d}.



o For a € N¢, we write || = X%, ;.

o For a € N¢ and any |a|-times continuously differentiable function f : Q — F, we
write

9OF = 0% O],

where 0; is the partial derivation with respect to the i-th coordinate, i.e., for a
differentiable function f:Q — T,

0.1(2) — tim T Pe) — (@)

h—0 h

(x € Q).

e For a one-dimensional differentiable function f : R — F we will also write df or
f' to denote its derivative, and 9" f for its k-th derivative (the letter D will not be
used for a derivative, but will be reserved for Fourier multipliers, see Section .

Definition 1.3.  « We write C(Q,F) or C(Q) for the set of continuous functions
Q — F. We will also write C°(Q) = C(2) and

Iellco@ = suple(@)l (v € C(Q),
observe that [|¢[|co) = [[¢llLe(q) for ¢ € C(L).
In general, we will write || - [[co and || - [|r instead of || - [[co(qy and || - ||zr(q)-

o For k € N we write C*(Q,F) or C*(Q) for the k-times continuously differentiable
functions @ — F, and || - [|cox(q) C* () — [0, o0] for

Ifllox@y =  max [0 fll=  (f € C*(QF)). (1.2)
BEN0:|B|§]€
In general, we will write || - ||« instead of || - || o)

o C®(Q,F) or C*°(Q) is the set of oo-times continuously differentiable functions
Q—F, ie.,

C®(Q) = [ CHQ).
keN
A function f: Q — F is called smooth if it is in C*°(Q2).

« Forasubset A C Fand for k € NgU{oo} we write C*(£2, A) for the set of functions in
C*(Q,F) which take their values in A, i.e., those f € C*(Q,F) for which f(Q) C A.

1.4. As on R” for some n € N the norm |- |; and | - |« defined by |z|1 = Y ;" |x;| and
|r|0o = maxj-, |z;| for € R™ are equivalent, or more specifically:

oo < fzfi Snlzloe (z€RY),
it is easy to see that there exists a C' > 0 such that

Ifller < D> 10°fllie <Clifler (f € CHQLF)).
BENZ:|BI<k



Definition 1.5 (Testfunctions). D(Q2) is defined to be the vector space CZ°(€2). An
element of D(N) is called a testfunction.

Later, in Definition we equip D(Q)) with a topology.
The next lemma shows there exist many testfunctions, namely one can separate points
from closed sets that do not contain that point.

Lemma 1.6. Let x € R? and U be an open subset of R? such that x € U. There exists
a testfunction ¢ : R — [0, 1] such that ¢(x) = 1 and supp ¢ C U.

Proof. We take x = 0 and show that for every € > 0 there exists a function 1. such that
¥-(0) = 1 and supp . C B(0,¢). Consider the function . : R? — [0, 00) defined by

1
poly) =T Hll<e
0 if ly| > e.

One can prove that this function is C by using that lim; ,., p(t)e™* = 0 for any poly-

nomial p. Then . is strictly positive at 0 with support in B(0,¢). O]
1.A. Prove that the function f: R — [0, 1] defined by
0  t<o,
f)=9 _1
et t>0.
is smooth.

1.B. Let d = 1 and ¢ be a nonzero testfunction. How that ¢’ is nonzero as
well and conclude that 0% is nonzero for all k € Ny.

1.C. Prove the following statement. For any sequence (xn)nen in Q of dis-
tinct elements such that for each compact K C ) there are only finitely many elements

of the sequence in K (that is, no subsequence converges), and for any sequence (Ap)neN
there exists a smooth function 1 on Q with 1 (xy,) = A, for all n € N.

We will now prepare ourselves to show that there exist so called partitions of unity
(Definition [1.10)). They will be used often in the following. First we recall a definition to
show that {2 can be written as a union of compact sets.

1.7 (Notation). For z € R r > 0 we write B(x,r) for the (Euclidean) ball in R? with
centre x and radius r:

B(z,r) ={y e R : |z —y| <7}

Theorem 1.8. There exists an increasing sequence of compact sets (Ky)nen such that
K, C K, foralln € N and

Q=] Kn.
neN

Consequently, for each compact set K C ) there exists an n € N such that K C K,,.



Proof. Observe that if Q = R, then we can take K, to be the closure of the ball around
0 with radius n: B(0,n).

Let us now assume that Q # R?. We first prove that € is the union of countably
many closed sets in R%. Let f : Q — [0,00) be such that f(z) is the distance from x to
R\ Q, ie.,

f(x) = inf{|z —y|: y € R\ Q} (x € Q).

Then f is a continuous function and therefore A, = ffl[%, o0) is a closed subset of €,

A, C Apyq forall n € Nand Q = e An.
Now it is straightforward to check that K, = A, N B(0,n) satisfies the conditions.

The consequence follows by using the fact that = |, oy K- O

Definition 1.9. Let E be an open subset of 2. A collection of subsets of E, U, is called
a covering of E if JU = E. It is called an open covering if each element in U is an open
set. If U and V are covers of F, then V is called a refinement of U or finer than U if for
each V € V there exists a U € U with V C U. A covering U is called locally finite if for
all x € F there exists a neighbourhood V of z such that V intersects only finitely many
elements of U. If V and U are coverings of F/ and V C U, then V is called a subcovering
of U.

With the help of Theorem [I.8] one can show that there exists an open locally finite
covering of 2. We will see this in the proof of Theorem [1.11

Definition 1.10. Let U be a covering of Q. A partition of unity on  subordinated to
U, is a sequence (xn)nen in D(2) with

0 < xn(z) <1, an(az) =1 (x € Q),
neN

for each n € N there exists a U € U with supp x, C U.

Let us show that partitions of unity exist.

Theorem 1.11. Let U be an open covering of §2. Then there exists a partition of unity
on Q subordinated to U, (Xn)nen, such that the sets {x € Q : xn(x) > 0} form a locally
finite covering of Q. Consequently, for each ¢ € D(Q) there exists an N € N such that

=01 xnp.

Proof. In this proof, let us call an element ¢ of D “small” if supp ¢ is contained in an
element of U.

Step 1 Let A be a compact subset of an open set W C Q. Let x € A and let U € U
be such that z € U. By applying Lemma to the compact set {x} and the open set
UNW, we find a small ¢ € D with ¢(x) > 0 and suppp C UNW.




It follows from the compactness of A that there exist N € N and small ¢1,...,ony € D
with ¢; > 0 and supp ¢; C W for each ¢ and A C U;en{z € Q: ¢i(z) > 0} C W.

Step 2 Let (Kj,)nen be as in Theorem and put Ko = (. For every n € N,
An = K, \ K, _, is a compact set, contained in the open set W, := K, \ K,_1. By
applying, for each n € N, Step 1, to A,, and W,,, one obtains a sequence (¢;);en of small
elements of D and a sequence 1 = N7 < No < --- in N such that for all n € N

0 < @i, supp@; C Wy if Ny < i < Ny,
Nn+1

A, C U U;, where U; :={z € Q: p;(x) > 0}.
=Ny,

The collection of open sets {U; : ¢ € N} forms a covering of Q. We prove it to be locally
finite. To that end, let n € N; it suffices to show that K intersects only finitely many
of the sets U;, which will be the case if U; C Q\ K, for all i > N,41. Take i € N,
i > Npy1. There is an m € N with Ny, < ¢ < Npy1. Then m > n + 1, whence
U Cc Wy, = fnJrl\Km_lCQ\Km_lCQ\Kn.

Step 3 It follows that we can define a function ¢ : Q — (0, 00) by ¢(z) = >, cn ¢n(2)
for z € Q, and that ¢ € C*°(f2). By setting x,, := %’ for n € N one obtains the desired
partition of unity on 2. d

Remark 1.12. Observe that for (x,)nen as in Theorem For any sequence (A, )nen
in F, the formula ¢ (z) = 372, Apxn(z) for 2 € Q defines a C*° function v on .

With the help of the partition of unity of Theorem [L.11| we can extend the statement
of Lemma [1.6] in such a way that we can find a testfunction that equals 1 on a compact
set:

Lemma 1.13. Let K C Q be a compact set and U be an open subset of R¢ such that
K C U. There exists a testfunction ¢ : R? — [0, 1] such that p = 1 on K andsupp e C U.

1.D. Prove Lemma

Let us recall the Leibniz’ differentiation rule.

1.14 (Leibniz’ rule). If k € Ny, f,g € C¥(Q) and o € N¢ with |a| < k, then

9*(fg) =) (g) (87 1)(0*g), (1.3)
BeNd
B<a

where 8 < o means ; < a; for all i € {1,...,d} and with o! = [, a!,

« al d «;
(5) ~(a-pp [[1 (ﬁ)



1.E. Let a ¢ N

(a) Show there exists a smooth function ¢ € C°°(R%) such that 9% (0) = 1.

(b) Let ¢ € C*. Let ¢ € D(2) be such that ¢ = 1 on a neighbourhood of 0 (i.e., on
B(0,7) for some r > 0). Show that

9% () (0) = 8%(0).

(c) Prove that for all @ € Ng there exists a testfunction ¢ : R — [0, 1] with 9%p(0) = 1.

/ \
o

T
—_
i

| |
[ [
1 3
2 1 L

PN

|
I
1 1
2 1

Figure 1: An example of a function x as in Exercise

1.F. See also Figure

(a) Show that there exists a smooth function x : R? — [0, 1] such that x = 1 on [—1, 1]¢
and x = 0 outside (—3, 3)? and such that

d x(x—k)=1 (z € RY).

kezd

(b) Show that one can find such a function x such that it is of the form x(z) =
1L, n(x;) for = (x1,...,24) € R? for a testfunction i : R — [0,1] with n = 1 on
[—1.3]% and 1 = 0 outside (—2, 3)<.

(c) Let n € N and ¥ : R — [0,1] be the function given by ¢(z) = > 3__, n(z — k),
with 7 as in[(b)] Show that [[¢]|cm = [|n]jcm for all m € Ng.

(d) Let n € Nand ¢ : R? — [0,1] be the function given by ¢(z) = D ke[—nmjdnzd X(T —
k), which y as in (b). Show that [[1||cm = ||x|lcm for all m € Ng.

2 Distributions

In this section we introduce the notion of a distribution and show that all locally integ-
rable functions can be viewed as distributions. Motivated by formulae that hold for those
functions, we define operations on distributions like derivation and multiplication with
smooth functions. Then we consider the order of a distribution and Radon measures,
which also can be viewed as distributions.

10



Definition 2.1 (Distributions). A linear function u : D(Q2) — F, is called a distribution
if for all compact sets K C €, there exist C' > 0 and k € Ny such that

lu(@)] < Cllellex (€ D(Q), suppyp C K). (2.1)

2.2. Observe that if u and v are distributions (on Q) and A, € F, then w : D(Q) — F
defined by w(y) = Au(p) + pv(yp) is a distribution.

Definition 2.3. We define D’'(2) to be the vector space of distributions.

Let us first consider some examples of distributions. A large class of distributions is
given by locally integrable functions:

Definition 2.4. For a set A C 2 we define its indicator function, 1 4, by

1 x€A,

1a(@) {0 x ¢ A

Definition 2.5. We say that a function f : Q@ — F is locally integrable if flg is an
integrable function for all compact sets K C Q. We write L] _(Q) for the space of
all locally integrable functions and Llloc(Q) for the space of their equivalence classes
similarly as for £P and LP (see Section. Similarly, £}, (£2) is written for those functions
f:Q — Q for which fl1xg € LP for all compact sets K C Q and L () for the space of
equivalence classes in £ ().

Of course all continuous functions are locally integrable, but also all elements of
LP(Q):

2.A. Prove that every function in £P(2) is locally integrable, where p is an
element of [1,00]. Conclude that £ () C LL ().

1
loc loc

2.6 (Locally integrable functions as distributions). Let f be a locally integrable function
on §. Define uy : D(2) — F by

u(e) = [ fo= [ f@el@)dz (o€ DQ)), (22)

It is straightforward to verify that uy is a distribution.
Similarly, if f € L{.(92) then we define uf also by (2-2) (this is well-defined as if g

loc
and h are locally integrable functions which are equal a.e. (almost everywhere), then

up = tg).

Definition 2.7. Let V and W be vector spaces. We say that V is embedded in W if
there exists a linear injection V' — W, which will also be called an embedding.

For Lemma [2.9] we recall Lebesgue’s differentiation theorem:

11



Theorem 2.8 (Lebesgue’s differentiation theorem). [HyNVWI16, Theorem 2.3.4] For

all f € Llloc(Rd) almost every point in R% is a Lebesque point, i.e., for almost all points
x7

U@ - @) dy o, (23)
B(z,)

Lemma 2.9. Let f € L (Q), usf = 0. Then f =0 almost everywhere. In other words,
the function L .(2) — D'(Q) given by f + uy is an embedding.

loc

Proof. Let B C Q be a ball. Then by Theorem there exists a sequence (¢p)neN
of positive functions in D(Q) with ¢, 1 1p, indeed take ¢, = > ; x; where (xn)nen
is a partition of unity on B. Then, by Lebesgue’s Dominated Convergence Theorem,

Jp f=lim, o0 [ feon = lim, 0 us(ppn) = 0. As, by Theorem almost every point of
Q) is a density point of f, f = 0 almost everywhere on (2. Ul

2.10 (Convention/Notation). It is customary to identify locally integrable functions

with their equivalence classes in Llloc and regard such an equivalence class as a function.

Similarly, it is customary to identify the distribution u; with the function f for any
feLL.orfe Ll and tosay that us “is” a function. We mostly follow this habit, but
tend to be careful.

A distribution is determined by its “local behaviour”, in the sense that if it is equal
to zero around each point in €2, then it is equal to zero, in the sense of the following
theorem.

Theorem 2.11. If u,v € D'(Q) are such that for all x € ) there exists an open neigh-
bourhood U of x such that u(e) = v(p) for all ¢ € D(2) with supp ¢ C U, then u = v.

2.B. Prove Theorem m

Before we define operations on distributions, we motivate these by identities for locally
integrable functions and their corresponding distributions in [2.13

2.12 (Notation). Let f:Q — F and y € R?. We define

—Q={-z:2€Q},
Q+y={r+y:xe€Q},

and define the functions f: —Q — F and Tyf :Q+y—TF by

fle)=f(=2), Tf(x)=flz—y) (zeR?) (2.4)
We also write Rf = f
2.13. Let f € L{_(Q). The following statements follow by applying the change of

loc

variables formulae and integration by parts. (For the notation uy see ({2.2)).)

12



(a) uj is a distribution on —€ and for ¢ € D(—)

= [ fape) do= [ fGa do = up(p) (2.5)
(b) w7,y is a distribution on Q +y and for ¢ € D(Q +y)
uffyf(gp):/gﬂf( dx—/ f@)p(x +y) do =ur(T_yp). (2.6)

(c) Suppose f € C*() for some k € N. Let a € Nd with |a| < k. Then ugas is a
distribution and for ¢ € D(Q)

_p / o f ) dz = (1)l /Q F(@)0%0(z) da = (~1)us(0%).
(2.7)

(d) Let ¢ € C*°(£2). Then uyy is a distribution and for ¢ € D()
Uy (@ / Y(z ) dz = us (). (2.8)

(e) Let I : RY — R? be linear and bijective. Then f ol is locally integrable and u o is
a distribution on [~(Q) and for ¢ € D(I71(Q2))

wale) = [, o Fole@) de = i [ f)pol (@) da
= Tdet]] dit”uf(gooll). (2.9)

2.C. Let u € D'(Q). Define w : D(—) — F as follows. For ¢ € D(—Q)
define w(y) to be equal to the right-hand side of (| . ) with “u” instead of “uy”, i.e.,

)
w(p) = u(p). Check that w is a distribution (on —2). Do the same for ([2.6]), (2.7]), (2.8)

and (| .

The analogous operations for distributions generalise the previous relations.

Definition 2.14. Let y € R% o € Nd, ¢ € C°(Q) and [ : R? — R? linear and bijective.
For a distribution u € D'(Q2) we define the following distributions (it is easy to check
that these are indeed distributions, see Exercise [2.C))

(a) © e D'(—Q) by
u(p) =u(@) (¢ €D(-9Q)),

(b) Tyu € D'(Q+y) by



ulpol™) (v € DUR)).

Observe that all the above operations are “linear in u”. Moreover, observe that
Ty0% = 0°Tyu  (y € RY, a € NI).

Example 2.15. Let d =1 and let f : R — R be the absolute value function: f(z) = |z|
for x € R. Then one can compute (see Exercise [2.D)

Ou]c = Ug, for g = H(O,oo) — ﬂ(—oo,O)v
0®us(p) = dug(ip) = 20(0).

Of course for © # 0 we have g(z) = f'(z). On the other hand, the second derivative
d%*ug, which equals du, is not equal to uy, for any function h for which h(z) = ¢'(z) for
all z # 0. Actually, 0%u  is given by a distribution corresponding to a specific Radon
measure, namely the so-called Dirac J-measure. We will now turn to such measures and
their corresponding distributions.

2.D. For f as in Example check that dus(p) = uy(p) and *us(p) =
2¢(0) for ¢ € D(Q).

2.E. In this exercise we consider dimension one and want to consider the
function z % as a distribution. However, there is a problem of defining the integral
by testing it against a testfunction and integrating around zero. Therefore we define the
distribution differently.

(1) First prove that for all ¢ € D(R) the limit

lim #(2)
el0 JR\[-ee] <

dx

exists, and equals — [p ¢'(z)f(x) dz, where f: R — R is given by

_ Jloglx| x#0,
f@) = {0 z=0.

14



For this check that f is integrable around zero and conclude that it is locally integrable.
(2) Prove that u : D(R) — R defined by

u(p) := lim ()
el0 JR\[-e,e] <

dz (¢ € D(R)),

defines a distribution and v = duy, where f is as in (1).

2.F. (a) Prove that for any u € D'(R), the following are equivalent
(1) du=0,
(2) there exists a ¢ € F such that v = cu;.
(Hint: Let ¢ € D with [ = 1. Prove that for all ¢ € D, ¢ — ([ ¢) has a primitive
in D.)
(b) Prove that for all u € D'(R) there exists a v € D'(R) such that u = dv.

Besides locally integrable functions, we can also interpret Radon measures as distri-
butions. We introduce the notion of a Radon measure first, for some basic definitions
from measure theory we refer the reader to Appendix [A]

Definition 2.16. We write Borel(£2) for the smallest o-algebra that contains all open
subsets of Q. Borel(Q2) is called the Borel-o-algebra on . A Radon measure on € is
a measure on Borel(Q2) (i.e., a countably additive function p : Borel(€2) — [0, c0] with
u(0) = 0) such that u(K) < oo for all compact sets K C €.

2.17 (Radon measures as distributions). Let pu be a Radon measure on Q. Then u, :
D(Q) — F defined by

(i) = /Q pdn (g eDO)) (2.10)

is a distribution.

Let us write A for the Lebesgue measure. If f € E%OC(Q) and f > 0, then f\ is a Radon
measure, where fA(A) = [1af. Then us defined as in equals usy. Not all Radon
measures are of the form fA with f € L] (), see for example the Dirac §-measure:

Definition 2.18. For z € R? define the measure 4, as follows; for a Borel measurable
set A set

1 xe€A,

%(4) = {0 x ¢ A

Then ¢, is a Radon measure, which is called the Dirac §-measure centered at x. We call
0o the Dirac 6-measure. A point measure is a Dirac d-measure centered at some point.

Observe that d,(¢) = ¢(x) for any Borel measurable function .
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Theorem 2.19. If u is a Radon measure on (), then for all open sets U C €2
w(U) =sup{u(K): K C U, K is compact} (2.11)
= Sup{/so dp = p € C2(9,10,1]),suppp C U} (2.12)

Consequently, if u,(¢) = [@ du =0 for all ¢ € D(Q), then p = 0. In other words,
the map from the space of Radon measures into the space of distributions, p — uy, is
injective.

Proof. (2.11)) follows from Theorem . (2.12)) follows similarly as in the proof of
Lemma by Theorem there exists a sequence (¢n)nen in D(Q) with ¢, T 1y.
Then [, dut [ 1y = p(U). O

2.20. Now the space of Radon measures is not a vector space, but it is closed under
additions and multiplication with positive scalars. As the map p +— u,, preserves addition
and multiplication with positive scalars, one could also say that the space of Radon
measures is “embedded” into the space of distributions. As Radon measures can attain
the value oo on a set, there is not a straightforward way of making sense of the difference
of two Radon measures as a function on the o-algebra (take for example A the Lebesgue
measure on R and let p=3"_.,0.).

We introduce the order of a distribution and then discuss how Radon measures cor-
respond to distributions with order 0.

Definition 2.21. If u is a distribution and there exist a C' > 0 and k € Ny such that

[u(p)l < Cllgller (v € D(Q)), (2.13)

then w is said to be of order at most k. In other words, for this C' and & (2.1)) holds for
all compact sets K. If u is of order at most 0, we also say that u is of order 0. If k € N

and wu is of order at most k but not of order at most k — 1, then u is said to be of order
k.

2.22. Every distribution of the form u; for an integrable function f and every distribution
of the form w,, for a Radon measure p with 1(§2) < oo is of order 0.

On the other hand, the distribution u; corresponding to the function 1 which is
equal to 1 everywhere is not of any finite order: Let x be as in Exercise [[.F] and define
() = Ypelnnjnze X(z — k). Then [[pp]lom = [l¢1]lcm for all n > 2 and m € N¢. On
the other hand uy(¢n) > [ 1 (n—1),n—1] = (2(n— 1))? as @, > L_(n—1),n—1) foralln € N.

2.G.

(a) Let k € Ng, d = 1. Show that 9%¢ is a distribution of order at most k.

(b) Show that %4 is not of order at most k—1, i.e., show that it is of order k. (Hint: Test
it against ¢.(2) = z¥p(%) for e > 0 with ¢ € D(Q) with ¢ = 1 on a neighbourhood
of 0.)
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(c) What is the order of 9% for o € N4?

(d) Construct a distribution which is not represented by a locally integrable function
and not of any finite order.

Actually, all distributions of order 0 correspond to linear combinations of finite Radon
measures (a Radon measure p is called finite if x(€2) is finite), see Theorem Such
linear combinations are called signed Radon measures if F = R and complex Radon
measures if F = C, see Definition and Theorem For the proof of Theorem [2.28
besides the Riesz representation theorem (Theorem we will use convolutions. As
convolutions are treated in Section [7] we postpone the proof of Theorem [2.28 to Section 9]

(see below Corollary [9.8).

Definition 2.23. A Radon measure p is called finite if u(Q) < co. We write M(Q,F) or
M(Q) for the set of countably additive functions p : Borel(2) — F. Elements of M (€, R)
are called signed measures and elements of M(€2, C) are called complex measures. We say

that a signed or complex Radon measure p is positive, if ;1(A) > 0 for all A € Borel(Q).
We define || - ||pm : M(Q,F) — [0, 00] by

||| ar = sup {Z |(A)|: Aq, ..., Ay is a partition of € in Borel(Q)} ,
i=1

where a partition of © in Borel(2) is a finite number of pairwise disjoint sets Ay, ..., Ay
in Borel(Q2) such that |J; A; = Q.

We state the Hahn—Jordan Decomposition Theorem without proof; a proof can be
found in [Con90, Theorem C.1] .

Theorem 2.24 (Hahn-Jordan Decomposition). For each p € M(,R) there exist ex-
actly one pair of disjunct positive finite Radon measures ji, i— such that there exist meas-
urable sets By, E_ € Borel(Q) such that Ey NE_ =0 and Ey UE_ =X, u (E_-) =0,
u—(E4) =0 and

M= pt = B
Moreover,
[allm = 4 () + p— ().
For a p in M(2,C) we can define the functions R, S : Borel(£2) — R defined by
(Ru)(A) = R(u(A))  Su)(4) =3(u(A4)) (A € Borel(2)),

are signed measures, or in other words, elements of M(Q2,R). By applying the previous
theorem to Ry and S we obtain the following.
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Corollary 2.25. For each u € M(,C) there exist four positive finite Radon measures
By 2, fi3, pa Such that

po= p1 — p +ifps — pal,

and
lillm = 11(Q) + p2(2) + ps3(2) + pa(€2).

The Hahn—-Jordan decomposition in particular implies:

Lemma 2.26. || - || is a norm on M(Q). L'(),F) is embedded in M(Q,F) by the
function L*(Q,F) — M(QLTF), f + f\, where X is the Lebesque measure on Q. Moreover,

IFlle = 1F M (F € LHQ, ). (2.14)

Proof. That ||-||a is a norm follows by the Hahn-Jordan decompositions. In case F = R

follows as ||f|lzr = [ fT+ [ f~, where fT(z) = f(z) V0 and f~(z) = —f(z) VO
for x € Q2. The case F = C is similar. Ul

2.27. For a signed or complex Radon measure p € M(Q,F) we define u, : D(Q2) — F by
(2.10). As a consequence of Theorem and Theorem M(Q,F) is embedded in
D'(Q2) by the embedding p — uy,.

Theorem 2.28. A distribution u is of order 0 if and only if uw = u, for a p € M(Q,F).

The following theorem, the Riesz representation theorem, will be used for the proof of
Theorem in Section [9] (it is given below Corollary [9.8). For a proof of Theorem [2.30]
see [Con90, Theorem C.18] .

Definition 2.29. We write Cy(2,F) or Cp(2) for the continuous functions Q@ — F such
that for all € > 0 there exists a compact set K C  such that |f| < e on Q\ K. Cy(X,F)
is equipped with the norm || - ||co.

Theorem 2.30 (Riesz representation theorem). Forp € M(Q,F) define ¥, : Cy(Q,F) —
F by
V() = [Fdu (Fe o E).

Then ¢, € Co(,F) and the map M(Q,F) — Co(LF), p — ¥, is an isometric
isomorphism.

Corollary 2.31. M(,F) is a Banach space under the norm || - || m-
Proof. This follows by Theorem as the dual of a normed space, in this case Cy(Q2, F)’,

is a Banach space. See for example [Con90, Proposition I11.5.4] or [Rud91, Theorem
4.1). 0
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3 Topological vector spaces

In this section we introduce some topological notions like topological vector spaces, loc-
ally convex spaces and weak topologies on dual pairs. We discuss a few properties like
metrizability and separation properties. These notions will be used in Section [4] to define
the topologies on D(2) and D’(€2). We recall some definitions of topology in but will
not require the reader to be familiar with nets; see [3.2] for some comments.

3.1 (Topological vocabulary). Let X be a set. A topology T on X is a set of subsets of
X, called open sets, such that 0, X € 7, if A,B € 7 then AN B € 7 and if Y C 7, then
UU € 7. Then the pair (X, 7) is called a topological space; but it is also common to say
that X is a topological space itself.

If X is a topological space with topology 7, then we use the following vocabulary.
A set F' C X is called closed if its complement X \ F' is open. The closure A of a set
A C X is the smallest closed set that contains A; it is the intersection of all closed sets
that contain A. The interior A° of a set A C X is the largest open set contained in A;
it is the union of all open subsets of A. A set K C X is compact if each open covering of
K has a finite subcovering. A neighbourhood of a point z € X is a set that contains an
open set that contains x. For a set A C X we call an set that contains an open set that
contains A also a neighbourhood of A. If Y C X and o = {UNY : U € 7}, then o is
called the relative topology on Y. If o is a collection of subsets of X, then 7 is said to be
generated by o, or we also say, o generates the topology 7 if 7 is the smallest topology
that contains o. One can show that 7 consists of those sets which are unions of finite
intersections of elements in o. If z € X and U is a collection of subsets of X with x € U
for all U € U, then U is called a local base for x if for each neighbourhood V of x there
exists a U € U with U C V. X is called connected if it is not the union of two disjoint
non-empty open subsets of X. X is called metrizable if there exists a metric d on X such
that the topology is generated by the balls {z € X : d(z,y) < r} with y € X and r > 0;
in that case one says that d is compatible with the topology on X. A metric d on a vector
space X is called translation invariant if d(z + z,y + z) = d(z,y) for all z,y,z € X.

Let X and Y be topological spaces. A function f : X — Y is called continuous if
f~Y(U) is open in X for each open set in Y. The product topology on X x Y is the
topology generated by the collection of sets U x V', with U being an open set in X and Y
an open set in Y. Equivalently, the product topology on X x Y is the smallest topology
such that the projections X x Y — X and X xY — Y are continuous. If not mentioned
otherwise, for two topological spaces X and Y the space X x Y is equipped with the
product topology.

3.2 (Sequences and nets). For metric spaces X and Y we have that f : X — Y is
continuous if and only if x,, — = implies f(x,) — f(z) for each sequence (zy)nen and z
in X. Moreover, a set F' in X is closed if and only if each sequence in F' that converges
in X has its limit in F. This does not hold in general for any topological space. But
one can replace the usage of sequences by nets. In order to keep the text readable for
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those who are not so familiar with that notion, we avoid it. Moreover, for the theory of
distributions, as we will see, it is often enough to consider convergence of sequences.

Definition 3.3. A vector space X equipped with a topology 7 is called a topological vector
space if both the operations addition and scalar multiplication, that is the functions

XxX =X, (z,y)—z+y,
FxX—X (AX)— Az,
are continuous.
It is easy to see that each normed vector space is a topological vector space.

Observe that if I/ is a local base for 0, then the topology of X is generated by the
sets £ + U with x € X and U € U.

We recall the definition of a seminorm.

Definition 3.4. Let X be a vector space. A seminorm on X is a function p : X — [0, c0)
such that

plxz+y) <plx)+ply) (z,y€X),
p(Az) =[Alp(z)  (Ae€F,z e X).
A seminorm p is a norm if p(z) = 0 implies x = 0.
Definition 3.5. Let P be a collection of seminorms on a vector space X. Let 7 be the
topology generated by the sets
{reX plr—y) <r} (ye X,r>0).

Then 7 is called the topology generated by P.

A set U is open in X, i.e., U € 7 if and only if for each y € U there exist n € N,
Pls.--sPn € P, 7 ...,my > 0 such that

ﬂ{xeX:pi(x—y) <r}CU.
i=1

Moreover, X equipped with the topology generated by P is a topological vector space
(the proof of this is rather straightforward and left to the reader).

Definition 3.6. Let P be a collection of seminorms. A vector space X equipped with
the topology generated by P is called a locally convex space if

ﬂ {z € X : p(x) =0} = {0}. (3.1)

peEP

If P is such that (3.1)) holds, then P is called a separating family of seminorms and the
topology generated by P is called a locally convex topology.
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A locally convex space is Hausdorff, that is, if x,y € X and z # y, then there exist
open sets U,V such that UNV =0,z € U and y € V: By there exists a p € P such
that p(z—y) # 0. Let £ > 0 be such that p(x —y) > 2e. Take U = {z € X : p(z—2x) < e}
and V ={z¢€ X :p(z—y) <e}.

Of course, every normed space is a locally convex space.

3.7 (Why is it called “locally convex”?). From this definition it might not be clear why
this is called “locally convex”. This is due to the fact that the topology is such that for
all x and open neighbourhood U of x there exists a convex open neighbourhood V' with
x €V C U, see for example [Rud91, Theorem 1.37].

As we will see in the most obvious choice of equipping the testfunctions with
the || - ||o» norms with k& € N, leads to a metrizable locally convex topology with is not
complete. That it is metrizable follows from the following theorem.

Theorem 3.8. A locally convex vector space X is metrizable if and only if it is generated
by countably many seminorms. Moreover, if the topology of X is generated by a countable

number of seminorms pi,p2,..., then the topology is compatible with the translation
tnvariant metric d on X defined by
dz,y) = 27" App(z—y)  (z,y€X). (3.2)
neN
Proof. (Optional) If X is generated by countably many seminorms pi,ps, ..., then it is

easy to check that the metric defined in (3.2 is compatible with the topology.

Suppose X is metrizable and 0 be a metric on X that is compatible with the topology.
Then it is easy to check that d(z,y) := 0(0,y — z) for z,y € X defines a translation
invariant metric on X. Moreover, as the neighbourhoods of 0 are the same for 0 and d,
also d is compatible with the topology on X (as a translation by x of a local base for 0
is a local base for x).

X has a countable local base for each y € X (such X are called “first countable”),
namely U, = {V,, : n € N}, where

Vo = {a:eX:d(a:,y)<%} (n e N).

As d is translation invariant we have U, = z + Uy, indeed {z € X : d(z,y) < 1} =
y+{reX:d0,y—z)<i}forallneN.

Let P be a collection of seminorms that generates the topology on X. Define
1
Upm = {1‘6X:p(l‘)<%} (p e P,meN).

Then {U,, : p € P,m € N} forms a local base for 0. Therefore, for each n € N, we can
choose a p, € P and m,, € N such that

Up,.;mn C Va.
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This implies that {Up, m, : n € N} is a local base for 0. Therefore the topology is
generated by the countable set of seminorms {p, : n € N}. O

Let us introduce the notion of a Cauchy sequence and completeness for locally convex
spaces. In |3.10| we comment on how this notion agrees with the notions of Cauchy
sequences and completeness for metric spaces.

Definition 3.9. Let X be a locally convex topological space and P be a collection of
seminorms that generate the topology of X. A sequence (2, )nen in X is called P-Cauchy
or just Cauchy, if for each p € P it is Cauchy with respect to p:

for all € > 0 there exists an N € N such that p(z,, — x,,) < € for all n,m > N.

If each P-Cauchy sequence in X converges, X is called P-complete or just complete.

3.10 (P-Cauchy and Cauchy with respect to a metric). Let X and P be as in Defin-
ition If X is a normed space, which means that its topology is generated by one
norm, then a sequence is P-Cauchy if and only if it is Cauchy with respect to the norm
(and thus distance). Consequently, the space is P-complete if and only if it is complete
with respect to the norm.

If X is metrizable, which means that one can take P to be countable, then a sequence
is P-Cauchy if and only if it is d-Cauchy with d the translation invariant metric as in

B-2).

It is important to have such a translation invariant metric, as the following example
illustrates: Take X = R and let d and  be metrics on R given by d(z,y) = |z — y|
and 0(z,y) = |[e”* — e Y| for z,y € R. Then both metrics generate the same topology,
however the sequence 1,2,3,... is 9-Cauchy but not d-Cauchy, and R is complete under
d but not under 0.

3.11 (A metrizable topology on D(€2) which is not complete).

On D(Q) the function || - ||ox is a (semi)norm for each k£ € Ny and therefore these
seminorms generate a locally convex topology on D(2). This topology is metrizable, see
Theorem however the topology is not complete: Let x be a testfunction which equals
1 at 0 with support in (—%, %) Let (en)nen be in (0,00) and &, | 0 and let x, = TnX.
Take ¢, = D1 1 €ixi- Then (p,)nen is a Cauchy sequence with respect to the metric d
of Theorem [3.8| with py = || - ||+ but does not have a limit in D(RY). One can adapt this
argument to show that also D(f2) is not complete for any open set Q C R (for example
in the spirit of Exercise or with the use of a partition of unity).

3.A. Show that (for a general open set 2 C RY) the space D(f) is not

complete in the metrizable topology generated by the seminorms || - [|o» for k € N.

The topology mentioned in is not the topology which D(€2) is equipped with. In
order to introduce that topology, we make some notions and introduce some definitions.

First, we observe that distributions define seminorms on the space of testfunctions:
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3.12. Each distribution u defines a seminorm on D({2) by

@ = |u(p)]- (3.3)

By Lemmaapplied to f € D() it follows that if us(p) = uy,(f) = 0 for all ¢ € D(Q),
then f = 0. Therefore the collection of seminorms generated by the distributions, that
is the seminorms for u € D'(Q) form a separating family.

In the notation D’'(2) we have used the symbol “’ 7, which is commonly used to denote
the topological dual of a space, as in Definition [3.13] The definition of the topologies
of D(Q) and D'(Q) are given in Definition in terms of the topologies defined in
Definition The topology on D(f) is exactly the one generated by the seminorms
defined by the distributions as in In the following definition we introduce the
notion of a topological dual of a topological vector space. It turns out that D'(Q) is
indeed the topological dual of D(2) with the topology that we consider. This relies on
Theorem [3.19] as we mention in Definition First we introduce the notion of a dual
and use the Hahn—Banach theorem to show Lemma which shows that for a locally
convex space X with its dual X’ forms a pair as defined in Definition As those
theorems are not essential for the further theory of distributions, the reader may skip
those theorems which are indicated by (¢ ¢ o).

Definition 3.13. Let X be a topological vector space over F. The space of linear
continuous maps X — F is called the dual or topological dual of X. We write X’ for the
dual of X. Each element of x € X determines a seminorm on X' by f — |f(z)]. We
equip X’ with the locally convex topology generated by these seminorms, which is also
called the weak* topology.

The elements of X’ for a locally convex space X separate the points in X, see
Lemma [3.15] To prove this lemma we use the Hahn—Banach theorem, which we state
without a proof (for a proof see for example [Con90, Corollary II1.6.4] or [Rud91, Theorem
3.3]).

Theorem 3.14 (Hahn—Banach). (¢0¢) Let X be a vector space, M be a linear subspace of
X and p be a seminorm on X. If f : M — F is a linear function such that |f(x)| < p(x)
for all x € M, then there is a linear extension of f to X, F : X - F (F|y = f) with
|F(x)| < p(x) for all z € X.

Lemma 3.15. (00¢) Let X be a locally convex vector space. Let M be a linear subspace
of X. Let f : M — F be linear and continuous (with respect to the relative topology),
then f has a continuous linear extension to X.

Consequently, for each x,y € X with x # y and x # 0 there exists an F € X' such
that F(z) =1 and F(y) = 0.

Proof. Suppose that P is a collection of seminorms that generates the topology of X. As
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f is continuous on M there exist seminorms p1,...,p, € P and r1,...,7r, > 0 such that
n
ﬂ{x € X :pi(x) <} € f7H(B(0,1)).
i=1

Let p = maxj_; 2. Tt is easy to check that p is a continuous seminorm on X. As p(z) < 1
implies f(z) < 1, by linearity we have |f(z)| < p(z). By the Hahn—Banach theorem there
exists an exists a linear extension F' : X — F of f, i.e., F(z) = f(z) for x € M, and

|F(z)| < p(x). The latter implies that F' is continuous. O

Definition 3.16. Let X and Y be vector spaces over F and (-,-) : X xY — F be a
bilinear form that satisfies the separation axioms:

(x,y) =0forally € Y implies z =0,
(x,y) =0forall z € X implies y=0.

Such a pair (X,Y) is called a dual pair.

The weak topology o(X,Y) on X is the coarsest topology on X such that all maps
(-,y) with y € Y are continuous. In other words, this topology is generated by the
seminorms x — |(x,y)| for y € Y and therefore a locally convex topology. Similarly one
defines the weak topology o(Y, X) on Y it is the coarsest topology on Y such that the
maps (z,-) with x € X are continuous.

Example 3.17.

(a) Let V be a vector space and V# be its algebraic dual. The pair (V,V#) forms a
dual pair under the bilinear form V x V# — F given by (z, f) — f(x).

(b) Let X be a locally convex vector space. By Lemma the pair (X, X’) forms a
dual pair under the bilinear form X x X’ — F given by (z, f) — f(z).

(c¢) As the distributions separate the testfunctions as we have observed in the pair
(D(Q2),D'(2)) forms a dual pair under the bilinear form D(2) x D'(Q2) — F given

by (¢, u) = u(p).

We will show that for X and Y as in Definition [3.16] Y is the dual of X equipped
with ¢(X,Y’) in Theorem so that the name “dual pair” now actually makes sense.
The next lemma, is a preparation for the proof.

Lemma 3.18. (¢¢¢) Let X and Y be a dual pair. Let n € N and y1,...,yn € Y be
linearly independent. Then there exist linearly independent x1,...,x, € X such that
(wi,yj) = 655 foralli,j e {1,...,n}, where d;; is the Kronecker symbol, which equals 1
if i =7 and 0 otherwise.

Proof. For n = 1 this follows immediately by the separation axioms. We continue by

induction. Let n € N and y1,...,ynt1 € Y be linearly independent. Let Zi,...,%, be
such that (Z;,y;) = 6; ; for 4,5 € {1,...,n}. Let M), be the linear span of Zi,...,Z, and
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let F, ={z € X : (x,y;) = 0,1 € {1,...,n}}. Then X is the direct sum of F},, and M,,
ie., X = F, + M,. The map (-,y,+1) cannot vanish on F,,, because if it would, then

Yn+1 would be a linear combination of yi,...,y,. Therefore there exists an x,+1 € F,
with (Zp11, yns1) = 1. By defining x; = &; — (T4, Yn+1)Tns1 we have (x;,y;) = d; ; for all
i,j € {1,...,n+ 1}, because of this the x; have to be independent. O]

Theorem 3.19. (¢¢9¢) Let X and Y be a dual pair. The dual of the topological vector
space (Y,o0(Y, X)) is X. This means that if f : Y — F is continuous and linear, then
there exists a unique x € X such that f(y) = (x,y) fory €Y.

Proof. As f~1(B(0,1)) is an open set, there exist x1,...,z, € X such that
(Hy €Y : [,y <1} C F7H(B(O,1)).
i=1

So max]" ; [(x;,y)| < 1 implies f(y) < 1 for all y € Y. As f is linear, we obtain

)] < whx {z)l (e ). (3.4

We may assume that zi,...,z, are linearly independent. Let f; € Y# be defined by
fily) = (x;,y) for y € Y. Then fi,..., f, are linearly independent. By Lemma
f cannot be linearly independent from fi,..., f,, because of . Hence f is a linear
combination of f1,..., f,, from which it follows that there exists an x (which is a linear
combination of x1,...,z,) such that f(y) = (x,y) forall y € Y. O]

4 Topologies on the spaces of testfunctions and distribu-
tions

In this section we equip D(€2) and D’'(Q2) with topologies.
Definition 4.1 (Pairing and topologies on D(Q2) and D’'(2)).
We define (-,-) : D'(2) x D(Q) — F by

(w,0) =u(p)  ((u,9) € D'(Q) x D(2)). (4.1)

We equip the space of testfunctions D(2) with the weak topology o(D(Q2),D'(f2)) and
the space of distributions D’(€2) with the weak™ topology, that is, with the weak topology
o(D(Q),D(2)).

By Theorem it follows that D'(Q) is the dual space of D(Q) (equipped with the
o(D(%2), /() topology).

4.2 (Convention/Notation). As we mentioned already in it is customary to identify
locally integrable functions with their corresponding distribution. That is, one may write
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“f” instead of “uy” for a locally integrable function (or equivalence class) f. However,
we still prefer not to write “f(¢)” instead of “us(p)” so we will write “(f, )" instead.

The notation “(-,-)” is also commonly used for inner products and this might cause
confusion. Indeed, say we take f,g € D and as mentioned above, view f as the distri-
bution ug. Then (f,g) is [ fg which is not the same (at least not for general C-valued
functions) as [ fg, the latter is the inner product of f and g, for which we write (f, g)r2.

Remark 4.3 (Another way to introduce the topology on D(2)). In the literature there
are basically two approaches to the topologies on testfunctions and the distributions.
The one presented here, where first the distributions are defined and then the topology
as a weak topology. Or one where one first defines a topology on the testfunctions via
an inductive limit approach, also called .... Then the space of distributions is defined to
be the dual of this space, i.e., the space of linear functionals on the testfunctions that
are continuous with respect to the topology (this approach is followed by the books on
functional analysis [Con90] and [Rud91]). The topologies differ slightly (we comment on
this in ...), but the convergence of sequences is the same, and, as we will see, the space
of distributions is determined by that (and therefore is the same for both approaches).

4.4. Let y € R%, a € N¢, ¢ € C®(Q) and [ : R? — R? be a linear bijection. Observe
that the operations ™, 7,, 0%, multiplication by ¢ and composition with [, i.e.,

D(2) — D(—9Q), © = P, D'(Q) = D'(-Q), w1,
D(Q) - D +vy), o = Ty, D'(Q) =D (Q+y), u — Tyu,
D(Q) — D(), @ = 0%, D'(Q) — D'(Q), u s 0%,
D(2) — D(), © = P, D'(Q) - D'(Q), u— Yu,

D(2) — D(I(EY)), prpol, D'(Q2) — D'(1(2)), uruol,

are continuous. As an example we consider multiplication with ¢. Let us write I :
D(Q) — D(Q) for ¢ — Yo:

As the operations is linear, it is sufficient to show continuity at zero. Instead of showing
that the preimage of any open neighbourhood of 0 under the multiplication is an open set,
it is sufficient to consider the preimage of neighbourhoods generated by the distributions.
The following sets form a local base for 0 in the topology on D(Q) (Exercise [4.A)):

ﬂ{ngD(Q) i, )| < 1} (n € Nyuq,...,u, € D'(Q)). (4.2)
=1
Fix u1,...,up in D'() and let U = 7, {p € D(Q) : |(us, )| < 1}. Then

I, (U) ={p e D(Q) : o € U} = [{r € D(Q) : [(ui, )| < 1}
=1

= M € D(Q) : [(Yuy, )] < 1},
=1

which is again a set of the form (4.2)), hence open. With similar arguments the other
operations can be shown to be continuous; this is left to the reader.
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4.A. Show that indeed the open sets
n
(e eD: [{ui, 9 < 1}
i=1

for uy,...,u, € D'(Q) form a local base at 0 in D().

The characterisation of convergence of sequences is given in Theorem [4.11] Before
some auxiliary lemmas are given. First we show that we can embed D(U) in D(2) and
D'(Q) in D'(U) whenever U is an open subset of €.

Definition 4.5. Let X and Y be topological vector spaces. We say that X is continuously
embedded in Y, and write X — Y, if there exists a continuous embedding X — Y.

If Z is another topological vector space, then we will write “X — Y < Z” instead
of “X Y and Y — Z7, etc.

4.6 (Restriction of a distribution to a smaller set). Suppose U is an open subset of .
As every compact set in U is compact in €, there exists a linear injection

t:DU) — D),
with «(¢)(z) = ¢(x) for x € U and t(p)(xz) = 0 for x € Q\ U, and ¢ € D(U). On the
other hand, for u € D'(Q2) we define p(u) : D(U) — F by
(p(u), ) = (u,u(@)) (¢ € DU)).

Then p(u) is a distribution, and so p forms a map D'(Q2) — D'(U). It follows that both
p and ¢ are linear and continuous. So D(U) can be continuously embedded in D(2) and
D'(2) can be continuously embedded in D'(U), i.e.,

DWU) = D), D(Q) =D U).

For this reason, we will view p(u) as the restriction of u to D(U). Therefore, when
v € D'(U) we will say “u = v on U” instead of “p(u) = v”. Moreover, if u € D'(U) and
v € D(R), then we will write “u(y)” instead of “u(p|y)”.

Observe, moreover, that ¢ is also continuous with respect to the seminorms || - || &
with k € Np, and

le(@cr@) = llellerw) (v € D)) (4.3)

The following lemma is an application of the mean-value theorem to higher dimen-
sions.

Lemma 4.7. Let V,U C R, V be convex, U be open and V C U. If € C1(U) and
M = miax sup [9:(2)] < oo,
i=1 gey

then 1 is Lipschitz continuous on V with Lipschitz constant M.
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Proof. Let z,y € U. For t € [0,1] we have that $:4)(tz + (1 — t)y) equals the directional
derivative of v in the direction x — y, and thus

St + (1= t)y) = Veltz + (1 - 1)) - (2~ ).

Therefore by the mean-value theorem

L d
V@) = o) = | [ Solta+ (1= 1) df < it o] = o = o]
O

Observe that if € is a convex open subset of R? and ¢ € C1(€), [%]lcr (@) < oo, then
1 is Lipschitz continuous. However, if € is not convex, this need not be true.

4.B. Construct a function ¢ which is C* on (0,1) U (1,2) and ||¢)/]| =~ < oo,

but which is not Lipschitz continuous.

We will use the previous lemma in combination with the following lemma.

Lemma 4.8. Let X C R? be compact. Suppose (fu)nen is a sequence of uniformly
Lipschitz continuous functions, i.e., there exists an M > 0 such that

[fn(z) = fu(y) < M|z —y|  (neN,z,yeX).

If (fn)nen converges pointwise to zero, i.e., fp(x) — 0 for all x € X, then (fn)nen
converges uniformly to zero, i.e., || fn|lLe — 0.

Proof. Let ¢ > 0. As X is compact, there exist x1,...,2r € X such that X C

K B(zi,557). Let N € N be such that |fu(z;)] < § for all i € {1,...,k} and all
n > N. By the Lipschitz continuity we have that for all y € X that there exists a ¢ such
that y € B(x;, 557) and thus for all n > N

)] < [ fa®) = fal@)] + | falzi)] < Mﬁ n % — .
O

Definition 4.9. Let K C 2 be compact and m € Ny. We define the seminorm || - ||cm g
on C™(Q2) by

1 fllom s = 1flxlom) = max  sup|8?f(z)]  (f € CF(Q). (4.4)
BENL:|B|<m zc K

Lemma 4.10. Let (¢n)nen be a sequence in D(Q). If for all « € N&, (0%, )nen is
uniformly bounded and if 0%p, converges pointwise to zero, that is, if

sup ||[0%pp || e < 00 (€ Ng),
neN

0%pn(x) AN (x € Q),
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then for all m € Ng and compact sets K C (2

lonllem i === 0.

Proof. Let ¢ be the continuous embedding D(Q) — D(RY), see Then 0% (pr) =
L(0%py,) and so (0%t(pk))ken is uniformly bounded for any o € Nd. By an application
of Lemma it follows that (0“¢(¢x))ken and thus (0%pg)ken are uniformly Lipschitz.
Hence by Lemma [4.8]it follows that ||0%pg| L~ — 0 for all a € Ng. O

Theorem 4.11. A sequence (¢n)nen converges to a ¢ in D(Q) if and only if [(a)] and
(b)k

(a) There exists a compact set K C Q such that the supports of ¢, and ¢ lies within
K for alln € N.

(b) |len — @llcm — 0 for all m € N.

4.C. Prove the “if” part of Theorem that |(a)| and imply ¢, — ¢

in D(Q).

Proof of the “only if” part of Theorem[[.11. Suppose that ¢, — 0 in D(Q2). We deduce
@ and @ arguing by contradiction.

Suppose @ is not satisfied. Then no compact subset of ) contains the supports
of all functions ¢1,p9,.... Let (K,)nen be as in Theorem Inductively, choose
ny < ng < --- in N such that for all i € N

i—1

U supp¢n, C Ki, suppgn, ¢ Ki.

j=1
For i € N choose z; in Q0 \ K; with ¢y, (z;) # 0. If 4,j € Nand j <4, then ¢, (z;) =0
since x; ¢ K; and supp ¢, C Kj.

Now let us define a measure with support being equal to the set of x;’s as follows.
We let 1 =} ;cn @iz, where the a;’s are chosen such that Zle a;ipn, (z;) = 1; this can
always be done inductively. By assumption on the sequence (zj)ken, this measure is a
Radon measure, as any compact set K C €2 contains only finitely many x;’s. Therefore
it defines a distribution. But [ ¢, du = 1 for all n € N, which contradicts the hypothesis
that ¢, — 0 in D(Q).

In order to show [(b)| we use Lemma As ¢, — 0 in D(R?) and 99, € D'(Q?) for
all z € Q and a € N¢, we have 0%p,, () 2% 0forallz € Qand a € Ng. Hence by
Lemma [£.10Q] it is sufficient to show

for all @ € N& (8%pp)nen is uniformly bounded.
As 0% is a continuous function D(Q) — D(Q) for all o € N¢, it is sufficient to show

Yp, = 0in D() = (¢¥n)nen is uniformly bounded. (4.5)
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To prove the statement (4.5)) let us assume that ¢, — 0 in D(Q2) and that 1), is not
uniformly bounded. Therefore, by possibly passing to a subsequence, we may assume
that |[1y,||ree > 3" for all n € N. Then we can find a sequence (,)nen in € such that

[Yn ()] = It Lo

As 1, converges pointwise to zero, we may and do assume —by possibly passing to a
subsequence— that 377! |1, (2;)| < 1 for all n € N. As we did before let us construct a
Radon measure. We let

n= Zaiézi, a; = 37t d)l(xz) (l € N)

N |thi (@)
Then
n—1 00
/¢n dlu = Z azwn(l‘z) + an@bn(‘rn) + Z aﬂ#}n(l'l)
i=1 i=n+1

As |a;| < % for all i and 322, 37 = $37", by the assumptions

1 n—1 oo )
[ il = =5 3 el + 37 ol = [l 3 37
i=1

i=n-+1
> ! + t_1 >0
-3 2 6 7
Therefore [ 1, du does not converge to zero, which contradicts our hypothesis. O

Corollary 4.12. Let . € D(Q) for alle > 0 and ¢ € D(Q). Then ¢. = ¢ in D(Q) if

and only 2f@ and @:

(a) There exists a compact set K C Q such that the supports of pe and @ lies within
K for all e > 0.

(b) llpe — pllem =% 0 for all m € N.

Proof. Again the “if” part is left as an exercise. If @ does not hold, then there exists
a sequence (gn)nen in (0,00) with &, | 0 such that [(a)] of Theorem does not hold,
and thus ¢, 4 ¢ and so @ 4 ¢ in D(). Similarly, if does not hold, then one can
conclude that ¢. 4 ¢ in D(9). O]

Definition 4.13. Let X and Y be topological vector spaces. A function f: X — Y is
called sequentially continuous if for any sequence (x,)nen and x in X:

Tn = = f(xn) = f(z).

We say that X is sequentially continuously embedded in Y, and write X —¢q Y if there
exists a sequentially continuous embedding X — Y.

As a continuous map is sequentially continuous, if X is continuously embedded in Y,
then X is sequentially continuously embedded in Y.

30



In general (topological spaces), sequential continuity does not imply continuity. (For
those who are familiar to the notion of nets, continuity of a function f : X — Y, with X
and Y topological vector spaces, means f(z,) — u(x) for any net (x,),cr with x, — = in
X.) However, as the next theorem implies, a linear function on testfunctions with values
in IF is continuous if and only if it is sequentially continuity.

Theorem 4.14. A linear function u : D(2) — F is a distribution if and only if it is

sequentially continuous, i.e., @, — ¢ tmplies u(py) — u(p) for all sequences (pn)nen
and ¢ in D(Q).

4.D. Prove Theorem (Prove that a linear function D(2) — F which is

not a distribution is not sequentially continuous.)

4.15 (D is not metrizable). Let us show that D(Q2) is not metrizable. We show that if
there is a metric on D({2), then it generates a different topology. Suppose d is a metric
on D(R), such that under the topology of d, D(Q) is a topological vector space. We can
find a increasing sequence of compact sets (K, )neny who’s union equals Q. For n € N,
let x5, be a test function that equals 1 on K,. We can and do choose A, € R such that
d(AnXn,0) < 27" Then A, X, converges to 0 but @ of Theorem is not satisfied,
which means that A, x, converges in the topology generated by d but not in the weak
topology o(D,D’).

Remember the seminorms || - ||cm i defined in (4.4)).

Definition 4.16. We define £(£2) to be the set C*°(Q2) equipped with the topology
generated by the seminorms || - [[cm g with K C Q compact and m € Np.

By Theorem the space D(Q) is sequentially continuously embedded in £(£2);
D(Q2) —Fseq £(2).
4.E. Justify the statement D(£2) —geq £(2).
Definition 4.17. Let K C Q be compact. We define D (2) to be the space
{v € D(Q) : suppyp C K},
equipped with the topology generated by the seminorms || - ||om with m € Nj.

Definition 4.18. A locally convex space is called a Fréchet space if it is complete and
metrizable with a translation invariant metric.

Theorem 4.19.

(a) For each m € Ny the space C™(RY), equipped with the seminorms || - ||[cm k with
K C Q compact, is a Fréchet space.

(b) E(Q) is a Fréchet space.
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(¢) Dk () is a Fréchet space for each compact set K C Q.

Proof. @ Let (K )nen be the increasing sequence of compact sets such that U, ey Kn =
Q as in Theorem (1.8, Then the topology of C™(Q2) is generated by the seminorms

| - [lcm K, with n € N, so that by Theorem we see that C™(Q) is metrizable with a
translation invariant metric. Let us show that C™(€2) is complete.

For m = 0 this follows from the fact that for any compact set K C € the space C(K)
is complete under the supremum norm. Indeed, if ( f,)nen is a Cauchy sequence in C%(Q),
then for each compact K C €) there exists a continuous function fx such that f, — fx
uniformly on K. As fx equals fj for a compact K C Q with K ¢ K. Then there exists
a continuous function f € C(2) such that [|f, — f||co x — 0 for each compact K C Q
(take f(z) = fk, (z) for z € K,, \ K__; with Ko = 0).

Suppose m € N and (f,)nen is a Cauchy sequence in C™(Q2). Then for all 8 € Nd
with |3| < m, the sequence (9° f,,)nen is a Cauchy sequence in C(€); hence there exists
a gs in C(Q) such that 0°f,, — gs in CO(Q). Let us write f for go. It is sufficient to
show that 9% f exists and equals gs. By performing an induction argument, we may as
well assume that |5| = 1, i.e., § = e; for some ¢ € {1,...,d} (where e; is the i-th unit
vector in RY). For all z € R? and h € R we have

Fo+ hei) — f(@) = Tim fale + her) — fl2)

n—oo

h h
= lim / Oifn(x + te;) dt = / ge, (x + te;) dt,
0 0

and thus g., = 0;f.

@ As in @ there are countably many seminorms that generate the topology, hence
€(Q) is metrizable with a translation invariant metric. The completeness basically follows
from the completeness of C™(£2): Suppose (fy)nen is a Cauchy sequence in £(2). Then,
for m € N, it is a Cauchy sequence in C™ () and therefore there exists a g, such that
limy, 00 fn = gm in C™(Q). As convergence in C™1(Q) implies convergence in C™(2)
for each m € N, we have gp+1 = gm and thus g,, = go for all m € N. Therefore
f:=go € C™(Q) for each m € N and thus f € £(Q) and f,, — f in £(Q).

By [(b)] it is sufficient to show that D () is closed in £(2). Suppose ¢ € £ and
(¢n)nen is a sequence in D (§2) that converges to ¢ in €. Then for z € O\ K

[p(@)] < lpn(2)] + e(z) = en(@)] <[l = @nllco (n €N).

By taking n — oo on the right-hand side, we see that ¢ = 0 outside K, ie., ¢ €
Dk (). O

For the proof that D’(2) is weak* complete, see Theorem we use Baire’s Category
Theorem. A proof can be found for example in [Rud91, Theorem 2.2] or [dPvRI3|
Theorem 11.1] .
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Theorem 4.20 (Baire’s Category Theorem). Let X be a complete nonempty metric
space and let Uy, Us, ... be dense open subsets of X. Then the intersection of those sets,
Mnen Un is dense in X.

4.21. Equivalent to the above statement of Baire’s Category Theorem, one obtains the
following statement by taking complements: If X is a complete nonemtpy metric space
and Ay, Aa, ... are closed subsets of X such that the interior of U,cn An is nonempty,
then there exists an n such that the interior of A, is nonempty.

Lemma 4.22. Let X be a topological vector space whose topology is compatible with a
translation invariant metric and assume that X is complete with respect to this metric.
Let q be a seminorm on X such that the set {x € Q : q(x) < 1} is closed. Then q is
continuous.

Proof. For t € [0,00) put [¢ <t] ={z € Q:q(x) <t}. As X = U, enlg < m] and every
[¢ < m] is closed, the Baire Category Theorem tells us that for some m the set [¢ < m] has
an interior point, a € [¢ < m]°, say. Then 0 =a —a € [¢ < m|° + [¢ < m]° = [¢ < 2m]°.
Then every set [¢ < t] for t > 0 is a neighbourhood of 0, so that ¢ is continuous at 0. As
lg(z) — q(y)| < q(z—y) for all z,y € X, it follows that g is continuous (Exercise[d.F). O

4.F. Let ¢ be a seminorm on a topological vector space X. Prove that the
following statements are equivalent:

(a) ¢ is continuous.
(b) {z € X : ¢(x) < 1} is open.
(c) 0e{re X q(x) < 1}°.
(d) 0e{zxe X :q(x) <1}°.
(e) g is continuous at 0.

)

(f) There exists a continuous seminorm p on X such that ¢ < p (i.e., ¢(z) < p(x) for
all x € X).

4.G. (a) Suppose that P is a collection of seminorms on a vector space X
such that

q(z) =supp(z) < 0o (x € X).
peP

Show that ¢ is a seminorm.

(b) Suppose that F is a collection of lower semicontinuous functions on a topological
space X such that

g(x) =sup f(x) < 00 (x € X).
feFr

Show that ¢ is lower semicontinuous (which means that [g < ¢ ={zx € X : g(x) <
c} is closed for all ¢ > 0).
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4.H. Prove: Suppose X is a locally convexr vector space whose topology is
generated by countably many seminorms pi,pa, ... withpy < po < ---. A linear function

f: X — F is continuous if and only if there exist C > 0 and n € N such that

|f(z)] < Cpp(z)  (x € X).

Definition 4.23. We write £'(f2) for the space of continuous linear functions u : £(2) —
F. That is, u € £'(Q) if and only if there exist a compact set K, a m € Nyg and a C' > 0
such that

lu(p)] < Cligllemx (v € E(Q)). (4.6)
We equip &'(2) with the weak* topology o(&'(2), E(Q2)).

The following theorem is a principle of uniform boundedness. For a more general
statement, see [Rud91, Theorem 2.6], which is a consequence of the Banach—Steinhaus
Theorem.

Theorem 4.24. (a) LetU C D'(Q) and assume

sup |u(p)| <oo (¢ € D(Q)).
uelU

Then, for each compact K C Q there exists a C > 0 and m € Ny such that

[u(p)l < Cllgllem (¢ € Dk (Q),u €U). (4.7)

(b) LetU C E'(QY) and assume

sup [u(p)| <oo  (p € E(D)).
ueU

Then, there exists a compact K C Q, C >0 and m € Ny such that

lu(@)l < Cllellemx (v € E(Q),u €U). (4.8)
Proof. [(a)] Let K C © be compact. Define the function g : D (2) — [0, 00) by

q(¢p) = sup |u(p)].
ueU
This defines a seminorm as it is the supremum of a family of seminorms and it is lower
semicontinuous as it is the supremum of continuous functions (see Exercise . There-
fore {¢ € Dr(2) : q(p) < 1} is closed in Dk (). Therefore, by Lemma q is
continuous on Dg (2). As the topology of D () is generated by the seminorms || - ||¢gm
for m € Nand || - ||em < - ||cr for & > m, there exists a C' > 0 and m € N such that

(4.7) (see Exercise [4.H)).

[(b)] follows by the above argument but with “D(2)” and “D (€2)” both replaced by
“£(€Q)” and using that the topology on £(2) is generated by the seminorms || - ||¢cm g for

m € N and K C ) compact. O
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Proposition 4.25. The pairing maps D'(2) x D(Q) — F, (u, ) — u(p) = (u, ) and
E'(Q) xEQ) = F, (v,9) — v(¥) = (v,7) are sequentially continuous.

Proof. Let (un, on)nen and (u, ) be in D'(2) x D(Q) such that (un,pn) — (u,p) in
D'(Q) x D(Q), ie., u, — u in D'(Q) and ¢, — ¢ in D(Q). By Theorem
there exists a compact set K C (2 such that supp ¢y,,suppy C K for all n € N. By
Theorem there exists a C' > 0 and m € Ny such that

lun(@)] < Cllellem (v € Dr(2),n € N).

Therefore

[un(#n) = u(@)] < |un(pn — @) + [un(p) — u(@)| < Cllon — @llom + [unlp) —ulp)].

The latter converges to zero by Theorem @
The sequential continuity of the map &'(Q) x £(Q) — F, (v,¢) — v(y) = (v,)
follows similarly and the proof is left to the reader. O

Theorem 4.26. D'(Q) and &'(Q) are weak* sequentially complete.

Proof. First we prove that D'(Q2) is weak® complete. The completeness of £'(2) can be
proved similarly; we comment on this at the end of the proof.

Suppose that (up)nen is a sequence in D'(Q2) such that ({(up,®))nen is a Cauchy
sequence for all ¢ € D(Q). It will be clear what the limit should be: We define u :
D(2) — F such that (u, ) = limy o0 (Un, @) for any ¢ € D(Q). Clearly u is linear, so
let us show that it is a distribution. By Theorem [£.24] for each compact K C €, there
exist a C > 0 and m € Ny such that

lu(p)| < sup lun(@)| < Cllpllem (¢ € D ().

Therefore v is a distribution.
If (up)nen is a Cauchy sequence in £'(2), then one can follow the above prove with
“D(02)” and “Dg(Q)” both replaced by “€(Q)”. O

4.27. We equip the space of locally integrable functions on 2 with the topology defined
by the seminorms || - || 1 x with K C Q being compact, where

el = oLl = [ el (0 € D@).

Similarly, for p € [1,00], L

loc

being compact, defined by ||| e x = ||¢Llk||Lr-
It is rather straightforward to check for p € [1, 0], LP(Q2) — LV

loc

() is equipped with the seminorms || - ||z» x with K C Q

(©) and

EQ) — LY

loc

() = Lioe()  (p € [1,00)). (4.9)
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4.1I. Show (4.9). (Hint: Exercise [2.A])

Theorem 4.28. Let p € [1,00]. The embedding D(2) — LP(Q) is sequentially continu-

ous. Moreover, the function LY (Q) — D'(Q), f + uys is a continuous embedding:

D(Q) — LP(Q) — L

loc

(@) =D'(Q)  (pello0).

Proof. With Theorem it follows that D(2) — LP(f2) is sequentially continuous. By
(4.9) it is sufficient to show that the map LI () — D'(Q), f ~ uy is a continuous

embedding for p = 1. The injectivity follows from Lemma The continuity is left as
an exercise (see Exercise . O

4.J. Prove the continuity of the functions LV (Q) — D'(Q), f — uy and
M(Q) = D'(Q), p+— uy (see Definition for M(w)).

The following theorem is a kind of counterpart to Theorem [2.11]

Theorem 4.29. Let U be an open covering of Q). For each U € U let uy be a distribution
onU. Suppose that, if U,V € U, then uy = uy on UNV , in the sense that uy (p) = uy (@)
for all ¢ € D(R?) with supp @ C UNV. Then there exists a unique distribution u on
such that u=uy on U for allU e U.

Proof. Choose a partition (xn)nen of unity subordinated to U as in Theorem As
for every ¢ € D(Q) there is an N € N with ¢ = fozl Xn¢, there is a unique linear
u: D(Q2) — F described by

ul(p) = i w,(ng) (9 € D)),

where U, = {x € Q : xn(x) > 0}. We are done if this u is a distribution.

That u is a linear function on D(£) is straightforward to check. For the continuity
we use Theorem [£.14] to restrict to sequential continuity. By Theorem [.11] we know that
if ¢, = ¢ in D(QQ), then there exists a compact set K that contains the supports of all
¢n’s. Therefore, there are only finitely many k such that uy, (xx¥n) is nonzero for some
n. That is, there exists a L € N such that u(p,) = YF_; uy, (xren) for all n € N. As
for all & we have xx¢, — Xkp, we have uy, (Xren) — uv, (xrp). From this we conclude
the continuity of u. O

5 Compactly supported distributions

In Definition we have introduced the topological space £(2) consisting of all smooth
functions on 2 and in Definition [{.23] we defined its topological dual £'(€2). In this section
we will further study £'(Q2), which is in one to one correspondence to the set of compactly
supported distributions, see [5.2}
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Definition 5.1. Let u be a distribution on Q. We call a (relatively) closed subset A of
Q a carrier of u if u(p) = 0 for every ¢ € D(Q) with suppp N A = (. The intersection
of all carriers of u is defined to be the support of u,

supp u.

We prove suppu to be a carrier of u (hence, the smallest carrier of u). Let U be the
collection of all complements (in ) of the carriers of u; take ¢ € D(§2) with supp ¢ C JU.
We wish to prove u(p) = 0. By Theorem there exist xi,...,xn € D(Q) with
p = nyzl Xn, Where for each n the support of x, is contained in an element of U.
Then supp xn¢ C supp Xn, whence u(xnp) = 0 for each n, and u(p) = 0.

We say that u vanishes on an open set U C Q if u(p) = 0 for all ¢ € D(Q) with
suppp C U. Then Q\ U is a carrier of u. Moreover, let U be the collection of all open
sets U C € on which v vanishes. Then u vanishes on YU and supp u is the complement
of JU.

From this the following statements are immediate

¢ € D(),suppp Nsuppu =0 = u(yp) =0,
X € C*°(Q), x = 1 on a neighbourhood of suppu = xu = u.

Note that supp ¢ Nsupp u = () means that ¢ equals 0 on an open set that contains supp u.
If ¢ equals 0 on suppwu, then the evaluation u(y) might not equal zero as the following
example illustrates: Take u = 9dp and let ¢ be a testfunction such that ¢(z) = x around

0 (see Exercise [L.E)).

Observe moreover that for o € N¢ and ¢ € C*(Q)
supp 0%u C supp u, supp Yu C supp ¥ N supp u.

5.A. Show that each compactly supported distribution is of finite order.

5.2 (Each element of & defines a compactly supported distribution). Let u € £'(2) and
let K C € be compact, m € Ny and C > 0 be such that

lu(@)l < Cllllemx (¢ € E(Q)).

If p € £(2) and supp ¢pNK = () then ||¢||cm x = 0 and thus u(p) = 0. Hence suppu C K
and so an element of £'(Q) defines a distribution with compact support. In we will
prove that a distribution with compact support can be extended to an element of £'(Q).

Proposition 5.3. For each m € N there exists a C' > 0 such that

[fgllem < Clfllemllgllem (f,g€C™(Q)) (5.1)
I fallcmx < Cllfllem kllgllem x (f,g € C™(Q),K CQ compact). (5.2)
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Consequently, the functions

£(Q2) x D(Q?) = D(9), (¥, 0) = Pep,
D'(Q) x £() — D'(), (u, ) = u,
£'(Q) x £(Q) = £'(Q), (v, 9) = o,

are sequentially continuous.

Proof. By Leibniz’ differentiation rule (see [1.14)) we have for x € Q

ma 07 fg) ()| < max. 3 ( )aﬂf )/167g(2)
aE g

ol <k \algze%egg
< | max max max |8° f(x)]|07 g(z)]. 5.3
< [ %d(/@))ﬁm max (@) (53)
lo <k 1B1<k I <h

Hence with C' = max,end. o)<k 2 gend:g<a (3) one has and (5.2)).
The continuity of the product maps D'(Q) x £(2) — D'(Q) and £'(Q)xE(Q) — £'(Q)
follow by Proposition O

5.4. Observe that Leibniz’ rule (|1.3)) extends to the product of a distribution with a
smooth function. That is, if u € D(2) and ¢ € C*°(Q2), then

(W)= Y (g) (0%9)(9° ),

BeNd
B<a

5.5. Observe that for each compact set K C € there exists a x € C2°(£2, [0, 1]) such that
X = 1 on a neighbourhood of K: Let 8 C Q be compact and such that K C 8° (which
exists by Theorem [1.8). By Lemma there exists such a x which equals 1 on K and
thus on K° which is an open set that contains K, i.e., K is a neighbourhood of K.

5.6 (Each compactly supported distribution extends to an element of £’).
Let u be a distribution on £ with compact support K. We will show that there exists
exactly one v € £ such that u(¢) = v(y) for all ¢ € D(Q).

We have already seen in Definition that if ¢ € D(Q) and suppy C Q\ K, then
u(p) = 0. Let x be a testfunction that is equal to 1 on a neighbourhood of K. Then
supp(p — xp) C \ K and thus

u(p) =ulxe) (D)) (5.4)

Let Kg = suppy. As u is a distribution, there exist C; > 0 and m € Ny such that
lu()| < Chllp]lem for all ¢ € D(2) with supp ¢ C Ky. This implies

lu(p)| = lulxp)l < Cillxellem (¢ € D(Q)).
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Let C > 0 be such that (5.1]) holds, then with C" = C1C||x||cm,

lu(x@)l < C'llgllem i, (v € E(Q)). (5:5)

Therefore v : £(Q) — F defined by v(¢) = u(xyp) for ¢ € £ is an element of &’.

Let us show that this v is the only element of £ such that v(¢) = u(yp) for ¢ € D(Q).
Suppose w € £’ is such that w(y) = u(p) for ¢ € D(Q). Let L C Q be compact, m € N
and M > 0 such that

lw(p)| < Mligllem (v € E(Q)).

Let n € D(Q2) be equal to 1 on a neighbourhood of L. Then w(ny) = w(vy) for all
Y € £(2). Therefore

w(¥) = wny) = u(ny) = ulxnd) = u(xy) =v(®) (€ &(Q)).

With a partition of unity we have the following approximations.

Lemma 5.7. Let (Xn)nen be a partition of unity as in Theorem[1.11] Then

nﬁ:lxn@ T2%% 6 D) (p €DQ), (5.6)
i:lxnu A2 i D(Q) (ue D)), (5.7)
nivjlxngo A2 o in Q) (p € E(Q)), (5.8)
gjl o 2% 0 in E'(Q)  (ue E'(Q)). (5.9)

Proof. As for each ¢ € D(Q) there exists an N € N such that >, x,¢ = ¢, (5.6) and
(5.7) follow immediately. Let K C €2 be compact. Let & C €2 be a compact set such that
K C f° and let N € N be such that >N, x,,(z) = 1 for all z € & Then

N
|¢2an =0 (v € E(Q),m € Ny),
n=1 Cm7K
so that (5.8) and (j5.9)) follow. O

5.B. Show that if u € £'(Q2) and u # 0, then there exists a ¢ € D(Q) such that
u(p) # 0. Moreover, show that u(¢)) = 0 for every ¢ € £(Q) with supp »Nsupp(ulp) = 0.
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Definition 5.8. Let X be a topological space. We call a set A C X sequentially dense
in X if for each x € X there exists a sequence (ay)nen in A that converges to x.

If there exists a countable sequentially dense subset of X, we call X sequentially
separable.

Any sequentially dense set is also dense. If X is a metric space, then any dense set is
also sequentially dense. Not every dense set is sequentially dense:

Example 5.9. Let X = R (or a uncountable set) and call a set U C X open if its
complement is either countable or equal to X. With this topology the set X \ {0} is
dense in X but not sequentially dense as if a sequence (z,)n,en converges to some z in
X, then there exists an NV € N such that xz,, = x for all n > N.

5.C. Verify the statement in Example

Theorem 5.10. The embedding D(Q2) — £(Q?) is a sequential continuous embedding; the
map ¢ : E'(Q) — D'(Q) defined by 1(u) = ulp(q) is a continuous embedding and its image
is the set of compactly supported distributions and the map ¢ : £'(Q) — E'(RY) defined by
(Cu) () = u(¥|q) is a continuous embedding:

D(Q) Sseq £(Q), Q) —=D(Q), Q) — ERY.
Moreover, D(Q) is sequentially dense in E(L) and E'(Q) is sequentially dense in D'(L2).

Proof. That D(Q2) — £(Q2) is sequentially continuous follows from Theorem That
¢ is continuous follows from the fact that D(2) C £(2). That ¢ forms a bijection on to

the set of compactly supported distributions follows from [5.2] and [5.6] That the image
of £'(Q) is sequentially dense in D'(Q2) follows from Lemma

That the map ¢ is continuous follows as ¢|q is in £() for each 1 € £(RY).
That D(Q) is sequentially dense in £(€2) and that £'(Q) is sequentially dense in D’()
follows from Lemma O

Definition 5.11. Let y € R% o € N¢, ¢ € C°°(Q) and [ : RY — R9 linear and bijective.
For a u € £'(Q2) we define @, Tyu, 0*u,u and w ol by the formulas as in Definition m
but replacing “D” everywhere by “£”.

Again, it is straightforward to check that @, Tyu, 0%u, ¢Yu and wol are all in £'(Q) and
moreover that with ¢ : £'(Q) — D’'(2) as in Theorem [5.10]



Definition 5.12. For v € £'(Q2) we define

supp v = supp(v|p).
By Exercise supp v is the smallest closed set A such that

v(¢)) = 0 for all ¢ € £(Q) with suppy N A = 0.

In the inequality (5.5)) holds for K which is larger than K. The next exercise
illustrates that (5.5)) may not hold for Ky = supp u.

5.D. |[DK10, Exercise 8.3] Let d = 1. Let (z,,)nen be a sequence of distinct
elements and x be in R such that x,, — = and such that z,, # x for all n € N.

(a) Show that there exists a sequence (an)nen in (0,00) such that

> an = oo, > anlzy — x| < oo.

neN neN
(b) Prove that the formula

u(p) =Y an(p(en) —¢(x)) (v € D(R))

neN
defines a distribution w of order < 1. Prove that the support of u is the compact
set {z,, : n € N} U {z}.

(c) Show that for all n € N there exists a ¢,, € D such that ¢, = 1 on a neighbourhood
of z; for all i € {1,...,n} and ¢, = 0 on a neighbourhood of z; for all j > n and
pn = 0 on a neighbourhood of x. Prove that for all m € N

n

”90n|’0m,suppu =1, U(SDn) = Zai.

(d) Conclude that for K = suppu, (4.6) does not hold for any k € N.

The following example illustrates that the embeddings D(Q)) — £(Q) and &'() —
D'(Q) from Theorem are not homeomorphisms on their images.

5.13. We show that [(a)] the relative topology of D(£2) as a subspace of £(Q) is different
from the topology on D(2), namely o(D(€2), D’'(2)); [(b)] £'(22) does not have the same
topology as ¢(&'(Q2)) (However, (£'(Q),0(E'(Q),D())) is homeomorphic to t(E'()).)
and |(c)| £'(Q2) is not metrizable.

Choose (xn)nen as in Theorem letting U consist of all open subsets of Q (we
assume Y, # 0 for all n € N). For each n € N choose x,, such that x,(x,) # 0.
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(a) Let (Ap)nen in (0,00) be such that [ A,x, =1 for all n € N. Let ¢, = A\, Xy, for
all n € N. For all compact sets K there exists an N € N such that supp p, N K =
suppxn N K = 0 for all n > N. Therefore ||¢n|lcm K 7% 0 for all m € N
and compact K C Q, ie., ¢, — 0 in £(Q). However, for u the distribution
corresponding to the Lebesgue measure, or equivalently to the constant function 1,

we have u(py) = 1 for all n, whence (¢p,)nen does not converge in D(€2).

(b) 4., is an element of D'(Q) and of £'(Q) for all n € N. We have §,, — 0 in D'()
but not in £'(2), as we have §,,(1) =1 for all n € N.

(c) &'(Q) is not metrizable, as we proceed to show. Suppose its topology is given by a
metric, d. For every n € N we have limy g Ad,, = 0 in £'(2), so there is a A, > 0
with d(A\,6z,,0) < 1. By Remark there exists a ¢ € C>®(Q) = £(Q) with

n

P(x) =300, mxn(x); then \,0., (¢) > 1 for all n. But A\,0,, — 0 in £'(Q)
since d(An0z,,0) — 0. Contradiction.

6 ¢ Structure theorems

In this section we show that every distribution is a linear combination of derivatives of
continuous functions, that is, we describe the global structure of distributions. These
theorems are often called “structure theorems”. In this section we write Dy instead of
Dk (Q) or Dg(R?Y), where the identification for a compact K C Q of an element Dy (R?)
with an element Dy () is the obvious one.

We start by describing a distribution on Dg.

Theorem 6.1. Let u € D'() and K C Q be compact. Then there exists an f € C(Q)
and an o € Ng,

u(p) = %up(p) (v € Dk). (6.1)

a can be chosen to be (N +2,...,N+2), where N € N is such that there exists a C' > 0
such that |u(@)| < Cllg|lon for all ¢ € Di.

Proof. By performing a rescaling and a translation, we may as well assume that the
support of u lies within the unit cube @ = [0,1]% (which itself does not need to be
included in 2). By the mean value theorem we have

[9]l L < max 0ip(x)] (¥ €Dg,i€{L,...,n}). (6.2)
Let T = 910y -9y, i.e., T = 001, For y € Q let Q(y) = [1%4]0,%:]. Then

bly) = /Q IO ar (e Do) (6.3)
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For N € N we have by (6.2]) and (6.3))
[Yllen < glgngNlb(ﬂ?)! < /Q TN ()| de (¢ € Dg).
Let C > 0 and N € N be such that

lu(p)l < Cligllen (v € Dk),
so that

[u(p)] < Cmax T p(z)| < C/ T p(z)| de (v € Dx). (6.4)
Te Q

By (6.3)) it follows that T is injective on Df, hence TN*! is injective on Dg. Let
Y = {TN*1p: ¢ € Dk}. Define uy : Y — F by ug = uo (TN~ ie.,

u(TV ) =ulp) (¢ € Dk).
By we have
m@) <0 [ W@)de @ev).
K

By the Hahn—-Banach Theorem (Theorem [3.14]) u; extends to a bounded linear functional
on L'(K), i.e., an element of L'(K)" which can be represented by a bounded Borel-
measurable function ¢ (in L*>°(K)):

u(p) = un (TN +1g) = /Q g(@)(TV ) (2) dz (¢ € D), (6.5)

Extend g as a function on R? by setting ¢ = 0 on R?\ K and put

) = (_1)(N+1)d /Hd (—00,y4]

Then f is continuous, and by applying integration by parts d times, (6.5]) gives
u(p) = (DO [ f@T () de (o € D).
Q

This implies (6.1). O

g (yeRY).

We use the previous theorem to represent compactly supported distributions:

Theorem 6.2. Let u € D'(Q2) be compactly supported with support K. Let U C Q be open

such that K C U. Suppose u has order N. Then there exist finitely many continuous
functions fz € C(Q) with supp fg C U for B € N& with 3 < (N +2,...,N +2), such that

u = Z 85Ufﬂ.

BeNg
BL(N+2,...,N+2)
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Proof. Let V,W C Q be open sets such that V and W are compactand K C V C W C U.
(use Theorem [1.§ with “U” (or “W?) instead of “Q”). Let a = (N +2,--- ,N +2). By
Theorem applied with K = W there exists a f € C(£) such that

u(p) = ugap(p)  (p € DW)).

Let x € D(f) be supported in W and equal to 1 on V. Then by Leibniz’ formula (see
1.14)

u(p) = ulxp) = (~1)°! [ 1-0°(xg)
= (-pl [ - zoaaﬁ 07)

BeNd
B<a
= Z (_1)\6|/fﬂ(3ﬂ¢)
BeNY
BLa

for
fo=(=1)le=Alf (g) (0°°x)  (BEN§:f<a)
O
By using the partition of unity to represent a distribution by a sum of compactly

supported distributions, we obtain the following representation of general distributions.

Theorem 6.3. Let u € D'(?). There exist (ga)aeNg in C(Q) such that for each compact
set K C Q, suppga N K # 0 for only finitely many o and

u= Z 0%uyg,, .

aENg
If u has finite order N, one can choose the go, such that go, = 0 fora £ (N+2,...,N+2).
Proof. Let (xn)nen be a partition of unity as in Theorem [1.11] By Theorem for

each n € N there exists an N,, € N and continuous functions f, g for 8 € Ng with
B < (Np,...,N,) with supports in U,, = {x € Q: xn,(z) > 0}, such that
XnlUl = Z (9'6Ufnﬁ.
BeNd
B<(Nn,...,Nn)

For 3 € N¢ with 8 £ (Ny,...,N,) set f, 3 = 0. Define

00
Joa = 2:.ﬂaa
n=1
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By the fact that the sets U, form a locally finite cover of 2 it follows that for all compact
K C € the intersection supp f, 3 N K being a subset of V;, N K is nonempty only for
finitely many 8 and n. Therefore supp g, N K # ) for only finitely many «. Furthermore

u = anu: Z Z 85u]cnﬁ = Z 0%ug,, .

neN neN BGNg aeNg

If u has order N, then one can choose IV,, = N + 2 for all n € N by Theorem O

7 Intermezzo: Convolutions of functions

We still consider Q to be an open subset of R?, though most statements are about
functions on RY.

Before we define the convolution of two functions, we recall some measure theoretic
statements. With “measurable” in this section we mean “Borel measurable”.

7.1. Because the operations of addition and multiplication are measurable, the following
statement holds: If f, g : R — F are measurable and z € RY, then the following functions
are measurable

R? - F, z = f(z—2),
R? x R? T, (z,y) = f(x —y),
R? x R? - T, (z,y) = f(2)g(y),
R? - F, z = f(z)g(x).

We write fg for the function z — f(z)g(z).

We recall Fubini’s theorem (for the product space R? x R? only). For a proof see for
example [Bog07, Theorem 3.4.4] or [Hal74, Theorem 36.C].

Theorem 7.2 (Fubini’s Theorem). Let f : R x R? — [ be integrable. Then for almost
all x € R the functions y — f(x,y) andy — f(y,z) are integrable. If g : RS — F is such
that g(z) = [ga f(x,y) dy for almost allz € R%, then g is integrable and [pa g = [gaypa -

Definition 7.3. Let f and g be measurable functions on R?. The function (z,y)
f(z)g(y — x) is measurable, and for almost every y € R? the function = + f(z)g(y — )
is measurable (see(7.1). Then we define a function f * g on R? by

Frgly) = {({ f(x)g(y —x) dz if x — f(z)g(y — x) is integrable,

otherwise

f * g is called the convolution of f and g.
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7.4. (1) Putting it differently: If f7,¢ is integrable for almost every y, then f * g exists,
and f*g(y) = [ fTyg for almost every y.

(2) If f*g exists and if f, g are functions with f = f a.e. and § = g a.e., then f § exists
and equals f * g. Thus, we can see * as an operation on equivalence classes of functions.
Also, “f % g” is often viewed as an equivalence class.

(3) If f1xg and f5 x g exist, then (f1 + f2) * g exists and is equal (a.e.) to f1 x g+ fo*g.
(4) If fxg exists, then gx* f exists an equals f*g. Indeed, for almost every y the function
fT,g is integrable; then so are (7_,g) f and g7y f. The rest is easy.

Let us also recall the following theorem, which is sometimes also referred to as the
Fubini theorem (the statement of Theorem is most commonly known under the name
Fubini’s theorem).

Theorem 7.5. If f : R x RY — [0, 00) is measurable, then

/]Rded = /]Rd /Rd f(@,y) de dy = /Rd /Rd f(z,y) dy da.

Theorem 7.6. Let f and g be integrable functions on R%. Then for almost every y the
function z — f(x)g(y — x) is integrable, f* g is integrable, and [ga(f*g) = [ga [ Jga
1f = gllr <1 fllllgllp-

Proof. The function F : (z,y) — f(2)g(y — z) on R? x R?, being the product of two
measurable functions, is measurable (see . For every = the function y — F(z,y) is
integrable and its integral is f(z) [ga g. That F' is integrable follows from Theorem
Therefore, by Fubini’s theorem fxg is defined and integrable and its integral is [ga f [ga 9-

O

The following theorem will be used often later on. It generalises the inequality || f *
gl < I lligllpe.

Theorem 7.7 (Young’s inequality). Let p,q,r € [1,00] be such that
1,1 _ 1
sty =1+5
For f € LP(RY), g € LY(R?) we have f * g € LT(R?) and
1f*gller < [fllzellgllze-

Proof. We assume f,g > 0. Observing that p and ¢ play symmetrical roles, we consider
four cases.

Case 1: r = 1 and thus p = ¢ = 1. This case is covered by Theorem [7.6]

Case 2: r = 0o and thus %—l—% = 1. Then for every y € RY, [pa f(2)g(y —2) dx exists
and is at most || f||z»||g|| L« by Holder’s inequality (see Theorem [A.4)). Consequently, fxg
exists and [|f * gl[ze~ < |[fl[zrllgllLa-
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Case 3: 1 < r < co. As fP and g7 are integrable, by Theorem the function
x — fP(2)g(y — x) is integrable for almost all y € RY.

r—p r—q

Fix such a y. Put h(z) = g(y — z) for x € R% As fh = fgh%'f = +h7 , an
application of the Generalized Holder inequality (see Theorem |A.5) with n = 3,

br qr
pbr=7r p2= , D3 = y
r—p r—q

(with the convention that % = 00) so that p% + p% + p% = 1, shows that fh is integrable

Joms(few) (/)

r—pP r—4q

with A = ([ fP)# ([ h%) e, which is independent of y.

r—p -9

(o)

C = (/f(fv)pg(y — ) dw>i A,

The above implies that the function x — f(x)g(y — z) is integrable for almost every
y, so that fxg exists, and (fxg)" < (fPxg9)A". By Theorem it follows that fxg € L"

and
U wglery < ([ sreg)ars [ [groa

r—p

:/fp./gq-(/fp) ’ (/gq)qu=\|f||zp||g||zq-

The following is a consequence of Young’s inequality.
Corollary 7.8. Let p,q,r € [1,00] be such that
1 1 1
+=+
p q T

For f € LP(RY), g € LY(R?) and h € L"(R?) we have that (f * g)h is integrable and

[Geam=[1aeiy= [ 1@G=n (1)
ICF % 9)lle < 17l gl (72)

7.A. Prove Corollary

In the following definition we define the essential support of a measurable function.
This agrees with the support of a distribution when it is given by a locally integrable
function. We consider the essential support of a convolution in Theorem [7.10
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Definition 7.9. Let f: Q — F. We say that an open set U C Q is f-null if f = 0 almost
everywhere on U. We define the essential support of f,

ess supp f,

to be the complement of the union of all f-null open sets.

Actually, this union itself is f-null, hence is the largest f-null open set. To see
that, observe that there exist a countable number of f-null open sets (Uy,)nen such that

U = Unen Un by Theorem [T.11}

As the essential support of f is equal to the one of g if f and g are equal almost
everywhere, one can make sense of the essential support for equivalence classes of locally
integrable functions in the usual way by identifying an equivalence class with an element
init: If f € L%OC(Q), then esssupp f is defined by the essential support of any function
representing f.

Of course, for a continuous function f we have
supp f = esssup f.

If f € Li ., then by Lemma it follows for an open set U C  that Q\ U is a carrier
for uy if and only if U is f-null, hence

esssup f = suppuy.

Theorem 7.10. For any two measurable functions f,g on R® such that f g exists, we
have

esssupp f * g C esssupp f + esssupp g.

Proof. Let A = esssupp f, B = esssuppg, and take ¢ € R? such that f * g(c) # 0.
It suffices to prove ¢ € A+ B. Now f = fls ae. and g = glp a.e., so 0 # f x
g(c) = (f1a)*(glp)(c) = [(f1a)(z)(9lB)(c —x) dz. Therefore there is an x such that
(fla)(z)(9lp)(c —x) # 0: Then 14(x) # 0 and 1p(c—x) # 0, whence c=c—x 4z €
A+ B. O

Theorem [7.10] states that the support is included in the closure of the sum of two
closed sets. It is necessary to take the closure as Example illustrates. We first
recall the following facts about closedness of sums of closed sets in Lemma and

Example [7.12]

Lemma 7.11. Let A,B C R% and A be compact and B closed. Then A+ B is closed.
If, moreover, B is compact then A+ B is compact.

Proof. Let (dy,)nen be a sequence in A + B that converges to an element d in R?. We
prove that d € A+ B. By definition, for each n there exist a, € A and b,, € B such that
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dn = an + b,. As A is compact, (ap)nen has a convergent subsequence. Let us assume
(an)nen itself converges in A to an element a. Then d,, — a,, -+ d —a and as d,, — a,, € B
for all n and B is closed, d — a € B, which impliesd=a+d—a € A+ B.

If B is compact, then A + B is the image of the compact set A x B of the addition
function + : R x R — R?, (z,y) + = + y, which is continuous, hence the image is
compact. O

The assumption that A is not only closed, but also bounded (which together is the
same as compact for subsets of R?) is essential as the following example illustrates.

Example 7.12. Let A =N and B = {—-m + % :m € Ny;m > 2}. Then A + B is not
closed as % is an element of A+ B for all m € 1 + N but 0 is not.

Example 7.13. [esssupp f + esssupp g € supp f * g = esssupp f + esssupp g|
We adapt Example to obtain two measurable functions f and g which are not almost
everywhere equal to zero. We define the sets A, B C R by

A:G[n,n—kﬂ, B:Ej {—m—k%,—m—k%}.
n=2 m=2

We define f,g: R — R by
fla) =le|?La(z),  g(z) = |2[Lp(z)  (z €R).

Then f and g are integrable functions and so f x g exists (and is integrable). Moreover,
supp f = A, suppg = B,

A+B= G [n—m+—n- +3+l}
—nvm:2n me e me

As in Example the set A + B is not closed as 0 is not in A + B but % is for all
m € 1+ N. For each n,,m € 1 + N and 2z € (n—m+%,n—m+%+%) we can show
that fxg(z) # 0, so that as the support of a function is closed, A + B C supp f *g. And
thus in this case A+ B Csuppfxg=A+ B

7.B. (a) Choose f,g € L'(R) such that f and g are not continuous but
f=xgis.
(b) Let @ > —1. Let f(z) = g(x) = 2 for x € (0,1) and f(z) = g(z) =0 for = ¢ (0,1).
Show that there exists a ¢ > 0 such that f * g(y) = cy?**!. Conclude that f * g is
not continuous for a € (—1, —3).

7.14 (Notation). For any closed set A C R? we write [A]. for the set of those points in
R? that are at distance at most ¢ from A, so that

[Al. = A+ B(0,¢) = {y e R%: igg\x—y\ <e}.
By Lemma [A]: is closed.
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Theorem 7.15. Let f € L] _(R?) and ¢ € C.(R?). For ¢ > 0 we write ¥ for the
function defined by . (x) = e~%p(e~'x). Then the following statements hold.

(a) f*xve(z) — =0, ([¥)f(x) for all Lebesgue points x € R of f.

(b) If f is continuous on an open set U C RY, then f *1h. — ([ ) f uniformly on all
compact subsets of U.

(©) Ip € [1,00) and f € L (RY), then f e — ([ 9)f in L (RY.
(d) If p€[l,00) and f € LP(RY), then f * . — ([¢)f in LP(RY).

Proof. As [, = [ for all € > 0, we have

fae@) = ([0)1@) = [vlo=p)(H0) - 1) a.

As we can find an € > 0 such that supp . C B(0,1), we may without loss of generality
assume that supp+y C B(0,1). Then

£ ela) = ([0S @I < lime™ [ 17) = 1) dy (73)

From this @ follows. Suppose f is continuous on an open set U and K C U is compact.
Let § > 0 be such that [K]s C U. As f is uniformly continuous on [K]s, the convergence

n ([2.3)) is valid uniformly for z € K. Hence @ also follows from ([7.3)).
Let us turn to the proof of Let K C R? be compact. We will show

1S * e = (J ) fllze.x — 0.

But first we observe that for all A € Lp we have

b be@)| < [ el =)l dy < [ (Mg ) @vele 9l dy (@ € K),
so that with Young’s inequality and as ||1c||z1 = |[¢|| 11

[(h* o) Lkllze < 191l pr M Lx) e = (10N 1 ([l 2o ). - (7.4)

Let 6 > 0. There exists a function g (by Lemma [A.14) that is continuous on [K]; and
equals 0 outside [K]; such that

1f = glle (k) < 6.

Then, as |f * e = (JO)f] < |f * the — g x el + |g * b = ([ P)gl + ([ ¥)g = (J ) f], we
obtain for ¢ € (0,1) by using

ILf * e = (JO) flleex S (f = g) * Yellie ik + |lg * e — ([ )9l Lr x
+ 1l llg = flloe i

< 266l + ([ L) llg v = ( D)gllim,ic
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As g is continuous on the set U = [K]{, |(b)|implies ||g * ¢ — ([ ¥)g|lL~ i =0, 0, which
in turn implies |(c)|

@ follows similarly as because C,(R?) is dense in LP(R?) (Lemma |A.14)), so that
for all § > 0 there exists a g € C.(R?) such that ||f — gl » < 9. O

8 Convolution of distributions with testfunctions

In this section we consider the convolution of a distribution with a testfunction. As we
have seen in For ¢ € D(RY) and f € Li (R?) we have

loc

frow) = [ITe=u(Tp) ek,

see[7.4l This equality motivates the following generalisation of the notion of convolution
between functions to convolution between distributions and testfunctions:

Definition 8.1. Let (u, ) be in D'(R%) x D(RY) or in &'(R?) x £(RY). We define the
convolution of u with ¢ to be the function R¢ — F defined by

uxp(@) =u(Tzp)  (zeR?).

It is easy (see Exercise [8.A]) to check the following properties.
Lemma 8.2. Let (u, ) be in D'(R?) x D(R?) or in £ (RY) x E(RY). Then

o * ¢ = ¢,
Syxo=Tye  (yeR?
R(u* @) = Ru* R,
Ty(u* @) = (Tyu) * o = ux (Typ),
u(p) = ux@(0).

8.A. Prove Lemma .

Before we turn to the differentiability of the convolution w* ¢, in the following lemma
we will show that the convergence of difference quotients of testfunctions hold in the
topology of D.

Lemma 8.3. Let o € D(RY), o € ERY) andi € {1,...,d}. Then

76777161'
(%5

76_77161-
(5

)wh*oa in D(RY), (8.1)

)w”ﬂiw in E(RY). (8.2)
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Consequently, for u € D'(R?) and v € £'(RY),

76_77167;
(%

76_77161-
(5

)u M0 O in D'(RY),

>v M0 O in E'(RY).
Proof. Let us first show (8.1). A simple argument by contradiction shows that it is

sufficient to show that
1. <76 - 771,”6,' > _
m | ——— | ¢ = 0;p

n—00 hn,

for every sequence (hy,)nen in R\ {0} that converges to 0. Let (hy,)nen be such a sequence
and, for n € N, put

ine)i= (DT ) (o) Oip(e) (€ RY), 53)

We apply Theorem to prove v, — 0 in D(R?). That @ of Theorem is
satisfied can be easily seen from the compactness of supp ¢ (see also Lemma [7.11]). It

follows from Taylor’s Theorem (see Theorem [B.4)) that

HO=IED o) < il e\ (o)),

for every smooth function f on R for which f” is bounded. By choosing f(h) = 0%p(x +
he;), where a € Ng and = € RY, we obtain

0%p(x) — 0%p(x — he;)
h

— 0;0%¢()| < |h[[070%¢] Lo~ (8.4)

Therefore, for each o € N¢,

0%p(x) — 0%p(x — hne;)
hn

|0%n || e = sup — 0;0%(x)| — 0,

z€R4

which implies of Theorem

For (8.2): Let K C R? be compact. As the set K; := K + B(0,1) is compact,
020%0|| o),y < 00. Also by using Taylor’s Theorem, similarly as how we obtained
i (K1)

(8.4), one obtains
8aw(x) - 8a1/1($ — hez)
h

< Bl|070Y || oy (h € B(0,1),x € K).

— 818‘%(93)

Therefore, for each a € N,

o4 76_77161 _ 9.
7| oo

76_77162‘
=)

0%p(x) — 0%p(x — he;)

- — 0;0%(x)| — 0,

= sup
Le(K) z€K

and thus H (

K—>0forallm€N. O

@_8“0’0m,

52



Theorem 8.4. Let (u,¢) be in D'(RY) x D(R?) or in E'(R?) x E(RY). Then ux ¢ €
C>(R%) and

0% ux* @) =ux* (%) = (0%) * ¢ (o € Nd). (8.5)
Proof. Let € {1,...,d}. It is enough to prove that 0;(u * @) = u x (0;p0). Let us write

R here for the reflector operator £(R?) — E(RY), p + ¢. Then ;R = —RI; and
u* p(z) = u(T,Rep) for x € RL Then for every x € R? we obtain by Lemma

wr oz + hei) = u s p(a)

Oi(u * p)(x) = lim

h—0 h
— lim U(E—&-hein@) - U(ERQD)
h—0 h

= lim u (7;72 (Thei(p — 90))
h—0 h

=u (7;73 <lim W))
h—0 h

= u(TaROip) = u* (0;p)(x).
Moreover, u(T,R0O;p) = —u(0; T Rp) = O;u(T,Rep) = (Oju) * p. O

The statement of Theorem [7.10, which states that the support of the convolution of
two functions is included in the closure of the sum of the supports, extends to distributions

(see Theorem [8.6)).

8.5 (Convention for the notation “supp”). As we have observed in Definition we
have

suppuy =supp f  (f € C(Q)),

SUpp ug = esssup g (f € Li.(Q).
As we in general do not distinguish between a locally integrable function f and its
corresponding distribution uy, we will also write “supp f” instead of “suppu;”, which
then corresponds to “esssup f” or if f is continuous with “supp f” (of course supp f as

in Definition [I.1] also appears in the literature for functions that are not continuous, but
as our focus is on distributions, we assume that no confusion arises).

Theorem 8.6. Let (u,¢) be in D'(R?) x D(R?) or in £'(RY) x E(RY). Then

supp u * ¢ C supp u + supp .

8.B. Prove Theorem

Theorem 8.7. Convolution is a sequentially continuous operation: The maps

D' xD— €, (u, ) > u* @, (8.6)
&' xD— D, (v, ) = v * p, (8.7)
E'xE&E=E, (v,0) = v, (8.8)

are sequentially continuous.
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Proof. We prove sequential continuity of and ({8.8)); the sequential continuity of
follows from by Theorem
Proof of the sequential continuity of .

Suppose (un,on) — (u,) in D' x D, ie., u, — u in D’ and ¢, — ¢ in D. Let
K c R? be compact and m € Ny. We show that

[tn * o — wx pllom k= 0,
by showing

|tn * (on — @)|lcm k. — 0, (8.9)
[(un —u) * ollem k. — 0. (8.10)

By Theorem @ there exists a compact set L such that the supports of ¢, and ¢
are contained in L for all n € N. Write us, = u. As the set K + L is compact (see
Lemma , by Theorem [4.24][(a)] there exist C' > 0 and k € N such that

0%un(n)| < Clinllex (1 € Dryrz,m € NU{oo},a NG, |of <m+1).  (8.11)
Then
supp Tz pn, supp T C K + L (ne N,z € K),
hence, using Theorem [8.4]

[un * (on — 9)llcm x < sup max [0%un (TR (pn — ¢))|
zeK aeNd
la|<m

< Cllen = #ller =0,

which means holds.

To prove we use Lemma Without loss of generality we may assume K to
be convex (as we can always choose a larger compact convex set). First observe, that
as up, — u in D', we have 9%(u, — u) * p(z) — 0 for all x € K and o € N&, |a| < m.
Therefore, by Lemma (8.10) follows when (0“(u, — u) * ¢)nen is a sequence of
uniformly Lipschitz continuous functions on K for all a € N with |a| < m. For this, by
Lemma it is sufficient to show that sup,enyfoo} [[tn * ¢llem+1 g < 00. But by
for all n € NU {oo} we have

lun * @l cm+1 g < max sup [0%uy, * o(z)]
OAGNg zeK
|| <m

< Csup [|[Te@llor = Cllellon-
zeK
This finishes the proof of the sequential continuity of .
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Proof of the sequential continuity of (8.8]). Suppose (un,pn) — (u, ) in & x £. Let

K C R% be compact and m € Ny. We show both and (8.10). Write us = u. By
Theorem @ there exist a compact set L C RY, C'> 0 and k € Ny such that

0%un()| < Clinllerr,  (n€&neNU{oo},aeNg, |af <m). (8.12)
Then
[un * (on — @)llem k < sup max |0%un(TaR(pn — ¢))|
zel aGNg
|a|<m

< Cllen — ollek ki — 0,

so that holds.

To prove (8.10) by the same reasoning (using Lemma and Lemma it is suffi-
cient to show sup,ecny(oo} ltn * Pllcm+1 g < 0o. By (8.12) we have for all n € NU {oo}
we have

|tn * @||om+1 g < max sup [0%uy, * o(z)]
aENg zeK
la|<m

< Csup [ To@ller r = Cllellor gkt
rzeK
O

Let ¢, € D(R?) and u € D'(R?). The convolution 7 = ¢ * 9 is a smooth function
with compact support by Theorem (and Lemma . Hence it is a testfunction and
u*xn = ux*(p*1) is a smooth function. On the other hand, v = u x ¢ is a smooth
function and therefore can be identified with its corresponding distribution, moreover,
vk) = (uxp)*1) is a smooth function. In Theoremwe will see that these functions are
equal, that is, the convolution obeys an associativity rule. Before, we prove an auxiliary
lemma that considers an approximation of ¢ * 1. This lemma will be used later on for
example to prove that D and D’ are sequentially separable (in Theorem . We give
two proofs of Theorem one which relies on the Structure Theorem and one which
relies on Lemma (hence one may postpone reading Lemma if one is happy to use
Theorem (6.2)).

Lemma 8.8. Let ¢ € D(RY). Then there is a sequence (wj)jen in D' consisting of finite

linear combinations of point masses, supported in supp @, such that w; * 1 — @ *x 1) in
D(R?) for all ) € D(RY).

Proof. For j € N, take a locally finite partition of unity (x,)nen as in Theorem with
diam supp xn < % for every n € N, and define

wj = Z(/ ©Xn)0a,;

neN
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where, for n € N, a,, € supp x, and if ¢x,, # 0 then also a,, € supp ¢.

By definition we have suppw; C supp¢, so that suppw; * 1 C supp ¢ + supp .
Therefore, by Theorem for ¢ € D(RY), w;xp — o1 in D(R?) when 0%(w; 1)) —
9%(p 1)) uniformly for all a € N&. As 0%(w;x9)) = w;* (0%)) and 9%(p 1)) = p* (0%)
and 0% is a testfunction, it is sufficient to show:

Claim: If 1 € D(RY), then wj * 1) — @ * Y uniformly.

Let ¢ > 0. Take j € N such that |¢(z) — ¥ (y)| < & whenever |x — y| < % It is
sufficient to show that

[(wj *P)(a) = (pxP)(a)] < 6/ el (a€RY). (8.13)

Fix a € R? and let n = T, As wj*P(a) = w;(n) and g *(a) = [ ¢n, instead of (8.13))

we may as well show

win) ~ [enl << [ gl (3.14)

Observe that 7 satisfies, like ¢, |n(x) — n(y)| < € whenever |z —y| < % We have

w;(n) — /wn: > (/@Xn) n(an) — /wn =Y /wxn(n(an) — 7).
neN neN
As ay, € supp xn, it follows that |w;(n) — [¢on| < X ,en [ |@lxne = € [ ||, which implies
(18.13). O

Theorem 8.9. (a) Let u € D' and ¢, € D. Then
(ux1)*x o =ux(x*). (8.15)
(b) Letve &', o€ D andn e . Then
v (pxn) = (vrp)xn=(vrn) *e (8.16)

Proof. [(a)] It suffices to prove (u 1) x ¢(0) = u* (¢ * )(0) for any u € D', 1) € D
(take translations and use the rules in Lemma . Choose x € C°(R%,[0,1]) such that
X = 1 on an open set that contains —suppty — supp¢. Both ((1 — x)u * ) x ¢ and
((1 — x)u) * (¢ * @) have supports in supp(1 — x) + supp ¥ + supp ¢, so both vanish at 0.

Continuation of the proof using Theorem [6.2] xu has compact support, therefore it is
equal to a finite linear combination of derivatives of continuous functions by Theorem
As for any continuous function f € C(2) and o € Ng

(O%f ) x o =0%((fx ) xp) = 0%(f * (Y * ) =0%f x (Y x ),

it follows that (xu %) % o = xu * (Y * ).
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Continuation of the proof using Lemma [8.8| Let (w;);jen be as in Lemma so that
w; *n — @ *n in D(RY) for all n € D(RY). Write v = xu. As (vx1) and ¢ are
testfunctions, we have (v 1)) * ¢ = @ (v 1) (see[7.4(4)). Therefore, by the properties
of (wj)ien and the continuity as in Theorem we are done if we can show that

wi (ve) =vx (i) (jEN),

But this follows as w; is a linear combination of point measures for each i € N, and

8y * (v 9)(x) = Ty(v * ¥)(@) = 0(Tamy) = 0(Te(Ty¥))) = v * (Ty¥) ()
= v (0 * ¥)().

@ If n € D, then this follows by @ (and the fact that @ xn = nx ). As D is
sequentially dense in € (Theorem , follows by the sequential continuity of the
convolution map & — &£, 1 — w x ¢ with w being the element in £ given by either v,
vk Or (. O

8.10. As a direct consequence of Theorem [8.9 we have for u € D'(RY) and ¢, € D(RY)
(ux 9, 0) = (ux9) x$(0) = ux (¥ * )(0) = (u, ¥ * ),

and for v € & (R?%) and n € £(R?)
(v 1p,m) = (vx) % 71(0) = v (Y +37)(0) = (v, x7).

Observe that if u = uy foran f € L'(R%), then the above relation agrees with [(fx1)p =
[ f(¥ % @) as in Corollary

Definition 8.11. Let ¢ be a testfunction such that suppty C B(0,1) and [ =1 (the
existence is guaranteed by Lemma . Such a function is called a mollifier. For a
mollifier ¢ and for € > 0 we define . to be the function on R defined by

ve(w) =e7(%)  (z€RY).
Then supp ¢ C B(0,¢) and [, =1 for all € > 0. For a distribution u we call
U * Y. (8.17)

a mollification of u (with respect to ¢ of order ¢).

Let v be a mollifier. By Theorem we know that u. = u * 1), is a smooth function
for all e > 0. For a function f in L{ . we also know that f. := f*¢. — fin LI , by
Theorem So in particular,

[t [1o (weD®Y),

which implies that f. — f in D’(R%). This “extends” to any distribution, see the following
theorem. This theorem follows by Theorem [7.15]
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Theorem 8.12. Let ¢ be a mollifier, p € D(R?), u € D'(RY), n € E(RY) and v € E'(RY).
Then ue = u . € E(RY), v = v x 1. € D(RY),

supp ue C [supp ule, supp v: C [supp vle,
pxi. o in DRY), nxe Lo in ERY),
Ue Ou in D'(RY) Ve =y in E'(RY).

Proof. suppu. C [supp u]. follows from Theorem

For the convergence ¢ * ). =0, ¢ in D(R?) we use Corollary 4.12| As for ¢ < 1 the
supports supp ¢ * . are contained in the compact set [supp ¢]; it is sufficient to show
that || * 1. — @l|cm — 0 for all m € Ny. As 9%y € D(R?) and 0%(n *.) = (0“n) * 1) for
all n € D(R?), it is sufficient to show that for all ¢ € D(R?) ¢ * 1. — ¢ uniformly. But

this follows from Theorem [(b)]

The convergence u, =0 win D! (R9) follows from the identity in [8.10 and the con-
vergence 1. * ¢ — ¢ in D(R?) for ¢ € D(R?).

The convergences 7 * 1) =0, 1 and v =0 4 follow in a similar fashion, their proof is
left to the reader. O

The next example illustrates that the inclusion suppu. C [suppul. can be a strict
inclusion.

Example 8.13 (suppu. # [suppu].). Consider d = 1. By choosing a mollifier ¢ (for
example the one of Lemma which is supported in (—1,1) we can define another

mollifier ¢ that is supported in (=3, -1y U (4,2) as follows:

¥

ST 191 + Tatha).
2 4 2 4

Then § % ¥ equals 1, which is zero around zero. Hence 0 ¢ supp d * ¥ but 0 € (suppd)1,

i.e., the inclusion in Theorem [8:12] may be strict.

By using the previous theorem it is immediate that £(R?) is sequentially dense in
D'(R?Y). As D(RY) is sequentially dense in £(RY), also D(R?) is sequentially dense in
D'(RY) as £(R?) is continuously embedded in D’(R?) (see Theorem that £(R?) is
continuously embedded in D’'(R?) follows for example by Theorem |4.28)). Moreover, we
have the following:

Lemma 8.14. Let Q C R? be open. D(Q) is sequentially dense in D'(Q) and in ' (£2).
Proof. We will show that there exist (¢¢)e>0 in D(€) that converge to u in D’(€2). As the
compactly supported distributions are sequentially dense in D’'(€2) (see Theorem ,

we may assume u has compact support. Let x € D(€2) be equal to 1 on a neighbourhood
of suppu, so that yu = u. Let @ € D'(RY) be the distribution given by @(p) = u(x¢|a).
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Observe supp@ = suppu. Let ¢ be a mollifier. Then % 1. — @ in D'(R?) by The-
orem Moreover 7 * 1. € D(R?) and there exists a § > 0 such that [suppuls C €,
and thus supp(@ * ¢.) C Q for all € € (0,d). Therefore ¢, := @ * 1-|q is an element of
D(Q) and by continuity of the embedding p : D'(R?) — D'(Q) as in is follows that
0. — u in D'(Q).

That D(Q) is sequentially dense in £'(Q) follows in a similar fashion, this proof is left
to the reader. O

Theorem 8.15. Let Q C R? be open. Then D(Y), D'(Q) and E'(Q) are sequentially
separable.

Proof. By Lemma it is sufficient to show that D(Q) is sequentially separable.

We invoke Lemma Let ¢ € D(R?) be a mollifier. By Theorem we know that
the set of functions

{p*1pe : p€D,e>0,[suppyl. C Q} (8.18)

is dense in D(Q2). Let A C D(2) be the collection of functions of the form
Z Akéa?k * 'Z/}&‘
k=1

for some m € N, A\, € Q+iQ, 2, € Q¢NQ for all k € {1,...,m} and with € € (0,00)NQ
such that

{z1,...,2m}]e C Q.
Then A is a countable set. By Lemma it follows that A is dense in (8.18) and thus
in D(N). O

Similarly to the proof that D(Q) is dense in D'(2) we can (and will) prove that D(2)
is dense in LP(Q2) for finite p. For this we use the following lemma to show that the
compactly supported functions in LP(2) are dense in LP(2). For this reason we do not
need to include the “0“” in the lemma, but we do so as this will be used later on.

Lemma 8.16. Let p € [1,00). Let x € D(R?) be equal to 1 a neighbourhood of 0. For
R >0 write xp=1l1x= X(%')' Then
R

R—o00

|ud*(xr — D|lrr —=0  (a e N ue LP(R?Y)).

Proof. Observe that for R > 1,
10°(xr = D)llzee < 1+ R0 poe < 1+ (0|

Therefore the convergence follows by Lebesgue’s dominated convergence theorem, be-
cause 0%(xr — 1) converges pointwise to 0 as R — 0. O
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Theorem 8.17. Let p € [1,00). D() is dense in LP(Q). Consequently, LP(Q) is
separable.

Proof. By Lemma it is sufficient to show that for all f € LP(Q) with compact support
there exist f. € D(Q2) for ¢ > 0 with f. =9 fin LP(Q2). Let f € LP(Q2) be compactly
supported and let ¢ be a mollifier. Let f be the function in LP(R?) that equals f on Q
and equals 0 elsewhere. Then f 1. € D(Q) for all e > 0. As in the proof of Lemma
let 6 > 0 be such that [supp f]s C Q and thus supp f * 1. C Q for all £ € (0,46). By
Theorem [8.12] m f* . € DRY) and thus f. := (f *.)|q € D(Q). By Theorem [7.15 _.
we have f % 1. — f in LP(R?) and therefore conclude f. — f in LP(Q).

As D(Q) is separable (Theorem [8.15)) and is continuously embedded in LP(€2) (The-
orem [4.28)), it follows that LP(2) is separable. O

8.C. Let ¢ € D(R?) and F C R? be a closed set. Show that 1 * 15 is a

smooth function and that all of its derivatives are bounded.

8.D. For each of the following cases, find u € D'(R) and ¢ € D(R) such that:

(a) u*x@(x)=0forall z € R, but u # 0 and ¢ # 0,
(b) uxp(z) =1 for all z € R,
()
(

z) =z for all x € R,

(c) uxg
(d) u*p(z)=-sinz for all x € R.

8.E. Consider the distribution on R given by h = I, also called the
Heaviside function. For ¢ € D(R) calculate h * ', where ¢’ denotes the derivative of

. Calculate the derivative of the distribution corresponding to h, i.e., calculate Ouy,.
Validate by these calculations that (h* )" = hx ¢ = Quy * p.

9 Distributions of finite order

In this section we prove additional properties of distributions of finite order. First, we
have seen that for a distribution w and a testfunction ¢ one has u(¢) = 0 as soon as
@ = 0 on a neighbourhood of the support of u. And that in general, the condition ¢ =0
on suppu does not imply u(¢) = 0, see Definition In Theorem we will see that
if a distribution wu is of order k, then

0% =0 on suppu for all a € Ny with |a| <k,

implies u(¢)) = 0. With this theorem we prove that a distribution supported in a point
is given by a linear combination of derivatives of the point measure at the supporting
point, in Theorem Moreover, we show that distributions of order k can be extended
to continuous linear functions C§(2) — F and with that prove Theorem m

First we consider some auxiliary lemmas to prove Theorem [9.4]
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Lemma 9.1. Let ¢ € D(Q2), a € Q and k € No. Suppose that that 0%p(a) = 0 for all
a € N¢ with || < k. Then, for all € > 0 with B(a,e) C £,

%p(x) < Y [0Pplr=tT (@ € Blae),a e Ng ol < k). (9.1)
BENG:|B|<k+1

Proof. By Taylor’s formula (see Theorem we know that ¢ equals its remainder of
order k at a as its Taylor polynomial of order k at a equals zero. Hence by (B.1)) with
Il =k + 1 we see that for M = ZBENS:\BISM—I 10° ]| L

lo(z)| < M|z — aFtt < MebH! (x € B(a,¢)).
By a repetition of the above argument for the derivatives of ¢, we obtain (9.1)). O
Definition 9.2. For k € Ny we define CF(Q) to be the space
CE®) = {f € C*(Q) : | e < oo}, (9.2)

equipped with the norm || - |ox. Thus CF(Q) is the space of smooth functions whose
derivatives up to order k are bounded.

CPe(Q) is the space

(@) = [ Gy (), (9:3)
keN
equipped with the seminorms || - [|o# for k& € Np.

For k € Ny, CF(Q) is a Banach space and C£°(Q) is a Fréchet space; this follows from
Theorem (see Exercise [9.A]). Moreover, as for any compact set K C 2 and k € Ny

[fller ke < fller (f € GE (),
CPe () is continuously embedded in £(€2);
() = £(Q).

9.A. Prove that CF(f2) is a Banach space for k € Ny and C2°(Q) a Fréchet
space.

In [5.6] we have used that for any compact set we can find a testfunction that equals
1 on that compact set. Now with the tools of convolution, we can also construct such
functions by a convolution of a mollifier. Moreover, for any closed set F' we can also find
smooth functions which are equal to 1 on a neighbourhood of F with a control on the
growth of the derivatives:
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Lemma 9.3. Let F C R? be a closed set. For each ¢ > 0 there ezists a . € C2°(R?)
such that

ne =1 on [Fle, suppn. C [Fa, (9.4)
and for each k € N there exists a C' > 0 such that
10°n:|| L < Ce™l (@ €N, || <k, >0). (9.5)

Consequently, if F is a compact set in Q, then for each € > 0 such that [F|s. C 2, there

exists a m. € D(Q) with (9.4) and (9.5).

Proof. Let 1 be a positive mollifier. For € > 0 define n. = 1), * ¥.. Then suppn. C
[Flze. As 1p, (v —y) =1 for all y € B(0,¢) and z € [Fe, and as 1), integrates to 1 on
B(0,¢) and has support in B(0,¢):

1@) = [V o) dy= [ v dy=1  (@elFl),

B(0,¢)
i.e., ne = 1 on [F.. Let o € N§. We have 0%, = 1(p),. * 9°. and ¢.(z) = e =9 (%) for
x € RZ. Therefore, by Young’s inequality, for C' = 5 wentfal<k 106l
16| L < [y, oo 0% 2 < C7el.
0

Theorem 9.4. Let k € Ny and u € D'(Q) be a distribution of order k. Suppose that
P € D(Q) and

0% =0 on suppu for all o € Ng with |a] < k. (9.6)

Then u(y)) = 0.

Proof. Let us first show that we may assume that u is compactly supported. In order to
do that we assume that (x»)nen is a partition of unity as in Theorem Then, for any
v € D(2), u(p) equals the sum over x,u(p), for which only finitely many are possibly
nonzero. As supp x,u C suppu, it suffices to show the statement for “y,u” instead of

73]
u-.

Instead, we will assume that v is compactly supported. Let F' = suppu. Let € > 0
be such that

u(p)l < Clgllex (¢ € DQ)).

Let € > 0 be such that [F]3. C Q. By Lemma there exists a 1. € D(Q) with (9.4
and (9.5). Then v = n.u and thus

lu(p)| < Elnegller (v € D(Q)).
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Let ¢ € D(Q2) be such that (9.6). By the above inequality it suffices to show ||n:t||cx — 0
as € | 0. By Leibniz’ rule for x € [F]3. and a € N&, |a| <,

Let M = ¥ gend: g1<h41 10%9|0e and C' > 0 be as in (9.5). Then by Leibniz’ rule
we obtain for all & € N¢ with |a| < k and = € [F]a.

0%(nev) ()| < D (Z)!ﬁﬁne(w)\laa_%(w)\

BeNd
BLa
< Z (g) Me—1Blogk+1-la=5| < MC’( Z (g))z—:
BENg ,BENg
f<a fa
Therefore ||n:1]| o 9 0 and thus u(y) = 0. U

Theorem 9.5. If u is a distribution supported by {x}, then there exist a k € Ny and
ca €F for a € N&, |a| < k such that

U= Z €0 0%05.

a€eNd:|a|<k

Moreover, co, = (17 (u),z®), where x : x — x (and thus =% : z — %) and with

L2 E'(Q) — D(Q) as in Theorem[5.10),

Proof. By taking a translation of the distribution, we may as well assume that « = 0.
Let € > 0 be such that B(0,¢) C Q. Let k € Ny be the order of u. By Taylor’s formula
(see Theorem ¢ =P+ on B(0,¢), for a polynomial P of order k given by
1
Pa)= Y Sofe(0)  (reRY)

aGNg '
|| <k

and ¢ satisfying 9%¢(0) = 0 for all @ € Ng with |a| < k. Let x be a testfunction that
equals 1 on B(0, §) and has support within B(0,¢). Then u(yp) = u(xyp) = u(Px) by the
previous theorem. And thus,

u(p) =u(Pr) = Y —0%p(0)u(a"y).

a€Ng
|a|<k
OJ
Theorem 9.6. Let k € Ny. Let u € D'(Q) be of order k. Then there exists exactly one
linear extension of u, v : C¥(Q) — F which is continuous with respect to || - ||k, i.e.,
v =wu on D(Q) and there exists a C > 0 such that
A< Clfler  (f € CEQ)). (9.7)
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Proof. Let C' > 0 be such that

[u(p)l < Cligller (v € D(Q)).

Let v be a mollifier. By Theorem @ follows that 0% f x 1. — 9% uniformly for all
f e CkQ) and a € N¢, |a| < k. Therefore

el0

If e = fllex =0 (f € C(Q):
Therefore, (u(f * ¥,-1))nen is a Cauchy sequence in F for all 1 € C¥(Q). We define
v:CFQ) = F by
o(f) = lm u(f x,1) (€ CE(Q)).

Then v is linear, v = u on D(Q) and for f € C*(Q) we have for all n € N

‘U(f)‘ < ’U(f - f*wnfl)‘ + \U(f*%rlﬂ < ‘U(f) - u(f*wnfl)‘ +C”f*wn*1||0k7

so by taking the limit n — oo, we obtain (9.7]). The uniqueness follows by the continuity.
O

Definition 9.7. For k € NgU{oo} we define C}(Q) to be the space of functions f € C*(Q)
with 9°f € Co(Q) for all a € N&, |a| < k (Co(R) is defined in Definition . For
k € Ny the space C§(Q) is equipped with the norm || - || o+ and C§°(2) is equipped with
the seminorms || - ||+ for k € Np.

For k € Ny, C§(Q2) is a Banach space and C§°(9) is a Fréchet space, and D(Q) is
sequentially dense in C§ () for each k € Ng U {oo} (see Exercise .

9.B. Let k € Ny. Prove:

(a) C&(Q) is a Banach space,

(b) C§°(92) a Fréchet space,

(c) D(Q) is dense in C§(Q) and in C§°(Q),
)

(d) For each linear v : C¥(2) — T that is continuous with respect to || - || there exists
exactly one continuous extension of v, w : C§(Q) — F.

Corollary 9.8. Let k € Ny. Let u € D'(Q) be of order k. Then there exists exactly one
continuous linear extension of u, v : CE(Q) — F.

Proof. This follows by Theorem [9.6/and the fact that C¥(€2) is dense in C§(92) (see also
Exercise . 0

We are ready to give the proof of Theorem [2.2§

Theorem 2.28. A distribution u is of order 0 if and only if w = u, for a p € M(Q,F).
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Proof. The “if” statement is trivial. Let u € D'(2) be of order 0. By Corollary
u extends to a continuous linear Cy(2,F), which by the Riesz representation theorem
(Theorem [2.30)) is given by a u € M(Q,F). It follows that u = w,,. O

9.9 (The distributional structure of M(€2,F)). Observe that if p € M(Q,F) and p has
compact support, in the sense that supp u,, is compact, then by Theorem there exists
a continuous function f € C(Q2) such that for a = (2,...,2), u, = Juy.

Moreover, by Theorem for any p € M(Q,F) there exist continuous functions
go € C(Q) for a € N& with o < (2,...,2) such that u, = ZaeNg:a§(2,...,2) 0%uyg, .

For d = 1 this means that any Radon measure equals (as a distribution) the sum of
Ug, + Oug, + 0%uy,, for some continuous functions go, g1 and gs.

9.1. Like for the structure theorems, can any distribution u of order k be

written as 3 end o|<k 0" Up, for some pg € M(Q,TF)?

10 Convolutions of distributions

In this section we consider convolution as an operation between distributions.  Like
for locally integrable functions, one cannot expect to be able to define the convolution
between any two distributions; consider for example the function 1, of which convolution
with itself does not exist (in the sense of Definition [7.3)). But when one considers two
distributions of which one has compact support, one can define a convolution between
them as we will see. Observe that the convolution between two locally integrable functions
of which at least one has compact support exists in the sense of Definition [7.3]

In this section we consider only Q = R? and write ‘€’ and ‘D’ instead of ‘€(R%)’ and
“D(R?)". First, we start by characterising the operation of convoluting with a distribution
as a sequentially continuous map D — £ that commutes with translation.

Definition 10.1. We say that a linear function A : D — & or A : £ — £ commutes

with translations if it commutes with the translation operators, i.e., if 7,A = AT, for all
z € R4,

Theorem 10.2.

(a) Let A: D — & be linear. Then A is sequentially continuous and commutes with
translations if and only if there exists a u € D' such that Ap = ux ¢ for all p € D.
(b) Let A : & — & be linear. Then A is sequentially continuous and commutes with
translations if and only if there exists a u € &' such that Ap = ux* ¢ for all ¢ € D.

For both and @ if A is sequentially continuous and commutes with translations,
then there exists exactly one such u such that Ap = ux* ¢ for all ¢ € D.
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Proof. For both @ and @ the “if” statement, follows from the fact that convolutions
commutes with translations as we have seen in Lemma [8.2] and from the fact that convo-
lution as an operation is sequentially continuous Theorem [87] Therefore we assume A
to be sequentially continuous and to commute with translations.

[(&)] Define w : D — F by u(p) = A@(0) for ¢ € D. wu is linear and sequentially
continuous, therefore it is a distribution (Theorem [4.14)). Then for every x € R?

Ap(z) = T2 Ap(0) = A[T-2¢)(0) = u([T-ap] ") = w(Tap) = ux (). (10.1)

[(b)] As in [(a)} define u : € — F by u(p) = Ap(0) for ¢ € £. Then u linear is
sequentially continuous, hence continuous as £ is a metric space, which implies u € &'

That Ap = u * ¢ follows by (10.1)). O

10.3. Let v € & and u € D'. Asuxp € € for all ¢ € D, we can compose the maps D — &,
o ukxpand £ — &, ¢ — vx. By Lemma[8.2and Theorem [8.7] this composition forms
a sequentially continuous linear map D — £ that commutes with translations. Therefore,
by Theorem there exists a w € D’ such that

wkp=ux(v*ep) (p € D).

We could take this w as our definition of u*v; instead we define u* v via another formula
and show in Theorem that it equals w.

10.4. Remember ([7.1) in Corollary which tells us that for integrable f, g and a
testfunction ¢ we have (by viewing f % g as a distribution and thus (f, ) = [ f¢)

(g% f,0) = (fxg,0) = (g, f * p).

Moreover, if (u,9) € D' x D or (u,v)) € & x € and ¢ € D, then by the associativity
property (Theorem

(uxp, @) = (ux 1) * ¢(0) = ux (¥ @)(0) = (u, ¥ x ).

This identity motivates the definition of the convolution between a distribution and a
compactly supported distribution. First we make the following observation. For v € &’
we know by Theorem [8.7]that D — D, ¢ + U*¢ is a sequentially continuous map. Hence,
ifve& and u € D, then D — F, ¢ — u(V * ¢) is a distribution as it is sequentially
continuous and linear (see Theorem [4.14)).

Definition 10.5. For v € D’ and v € £ we define u x v to be the distribution given by

uxv(p) =u(@xp)  (p€D).

Moreover, we define v % u to be the distribution
vxu(p) =v(t* ) (p € D).
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Theorem 10.6. Let u e D', ve & and ¢ € D. Then
(usv)xp=ux*x(V*x@)=v*(u*xp)=(v*u)*e. (10.2)
Consequently, u*x v = v * u.

Proof. The first equality in (10.2]), and similarly the last one by interchanging the roles
of u and v, follows from the observation that for all z € R¢

(uxv)* (x) = uxv(Tep) = w(d * Top) = u(Te(v* @) = ux* (v p)(z).
We are therefore left to prove
ux(vxp)=vx*(uxp). (10.3)

By Theorem @ and by the commutativity of convolution on functions (see [7.4)), for
1 € D we have (|10.2)) with “¢)” instead of “v”:

wx (@) =1h* (u* ).
By the fact that D is sequentially dense in & (Theorem [5.10)) and by using the sequential
continuity of Theorem [8.7| we obtain (10.3)) and thus (10.2]). O

If u,v € &, then the map &€ — F, ¢ — u(0 * ) is an element of £ as it is se-
quentially continuous and linear (that it is continuous follows similarly to the proof of

Theorem |4.14)).
Definition 10.7. For u,v € £ we define u x v € £ by the formula
uxv(y) =u(@*y) (P&
Lemma 10.8. Let . be the embedding €' () — D'(Q) as in Theorem[5.10, Then

u*xv) =1(u)*v=musx*t(v) (u,v € &).
Proof. The proof is rather straightforward and left to the reader (see Exercise(10.A]). O

10.A. Verify the statement in m

10.9 (Convention). As we have the one-to-one correspondence of elements of £ and
compactly supported distributions, the identity Lemma and that supp v = supp(v|p)
for all v € & (Definition [5.12)), for v € & we will often write “v” instead of “i(v)”.
Similarly, for u,v € D' with v compactly supported we will write u * v for u* ¢t ~*(v), etc.

Lemma 10.10. Let (u,v) € (£’ x D')U (D' x &'). Then
0o * u = u,
Oy *xu = Tyu (y € RY),
R(u*v) =R(u) * R(v),
T, = (Tyw) xv=ux(Tv)  (yeR?),
0% u*v) = (0%) xv = u* (0%) (o € NO).

* U

~—

u
u
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Proof. The proof is left for the reader. O

Theorem 10.11. Foru e D' and v € &

suppu * v C supp u + supp v.

Proof. Let x € suppu * v. For all € > 0 there exists a ¢ € D supported in B(z,¢e) such
that uxv(p) # 0, i.e., u(0* ) # 0. Therefore suppu N (supp ¥ * ) # 0. Let y be in this
intersection. By Theorem we know that there exists a z € suppv and w € supp ¢
such that y = —z+w. Then w = y+ 2z € suppu+suppv and |z —w| < . As we can find
such w for each € and supp u-+supp v is closed, we conclude that x € suppu-+suppv. O

Remark 10.12. One can also define the convolution of two distributions, where instead
of assuming that one of the two has compact support the map ¥ : R x R? — R%,
Y(x,y) = x + y is proper on supp u x supp v, meaning that X ~'(K) Nsuppu x suppv is
a compact subset of R% x R? for all compact sets K C R%. The details can be found for
example in [DK10, Section 11] .

11 Fundamental solutions of partial differential operators

In this section we consider partial differential operators and corresponding fundamental
solutions.

Definition 11.1. We call a map P : D'(Q2) — D'(Q) a linear partial differential operator
with constant coefficients if there exist an m € N and ¢, € F for a € N¢ with |a| < m
such that

P = Z Ca0%.
aENg
|| <m

Often, the following notation is also used. When we take p : R — F the polynomial

p(x) = Z CaT®,

a€eNg
|a|<m

then it is common to write “p(9)” for “P”, so that one interpret p(0d) as the formal
polynomial (i.e., finite formal powerseries) evaluated at 9. One also uses “D” instead of
“0” in literature, so that one writes “p(D)” for “P”. We will not use “D” in this context
because we will use this in the context of Fourier multipliers in Section

A distribution FE is called a fundamental solution to P if PE = ¢, where § is the
Dirac measure at zero.
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Theorem 11.2. Let P be a linear partial differential operator with constant coefficients
and E a fundamental solution to P. For all v € E&'(R?) we have

P(E*v) =v = E=x*(Pv).

Proof. This follows by the fact that 0%(F x v) = (0“FE) x v = E % (0%). O

11.3. Observe that if E is a fundamental solution to a linear partial differential operator
with constant coefficients P, and if u € D'(R?) satisfies Pu = 0, then E + u is also a
fundamental solution to P.

11.4. Let P, E be as in Theorem and v € &'(R?). One says that u = E xv is a
solution to the partial differential equation

Pu=w. (11.1)

Hence, by Theorem [11.2] one can derive solutions of partial differential equations of the
form ([11.1)) when one knowns a fundamental solution to P.

Definition 11.5 (Laplacian). We write A for the linear partial differential operator

and call it the Laplacian.

Example 11.6 (Fundamental solution to A). Let E be the function on R? (for d > 2)
defined by F(0) = 0 and

1 2—d

S — d+2,

B(z) = { @V 2 7 (11.2)
5r log |.T‘ d= 2,

where Vj is the d — 1 dimensional volume of the sphere {z € R?: |2| = 1} (observe that
2w = V). Then FE is a fundamental solution to A (see Exercise [L1.A]).

11.A. (a) Foric {1,...,d} let v; be the function on R defined by v;(0) =
0 and

T

vi(z) = B (z € R%\ {0}).
Prove that v; is locally integrable on R? and that in D’
d
Z al"U?; = Vd5,
i=1

where V is the d — 1 dimensional volume of the sphere {z € R? : |z| = 1}. (Hint:
Observe that (Qjv;, @) = —lim.g fRd\ B(0,e) v;0;p and apply integration by parts
(see Theorem [C.1]).)
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(b) Prove that E as in (11.2) is locally integrable on R? and that E is a fundamental
solution to A, i.e., AE = ¢ (first you might want to prove that 9; E' = cv; for some
c e R).

11.7. With E being a fundamental solution to A as defined in (11.2)), we conclude that
for v € & (R%) we have a solution to the Poisson equation

Au =,
given by u = E xv € D'(RY).

Definition 11.8. A function f € C?() is called harmonic, or an harmonic function if
Af =0. A distribution u € D'(Q) is called harmonic if Au = 0.

11.B. For F = C and d > 2, check that for all k¥ € Ny the polynomial
o+ (21 + iz9)¥ is harmonic.

Observe that if ) is connected and f € C*(R) (i.e., d = 1), then Af = f” =0 if and
only if f(x) = a + bz for some a,b € F.

As is mentioned in [T1.3] if u is a harmonic distribution, then E + u is a fundamental
solution to A. Wehl’s theorem, see Theorem [11.14], states that each harmonic distribution
is actually (represented by) a harmonic function in C°>°(R%). We prove this theorem by
proving a more general result, Theorem [11.12] which is about singular supports; this
support indicates “where a distribution is smooth”.

Definition 11.9 (Singular support). Let uw € D'(Q). If U C Q is open we say that u
is smooth on U if there exists an f € C°(U) with u(yp) = [;; fo for all ¢ € D(U). Let
U be the collection of all open subsets of ©Q on which u is smooth. By Theorem [L.11]
u is smooth on JU, as u = ), ey xnu for some partition of unity (x»)nen subordinate
to U, so that y,u is (represented by) a smooth function with compact support. The
complement of JU is defined to be the singular support of u,

sing supp u.

Observe that if U C € is open and u vanishes on U, then u is smooth on U. Con-
sequently

sing supp u C supp u (ueD),

If U C Qis open and u,v € D" are both smooth on U, then u + v is smooth on U.
Consequently

sing supp(u + v) C singsupp u U sing supp v (u,v € D),

Let x € C(£,]0,1]) and U C Q be open. Then wu is smooth on U if and only if yu and
(1 — x)u are smooth on U. Consequently

sing supp u = sing supp(xu) U singsupp((1 — x)u).
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The above extends in the following sense to a partition of unity (xn)nen as in The-
orem due to the fact that the sets {x € Q : x,,(z) > 0} form a locally finite cover;

sing supp u = U sing supp(xnu)- (11.3)
neN

The singular support satisfies the same rule as the support does for convolutions:

Lemma 11.10. Let u € D'(RY) and v € &'(R?). Then
singsuppu *x v C singsupp u + singsupp v. (11.4)

Proof. Let us write A for singsuppu and B for singsuppv. Let § > 0. By Lemma [9.3
there exists a x € C* such that x is equal to 1 on [A]; and 0 outside [A]s. Then
2

ug := (1 — x)u is (represented by) a smooth function and so u = uj + ug for u; = yu,
and suppuj C [A]s. Similarly, we can write v = vy + v9, where suppv; C [B]s and vg is
(represented by) a smooth function. Then

U*V = UL * V] + U * Vg + U *x V] + U * V2.

The last three terms are smooth (by Theorem and the support of uq * v1 is included
in [A]s + [Bls (Theorem |10.11)), which in turn is included in [A + Blas. Therefore

sing suppu *x v C [A + Blas.

Now observe that B is compact as it is a subset of the support of v. As ¢ is chosen
arbitrarily and the set A+ B is closed (see Lemma [7.11]), we have s o[A+ Blas = A+ B
and conclude ([11.4]). O

Definition 11.11. Let P be a linear partial differential operator with constant coeffi-
cients. A distribution E is called a parametriz of P if there exists a 1 € £(R?) such that
PE =6 +1.

Observe that any fundamental solution to P is a parametrix of P.

Theorem 11.12. Let P be a linear partial differential operator with constant coefficients.
Suppose E is a parametriz of P with singsupp E = {0}. Then for all open Q C R?

sing supp u = sing supp Pu (u € D'()). (11.5)

Proof. Similarly to [8.5] we have sing supp Pu C sing supp u, which basically means that
‘Pu is smooth where w is’.

By ([11.3) we may assume that u has compact support, so that we may as well assume
that u € D'(Q). Let ¢ € £(R?) be such that PE = § 4. Then

Ex(Pu) = (PE)xu=(6+¢)*u=u+1*u.
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Therefore singsuppu = singsupp E * (Pu) as ¢ * u € £(R?) (Theorem [8.4). Therefore,
by Lemma [11.10

sing supp u C sing supp F + sing supp Pu = sing supp Pu,
as sing supp E = {0}. O

11.13. Let P and E are as in Theorem [1.121 This theorem tells us that a solution u
to Pu = v for a v € £'(R?) is smooth where v is, in the sense that if U is open and v is
smooth on U, then u is smooth on U. Therefore, in particular we obtain Weyl’s theorem
as a consequence.

Theorem 11.14 (Weyl’s Theorem). Every harmonic distribution is (represented by) a
smooth harmonic function. Moreover, if u € D' is such that Au = 1 for a 1 € &€, then
u is a smooth function.

Example 11.15. For t > 0 we define the function h; : R* — R by
hy(z) = (dnt)"2e-all® (g e RY). (11.6)
Then (see Exercise [11.C))

%ht(x) = Ahy(z)  ((t,2) € (0,00) x RY). (11.7)

11.C. Show that (|11.7)) is satisfied for h; as in (11.6]).

11.16. Observe that

d
hi(z) dz = </ (47rt)*%e*ﬁ32 ds) =1,
R

R4

which follows by the fact that
/ e dg = Nz
R
The latter identity can be proved using polar coordinates:

2 00
(/ e e dac) = / / e~ (@) qy dy = 27r/ re”™ dr
R R JR 0

1
= 277/ —e *ds =m.
0o 2

From this we can show that

(hey2) 25 0(0) (€ Cu(RY). (11.8)
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Indeed,

(he, 0) —(0) = o hi(z)(p(x) — ¢(0)) dz.

By a substitution y = % we have

NG
@) (p(@) = 9(0)) do = [ ha(y)(e(Viy) - (0)) dy.
R R

So that by the Lebesgue dominated convergence theorem we indeed obtain (11.8)).

11.D. Calculate the limit in D’(R%) of %ht ast | 0.

In the theory of partial differential equations one is often looking for a function on
(0,00) x R% where the first variable represents the “time variable”. As one distinguishes
the “time variable” from the “space variables”, it makes sense to introduce the following
notation.

Definition 11.17. Let Rt = R. Let Q € Rf x R? be open. For a € N¢, we write 0 for
the operation D(2) — D(Q) given by
oM 0%

o _ D(O RF x R?
P 6l1,0) = g preltia) (o € DA, (1) € R xR

in other words, & is written for the operation 8(®®) when we view  as a subset of R4,

Moreover, we write 0; for the operation D(£2) — D(Q2) given by

diplt o) = Solta) (o € D), (1,2) € R x BY,

i.e., 0y is the operation 9(10) when we view  as a subset of Rt

Remark 11.18. In the literature it is rather common to write “0;” instead of “0;”. We
avoid this as, on the one hand, we have already defined 9; for ¢ € {1,...,d}, on the other
hand we prefer not to attach a meaning to “t” other than a variable which can be equal
to 1, 2, etc.

Definition 11.19 (Heat operator). The heat operator is the linear partial differential
operator 0y — A.

Example 11.20. Let h; for t > 0 be as in Example[11.15, The function f : (0, 00) xR% —
R defined by f(t,z) = hy(z) for (t,x) € (0, 00) x R? solves the heat equation on (0, 00) x R%:

o f = Af.
Example 11.21. Define E : Rf x R? — R by

E(t,z) = hi(x) (t,x) € (0,00) x RY,
; 0 (t,z) € (—00,0] x R%

Then (see Exercise |11.E)) E is a fundamental solution to the heat operator 9y — A (one
also says, E' is a fundamental solution to the heat equation).
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Definition 11.22. The gamma function is the function I' : (0,00) — (0, 00) given by

I(s) = /OOO t et dt (s € (0,00)).

It is sometimes also defined on the complex plane for those numbers for which the real
part is strictly positive. By partial integration it follows that I'(s + 1) = sI'(s). As
I'(1) = 1, it follows that I'(n) = (n — 1)! for n € N. Moreover, I'(3) = /7.

11.E. Let F be as in Example

(a) Calculate [5° h¢(z) dt for « # 0 (in terms of the gamma function).
(b) Show that limg o [ga he(x)p(t, x) dz = ¢(0) for any ¢ € D(RITL).

(c) Show that E is locally integrable and conclude that the order of (0; — A)E is at
most 2.

(d) Calculate singsupp E.
(e) Show that supp(d; — A)E C {0}.
(f) Show that E is a fundamental solution to 0y — A (Hint: Observe that

(0 — A)E, ) = limgo limppoe — fsT Jra hi(2) (0 + A)p(t, x) da dt and apply in-
tegration by parts.)

(g) Conclude that if v € £(R%*1) is smooth on an open set U, then so is a solution u
of (0 — A)u =v.

Remark 11.23. In [DK10, Section 12] one finds references for the proof of the statement
that every linear partial differential operator with constant coefficients, of which at least
one coeflicient is nonzero, has a fundamental solution.

12 Sobolev spaces

In this section we consider Sobolev spaces as subspaces of D’. These spaces are subsets
of LP for which not only the function itself, but also its derivatives (in the distributional
sense) up to a certain order are all included in LP.

Definition 12.1. Let f € L (Q) and o € N¢. A g € LL _(Q) is called the a-th weak
partial derivative of f if ug = 0%uy, i.e., if

[oe=[1--1Flone (@ e D).

12.2. Let f,g,h € Li .(Q) and «, 3 € Ng.
(1) By Lemma f has at most one a-th weak partial derivative.
(2) If g is an a-th weak partial derivative of f, then we write 0% f = g.

(3) If g = 0“f and h = 0%, then h = 9P,
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(4) Following our convention that we may write “f” instead of “u;”, for a distri-
bution u € D'(2) we write “0%u € L[ .” if there exists a g € L] _ such that 0%u = u,.

loc

Definition 12.3. Let p € [1, 0] and k € Ny. We define the Sobolev space of order k and
integrability p, denoted WHP(Q), by

WEP(Q) = {u e D'(Q) : 9%u € LP(Q) for all 3 € N& with |3| < k}.
Observe:

(1) 0%u € Wk=lelr(Q) for all u € WHP(Q) and o € N& with |a| < k.
(2) If U is an open subset of Q and u € W*P(Q), then u|y € W*P(U).

12.A. Consider Q = (0,2), f,g € L} (Q) given by

_Jz =z e (0,1], _Jz xe(0,1],
f(x>_{1 ze(1,2), g(w)_{Q ze(1,2).

(a) Show that f has a weak derivative that is in LP, so that f € WP(Q) for all
p € [1,00].
(b) Show that g has no weak derivative, but calculate Ou,.

(c) Give an example of an element h € W1P(0,2) such that the function g defined on
R by g(z) = h(zx) for z € (0,2) and g(x) = 0 for other z, is not in W1P(R).

Definition 12.4. We equip the Sobolev space WP(Q2) for p € [1, 00] with the norm

llu|lywrr = max H@BuHLp.
BeNG,|B|<k

12.B. Verify that || - ||y, indeed defines a norm on W*?((Q).

Let us recall the definition of equivalent norms:

Definition 12.5. Let X be a normed space and || - |1, - [l2 : X — [0, 00) be norms on X.
They are said to be equivalent if they define the same topology.

Two norms ||-||1, ||-||2 are equivalent if and only if (see for example [Con90, Proposition
II1.1.5]) there exist ¢, C' > 0 such that

cifly <lfllz < ClflL (f € X).
1
12.6. For p € [1,00), n € Nand z € R" let |z|, = (3_i; |xi|P)P. Imm7 we mentioned
that |- |y is equivalent to | - |o (Where |7|oo = max? ; |z;| for z € R"). Similarly, |- |, and

| - |00 are equivalent, as

1
|Z]oo < |z]p < NP |2foo (z € RY).
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Therefore, for each ¢ € [1,00) there exists a C' > 0 such that

1
lulwer < (D2 10%ll)" < Cllullwer,
BENG,|BI<k

1
i.e., the norm u — (3 gend |51<k 10°u||%,)4 is equivalent to || - ||y (in other books one
might find the norm on W¥? to be defined by this norm with either ¢ = 1 or ¢ = p).

Observe that WoP(Q) = LP(Q), so that the Sobolev space of 0-th order is a Banach
space. This extends to any order:

Theorem 12.7. For all p € [1,0¢] and k € No, W*P(Q) is a Banach space.

Proof. Suppose that (uy)nen is a Cauchy sequence in W*P(Q). Then (0%up)nen is a
Cauchy sequence in LP(f2) for all a € Ng with |a| < k. As LP(Q) is a Banach space,
there exist u(® € LP(Q) such that %u, — u(® in L? for all such .

Let us write u for u(®). We are finished by showing that 9%u = u(®) in D'(Q) for
all such o € N¢, as this implies u,, — u in W"P(Q2). This follows by testing against a
testfunction ¢, using; if f, — f in LP, then [ f,o — [ f¢ (which follows by Hoélder’s
inequality):

(0%, p) = /u S(=1)llgrp = Jim [, - (=1)*19%p = lim /8aun co = (ul®, o).

n—oo

As this holds for all ¢ € D(Q), we have 9“u = u(® (by Lemma, . O

Let us consider the continuity of the operator % on the C™ space and embeddings
of such spaces and then show the analogue statements when we instead of C™ spaces
consider Sobolev spaces.

Lemma 12.8. Let k,m € Ng and a € Ng. If k < m, then for all compact sets K C R%,

10% fller-tal x < Nfllom e (f €C™),

and

10% fllgr-tar < W fllem— (f € CGFY).

In particular, d* : C™ — C™ 1%l is continuous for all m € Ny and o € Ng, la] <m, and

cme k. orscf (k<m).
Proof. This easily follows by the definitions of the norms || - ||cm x and || - [[cm, we leave
it to the reader to check this. O
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Lemma 12.9. Let p € [1,00|. Let k,m € Ny and o € Ng. If k <m, then
10%u]lypr—tarp < ||ue]lwm.e (u € WP,

In particular, 8% : W™P — W™=lalP s continuous for all m € Ny and o € Nd, |a] <m
and

WP s WhP (k< m).
Proof. The proof is again rather straightforward and left to the reader. O

Similar to Proposition [5.3] one has:

Lemma 12.10. For all k € Ny there exists a C > 0 such that for all p € [1,00] and

r,q € [1,00] wz’th%—i—%:%,

luvllwre < Clullwnrllvliwes — (ue W (Q),0 € WH()).

Consequently, the function W*(Q) x Wka(Q) — WHFP(Q) given by (u,v) — uv is con-
tinuous.

Proof. See the proof of Proposition [5.3] and use additionally that || fgllzr < || £z |lgllLe
for f € LP(Q2) and g € L>(Q2), which follows by Hoélder’s inequality. O

Theorem 12.11. Let p € [1,00). Then D(Q) is dense in WFP(Q).

Proof. Let x and xg for R > 0 be as in Lemma By Lemma [12.10| x g|qu € WP ()
for all R > 0. By Lemma limp_s00 XrlQu = u in W*P(Q). Therefore it is sufficient
to show that for all compactly supported u € W*P(Q) there exist u. € D(Q) for & > 0
such that u, i W (). This follows similarly as in Theorem |8.17| by using (8.5]).
We leave the details to the reader. O

Definition 12.12. Let £ € Ny and p € [1, o0].

(a) We write Wg’p(ﬂ) for the closure of C°(Q) in W*P(Q).
(b) We write HF(2) = W*2(Q) and HE(Q) = WE?(Q).
(c) We define (-,-) yr : H*(Q) x H*(Q) — F by

(U, v) g = Z (0%u, 0%) 12 (u,v € H*(Q)),

aeNd:|a|<k
and || - || gx : H*(Q) — [0,00) by

lull g =/ (wwhe - (u € HH(Q)).
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Remark 12.13. One interprets Wé~C P(Q) as the subspace of W*P(Q) of elements that
vanish at the boundary of €2, in symbols, u = 0 on 9.

Similarly to Theorem in which we showed that W*P is a Banach space by using
that LP is a Banach space, one can show that H* is a Hilbert space because L? is:

Theorem 12.14. Let k € Ng. (-,-)gr is an inner product on H*(Q), so that H*(Q)
(and HE(Q)) equipped with this inner product is a Hilbert space.

Proof. We leave it for the reader to check that (-,-)y» defines an inner product. The
rest follows from Theorem and the fact that || - ||+ is equivalent to || - ||jy2.x (see
12.6). 0

There is a lot of theory on Sobolev spaces, which we will not treat here. Sobolev
spaces play a central role in the theory of partial differential equations. In the following
section we consider an application to elliptic partial differential operators. One classical
reference for PDE theory, which contains a whole section on Sobolev spaces is [Eva98]
(see Section 5). There are various estimates that are useful, of which we present one
important example, the Poincaré inequality.

Definition 12.15 (£P(2,R%) and LP(Q,R%)). LP(,R?) is the space of (Lebesgue)
measurable f : Q@ — R? such that

£l o (2, ra) == (/\f(x)\p dx); < 0.

LP(Q,R?) is the space of all equivalence classes in £P(€2,R?). We mostly write “|| - ||z»”
instead of “||-[| Lo(,ra)” Line (9, R9) is the space of functions that are locally in LP(Q2, R%),
ie., fe Ll (QRY if and only if fl1x € LP(Q,R?) for all compact sets K C €.

loc
Let f : Q — R? be measurable and fi, ..., f; : @ — R? be its coordinates, i.e., f(z) =
(fi(z),..., fa(z)). Then f; is measurable for each i € {1,...,d} and f € LP(Q,R?) if
and only if f; € LP(Q) for all ¢ € {1,...,d}. Moreover,

I = ([ (@F + -+ 1a@P)F ar)”
On the other hand, || - ||zr is equivalent to (see
o ([1n@P 4+ @l o)

and to f — || fillze + - + || fall L.

Definition 12.16. An open set Q C R? is said to be of finite width if there exist a,b € R,
a<baycRwith |y| =1 and

{z-y:zeQ}Clab], (12.1)
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where - is the inner product on R?%. The Q is said to be of width w if
w:inf{b—a ca,beRa<byeRy |y =1,{z-y:2cQ}C [a,b]}.

Theorem 12.17 (The Poincaré inequality). Let w > 0. Let  be a nonempty open
subset of R? of finite width w. For all p € [1,00)

w
lullr < —[|Vul| e (u € Wy (Q)). (12.2)
pP

Proof. Let u € Wol’p(Q). We extend u to R? by defining it to be equal to 0 outside €.

Let y € RY |yl = 1 and a,b € R, a < b with b = a + w be such that (12.1). In the
first step we show the inequality in case y = e;. In the second step we show how we can
reduce the general case to the case where y = e;.

Step 1 Let # € RY, 2/ = (29, ...,24). Then by Hélder’s inequality,
u(@1,2')| = |u(z1,2") — u(a,2)]
1
< / |O1u(s, )| ds
a - /
< (z1—a) 7 [[01u(, 2)] o w)-

Therefore (using Fubini’s theorem)

/’u‘p_/dl/ ‘ugjh da:lda;
R
/Rd 1/ 21 —a)P~t daa]|dru(,2) |7, g o’

—a)f

= » [01ul| Lp(ray < ?HVUHLP (Rd)-

Step 2 Let v1,...,v4 be an orthonormal basis of R with v; = y. Then the matrix
which columns equal vy,...,v5; R = [v1 v2 -+ vg] is such that Re; = v; = y and, by
Pythagoras’ theorem,

|Rz| = || (z € RY).

Then, writing also R for the linear bijection v — Rv, R™'Q C [a,ble; + (Rey)* (where
(Rep)* is the orthogonal complement of Re;) and |lu|r» = ||u o R|ze, V(uo R) =
R[(Vu) o R] and

IVullr = [|R[(Vu) o R]|| o

Therefore the Poincaré inequality follows from Step 1. OJ
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Corollary 12.18. Let Q be a nonempty open subset of R% of finite width. Then the
norms Wol’p — [0, 00),

u lullwre,  we [V,

are equivalent.

12.C. Prove the following statement. Let  be a bounded open subset of
R, Let p € [1,00). For each r € [1,p] there exists a C > 0 such that

luller < CIVulle  (u€ WeP(Q)).

12.D. In this exercise we show that for open sets that do not have finite
width, an inequality as the Poincaré inequality does not hold (for any w > 0):
Suppose © C R? is an open set that contains each ball B(z,,n) for n € N and some
sequence (z,)nen in RY. Show that for each m € N there exists a w,, € VVO1 P(Q) with
IVum|lze = 1 and ||um||r > m.

13 Solutions to elliptic PDEs in Sobolev spaces

In this section we consider the existence of solutions to elliptic partial differential equa-
tions equations. The notion of solution will be defined in the language of Sobolev spaces.

In this section the scalar field is the real numbers, i.e., F = R and €2 is an open subset
of R%.

Definition 13.1. We call a map P : D(Q2) — D'(2) a linear partial differential operator
with variable coefficients if there exist an m € N and u,, € D'(Q) for a € N with |a] <m
such that

P= Z U 0%,

aENg
la|<m

i.e.,

Po= 3 (%)ua (¢ € D).

aENg
la|<m

m is called the order of P.

Definition 13.2. A linear partial differential operator P of order 2 is called a second
order linear partial differential operator. Let P be such an operator. Then there exist
a;j, b5, ¢ € D'(Q) for i,j € {1,...,d} such that

d d
P=- Z aij&-@j + Z b;0; + c.
ij=1 i—1
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If a;; € L (Q) for all 4,5 € {1,...,d}, then P is called elliptic if there exists a § > 0
such that

d
Z a;; (x)yiy; > 0|y|? (almost all = € Q,y € R%). (13.1)
ij=1

Let a € L _(Q,R%9) be the matrix valued function such that (a);; = a;;. Then P is
elliptic if and only if a — 61 is positive definite for some 6 > 0, where [ is the identity
matrix.

Observe that —A is an elliptic operator.

13.3. As we allow the coefficients u, to be distributions, the domain of the operator P
is D(Q) and not D’'(2) as in Definition But observe the following.

o Ifuy € L (Q) for each o € N& with |a| < m, then Py € LL () for all ¢ € D(Q)
and

Po(z) = Y ua(2)0%p(z)  (p € D(Q),z € Q).

a€eNg
|a|<m

o If uq € E(Q) for each a € N¢ with | < m, then Py € D(Q) for all ¢ € D(Q) and
P extends to an operator D'(2) — D'().

13.4 (Assumptions). In this section we consider the following setting. Let
al]7bZJCELOO(Q)7 (Z7JE {177d})
Let L: D(Q) — D'(2) be defined by

d d
Lo =~ i(a;o50) + > bidp+cp  (p€D(Q). (13.2)
t,j=1 i=1

Observe that with b; = b; — 2?21 0ja;; we have

d d
Lo=— ) a0 0+ ) bidp+ep  (p€D(Q)), (13.3)
i,j:l =1

from which we see that L is a second order linear partial differential operator with variable
coefficients. Let a € L>(Q,R9*9) be the matrix valued function given by (a);; = a;; and
b € L>(Q,RY) the vector valued function given by (b); = b;. Then aV is an element of
L>®°(Q,R%). By writing V- f = Y%, ;f for any f € L>(Q,R%), L can be written as

Lo=-V-(aVp)+b-Vo+cp (p € D()).

V -§ is also called the divergence of §.
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We consider the following problem. Fix a function f : @ — R. We want to find a
distribution u such that Lu = f and u “equals zero on 92”. For a distribution (or an
element of Llloc) “u = 0 on 0" does not make sense. Instead, we consider the problem

of finding a u in a Sobolev space VVéC P such that Lu = f (remember Remark [12.13). We
formalise this in Definition [13.5] with the help of the bilinear form associated with L.

Observe that
d d

<L907¢> - - Z <al(a7,]a](p)7¢> + Z<bzaz90)1/)> + <c§07 ¢>

i,j=1 i=1
d

d
= /Q ( Y (i) (959) + D bi(Bip)tp + twﬁ) (¢, 9 € D(Q)).

ij=1 i=1

As the a;;,b; and ¢ are bounded, we have

i,j=1 i=1

d d
(Lo, ¥)| < (Z gl poe + D 1]Bill oo + HtHLoo) lellmllvllm (o, € D).
(13.4)

Therefore, as D(12) is dense in Hg () by definition, the bilinear form D(Q2) x D(Q) — R,
(¢,) — (L, 1) extends to a bilinear form H}(Q) x H () — R.

Definition 13.5. Let L be as in [13.4]

(a) The bilinear form associated with L is the function B : H}(Q) x HE(92) — R defined
by

d

d
B(u,v) = /Q > ai(0u)(9v) + > bi(du)v + cuw.

ij=1 i=1
(b) If f € L*(Q), u € H}(Q) and
B(u,v) = (f,v)r2 (v € Hy(Q)),
then we call u a weak solution to the Dirichlet boundary problem

Lu= Q
u=J oni (13.5)
u=20 on 0f).

13.A. Let L be as in and suppose that a;; = a;; and b; = 0 for all

i,j € {1,...,d}. Show that B is symmetric; B(u,v) = B(v,u) for all u,v € H}(Q).
We will use tools from functional analysis to prove that under certain conditions there

exists a weak solution to the Dirichlet boundary problem ((13.5). Let us first recall the
Riesz-Fréchet theorem, for a proof see for example [Rud91l, Theorem 12.5].

82



Theorem 13.6 (Riesz-Fréchet). Let H be a Hilbert space over R with inner product
(n). If A: H — R is a bounded linear functional, then there exists exactly one a € H
such that

Az = (a,z) (x € H).

Theorem 13.7 (Lax-Milgram). Let H be a Hilbert space over R, with inner product

(,) and norm || -||. Let B: H x H — R be a bilinear map. Suppose there exist ¢,C > 0
such that

[B(u,v)] < Cllullfloll (u,v € H), (13.6)

cllul|? < B(u, u) (ue H). (13.7)

(a) There exists a linear homeomorphism A : H — H such that

B(u,v) = (Au,v) (veH).

(b) Let g: H— R be a bounded linear functional. Then there exists exactly one u € H
such that
Blu,v) = g(v) (v € H).

Proof. Observe that @ follows from @ and the Riesz-Fréchet theorem, Theorem m
Let us prove @

As for u € H the map v — B(u,v) is a bounded linear functional, the Riesz-Fréchet
theorem implies that there exists an element in H, for which we write Au, such that

B(u,v) = (Au,v) (veH).

Then A defines a linear map H — H. By the Inverse Mapping Theorem, see for example
[Con90, Theorem II1.12.5], it is sufficient to show that A is bounded and bijective.

We have
[ Au? = {Au, Au) = B(u, Au) < Olfull|Aul|  (u € H).
Therefore | Au|| < C||u|| for u € H, so that A is bounded.
By ((13.7)) we have
cllull* < B(u,u) = (Au,u) < [Aullull  (ue H),
and thus
cllull <[[Au] (u € H),

from which follows that A is injective and its range, AH, is closed in H: If (up)nen is
a sequence in H such that Au, converges, then it follows that (u,)nen is Cauchy and
therefore has a limit v in H. By the boundedness of A follows that Au, — Au.
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Now, let us prove that AH, the range of A, equals H. As A(H) is closed we have
AH+(AH)* = H (where (AH)* is the orthogonal complement of AH), so it is sufficient
to show that (AH)* = {0}. Let w € (AH)*. Then 0 = (Aw,w) = B(w,w) > c||w||?. So
w = 0. 0

13.B. Let H and B be as in Theorem Suppose furthermore that B is

symmetric, in the sense that B(u,v) = B(v,u) for all u,v € H. Why does statement @
directly follow from the Riesz—Fréchet theorem?

Let us verify the assumptions of the Lax-Milgram theorem for the bilinear form
associated with L.

Theorem 13.8. Let L be as in and B be the bilinear form associated with L.
Suppose L is elliptic and Q) is of finite width. There exist a v > 0 and ¢, C' > 0 such that

|B(u,0)] < Cllullg ol (u,v € Hy(Q)), (13.8)
cllulfp < Blu,u) +llullz:  (u€ Hy()). (13.9)

Proof. (13.8)) follows from the following estimate, see also ([13.4]),

|[B(u,v)| < (Z @il o JrZHfJ o+ [le HLOC) lullmllvllm (a0 € Hy()).

i,j=1

On the other hand, for > 0 as in (13.1]) we have for u € H}(Q2)

92/|8u|2 /Zamau )(Ou)

3,j=1

= B(u,u —/ biu&-u—/ cu?
(1,0 Qg [
d
Blu.u) + 3l | ullul + o= [ o
i=1 & &

As ab < a® + 4%172 for any a,b € R and € > 0 we have

1
Lol < e [ o+ o [l (e @),
Q Q 4e Jq

Let M = Y% | ||b;]|z= and take & small enough such that eM < g. Then

d d
0 M
b; 00/ Oiullu| < ~ /@'uz-l-f/uz
> lila [ ol < 53 [ ol + 57 [
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By the Poincaré inequality (see Theorem [12.17)) there exists a § > 0 such that

d
2 2 1
Bllulf <> /Q Ol (ue HY(Q).

Thus

0. 0 & 2 M 2
= 1 < |0 — 2 E iu|” < ; o + — :
ﬁ2HuHH < (9 2) “/Q\a ul B(u,u) + (HCHL + 45) /Qu

Now we can prove that under certain conditions ([13.5)) has a weak solution.

Theorem 13.9. Let L be as in[154] Suppose L is elliptic and 2 is of finite width. There
exists a y > 0 such that for all B >~ and f € L*(Q) there exists a unique weak solution
u € HY(Q) of the Dirichlet boundary problem

{Lu +pPu=f onQ, (13.10)

u=20 on 0f).

Proof. Let v+ > 0 be as in Theorem Let 8 > ~. We apply the Lax-Milgram
theorem to Bg, the bilinear operator corresponding to the elliptic operator Lg given by
Lgu = Lu + Pu:

Bg(u,v) = B(u,v) + B{u,v) 2 (u,v € H}(Q)).

Observe that for f € L2(2) the map g : H}(2) — R given by g(v) = (f,v)2 is bounded
and linear, because [[v[|3, < [|[v|3,1. So by the Lax-Milgram theorem there exists exactly
one u € H}(Q) such that Bg(u,v) = (f,v) 2 for all v € H}(2), which means that u is a

weak solution to (13.10]). O

For more theory on weak solutions of elliptic Dirichlet boundary problems, we refer
the reader to [Eva9d8| Section 6.2] . Moreover, one can show that the solutions have a
certain regularity that depends on the regularity of the coefficients a; ;, b;, ¢, see [Eva98,
Section 6.3] .

13.C. Show that one can choose v = 0 in Theorem and Theorem m

in case b; = 0 for all 4 and ¢ = 0.

14 The Schwartz space

In this section we introduce the Schwartz space, which is the space of smooth functions
that are of rapid decay. This space is suitable for the Fourier transformation, as the
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Fourier transformation maps the Schwartz space onto itself. We will turn to that later
and first discuss here the topological properties of the Schwartz space. In Section
we consider its dual, the space of tempered distributions. As our underlying space we
consider R? (only). For this reason we can leave out the part “(R%)” in the notation of
function spaces or spaces of distributions.

Definition 14.1. We say that a function f : R? — F is of rapid decay if

lim P(z)f(z) =0,

|z|—o00

for all polynomials P, where lim,_,o, g(z) = a means that for all € > 0 there exists an
R > 0 such that for all x € R? with |z| > R, |g(z) — a| < e.

Observe that f is of rapid decay if and only if lim,_,c 2% f(x) = 0 for all a € Nd.
Asz; < (1+|zf?) forall j € {1,...,d} and z € R? it follows that for each polynomial P
there exists a C > 0 and k£ € N such that

|P(z)] <C(L+a))*  (zeRY).

Therefore, f is of rapid decay if and only if lim ;.o (1 + |2[)* f(z) = 0 for all k € Ny.

See Exercise for equivalent descriptions of rapid decay for continuous functions.

14.A. Prove the following statement (Hint: First prove: x; < (1 + |z|?) for
all j € {1,...,d} and z € R?):
Let f:RY — T be continuous. The following statements are equivalent:

(a) f is of rapid decay.

(b) x — P(x)f(x) is bounded for all polynomials P.

(c) For all k € Ny there exists an M < oo such that

[f@)] < MA+|z)™  (zeRY).

(d)

1L+ D*flloo = sup (L4 |z)*[f(x)] <oo (k€ No).
TER?

Definition 14.2. A smooth function ¢ is called a Schwartz function if the function and
all its derivatives are of rapid decay: if 9%y is of rapid decay for all o € N¢.

We write S (or S(R?)) for the space of Schwartz functions and call it the Schwartz
space. For k € Ny we define || - ||z.s : S — [0, 00) by

lllks = max [[(1+]- N 0%~ (v €S). (14.1)
d
aeNg
|| <k
|| - ||%.s is a norm for all £ € Ny. The space S is equipped with the topology generated

by the seminorms || - [|x,s-
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Each testfunction is a Schwartz function. Gaussian functions are examples of Schwartz
functions that are not compactly supported:

Definition 14.3. A function f : R — R is called a Gaussian function if there exist
a,beR, a>0,ycR?such that

flz) = be Iyl

Each such function f is smooth and is a Schwartz function: Let o € N¢ and k = |a].
Then

0°f(2)] < [bl(20)F |z — y[Fem " (2 e RY),
and thus, using that (1 + |z + y|)F < (1 + |y))*(1 + |z|)*,

1£1xs < [b(2a(1 + |y]))* sup (1 + ] ) el < oo, (14.2)
zeR

14.4 (Equivalent norms). In the literature one finds different definitions of norms or
seminorms on &, which all generate the same topology. For example, for & € Ny the
function || - [|[; s : & — [0,00) defined by

k
lelly,s = max [|(1+ |- [*)20% () e,
aeNg

|lal<k
is a norm that is equivalent to || - ||,s, which can be seen by the estimate
T+ zP <@+ z)? <201+ |z]?) (zeR?). (14.3)

On the other hand, the topology on S generated by the seminorms || - ||5.s with k£ € Ny
is equal to the topology generated by the seminorms |||, , with k& € Ny and « € Nd,
which are defined by

- llge = I +1- 0%l (0 €S).

14.B. Verify that the seminorms |||, , with & € Ny and o € Nd generate
the same topology on S as the norms || - ||5,s with k& € No.

14.C. Give an example of function ¢ in C*°(R) for which ¢ is of rapid decay
but its derivative ¢’ is not.

The operations of reflection, translation and derivation are operations S — S. On the
other hand, a Schwartz function multiplied by a smooth function may not be a Schwartz
function; take ¢ € S, ¥ € S given by ¢(z) = e~12* and P(x) = 2ol for z € R?, then
op(z) = ell” which is clearly not of rapid decay and therefore not a Schwartz function.
Multiplication with a Cp° function is an operation & — S, but we may allow for more
smooth functions:
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Definition 14.5. Let  C R? be open. A function f : Q — F is said to be of at most
polynomial growth if either €2 is bounded or there exists a polynomial P such that

i
|x%%a)f“$)

=0,

or equivalently (as in Definition |14.1]), there exists a k € Ny such that

N Co
e (T ol

14.D. Prove the following statement:

Let f:RY = T be continuous. The following statements are equivalent:

(a) f is of at most polynomial growth.
(b) There exists a polynomial p: R — R such that | f(x)| < p(|z|) for all 2 € R?.
(¢) There exist a C >0 and a k € Ny such that

[f@<CA+lz)*  (zeq).

(d) There ezists a k € Ng such that
1L+ D7 fllzee < oo

Definition 14.6. We write C3°(€2) for the set of smooth functions o such that for all
S Ng, the function 0%¢ is of at most polynomial growth.

For C3° = Cgo(Rd) and o € C* we have o € Cp° if and only if for all m € Ny there
exists an k € Ny such that

Gk (0) := max [[(1+ |- |?)7*0% || < 0. (14.4)
aGNg
la|<m

Observe that qy,0(0) = ||o||cm for o € C°(Q).

14.E. Let m, k € Ny. Let CT% (§2) be the space of functions f € C™(2) such
that g, (f) < co. Show that g, is a norm on C7'(§2) under which it is a Banach

space.

Let C55.(€2) be the space of functions f € C°°(€2) such that g, ,(f) < oo for all
m € Ny. Show that C’gfk(ﬂ) equipped with the seminorms (g, k)men is a Fréchet space
and

C25(Q) < €.
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Lemma 14.7. For all o0 € C5° and ¢ € S we have op € §. Moreover, for all m € Ny
there exists a C > 0 such that

lowlims < Camr(@)@llmirs (0 € C% k€ No,p €8), (14.5)

in particular,
loellms < Cliollemllelms (0 € G5 9 €8), (14.6)
[e¥llm.s < Cllelms¥lms (o9 €8). (14.7)

Proof. Let k,m € Ng. By (j5.3]), which relies on Leibniz’ rule, there exists a C' > 0 such
that for all 0 € C7° and p € S

lo@lm.s = max sup (1 + |z[)"™|0%(o@)(z)]

aENo zERI
la|<m
< C( max sup (1+[2]) 00 (2)]) (max sup (1+ [2])™*|0%)(x))).
a€eNE ;cRd BENE zeRrd
|a|<m [BI<m

O

14.F. Let C35 be as in Exercise Show that C3% x 8§ = S, (0,¢) — o

is continuous.

14.8. The reflection operator R (see [2.12)), the translation operator 7,, the derivation
operator 9¢, multiplication with a C7° function and the operation of composing with a
linear bijection form continuous maps & — S.

14.9 (Notation). For A € R\ {0} and a function f :  — F we write [, f for the function
%Q — I given by

Lf(@)=fa)  (ze€39).

The following rather elementary estimates and convergences will be used multiple
times.

Lemma 14.10.

(a) Let K C R? be compact and m € Ny. Then
lellom.x < llellom <llelms — (p€3),
lellms < (14 sup |z])"[gllem (¢ €D).
TESUPP @

(b) Letr>0. Ifp € S and ¢ =0 on B(0,r), then for k € Ny

l19¥]k+1,5

<
[l < TS
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(c) Let x € OX(R%,[0,1]) be equal to 1 on a neighbourhood of 0. Then
(e = pinS  (peS).

(d) Let (xn)nen be a partition of unity with supyey || SN_1 Xnllor < 0o for all k € Ny.
Then

N
Z Xn¥ Ao, pinS (pe8).
n=1

Proof. @ can be easily checked. @ follows by
(1+ [z

|[9]Ir,s = max sup (1+ |2[)*|0%¢(x)| < max sup 0% ()]
a€N? crd a€N? ;cRrd 1+r
lo| <k |z|>7 || <k
< P llkrs
- 1+

follows by [(b)] and Lemma and using that [[lxx — Lllcx < |Ixllcx + 1 for all
A € (0,1). We leave the details and the proof of [(d)| to the reader, see Exercise O

14.G. Prove Lemma and

Theorem 14.11. D is sequentially continuously embedded in S and S is continuously
embedded in C5°, so that

D —geq S — CF° — €£.
Proof. D —seq S — CF° follows by Lemma [14.10 @ Cp® — & is already observed in
Definition O

Theorem 14.12. S is a separable Fréchet space and D is dense in S.

Proof. As S is equipped with a countable number of seminorms, it is metrizable with a
translation invariant metric Theorem If (¢n)nen is a Cauchy sequence in S, then
there exists a ¢ in Cp° such that

len = @llor — 0.

as S is continuously embedded in Cg°. As (¢n)nen is Cauchy, it is bounded; for each
k € Ny there exists an M > 0 such that ||¢y||x.s < M for all n € N, and thus

0%n(2)| < M1+ 27" (z €RY),

so that 0% (z)| < M(1 + |z|)~* for all z € R? as 9%, converges uniformly to 9%p.
Therefore ¢ € S (see also Exercise [14.A)).

That D is dense in S follows from Lemma The separability then follows by
the fact that D is separable, see Theorem [8.15] O
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Let us recall the integrability of the function (1 + | -])*.

Lemma 14.13. Let a € R.
(a) The functions R* — R, z — (1+ |z[)™ and x — (14 |z[?)"% are integrable if and
only if a > d.

(b) The functions Z* — R, k — (1+|k|)~ and k — (14 |k[>)"2 are summable if and
only if a > d.

Proof. [(a)| It sufficient to show that z — (1 + |z|)~® is integrable if and only if a > d
(see (14.3))). Integrating this function on B(0,1) gives a finite integral for each o € R. It
will be clear that « > 0 is required. By changing to spherical coordinates and observing
that (2r) ™ < (14+7r)"* <r *for « > 0 and r > 1, we see that (1 + |z|)~ is integrable
if and only if [ r4=1=2 dr is finite. The latter is of course the case if and only if o > d.

@ It sufficient to show that & — (1 + |k[?)~% is summable if and only if o > d (see
(T4.3)). We write [z] = (|21], ..., [zq]) for z € R? where [x1] is the largest integer that
is smaller than or equal to z1. Then Y pcza(1+ [k*)™2 = fa(1 + |[z][>)”% dz. Note
that |z — |z|| < v/d. Therefore, if || > 2v/d we have

slal < Je| = Vd < |[z]] < |z| + Vd < §a].
Hence, $(1+ |z|?) < (1 + [[z]*) < 2(1 + |z|?) for those  and so the statement follows

by@ O

By Lemma[14.13|it follows that all measurable functions of rapid decay are integrable,
and in LP for any p € [1, 00].

Lemma 14.14. Let p € [1,00). For all m € N such that pm > d there exists a C > 0
such that

I llze < Cll-lim.s-

As ||+ ||zee = || - llo,s, we therefore have for all p € [1,00] that S is continuously embedded
in LP,

S IP  (pe[l,od).

Moreover, S is dense in LP.

Proof. Let m € N be such that pm > d. By Lemma [14.13{C := ||(1+|-|)~™| L is finite.
Let f € S. By definition of || - ||, s we have

1f@)] < I fllms+[z)™™  (z €RY),

and thus || f|lre < Cfllm,s-

The fact S is dense in LP follows from the fact that D is dense in LP, see Theorem 8.1
O
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By the continuity of the partial derivation one then derives that the Schwartz space
is continuously embedded in the Sobolev spaces. The Schwartz space is also dense in the
Sobolev space W¥*P when p is not infinite. This statement and its proof are postponed
to Theorem [23.8]

Lemma 14.15. Let k € Ny and p € [1,00]. Then

S — Whe.

14.H. Prove Lemma

15 Tempered distributions

In this section we consider tempered distributions, which form a subspace of the space of
distributions. Even though not every locally integrable function is a tempered distribu-
tion, the space of tempered distributions has the benefit that we can define the Fourier
transform on it, which we heavily use in the sequel.

Definition 15.1. A linear continuous map & — F is called a tempered distribution. We
write S’ (or S'(R%)) for the space of tempered distributions. In other words, u € S’ if
and only if u is linear and there exist a k € Ny and a C' > 0 such that

[u(@)l < Cllelks (g €).

If w is a tempered distribution, then u|p is a distribution by Lemma [14.10 @ Therefore
each tempered distribution corresponds to a u € D'(R?) that continuously extends to a
function S(R?) — F.

S’ is equipped with the o(S’,S) topology, where (-,) : &’ x § — F is given by
(u, ) = u(p) for u € 8’ € S (we expect that no confusion will arise with (-,-) as
defined in Definition .

By Lemma (14.10 @ it follows that u|s is a tempered distribution for all u € &£’.

Theorem 15.2. S’ — D', u — u|p is a sequentially continuous embedding and &' — §’,
u— uls s a continuous embedding,

g S 7.

Proof. Both maps are injective as D is dense in S, and, D and thus § are dense in £
(Theorem [5.10). The sequential continuity of the embeddings S’ — D’ and &' — S’ is
straightforward. O

Asin we show in[15.11]that the embeddings in Theorem and Theorem [15.2

are not homeomorphisms onto their image.
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We define the support and the operations we defined for distributions in a similar way.
For the multiplication with a smooth function we restrict to those of at most polynomial
growth. If ¢ € C5° and u € &', then ¢ — u(¢)y) is again in &’ due to Lemma m

Definition 15.3. For u € &’ we define the support of u, supp u, to be the support of the
corresponding distribution,

Supp u = supp u|p.

Let y € RY, o € N¢ and [ : R? — R? linear and bijective. For a u € S’ we define
i, Tyu,0%u and u ol by the formulas as in Definition [2.14] but replacing “D” everywhere
by “877.

Let o € C3°. By Lemma we have op € S for all ¢ € S and the function S — S,
¢ +— oy is continuous. Thus for each u € S’ the function ¢ — u(op) is a tempered
distribution.

For 0 € C3° and u € S’ we define ou € S’ by
ou(p) =ulop)  (p€S).

Again, it is straightforward to check that ,Tyu,0% and w ol are all in &’ and
moreover that with ¢ : 8’ — D’ being the embedding function of 8’ into D/,

15.4. Let y c R4, o € N¢, 0 € Cpo and [ : R? — R< be a linear bijection. Observe that
as in @ the operations ~ , 7,, 0%, multiplication by ¢ and composition with [, i.e.,

S-S, 0 P, S =&, =

S-S, o = Ty, S =&, u = Tyu,
S— S, p = 0%, S =&, u — 0%u,
S-S, Y= o, S =&, U — ou,
S-S, Y pol, S =&, u+— uol,

are continuous. We leave it to the reader to check this (as S is metrizable, it is sufficient
to show sequential continuity for the operations S — §).

15.5 (Convention). Following we will identify elements of &’ with their correspond-
ing distributions and elements of £ with their corresponding tempered distribution, e.g.,
for u € &’ we will also write “u” for “u|p”, and, for a v € &' we will also write “v” instead
of “U‘ 57’.
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Let us consider more examples of tempered distributions, than only the compactly
supported distributions. Each locally integrable function defines a distribution, but it
might not be tempered. Consider for example the function g given by g(z) = ell” for

z € R% In Theorem we see that certain “tempered” functions define tempered
distributions.

15.A. Verify that = — e/*” is not in &

Theorem 15.6. (a) Let p € [1,00]. LP is continuously embedded in S’,

? — S

(b) Let h: R? — F be Borel measurable. If there exist k € Ng and p € [1,00] such that
(1+]-)"*h e L, then h € S'.

Proof. [(a)| Let g € LP. Let q € [1,00] and m € N be such that
1 1
Sl |
P q

By Hoélder’s inequality and Lemma there exists a C' > 0 such that

, qm > d.

I@WHS/MWSHNMW%ﬂSCMMNMM§ (b €5).

The injectivity follows from the injectivity of LP — D’ and as D is dense in S.

(b)| follows by as (14 -k e Cp° and multiplication with such a function is an
operation &’ — &'. O

Corollary 15.7. Let k € Ny and p € [1,00]. Then

Whr < S
Proof. This follows by Theorem because WkP < LP. O

Observe that Theorem implies that every Borel measurable h : R — T of at
most polynomial growth defines a tempered distribution.

15.B. Let f: R — F be given by

_ Jloglz| = #0,
J(@) = {O xz=0.

Show that f and u defined by
= lim — dz v € S(R)),
u(p) Elw \[ed] ( (R))

define tempered distributions. (Hint: Exercise )
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15.C. Show that if f € LP for some p € [1, 00|, then there exists an m € Ny
such that (1+|-|)™™f € L.

Conclude the following. If h : R — F is Borel measurable and there there exist
k € Ny and p € [1,00] such that (1 + |-|)"Fh € LP, then there exists an m € Ny such
that (1+1-|)"™h e L.

15.D. Let CITk be the Banach space equipped with the norm ¢, as in
Exercise [14.E] Prove that for all k& € Ny and all m € Ny U {oo}

m !
p7k<—>S.

15.E. Let p € [1,00] and k € Np. Define L? ; to be the space of (equivalence

classes of) Borel measurable functions g : RY — F such that n, x(g) == ||(1+]-]) *g|/1» <
oo. Show that n, . is a norm such that Lg ;. equipped with this norm is a Banach space
and

/
L, =S
Conclude by Exercise [I5.C| that there exists an m € Ny such that
1
LY = Ly
For Radon measures there exist analogous statements to Theorem [15.6
Theorem 15.8. (a) M is continuously embedded in S’,

M= S
(b) g : Borel(R%) — [0, 00] is a measure and there exists a k € Ny such that

Jasr ™" dp< s,
then u defines a tempered distribution.

Proof. See Exercise [15. O

15.F. Prove Theorem

15.G. (a) Prove that for any u € §’(R), the following are equivalent

(1) Ou=0,
(2) there exists a ¢ € F such that v = cI.

(Hint: Let ¢» € S with [¢ = 1. Prove that for all p € S, ¢ — ([ ©)1 has a primitive
inS.)

(b) ¢ Prove that for all u € §'(R) there exists a v € §'(R) such that u = dv.
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15.H. Show that 35, nd, € .

Example 15.9. There exist Borel measurable functions g : R? — F which define
tempered distributions but are not as in Theorem @, that is, for which for all
k € Ny and p € [1, o],

I+ 1D *hllze = co.

Consider for example d = 1 and h = ¢’ where g defined by
2

g(z) = sin(e”).

Then g € L* and thus g and its derivative h are in &', but h(z) = 2ze™ cos(e?”) for all
z € R so that & is not of the form as in Theorem [15.6|[(b)]

Theorem 15.10. (a) LetU C S’ and assume

sup [u(p)| <oo  (p €S).
ueU

Then, there exist C > 0 and m € Ny such that

lu(@)] < Cllellms (v €8, uecld).

(b) The space 8’ is weak* sequentially complete.
(¢) The pairing map S’ x S = F, (u, ) — u(p) = (u, ) is sequentially continuous.

Consequently (by Lemma , the product map 8" x § — &', (u,p) — u is
sequentially continuous.

Proof. Both statements @ and @ follow by the arguments as in the proofs of The-
orem and Theorem with “D(Q)” and “Dg(2)” both replaced by “S”. [(c)]
follows from [(a)] similarly as the proof of Proposition O

15.11. We show that @ the relative topology of D as a subspace of S is different from
the topology on D; @ the relative topology of S as a subspace of £ is different from
the topology on &; the relative topology of &’ as a subset of D’ is not equal to the
topology of S’ and [(d)] the relative topology of £ as a subset of &’ is not equal to the
topology of £’.

We consider d = 1 for convenience.

(a) Let f, be the Gaussian function given by f,(x) = e~n(1+2%) for 2 € R? and n € N.
By limy, 00 || fullk,s = O for all & € Ny. Let ¢ € D be nonzero and define
Yn = fuTn¢. Observe that ¢, € D. By Lemma [14.7) [[¢n ks < |6l fullks — 0
as n — oo for all £ € Nyg. Hence ¢, — 0 in S. However, by Theorem (V¥n)neN
does not converge in D as there is no compact set which contains the support of
iy, for all n € N.
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(b) Let ¢, = 27,6 for n € N, where ¢ € C2°(R%,[0,1]) and ¢(0) = 1. Then ¢, — 0 in
E, but (én)nen does not converge in S as

sup (1 + |z|)|¢n(z)] > 1 (n € Np).
z€ER

(c) €6, — 0 in D’ but not in & (and not in &), indeed, for ¢ € S the Gaussian
function p(z) = e~*" for € R, we have €6, (¢) = 1 for all n € N.

(d) 6, — 0in &’ but not in &’

15.12. Observe that by Lemma the following holds. If o, € C3° for all n € N and

n—oo

o € C5° and for all m € N there exists a k € N such that gy, (0n — 0) —— 0, then

onp 222 o in S (peS8),

ontt =25 gu in S (ued’).

16 The Fourier transformation

In this section we consider R? to be the space on which our functions and distributions
are defined, we therefore leave out the notation “(R%)” in the considered function spaces
or spaces of distributions.

Definition 16.1 (Fourier transform of a function). Let f : R? — F be an integrable
function. The Fourier transform of f, f : R4 — C is given by

o= [ e @) da, (16.1

where (z,£) is the inner product on R? (the notation (-,-) is of course also used as the
pairing between distributions, but we trust that there will be no confusing arising).

In case g is another integrable function that equals f almost everywhere, then f =
g. This enables us to define the Fourier transform of an element of L' as the Fourier
transform of one of its representatives and we will use the formula (16.1)) also for f € L*.

Example 16.2. Let a,b € R,a < b. The Fourier transform of the indicator function
Ljqyp) 1s given by

:ﬂ-/-\ B 6727ria§7:12727rib§ é_ c R \ {O}’
[a,b] (6) - b—a f —0.

—

Observe that 1, is continuous.
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Example 16.3. The Fourier transform of the function f: R — R,
f(z) = max(1—|¢,0) (v €R),

is given by

R (1—0025227r§) 0,
fo-{, = {7

1 £€=0.
16.A. (a) Verify that Il/[m\b} and fare given by the formulas in Examplem
and Example [I6.3]
(b) Check that they are both continuous (at 0).

(¢) The function sinc (also found under the name “cardinal sinus”) is defined by

| e,
sinc(x) =4 7
1 z =0.
Prove that
@] (&) = sinc7é, f(f) = sinc? €.

The Fourier transform of an integrable function is an element of Co(R%, F) (Defini-
tion [2.29)), see Theorem In order to prove that statement, we first introduce some

auxiliary lemmas.

Lemma 16.4. Let f € L'. Then for all a € R?
lim |17af — Tof 1 = 0.
Proof. For ¢ € C. it holds that lim,_, | T — Tz@||zee = 0 by uniform continuity, and

therefore limy s, | Ta¢ — To@llz2 = 0. As C. is dense in L', by a 3¢ argument one can
finish the proof. O

Lemma 16.5 (Lemma of Riemann-Lebesgue). Let g € LY(R). Then
. 1
9@ <35lg=Trgllr  (a€R,a#0).

Proof. Let a € R, a # 0. As €™ = —1 we have

/ g(l,)emeal“ dr = / g(x _ 7)67271%1(1*%) dr = — Tig(x)ef%rlax da.
R R 2a R 2a
Therefore
. 1 ‘
/ g(x)€—2ﬂ'1(1$ dr = 5 / [g(x) _ Tig(l.)]e—Qma:c da:,
R R 2a
so that the desired inequality follows. 0
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Theorem 16.6. If f € L', then fe Co(R4,C) and
[fl[zee < [If[l e

Proof. The norm estimate is straightforward. The continuity follows by Lebesgue’s dom-
inated convergence theorem, so that f € C,(R?,C) for all f € L'. That lim¢| 00 f(€) =0
follows as by Lemma [16.5

FOI<HN =Tl (e{l,....d}EERY,

and Hf_T%eifHLl converges to zero as |§;| — oo, for each i € {1,...,d}, by Lemma|16.4

Definition 16.7 (Fourier transformation). We write F for the linear function L' —
Co(R%,C), f ~ f and call this map the Fourier transformation.

The Fourier transformation turns out very useful as it turns certain operations into
other operations, see for example Theorem and Theorem

16.8 (Notation). The symbol % is used to denote the identity map R? — R?.

By substitution rules for integration we obtain the following.
Theorem 16.9. Let f € L'.
(a) Forye R?
F(Tyf) = e M) f, Ty f = F(e2™x9) ). (16.2)
(b) Letl:R% — R be linear and bijective. Then
F(fol) = —— Fol.,
| det (|
where l, is the transpose of 171, which means that (I"'y, &) = (y,1.(&)) for all

r, & € RY
In particular, for X € R\ {0} (for the notation see

F(af) = F(FOx) = N 11 T

16.B. Verify the statements of Theorem

Theorem 16.10. Let f,g € L'. Then fg, fg € L' and

/f§= /fg- (16.3)
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Proof. The integrability follows by Theorem [16.6] The identity follows by Fubini’s the-
orem (Exercise [16.C)). O

16.C. Check that (T6.3) holds.

Definition 16.11. For f € L] _(R) we say that a function g : R — R is an indefinite
integral of f if

g(b)—g(a):/bf (a,b e R,a <D).
a
Observe that any continuously differentiable function g is the indefinite integral of its
derivative ¢'.
Theorem 16.12. Let g € L'(R).
(a) If xg € L*(R), then § is continuously differentiable and
g = F(-2mixg). (16.4)

(b) If g is an indefinite integral of a function h € L*(R), then h = 2mixg.
In particular, if g is continuously differentiable and g’ € L*(R), then F(g') = 2mixg.

Proof. @ Let a,b € R, a < b. Then, by Theorem [16.10] (see also Example [16.2))

b
/ F(—2rmixg) Z/f(—Qﬂif{g)l[a’b]
a R

:/—27{'i$g($)f(]]-[a,b])(x) dz
R

—27ibxr __ e—27riaa:

= / —27rixg(x)e dz
R

—2rix

= [ gla)(e 2t — o) do = g6) - gla).

As the Fourier transform of an integrable function is continuous, we conclude that g is
continuously differentiable with derivative given by ([16.4]).

@ For £ € R we have (integration by parts)

o~

h(§) — 2mi€g(§) = lim /_]]\; h(z)e 2™ 4 g(z)(—2mif)e” 2™ dx

N—oo

= lim (g(N)e™*™ — g(—N)e*me),
— 00
Therefore it suffices to show that lim, | g() = 0. As g is the indefinite integral

of h, which means for example that g(y) = ¢(0) + [J h(z) dz, both lim,_, g(y) and
lim, o g(y) exist. By the integrability of g, these limits need to be equal to zero. [
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We can so to say ‘apply’ Theorem [16.12]to any of the directions in R%, to obtain the
following.

Theorem 16.13. Let k € Ny and f € L.
(a) If x°f € L* for all B € N& with |8| < k, then f € C* and

°f = F((—2rix)’f)  (BeNG,|8 <k).

(b) If f € C* and 8°f € L* for all B € N2 with || < k, then x°f € Cy and
F@°f) = (2nix)’f (8 € N[5 < k).
Proof. By an induction argument it suffices to consider k = 1 and 3 € N¢ with |g| = 1.

Let j € {1,...,d} be such that 5; =1, i.e., f =¢;. For j € {1,...,d} let F; denote the
one-dimensional Fourier transformation acting on the j-th coordinate. That is

f]f(x) = /R€72Trixjyjf($1, ce 7yj7 e ,xd) dyj.
Then it follows for 7 # j that F; commutes with 0; and with multiplication by x;, where
X = <x7 ej>;
OFi(f) = Fi(0if), xFi(f) =Fi(xif) (7 ef{l,....d}i# ). (16.5)
@ then follows as by Theorem [16.13 @ the function & — F;f(x1,...,§,...,2q) is
continuously differentiable and
4
dg;

[(b)] follows also by the above commutation rules (16.5]) and as by Theorem [16.13

~

E(ajf) = 27Ti%jf.

Fif(x1,.. &, .. xq) = fj((—27rix)5f).

O

As functions of rapid decay are integrable (see for example Lemma [14.13)), we obtain
the following corollary of Theorem [16.13

Corollary 16.14. Let f : R* — F be measurable.

(a) If f is of rapid decay, then f is smooth.
(b) If f is smooth and 0° f € L' for all B € N¢, then f is of rapid decay.

(¢) If f is a Schwartz function, then f is a Schwartz function.
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The Fourier transformation actually forms a bijection S(R?, C) — S(R?, C), see The-
orem [16.16] In the proof of that theorem we use that the Fourier transform of a Gaussian
function is another Gaussian function:

Theorem 16.15. Let a > 0, y € R? and f : R? — R be the Gaussian function f(x) =
e_a‘x_yP, then f € L' and

f(&) = <W> P ) (16.6)

a

Proof. We consider the specific case with d = 1, a = 1 and y = 0 and leave it to the
reader to prove the general case (Exercise [16.D]).

Let g : R — R be the Gaussian function given by g(x) = e~ for z € R By
Theorem [16.12]

(fgﬁ(f) = F(=2mixe™™)(§) = miF (0e7%") (¢) = —277¢g(¢) (£ € RY).

By [11.16/ we have §(0) = [pe " dz = /7. Therefore
=R _r2e2
§(&) = V™S ((ERY,

as h = g is the unique solution to the ordinary differential equation

{h’(&) = —21%¢h(€),
h(0) = /7.

O
16.D. Prove Theorem |16.15
Theorem 16.16. The Fourier transformation F forms a linear homeomorphism
S(RY,C) — S(R?, C) with
@)= F(N=2) = [ J©em=ag (zeR?). (16.7)

Proof. We already know that F maps S(RY, C) into S(R?, C), see Corollary Let
us write “S” for “S(R%,C)” here (or differently said, assume F = C for this proof). Let
us first prove that F forms a bijection S — S by proving . Let f € S and z € RY.
Let g =T 5f. Then g = fe%i@’x) by Theorem Therefore, it is sufficient to show
for x = 0, which means it is sufficient to show

10 = [ fe) de.
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Let h; be as in Example [11.15] i.e.,
he(z) = (dmt)~2e~ 2l (2 € RY).
Let g; = hy. By Theorem [16.15| we have (take a = tm2t)

gt(l') _ e—47r2t|;t\2 (1‘ e Rd),

and g = hy so that i;t = hy and ((16.7) holds with f = h; for any ¢ > 0. By Theorem [16.10

[ f@hi@) do= [ f©ae) de.
R4 R4

As f is continuous and bounded, the left-hand side converges to f(0) as t | 0 by (11.8).
As f is an element of S it is integrable, therefore by Lebesgue’s dominated convergence

~

theorem we have that the right-hand side converges to [pa f(£) d€ as ¢t | 0, because
gi(€) T 1 as t ] 0 for all ¢ € R This proves (16.7).

Now let us prove that F defines a homeomorphism F' : § — S. As the inverse is given
by the composition of F' with the reflection operator R defined in ie., F7' =RF,
it is sufficient to show continuity of F. Let k € Ny and o € N&. Tt is sufficient (see for
example to show that there exists an n € Ny and a C > 0 such that

I+ 0 fllee < Clflns — (fE€S). (16.8)

Let us first observe the following. As L' is continuously embedded in S (Theorem @,
there exists an m € Ny and a € > 0 such that

Il < flr < €llflms  (FES). (16.9)

By Theorem [16.13]

1+ P f© = 7((1- ) (erixes) )@ €er).

Therefore by (16.9))

11 +] - |2)k]8af\|Loo <¢ H(l _ 4i2)k((27713€)af)H

m,S

k
As multiplication with (27ix)* and the operation (1 - ﬁ) are continuous as functions

S — S, see there exists a C' > 0 and n € Ny such that (16.8]). O

Actually, the previous theorem extends in the following way, in the sense that the
Fourier transformation is a bijection on a larger space.
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Theorem 16.17. Suppose that f € L*(R?, C) is such that also f € L'(R%,C). Then
flz) = F(f)(—=z) = /d F(O)eF @8 q¢ for almost all z € RY, (16.10)
R

Consequently, F also forms a bijection

{f e LYR%,C): fe L"RY,C)Y = {f € LYRL,C) : f € L'(R%,C)}.

Proof. For all ¢ € S we have by Theorem and Theorem

/IRd.F(J?)W:/RdJ?SBZ/Rdff(@):/Rdfgé:/Rdf@_

Therefore, by Lemma we have F (]?) = f almost everywhere. O

16.18. Observe that by Theorem Mthe set {f € L' : f € L'} is included in C}, (where
(Y, is viewed as subset of L>).

Example 16.19. Let f be as in Example m Then |f(z)| < €72, so that f € L'(R).
By Theorem [16.17| f(a) = f(—a) for a € R. By taking a = 0 we obtain

(1 —cos2mf) ..
| e =1,

and thus

/ (1-— c2osx) dr = 7.
R x

We mentioned fin Example|16.19| but not Il[/_l\l} as it is not in L'. In Example|16.28
we come back to this.

16.E. Prove

cos(zs) s
= R).
/R 1T a2 dz = 7e (s e R)

16.F. Calculate the Fourier transform of the function f : R — R given by
f(z) = el for z € R.

16.20. For f € L'(R?,C) and ¢ € S(R?, C) we have by Theorem [16.10

[Fo=[ 12
So that with the notation of we have

uplp) = ur(@)-
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As the Fourier transformation is a continuous function S(R¢, C) — S(R?, C) it is natural
to define the Fourier transform of u to be the tempered distribution ¢ — u(p). We give
the definition in Definition [16.22] but first discuss the situation for F = R. As in that
case, if we have a u € S'(R% R), that is a continuous linear u : S(R?,R) — R, then we
a priori are not able to pair u with @ for a ¢ € S(R%,R) as the Fourier transform of ¢
might attain non-real values (take for example a Gaussian function as in Theorem
with y # 0).

Let us show how we overcome this situation. First of all, let us assume that u is
represented by a locally integrable function f : R¢ — R. Observe that for any Schwartz
function ¢ € S(R?,C) the functions Ry, J¢ are Schwartz functions, where

(Ro)(2) = R(p(2)), (Q¥)(2) =3(p(z)) (xR,

and Ra and Sa are the real and imaginary part of a, for a € C. Let us for the moment be
extra careful and write g for the locally integrable function R? — C given by g(z) = f(z)
for R?. We can pair g with Schwartz functions, and have

g0 = [go= [ 1Re+i [ 10 = (1R +1(1,%0) (0 SRLT)).

By this identity it is clear that g and therefore f corresponds to a tempered distribution
in S’(R? C). We can use the above identity to generalise this to general tempered
distributions:

Definition 16.21. For any u € S’(R%,R) we define its complex extension uc € S'(R?, C)
by

uc(p) = u(Rp) +iu(Sp) (€ S(RY,C)).
As it is common to identify the function f : R — R with the function ¢ : R* — C

with g(z) = f(z) for all z € R?, we identify a u € S'(R% R) with uc in the sense if
“u(p)” is written for some ¢ € S(R?, C), then it is interpreted as “uc(p)”.

Definition 16.22. Let u € §’. We define the Fourier transform of u, U by

ulp) =u(@)  (p€S).
(As mentioned in Definition [16.21] for F = R we interpret “u(@)” to be “uc(p)”.)
From here on we write F for the map &’ — &', u +— 4.

Example 16.23. The function 1 represents a tempered distribution, and so does dg. We
calculate their Fourier transforms. For ¢ € S we have

Bor o) = 50(9) = 20) = [ ¢ = (L),

Ap) = [ 6= 00 = G0
where we used the inversion formula in the second line. Hence

=1, 1=26.
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16.G. Let € M(R?, C). It is customary to define the Fourier transform of
i to be the function @ given by

Q) = [ e dula) (€Y.

Show that this definition is consistent with the definition of the Fourier transform of u,,
that is, of u as a tempered distribution. Moreover, prove that % is bounded and uniformly
continuous.

The following theorem is a consequence of Theorem Theorem [16.13| and The-
orem

Theorem 16.24. The Fourier transformation F : S'(R4,C) — S'(R% C),u + @ is a
linear homeomorphism. Moreover, with R the reflection operator defined as in

F1=FR=RF,

and forue S, B e N¢, y e R%, [ : R - R? a linear bijection and \ € R,

F(9Pu) = (2mix) 1, 91 = F((—2mix)’u), (16.11)
F(Tyu) = 6_2”i<3€’y>17, Tyu = f(62”i<3€’y>u), (16.12)
1 1
_ dol,, -~ L, 16.1
F(uol) \detl|UOl F(lyu) |)\|dliu (16.13)

where L, is the transpose of ™! as in Theorem and as in “Ixu” is written for

“woly”

16.H. Prove the following.

(a) If v € S'(R) and xv = 0, then there exists a ¢ € F such that v = ¢dy. (Hint:
Ezercise[15.Gl)

(b) If v e S'(R) and xv = 1, then there exists a ¢ € F such that v = ¢dp + u, where u
is as in Fxercise|15.B, i.e.,

. p(@)
=1 d € S(R)).
u(ep) = lim e @ 07 (v € S(R))

16.1. Determine the Fourier transform in S'(R, C) of the following distribu-

tions:
(a) x2.
(b) 1jo,c)- (Hint: Exercise and Exercise and 1(_o 0] = Rljp,c)-)
(¢) 1(—o0,q); for a € R.
16.J. (a) Give an example of a u € S(R?, C) such that u # 0 and u = .
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(b) Give an example of a u € S'(R%,C) \ S(R?,C) such that u # 0 and u = 4. (Hint:
Example [16.23] )

(¢) Suppose u € &' and @ = cu for some ¢ € C, what can be said about ¢?

16.K. Prove that in &'(R%,C)
(1—A)e * = 24,.
Observe that this proves that %e"x‘ is a fundamental solution to (1 — A).

Definition 16.25. The inverse of the Fourier transformation on S’(R%,C), F~1, is called
the inverse Fourier transformation. For an u € S'(R? C) we call F~!(u) the Fourier
inverse of u.

16.26. Let us write f for the complex conjugate of a function f : R? — C, i.e., f(z) =
R(f(x)) —iS(f(x)) for z € RL. Then

~
=

=7 JF=F (feL'®Y)

~

Therefore, as a consequence of Theorem [16.10] we have
(@ = [ 1= [fo= [Fo=Fon:  (ellpes. @61y

By the above observation and the Fourier inversion formula, we obtain the following
identity, which is due to Parseval and Plancherel.

Theorem 16.27 (Parseval, Plancherel). F forms an isometric isomorphism
L*(R%,C) — L*(R%,C),
so that in particular
Ifle = lIfle (f € LARY,C)), (16.15)

and that the Fourier inversion formula (16.10) holds for any f € L?(R,C).

Proof. We refrain from writing “ (]Rd, C)” in this proof. As S is dense in L?, see Lemmal|14.14
it turns out, as we argue later, that it is sufficient to show

1@l = llellrz (g €S). (16.16)
Let ¢ € S. By applying (16.14)) with f = ¢ and using that F@ = ¢,

18172 = (8, @) 12 = (F(2), @12 = {0, 012 = |22
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As the Fourier transform is bijective on &', it is sufficient to show that the Fourier
transform of any L? function is given by an L? function. Now take any f € L? and let
(¢¥n)nen be a sequence in S that converges to f in L?:

len = fllz2 = 0.

By (16.16] m it follows that (@, )nen is a Cauchy sequence in L? and thus converges in L?
to some g. As L? is continuously embedded in &’ (Theorem _@D it follows that
g= f in L2 O

Example 16.28. As ]1[ 1= sinc7x is in L?, see Example [16.2] and Exercise [16.A| by
Theorem [16.27] we have

F(sinc) = 7r11[ 11 (7T3€)

17 Convolution of tempered distributions

We have already seen that the Fourier transform turns certain operations into other
operations, like differentiation become multiplication with polynomials. In this section
the Fourier transform is used to consider convolutions, namely it turns the operation of
convolution into the operation of multiplication.

Theorem 17.1. Let f,g € L'. Then fxg € L' and
F(fx9)=13.

Proof. By Young’s inequality, Theorem we have f x g € L'. Therefore, by Fubini’s
theorem, we have for & € R?,

F(reo)€) = [ 1= glaye 09 do
= F()g(x —y) dye @9 da

—27r1( ,6) dx dy

Rd JR4
/ / —27r1 (z4y,8) dx dy

—27r1(y &) dy = f(§)§(§),

where we used Theorem @ O

Exercise |17.A. Show that ]l[_; ;]*]l[_; 1= f, where f is as in Example|16.3, Observe
272 272
that indeed f = (]1[_; ;])2, see also Exercise [16.Al
272
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As a direct consequence, by Theorem [16.16 and as multiplication is a continuous
operation § X § — S (see Lemma [14.7)):

Theorem 17.2. Let p,9p € S. Then
Floxd)=@v,  Flpp) =@ 1. (17.1)

Consequently, ¢ 1 € S and the function S x § — S, (f,g) — f * g is continuous.

Analogously to Definition we define the convolution between elements of S’ and
S as follows.

Definition 17.3. Let u € &’ and ¢ € S. We define the convolution of u with ¢ to be
the function R? — F defined by

uxp(z) =u(Top)  (zeRY).

The following is the analogues statement of Lemma [8:2]

Lemma 17.4. Let (u,¢) be in S'(R?) x S(R?). Then

o * ¢ = o,
Syxo=Tye  (yeR?,
R(ux*p) =Rux* Ry,
Ty(u* o) = (Tyu) * o = ux (Typ),
u(p) = ux@(0).

Proof. The proof is left to the reader. O

Similarly to Theorem we have that the convolution between a Schwartz function
and a tempered distribution is smooth, as we will see in Theorem [I7.6] However, it need
not be a Schwartz function as will be clear from the following exercise.

17.B. Compute the convolution of the tempered distribution 1 with the

Schwartz function e~ ¥

Let us consider the convergence of difference quotients as we did in Lemma 8.3

Lemma 17.5. Let ¢ € S(RY) and j € {1,...,d}. Then

T - T@-
( 0 - h J) 0 2% 0.0 in S(RY). (17.2)
Consequently, for u € S'(R?),
(76 _hﬁlej> u 220 dju in S'(Rd).
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Proof. Let us write X; = (x,¢;) for j € {1,...,d}. Observe that for p € S, j € {1,...,d}
and h € R\ {0}

The. —To 627T1<h6j,x> —1_ R
_7:( ( 7Jh ) 90) i — F(0j) = 27ix;p.

Therefore (17.2)) holds if and only if the following convergence holds in S, where

27rihx]‘ _
<6h - 271'11{]-) 7 2% o. (17.3)
By Lemma [14.7] (see (14.5)), the latter is the case if there exists a k € Ny such that
2mihx; _ 1
Im.k <€h - 27Tifj> ii()_) 0 (m S No) (174)

Let us consider the function R — C given by

iht 1
an(t) = & — -t (teR),
s0 that g,(2m¢;) = ©t=1 _ ori¢; for all £ € RY. Now (T74) follows for k = 2, by the
following —which we will show—
" hl[t]> n =0,
G| <l m=1,  (heR\{heeR),
|p|"t n>2

For n > 2 the above inequality follows as

d” .
ﬁgh(t) e ~nhn—lelht (n Z 2)
By rewriting g5 (t) as
iht_l hirt—l horriut
gh(t): ¢ h —it:itfoehdr:(it)Qfo fo eh du d?“’

we see that the above inequality for n = 0 holds and also that

) h
gn(t) = ’(elht —-1)= it/ et dr,
0

from which the inequality for n = 1 follows. O

Theorem 17.6. Let u € S’ and ¢ € S. Then u * p is smooth and of at most polynomial
growth, that is u ¢ € Cp°. Strictly speaking, u x ¢ is represented by a function in Cp°.
For all o € N¢

O%(u* ) =ux*(0%) = (0%) * p. (17.5)

110



Moreover, if C >0, k € Ng and u € S8’ are such that

[u@) < Clldlles (W ES), (17.6)
then (with g,y as in ([14.4))
Amk(u* @) < Cllelmirs (0 €S). (17.7)

Proof. That u * ¢ is smooth and that ((17.5]) holds follow by Lemma as in the proof
of Theorem As (see Exercise [17.C))

1 Te@llms < (L +[2)™@llms (¢ € RYm € No), (17.8)
we have for u € 8’ such that ,
ux p(2)] = [u(T@)| < CL+[z)*llelles  (z €RY).
By we obtain . O
17.C. Prove .

Theorem 17.7. Let u € 8" and ¢ € S. Then in S’
Fuxp) = ou, Flpu) =u* .

Strictly speaking, F(ou) is the tempered distribution represented by the function u * @.

Proof. As ¢ is a Schwartz function, @pu is a tempered distribution. Recall that in [8.10
we have observed that

(usn, ) = (u,n*x¢)  (n,9 €D).

o~
~

Therefore, if ¢ € D and 1 € S is such that @Z €D, then as o =

(Flux @), ) = (uxp,8) = (u, g+ §) = (u, @ x )
= (u, F(@Y)) = (U, p¥) = (§U, V).

As D is dense in S, the Fourier transformation is a homeomorphism, also {¢) € S : @Z € D}
is dense in S. Therefore, using that ¢ — u * ¢ is continuous as a function S — &', we
obtain (F(u* @), ) = (pu, ) for all ¢, € S. The identity F(pu) = u * @ then follows

by the first (Exercise [17.D)). O

17.D. Prove that the identity F(¢ou) = @ * @ holds for all u € 8’ and p € S
by using that F(u * @) = @u holds for all u € S’ and ¢ € S.

As we mentioned in we identify elements of v € £ with their corresponding

tempered distribution with compact support, v|s. For the Fourier transform of v|s we
therefore also write ©.
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Lemma 17.8. Ifv € &', then v € C3°. Consequently, if u € S’ and suppu is compact,
then u € CF° (in the sense that u is represented by a function in C’go).

Moreover, ifve & and p € S, thenv*p € S.

Proof. Let x € D be such that v = yv (see . Then
v =F(xv) =X *.

As x is a Schwartz function, so is X. Therefore ¥ € C5° by Theorem m

For the “Moreover” part: for v € £ and ¢ € S, then ¥ € C5° and therefore 9% and
v*p=F LY0p) are in S. O

17.9. Let k € Ny and K C R? be compact. Let

¢ = sup(1 + |z
TeEK

Then
[P]lem k < Cqmi(v) (Y € E,m € Np). (17.9)

Therefore, we can already conclude by Theorem that for v € &', the function
S — &, p — uxp is continuous. Moreover, see for example Exercise [I5.D]also the function
S — 8,0 — ux is continuous. In Theorem we prove that the convolution is
continuous as a function of both the tempered distribution and the Schwartz function:

Theorem 17.10. (a) Let u € §', ¢ € S, (un)nen be a sequence in S', (¢n)nen be a
sequence in S and suppose

(tn, on) = (u, ) in &’ x 8.

Then there exists a k € Ny such that

G (Un * o0 —ux ) 2% 0 (m € Np). (17.10)
(b) The functions
S'x8 -9, (u, @) — u* @, (17.11)
S§'x8—E€, (u, ) = u* p, (17.12)
E'x8—S, (v,0) = v *p, (17.13)

are sequentially continuous.

(¢) If (vn)nen and v are in E' and v, — v in £, then there exists a k € Ny such that

qmjk(’IA}n — 5) TH—OO> 0 (m S No).
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Proof. @ Write too = u. As u, — u in &', by Theorem [15.10 @ there exist C' > 0 and
k € Ny such that

lun(¥)| < CllYllrs (¥ €S,neNU{oo}). (17.14)

We show ([17.10) by showing by showing
U o (tn * (0n — @) = 0, (17.15)
Gk (U — w) * ) = 0. (17.16)

(17.15)) follows by ([17.14)) and Theorem To prove (|17.16]) we use Lemma

Without loss of generality we may assume K to be convex (as we can always choose
a larger compact convex set). First observe, that as u, — u in &', we have 9“(u,, — u) *
¢(r) = 0 for all z € K and o € N&, |a| < m. Therefore, by Lemma follows
when ((1+ |- [?)7%0%(u,, — u) * ©)nen is a sequence of uniformly Lipschitz continuous
functions on K for all @ € N¢ with |a| < m. For this, by Lemma it is sufficient to
show

d —
M := sup max max [|9;[(1 + | - [2)7*(0% (un — u) * ¢]|| L= < 0.
neN aeNg =1
laf<m

|

we have, using Theorem [17.6{and (17.14]),

A+ <2k +]-P)7H

M Nk
< . o _
T CRIRC R Tt
o] <m+1
= sup A1,k ((Un — 1) x 0) <2C(@llmi14ns-
ne

@ That the functions (17.11) and (17.12]) are sequentially continuous follows by

Exerciseand the estimate ((17.9)) in For the sequential continuity of the function
it is sufficient to prove ue to the identity v * ¢ = F~1(9) (Theorem ,
Lemma and the continuity of the Fourier transform on S(R%, C) (Theorem

Let x € £ be such that v = xv and thus ¥ = X * v. By continuity of the product
map &' x € — € (Proposition [5.3) it follows that xv, — xv = v and (1 —x)v, — 0in &'.
The latter implies (1 — x)v, — 0 in 8" and thus F((1 — x)v,) — 0. Therefore, we may
as well assume that v, = xv, for alln € N. As v, - 0in & and ¥ € S, by @ there
exists a k € Ng such that ., (0, x X — 0 * X) 2720 0 for all m € Ny. O

As in Theorem [8.9] we have the following associativity rule.
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Theorem 17.11. Ifu € S and v, € S then
ux (@x1) = (ux@)*. (17.17)
Proof. By Theorem and Theorem we have
Flux (px)) = Flo*v)a = oy,
Fllux @) #9) = $F(ux p) = Y@u.
As the Fourier transformation is injective on S’ (Theorem , we have . O

In Definition [I0.5] we defined the convolution between distributions u and v, of which
at least one has compact support, by

uxv(p) = u(0*p) (p € D).

Suppose that u € &’ and v € £’. Then the functions S — F given by ¢ — u(0 * ¢) and
@ — v(t * ) are tempered distributions as they are linear and sequentially continuous

by Theorem [17.10 @ (because S — S, p — Uk and S — &£, p — Ux* p are sequentially
continuous). On other words, the distributions u*v and v*w as in Definition extend
to tempered distributions, for which we use the same notation:

Definition 17.12. For u € &' and v € £ we define u* v to be the tempered distribution
given by

uxv(p) =uldxp) (p€S).
Moreover, we define v * u to be the tempered distribution

vru(p) =v(ixp)  (p€S).
Theorem 17.13. Letue S, ve & and p € S.

(usv)xp=ux*x (V@) =vx(u*xep)=(v*u)* g, (17.18)
UXV=V*U, (17.19)
F(u*v) =va. (17.20)

Proof. (17.18) holds in case ¢ € D, by Theorem As Disdensein S (Theorem|14.12]),

by the continuity of the function § — &, ¢ — wx* for w being either one of the tempered
distributions u * v, v and v * u, and the continuity of the function S — S, ¢ — v * ¢ one

then obtains (|17.18)) and thus (|17.19)).
For ¢ € § we have, using FF =R,

(Flusv),@) = (u*v,3) = u*v*p0) = (u, Rv* F(p))
= (u, F(0) * F(p)) = (u, F(vp)) = (U, 0p) = (0, ¢),
so that we conclude (17.20)). O
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The relations in Lemma [8.2 between the reflection and translation extend naturally
to the convolution operation between elements of £ and S&’, we summarize:

Lemma 17.14. Let (u,v) € (&' x 8")U (S’ x &'). Then
do * u = u,
Oy ¥ u = Tyu (y € RY),
R(u*v) = R(u) * R(v),
Ty(unv) = (Ty) sv =+ (Tpw)  (y €RY,
0% ux*v) = (0%) xv = u* (0%) (o € NO).

Proof. The proof is left for the reader. O

The operation of convolution is like in Theorem characterised by maps S — &
that is sequentially continuous and commute with translations. The proof is similar to

the proof of Theorem [10.2] and left for the reader.

Theorem 17.15. Let A : § — & be linear. Then A is sequentially continuous and
commutes with translations if and only if there exists a u € 8’ such that Ap = ux ¢ for
all p € S.

If A is sequentially continuous and commutes with translations, then there exists
exactly one such u such that Ap = u* @ for all p € S.

Lemma 17.16. The function S’ x &' — &', (u,v) — u* v is sequentially continuous.

Proof. The proof is left for the reader (Exercise [17.E)). O

17.E. Prove Lemma|17.16
17.F. Suppose u : [0,00) x R? — R satisfies

dyu = Au on (0,00) x RY,
u(0, -) = up,

for some uy € S. Take the Fourier transform of the space variable, that is, let U(t,§) =
Flu(t,x))(€) for (¢,€) € [0,00) x RY. Derive

Ut = e 100,6)  ((1,€) € (0,00) x RY).
Conclude that
u(t,z) = hy * ug(x) ((t,z) € (0,00) X Rd),

where hy(z) = (47#)7%67%@? for (t,z) € (0,00) x R%, as in Example [11.15
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18 ¢ The Fourier transformation on &’

In the previous section we have seen that the Fourier transformation forms a bijection
S(RY,C) — SR C) and S'(R4,C) — S'(RY,C). Moreover, Example and Ex-
ample [16.3] illustrate that the Fourier transform of a compactly supported distribution
may not be compactly supported. In this section we show that the only compactly
supported distribution whose Fourier transform is compact is the zero distribution (The-
orem|18.7). This implies DNF(D) = {0} and &'NF(E’) = {0}. Moreover, as we will see,
one can say much more about Fourier transforms of compactly supported distributions
than we have seen in Lemma [I7.8

Definition 18.1. An entire function is a function ¢ : C* — C, given by

[e.9]

g(z) = Z Z ca?® (z € (Cd),

k=0 aENg
|ael=k

where (cq) aENd is a family of complex numbers satisfying

Z Z |Ca|R|O“ < oo for all R > 0.

k=0 aGN‘Ol
la|=k

Lemma 18.2. With (a,b) denoting the inner product of a and b in C?, for a,b € C,
e<a’b> _ i Z aago‘
= -

Q.
k=0 aGNg
o=k

Proof. Write elab) — gaibi ... cadba and use the power series representation of the expo-
nential function:

1... (adFd)ad
| .

I ag!

I SR S U

)a
a1=0 ag=0 a1

Lemma 18.3. Let v € £'. Define g : C* — C by

g(z) = (v, e®®y (2 eC?).

Then g is an entire function.

116



Proof. Let m € Ny be such that v is at most of order m. First observe

o0
1
> > lIxlem swpo R <00 (B> 0). (18.1)
kanGNg ’
la|=k

Therefore in particular

K O A [e’e) QA
29%x 25X K—o0 d
I DD DD Dl TR0 (zeC),
k=0 aeNg k=0 aeNd
|o|=Fk |o|=Fk C™ suppv

Therefore, for z € C¢ we have by Lemma m,

= 0% = (v, )
0= (03 ¥ Z5) 50 3 e
k=0 qeNg ' k=0 qeNg )
o=k o=k

whereas, for all R € [0, 00),

< {0, X)) 1o

k=0 aENg
la|=k

by (18.1). O
Theorem 18.4 (Paley-Wiener). If v € &' and
9(z) = (v, e?m=¥) (e, (18.2)

then g is entire and glga equals v in S'.

Proof. By Lemma g is entire. In order to prove that g|ga equals 0 in &', let xy € D
be equal to 1 on a neighbourhood of supp v, so that v = xv. It suffices to prove that g
equals ¥ x ¥ on R%. As ¥ = F~1(x), for all x € R%:

5% %(2) = (0, T F (1) = (0, FRF () = (v, 230 y)

_ <X’U,6_27ri<x’x>> —27ri<oc73€)> _ g(x)

= (v,e
O

Definition 18.5. Let Q C R? be open. A function f : Q — F is called analytic if for
each y € R there exist 7 > 0 and (Coz)aeNg in IF such that Y 72, ZaeN&M:k colz —y)®
exists for all z € B(y,r) and

f@)=> > calz—y)*  (z€B(y,r)). (18.3)
k=0 aeNg
|a|=k
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Every analytic function is smooth and if ([18.3]) holds, then 0% f(y) = cqal.

If g : C? — C is an entire function, then f : R? — C given by f = g|ga, i.e.,
f(z) = g(x) for z € R?, is an analytic function.

Lemma 18.6. Let Q be a connected and open subset of RE. Let f : Q@ — F be an analytic
function. Then either f =0 or supp f = Q.

Proof. Let U = Q \ supp f. For y € Q, y € U if and only if there exists an r > 0 such
that f = 0 on B(y,r). As Q is connected, it is sufficient to show that supp f is open.
Let y € supp f and let 7 > 0 and (c,) aeNd in F be such that (18.3]). Then there exists

an a € N such that c, # 0 and thus 9%f(y) = co # 0. As 9°f is continuous, there
exists an s > 0 such that 9%f # 0 on B(y,s). Then f cannot be equal to 0 on B(y, s).
Therefore B(y,s) C supp f. O

Theorem 18.7. If v € £ and © has compact support, then v = 0.

Proof. We are done if ¥ = 0, which in the language of Theorem [I8.4]is the case if g = 0
on RY. As g is entire g|ga is analytic and therefore this follows by Lemma m O

Actually, Theorem [I8.4] is only a small part of the statements of the Paley-Wiener
theorem, which characterizes the Fourier transforms of compactly supported distributions
explicitly. We pose the statements here and refer to [Rud91, Theorem 7.23] for a proof.

Theorem 18.8 (Paley-Wiener).

(a) Ifve &, R>0,suppv C B(0,R), v has order k and
g(z) = (v, e ) (zeC?), (18.4)
then g is entire, g|gra = v and there exists a C' > 0 such that

l9(2)] < C(A+ |2])kefIS (2 e ). (18.5)

(b) Conwversely, if g is an entire function on C* which satisfies (18.5)) for some k € Ny
and C > 0, then there exists a v € £ with support in B(0, R) such that (18.2)
holds.

19 Fourier multipliers

Let us motivate the definition of Fourier multipliers by recalling some facts from the
previous sections. By Theorem [16.24] we have

oPu=F Y ((2rix)’n) (BeN,ued).
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Therefore, by writing

1
(27i)B

DY = &’ (BeNp),

we have
Dlu=F1xfu) (BeNLuecs).

Moreover, for any polynomial p, with p(D) the polynomial p “evaluated in D” (as in
Definition [11.1]), so that x*(D) = D%,

p(D)u=F ' (pi) pu=F '(p(D)a) (ued).
Also, we have
Tyu = FH(2mx0)g) (y e R, ueS).

So both operations D and 7T, can be described by the composition of the Fourier inverse
with the multiplication of the Fourier transform with a certain function, namely with
xP and 2™ (&Y respectively. In this section we consider those operators of the form
u + F~Y(o0) for a certain class of functions o such that o is again tempered and hence
in the domain of F~!. Those operators are called Fourier multipliers.

Definition 19.1 (Fourier multiplier). For o € C5° we define ¢(D) : 8" — &' by
o(D)u = F 1 (o0) (we 8,
and call o(D) a Fourier multiplier.

Lemma 19.2. Let 0 € C;°. Then o(D) is continuous as function 8" — 8" and it forms
a continuous function S — S. Moreover,

(c(D)u,p) = (u,6(D)p)  (ueS, peES).

Proof. As multiplication with o is a continuous operation &' — &’ and § — S (see
and because F is continuous as a function &’ — &’ and as a function S — S
(Theorem and Theorem [16.24)), it follows that o(D) is continuous as a function
S’ — & and as a function S — S.

Foroe Cy°,ueS and p € S

(0(D)u, ) = (R(o0), Fp) = (6F " (u), ) = (u, F(5))
= <u76(D)§0>
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Example 19.3. By Theorem [16.24) we have 0° = o(D) for o = (27ix)” and T, = o(D)

for o = e~ 27XV e,
%u = (2rix)’D)u,  Tu=e &N Dy  (BeNLyeRLueS). (19.1)
Let v € £&. In Lemma we have seen that v € C5°. Therefore

vxu=10(D)u (ued’).

By the commutativity of multiplication, we obtain that Fourier multipliers commute
as well. Moreover, if F~!(o) is compactly supported, then the Fourier multiplier (D)
equals convolution with F~1(o):

Lemma 19.4. Let 0,7 € C°. Then
7(D)o(D)u = (o7)(D)u = o(D)r(D)u (ued).

Consequently, Fourier multipliers commute with partial differential operators with con-
stant coefficients, with translations and with convolutions. Moreover,

o(D) () = L [(ho) (D] (ue S A>0), (19.2)
cD)p=F Ho)xp (p€S),

and ifc € & orif o €S, then
o(D)u = F ou) = F (o) xu (ued). (19.3)

Proof. Most identities are trivial. The proof of (19.2)) is left as an exercise, see Exer-
cise 19.Al O

19.A. Prove .

19.5 (Bessel potentials). Let g € S’. We consider the problem of finding a u € §" such
that

(1—-A)u=yg.

We can write (1 — A) as a Fourier multiplier (by, for example ([19.1])), namely (1 — A) =
o(D), for

o() = (L+4n’lgf’) (€ RY).
As this function is strictly positive, we can divide by it: We define 7 : R — R by

(&) = (1 +4r’lEP)™t (e RY).
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It is not too difficult to show that 7 € C5°. As 70 = 1, with I : &’ — &' being the
identity map ¢ — ¢, we have

I = (r0)(D) = 7(D)o(D) = 7(D)(1 — A).

As also (1 — A)7(D) = I, we have 7(D) = (1 — A)~! and thus u = 7(D)g.
Let o° for s € R be the function given by *(¢) = (0(¢))® for £ € R%. Then

(1-AF=06"D) (keN).
For s € R\ Ny one writes “(1 — A)*®” instead of “c*(D)”, i.e.,
(1-A)°u:=c*D)u (ued). (19.4)

For s < —d the function o* is integrable and thus F~!(o*) is a bounded continuous func-
tion. It turns out that for any s > 0 the tempered distribution F~!(c7*) is represented
by a function that is smooth on R\ {0} (see for example [Gral4, Theorem 6.1.5]). Such
functions (on R?\ {0}) are called Bessel potentials. For more on Bessel potentials we
refer to [Eva98, Section 4.3] and [Graldl Section 6.1.2] . In the last reference, not the
function F~1(o7*) but the operator (1 —A)~* is called a Bessel potential. We come back

to Bessel potentials in [20.9] and [20.10]

19.B. Show that (1 — A)® forms a homeomorphism & — S and &’ — &' for
each s € R.

Similarly to the definition of (1 —A)® we will define A® for s € R\Ny. As the function
€ +— |€]?® is not smooth at 0, in order to define A* via Fourier multipliers, we extend
the notion of a Fourier multiplier o(D) to the situation where the domain of o is not
necessarily all of R¢.

19.6. Let Q C R? be open. Let o € C*°(2). Suppose u € &’ and [suppi]3s C 2 for some
d > 0. Let x € C° be equal to 1 on [supp @]; and 0 outside [supp ulas (see Lemma .
By abusing notation by writing xo for the function

R x(x)o(x) =€,
0 x ¢ Q,

we have xo € Cp° if supp@ is compact or if o € C5°(2). Therefore, in both cases,
(xo)(D)u is defined and would be a good candidate for a definition of “o(D)u” as, o and
xo are equal on [supp uls.

We show that we can take this as our definition by showing that it does not depend
on the choice of x. Indeed, if n € Cp° equals 1 on [supp u]s and 0 outside [supp las, then
xu = nu and thus you = nou, i.e., (xo)(D)u = (no)(D)u.
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Definition 19.7. Let @ C R? be open, 0 € C®(Q). Suppose u € S, § > 0 and
[supp @tjzs C . If o € C3°(€2) or supp 4 is compact, we define

o(D)u := F~}(ox@) = (ox)(D)u,

where xy € C°(R?, [0, 1]) equals 1 on [supp s with supp x C [supp @]as. In this sense we
obtain an operator o(D) on the set

{u e 8" : there exists a § > 0 such that [suppi)s C Q}. (19.5)

Observe that this extends Definition [16.22, as for = R¢, one may choose x = 1
(remember also [19.6)).

Definition 19.8. We define S! to be the space

Sé:{ueS’:suppﬁCRd\{O}}.

Observe that S’ is a subset of (19.5) for @ = R?\ {0}.

19.C. Prove

{go €S8:0%(0) =0 for all a € Ng}
={p e S:(P,¢) =0 for all polynomials P} .

19.9 (Fractional Laplacian/Riesz potential). For s € R the function o® : R\ {0} — R
given by

o*(€) = |2m¢*, (€€ R\ {0})

is in Cgo(Rd\{O}). Let v € S!. Then there exists an € > 0 such that B(0,¢) C R?\supp a.
Therefore there exists a § > 0 such that [supp @]ss C R\ {0} and hence o*(D)u is defined
for all s € R. For k € Ny oF extends to a smooth function on R? and

(-=A)¥ =o*(D) on S
For s € R\ Ny one writes “(—A)*” instead of “o*(D)”, i.e.,
(=A)°u =0o°(D)u (ueS).

The operator (—A)® is called a fractional Laplacian but is sometimes also called a Riesz
potential. In probability theory for a € (0,2) the operator (—A)2 plays the role of the
generator of an a-stable Lévy process.

19.D. Let d = 1. Show that (—A)2 # 9.
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19.10 (Pseudo differential operators). Each linear partial differential operator with
constant coefficients P can be written as p(D) for some polynomial p: Suppose P =
ZaeNg:|a‘§k ca0® for some scalars ¢, € F. Then P = p(D) for p = ZaeNg:mgk (erﬁxo‘.

Let P: S — S’ be a linear partial differential operator with variable coefficients. Say
fo € L™ for a € NZ with |a| < k are such that

P= Y fa0"
NG |a|<k
Then
Py(z) = p(z,D)p(x) (xeR:peS), (19.6)
where

p(x,&)= Y fal2)§*  (z,6€RY).

aeNd |a|<k

Pseudo differential operators are operators of the form ((19.6)) for certain “nice” functions
p. Fourier multipliers are examples of pseudo differential operators. For example (—A)*
is a pseudo differential operator.

20 Fractional Sobolev spaces

In this section we return to Sobolev spaces and describe them in terms of Fourier trans-
forms and Fourier multipliers.

20.1 (Sobolev spaces described by Fourier transforms). Let k € Ny. In Theorem [12.14]
we have seen that H* (reminder: H* = H*(R?)), being the Sobolev space given by

HY =Wh? = {u € D' : 0Pu € L*(Q) for all B € N§ with |B| < k},
is a Hilbert space with inner product

<u7 U)Hk = Z <8au’ aaU>LZ (U, v e Hk))

a€eNg:|a|<k
so that it is equipped with the norm
1
2 k
lullge = (2 10%ullf2)®  (ue H).
aeNd:|a|<k

This space can also be described using the Fourier transformation, as we will see in

Lemma [20.3]
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Lemma 20.2. Let 0 € [0,1]. The function [0,00) — [0,00), = + 2% is subadditive, that
18,

(a+b)0 <a®+b"  (a,be]0,00). (20.1)

Proof. Tt suffices to show (20.1]) for a = 1 (otherwise one can divide by a?). This in turn
follows by

dt(1 +0)? =t =01+t =ty <0 (te]0,00)).

d
O
Lemma 20.3. Let k € Np.
HY ={ue S :(1+|x)kue L?, (20.2)
the norm || - || gr is equivalent to u — ||(1 + |x|)*@|| 12, which means there exists a C > 1
such that
1 ~
olulm <N +1x) @l < Clulge  (we HY, (20.3)
and
HY x HY 5 F,  (u,0) = (14 |x)*a, (1 + [%))"0) 2 (20.4)

is an inner product on H* that generates the same topology as the inner product {-, ) pr -

Proof. That (20.4) defines an inner product can be easily checked. It suffices to show
(20.3]). We show that for & = 1 there exists a C' > 0 such that

1L+ %) a2 < Cllullge (ue HY),

and leave the rest for the reader, see Exercise
By Lemma we have (1 4 \x!)% <14 21|+ -+ |2g for all z € RY. Therefore

d
1 - -
1L+ |xD)2al 2 < [fallg2 + ) llejall e
j—1

< il + Z ||]: (O5u) |2

= llullz> + Z —l0jull 2 < [lullwr.2.
The latter is equivalent to || - || zx, see [12.6] O
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To prove (20.3)) and thus (20.2]) the Multinomial Theorem can be beneficial.

Theorem 20.4 (Multinomial Theorem). For x = (x1,...,24) € F¢ and k € N

(x1 4 +z) =D <§> z<, (20.5)

where with o! = aqlas! -+ - ay!,

AN
al al aglag!-ag!”

Proof. This follows by induction. For d = 1 the formula is trivial for all £k € N. For
d = 2 it is the usual binomial formula. Suppose (20.5) holds for a fixed d € N and for

any k € N. Then for y =21 +---+ x4 and z = (1, ...,24) we have
k _ k m, k—m
(y + zat1)" = Z Y Ty
m
meENy
m<k
k m k—
- > () 3 (1)t
mé&Ny aeNd
msk |a|=k

As for 8 = (aq,...,aq,k —m) we have |5| = k and

B\ (m\_ __ K m [k
m)\a]  (k—m)mlag!---ag  \B)’

it follows that (20.5]) is valid also for for d + 1. O

The description of H* as in Lemma extends naturally to non-integer values of
k, as follows.

Definition 20.5. For s € R\ Ny we define the fractional Sobolev space H® by
H={uecS :(1+]|-|)% e L?}, (20.6)
(-, ms : H¥(Q) x H*(Q2) — F by
(w,v)gs = (1 + |x))°, (1 + |x[)°0) 2 (u,v € H(Q)),

and || - [|gs : H*(Q) — [0, 00) by

lullz = wuhie (w e BY(Q)).
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Example 20.6. We have already seen that 69 = 1. As (14 |-])* is in L? if and only if
2s < —d by Lemma, [14.13] it follows that dg € H® if and only if s < —g.

20.A. Prove the following statements.
(a) For each k € Ny there exists a C > 0 such that for all o € N¢ with |a| < k,
10%ull 2 < CI(L+ %D a2 (ue HY).
Consequently, there exists a C > 0 such that

lulge < CIA+ [xD* a2 (ue HY).

(b) For all s € [0,00), the functions u — ||(1+ |x|)%4|| 2 and u— ||(1+|x[2)230| 12 are
norms and they are equivalent.

(c) For s e R the norm || - ||s is equivalent to u — ||(1 — A)2ul| 2.
(d) For each k € Ny there exists a C > 0 such that

1L+ 2*)*all 2 < Cllull o

(e) For each k € Ny there exists a C > 0 such that (20.3|) holds.

Theorem 20.7. Let s € R. (-,-)gs is an inner product on H®, so that H® equipped with
this inner product is a Hilbert space.

20.B. Prove Theorem

Like for the spaces of continuously differentiable functions and for Sobolev spaces,
see Lemma and Lemma [12.9] we have the following.

Lemma 20.8. Let s,7 € R and o € Ng. Ifr < s, then
10%u|| grr—1al < [Jul| a7 (u e H?).
In particular, * : H® — H*~1 is continuous for all s € R and o € N4, and

H® — H" (r<s).

The Fourier multiplier D® is thus a continuous function H® — H*~l®l. We consider
conditions on the functions o such that the Fourier multiplier o(D) is a continuous func-
tion between Besov spaces (in Section . Those spaces are generalisations of fractional
Sobolev spaces and are introduced in the following section.

20.C. Prove Lemma m
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20.9. By Exercise [20.Al(b) and (c) we see that the spaces H® can be described in terms
of the Bessel potentials:

H={ueS :(1-A)°uclLl?.
Actually, H® is a particular case of a Bessel potential space, see for a definition.

20.10 (Bessel potential spaces). We have only considered a generalisation of the Sobolev
space WP for p = 2 but for any p one can actually define fractional Sobolev spaces, also
called Bessel potential spaces. In [Tri83| p.88] , for example, it is shown that

Wh? = {fe8:(1-A)2fe [P}, (20.7)
and that || - ||yys» is equivalent to
k
fellA=A)2fz». (20.8)
Similarly to Definition one defines the fractional Sobolev space H, for s € R and
p € [1,00] by replacing “k” in (20.7) by “s”:
H:={ueS:(1-A)2ue L}, (20.9)
and defines a norm on H, by

lullgy = I(1— A)2ulr  (weS).

Then H;f = W*P and the norms || - HHE and || - ||yyk» are equivalent for & € Ny and by
Plancherel’s identity it follows that || - ||gs = || - ||g= and thus H5 = H® for s € R. One
can also show that H is a Banach space for all s € R and p € [1, o0].

21 Besov spaces defined by Littlewood—Paley decomposi-
tions

In this section we introduce Besov spaces. The definition is more cumbersome than those
of the normed spaces like W*? H* H*® and Hj. First, we take a specific partition of
unity of R, (Xn)nen, such that in S’

u=Y xDu (e,

neN
and then describe Besov spaces in terms of the Fourier multipliers x, (D).

21.1 (Motivation of Besov spaces by the space H*). We will see later that H® is a
special case of a Besov space. Let us motivate the definition of a general Besov space by
describing H® in a different way. For n € Ny we define j, : R? = F by

Gn(@) = Lppsny(lz)  (z €RY).
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We have u € H* if and only if (14 |x|)*a € L?. As gj, is orthogonal to gji in L? when
k #n and g € L?, it follows that: w € H* if and only if

(1+ |x|)%al, € L*  (n € Ny),

(10 + ) gnl2) e 2
neN

and, moreover,

el = | (10 + |2l z2)

(u € H?),

eNllg2

where we wrote “|| - ||p2” for “|| - [l;2(r,)” From this it follows that v € H* if and only if
(1+n)*aj, € L*  (n € Ny),
(O nliagnlez) €t

and, moreover, that || - || g= is equivalent to

w1y (gl 2) (we i),

neNy 1142

which follows from the fact that for s > 0 (and something similar for s < 0)
(1 +n)%n < (L+|%[)%)n < (24 1)%)n <2°(1+n)%jn (0 € No).

Instead of taking intervals of length 1, we can also split the function into intervals of
dyadic length: For j € No define h; : R? — F by

hj(z) = 195 9541y (|2]) (z € RY),
and let h_1 = jo, i.e., ho1 = Ljg1)(|%]). Then u € H? if and only if
2j5ahj e L? (j e NgU{-1}),
27| ihy, (2
(2 lahnllzz) oy €6
and, || - ||+ is equivalent to

u H (27 lfh; 12 ) (u € H*). (21.1)

JENoU{—1}11¢2

As ([16.3]) of Theorem [16.10| extends to f,g € L? (see Exercise [21.Al), by Theorem (16.27

it follows that
[@hjll 2 = 17" (hy) % ul| 2. (21.2)

Now Besov spaces are basically spaces with a norm like (21.1) where instead of “L2”
and “£%” one has “LP” and “/9” for some p,q € [1,00] and with smooth functions “p;7
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with compact support which are similar to “h;” in the sense that like for h;, one has the
scaling relation ¢;j(z) = po(277z) for all z € R%. The latter is being done so that the
convolution with F~!(¢p;) is defined for any tempered distribution and defines a smooth
function.

We will first introduce such functions ;.

21.A. Show that
[ta=[of (rger.
21.2 (Notation N_;). We write “N_;” for the set {—1,0,1,2,...}.
Definition 21.3 (Annulus). Let a,b € (0,00), a < b. We write
Ala,b) ={z e R?:a < |z| < b}
Such a set A(a,b) is called an annulus.

Definition 21.4. A function f : R? — F is called radial if f(z) = f(y) for all z,y € R?
with |z| = |y|.

For each radial function f there exists a function g : [0,00) — F such that f(z) =
g(|z|) for z € R%.

We introduce the notion of a dyadic partition of unity, which consists of one function
that is supported in a ball and equals 1 on a smaller ball centered at the origin and of
functions that are supported in annuli which are scaled versions of each other.

\ ’
\ '
\ '
\ I
\ ’
\ ’

Figure 2: An example of a dyadic partition of unity.

Definition 21.5. A sequence of radial functions (;)jen_, in C°(R,[0,1]) is called a
dyadic partition of unity if

supp ¢—1 is equal to the closure of a ball centered at the origin,

supp o is equal to the closure of an annulus,
0i(€) =po(277¢)  (£eRYjeNy),

1
> owi©) =1, 3= Yo oie)*<1 (EeRY), (21.3)
JEN_1 JeN_1
li — j| > 2 = suppg; Nsuppp; =0 (i,7 € N_q). (21.4)

We say that a radial function ¢ in C°(R?, [0, 1]) supported in an annulus generates a
partition of unity if there exists a partition of unity (¢;)jen_, with ¢o = ¢

Observe
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(a) @; =ly-5p = (277 ) for j € Ny.
(b) p-1=1- 3N, ¥j, and

ly-1p1=¢ 1277 Z ¢;  (J€Ny). (21.5)
j=—1

(c) wo= (o1 —li)p-1=p_1(5) — 1.

Theorem 21.6. There exists a radial function ¢ in C2°(R2,[0,1]) that generates a dyadic
partition of unity.

Proof. As the functions ¢; need to be radial, we first construct functions n; on [0, c0)
such that the functions ¢; defined by ¢;(&) = n;(|¢]) form a partition of unity.

Due to the above observations, we may as well start by showing the existence of
a function that is the function ¢_; of a partition of unity (¢;)jen_,, as then ¢y =
<l271 — ll)SO—l-

Let a € (3,1). Let 6 : [0,00) — [0, 1] be smooth on (0, 00) and equal to 1 on [0, 3],
nonzero on [2,a) and equal to 0 on [a,00). Define n =10 —6 = 6(3-) — 6. Then n =1

2 .

on [a, 8] and suppn C [0,24] \ [0, 3] C [2,2a]. Define n_1 = 0, n; = ly—yn =n(277 ) for
j € Ng. Then by definition

>, m=1

jeEN_4
As2<3=4" 3 we have [2,2]N4[2,2] = () and thus, as suppn—_1 C [0,1] and suppn; C
29[3.2],
li —j| >2 = suppn; Nsuppn; =0 (i,7 € N_q). (21.6)

We are left to show that for ¢ > 0,

1 2

Loy o (21.7)

JEN_3

Let us write Xoqq = EJ€2NO 1M and Yepen = dem\lo 773 As the functions 7; with
j € 2Ny — 1 have disjoint supports by (21.6 -, we have Eodd = Y jeaNg—1 77]2-. Similarly,
Y2 =3 jeaN, 77] Therefore,

even

1= (Eodd(t) + Eeven( )) < 2(Zodd( ) even =2 Z 77]
jeEN_

By defining ¢(&) = no(|¢]) for € € R?, we see that ¢ is radial function in C2°(R9, [0, 1])
that generates a dyadic partition of unity. O
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21.B. (a) Let a > 0. Show that there exists a radial function ¢ with
e(&) =1 for all £ € A(a — d,a + §) for some 0 > 0, that generates a partition of
unity. (Hint: Observe that for ¢ in the proof of Theorem one has ¢(§) =1 for
£eRL g =1.)

(b) Show that there exists a radial function ¢ with ¢ =1 on A(3,2) that generates a
partition of unity. (Hint: In the proof, replace “%” by another suitable number.)

21.7 (Notation of ordered and unordered infinite sums). In the following we use the
notation “37;cy |7, which denotes the unordered sum over a function on N_; (with
values for example in 8’). We recall the notation from the section Conventions and
notation.

If T is a countable set and v; is an element of a topological vector space X for all ¢ € I,
then we say that

D vi

i€l

exists, if there exists a v € X such that for each bijection ¢ : N — I, 3°7°  vy¢,) = v in
X, and write ),y v; for v.

Lemma 21.8. Let (¢;)jen_, be a dyadic partition of unity. Then

Z(pjw:winS (v €8).

jeN_1
Moreover, for all finite subsets FF C N_;

|2«
JEF

< 4fle-allon-

Ck

Proof. We invoke Lemma [I4.10|[(d)] Observe that || f + g|lcx = || fllcx V [lg]lcx for f and
g in C* with disjoint supports.

Therefore, by (21.4), it follows that for all finite subsets F' C N_;

Z%‘ < Z ©j + Z Pj
jEF Ck jE2Ng—1NF Ck jE2NGNF ck
< sup |[pjller + sup [lpjller <2 sup [lojlcn
j€E2Ng—1 J€2Ng JeEN_;

< 2lle-1ller Vllgollex) < 4lle-illes,

where we used that [|¢;llcr = [l¢o(277 )llex < ll@oller and that ¢o = l%gp,l —p—1.

From this by Lemma [14.10 @ it follows that >27% 1 @ ) = ¢ in S for any bijection
q:N—N_;. 0
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By the above lemma we also have >,y | QOJ'KZJ\ = 12 in § for all ¢ € §. Therefore, by
the continuity of F,

S oD =Y Fled)=F (Y ¢¥)=vinS (pes). (218)

JeEN_1 JEN_1 JEN_1

The partition of unity (¢;)jen_, is used to obtain the operators ¢;(D). After showing
some properties of Besov spaces, one can basically only work with those operators. It is
therefore customary to use a shorter notation for these operators: A; = ¢;(D). Those
operators A; for j € N_; are also called the Littlewood-Paley operators.

Lemma 21.9. Let (¢;)jen_, be a dyadic partition of unity. Write Aj = ¢;(D). Then

peS=ApeS, ueS =A7ANucCy, felP=Ajfel? (jeN,),

and
(Aju, ) = (u, Ajap) (jeN_,ue S pes) (21.9)
Yo A=y inS (PeS), (21.10)
JEN_3
Y Aju=u inS  (ued), (21.11)
JEN_3
18 flle < l@oll o lf e < 20053l eal flle (G € No, f € LP), (21.12)
J
> A0 <IESlnlfle  (JeNo,fe L), (21.13)
jzfl Lp
Proof. (21.10) follows from Lemma see ([21.8). The rest we leave as an exercise
(Exercise [21.C)). O

21.C. Finish the proof of Lemma m

Definition 21.10. Let X be a vector space (over the scalar field F). We call a function
n: X — [0,00] a norm-like function if

n(z+y) <n(x)+n(y), nAz)=[An(z), nz)=0 <<= =0 (x,y € X,\ €F).

Like for norms, two norm-like functions n and m on X are called equivalent if there exists
a C' > 1 such that

Sm(z) <n@) < COmz) (€ X).

Observe that Y = {z € X : n(x) < oo} is a vector space and n forms a norm on Y.
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21.11 (Convention). Let M denote the space of measurable functions R — F. For LP
spaces we have that a measurable function (or better said, an equivalence class) f € M
is in LP if and only if Nz»(f) < oo, where Npp» : M — [0,00] is the norm-like function
given by

Nﬁuv—(/uv); (f € M).

Of course, on LP, N» is equal to the norm || - ||». It may be convenient to work with
such norm-like functions, which are allowed to take the value co. In general, we will not
distinguish anymore between the norm-like function Nz» and the norm || -||z». Moreover,
for ¢ € [1,00] and a countable set I and a € F' we will also write |alga(ry for [;(a), where
[, : F' — [0, o0] is the norm-like function given by

u@:{z@mwmq 1<% e,

supir ()l q=ox,
Mostly, we write || - ||z« instead of || - [|4a(r)-

Definition 21.12 (Besov Space). Let s € R and p,q € [1,00]. Let ¢ be a function that
generates a dyadic partition of unity (¢;)jen_,. We define the function |- [|gs ;) : S —
[0, 0] by

(ue 8. (21.14)

._ Jjs .
g o1 += | (2Pl @) |

Here we wrote “|[-[¢” as an abbreviation for “[| - [lsaqy_,)” Then |- || s [, is @ norm-like
function (observe that if Aju = 0 for all j € N_y, then u = 0 by Lemma . We
define the nonhomogeneous Besov space generated by o, Bf}’q[gp], to be the space of all
tempered distributions u such that [[ul| s o] < co. We write Aj = ¢;(D). A; is called a
Littlewood—Paley operator and for v € S’ one also calls Aju the Littlewood—Paley block.
With this notation,

fullgg 1 = | (270180 (wes).

JEN_1]¢q

We will drop the notation “[¢]” later, as the space does not depend on ¢; this follows
from Theorem 21.18] see Corollary First we consider some properties of tempered
distributions u € 8’ such that supp is a subset of an annulus, or of a ball, which will
be used to prove Theorem [21.18]

21.D. Let p,q € [1,00], s,t € R. Show that B} [¢] C Bj [¢] for s <t and
B, ol¢] € By fly] for e > 0.

21.E. Let p € [1,00]. Show that for f € L and A > 0, with the convention
that < =0
%) )

i fllze = X752, (21.15)
where Iy f(z) = f(Az) (as in[14.9).
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Definition 21.13. For A € R\ {0} we define [} to be the operation )\_dl%.
Observe the following facts.

(a) 1} is the adjoint of [, as an operator on L?, i.e.,
<l)\f,g>L2 = <fal§g>L2 (fag€L2)7
and (Definition [(e)] and Definition [15.3)

(hu, ¥) = (u,l3Y),  (Bu,v) = (u,p))  (ueS PeS).

In particular, if d = 1, 65 = [341.
(b) By Theorem [16.24] we know that for a distribution u € &',

Fllyw) =La  Fiu) = Iy

(¢) Furthermore, by (21.15])
1Bl =1 fllee (A>0,felLh).

(21.16)

(21.17)

The following lemma will be used both for the proof of Theorem [21.18§]| but also gives

us Bernstein inequalities, see Theorem [21.15]

Lemma 21.14. Let A be an annulus and B be a ball centered at the origin in RY. Let
X € C° be equal to 1 on a neighbourhood of B. Let ¢ € CZ° be supported in an annulus

and be equal to 1 on a neighbourhood of A. Let A > 0.
(a) If u is a tempered distribution with suppu C A\B, then for all a € Ng
0%u = XTI\ hy) % u,
where hy, € S is given by ho = 0°F ().
(b) If w is a tempered distribution with suppu C AA and k € Ny, then

u=\"" Z A (Irga) * 0%u,

aENG:|o|=k

where go, € S for a € N& with |a| = k is given by

Go = (’;)f—l ((—2wix)a|2wx]‘2k¢) .

Proof. First observe that [ 1X equals 1 on a neighbourhood of AB and [ 1 ¢ equals 1 on a

neighbourhood of AA. As

0 F N (lax) = 0°1LF () = A10°F (),
A A

FH((—2miz)*|2mx] 1 ¢) = NeI=2h01 o1 ((—2miz)* |27 2g)
A
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it is sufficient to prove the statements for A = 1.
[(a)] follows from the fact that @ = x4 (see Definition [5.1).

For @, as 1 is supported on an annulus, we can divide (and multiply) by |27x|?*.
By the multinormial theorem (see Theorem m take x; = |27¢;|? = (—2mi&;)(27ig;)):

2mPF = > (2)(—2wgy%2wg)a (€ € RY). (21.18)
a€eNg:|a|=k

Therefore by Lemma and because (27ix)%*(D) = 0%),

S et fal—r (7 (—27ix)* (2mix)®
== (\2)7T3€\2k ¢) (D)u

5 ()0

aeNg:|a|=k

w=F(¢1) = (

which proves @ O

The next theorem follows by the previous lemma and Young’s inequality.

Theorem 21.15 (Bernstein’s inequalities). Let A be an annulus and B be a ball around
the origin in R%. For all k € N there exists a C > 0 such that such that for allp,q € 1, o0
with ¢ > p and any u € 8" we have for all X > 0

1 1
supp i C AB == max [0”ul| s < XG4 |ju] 1, (21.19)
aeN
|a|:l%
1
supp @ C A = = X¥||ul|rr < max [|0%u| e < CN¥||ul| 1. (21.20)
C aeNg
|a|=k

Proof. The lower bound in (21.20f) follows by Lemma [21.14] and Young’s inequality,

lullze < A5 30 A (Uaga) [ 10%ullLr

a€eNd:|a|=k
T gl )(_max 0%l ).
aENg:|a|:k aeNg:|al=Fk

because ||[A(Ixga)llzr = 1% gallir = 9ol and go € S € L for all a € Ng.
A

The upper bound in (21.20) follows from (21.19)), so we are left to prove the latter.
Let r € [1, 00] be such that % +1=1+ %. By Young’s inequality, Lemma [21.14] and an
easy calculation (see Exercise 21.E))

d
10%ul| e < XTI hal prllull o < NFE5 o | o lul e
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so that (21.19) follows because d — ¢ = d(1 4+ 1 — 1 — 1) = d( — 1) and because
P q P
hallzr < lhallrr + [|hal Lo, see Corollarym 0

21.F. Let s € R. Show that there exists a C' > 0 such that for all p, ¢ € [1, 00|,
q>p,any u € S’ and A >0

supp@ C A = ||(=A)Sulre < ONMGT Dl (we S, A > 0).
(Hint: Adapt Lemma [21.14 @ and follow the proof of Theorem [21.15})

21.16 (Towards Theorem . After one more preparation, we turn to a technical
theorem, Theorem so we want to prepare the reader a little bit. This theorem
implies that a Besov space does not depend on the dyadic partition of unity, but it tells
us more than that. Indeed, in order to calculate [lu[|ps (o one needs to first calculate
the LP norm of all Littlewood-Paley blocks A ju. Theorem considers sequences of
tempered distributions (u;);en_, with

suppu—1 C B, suppu; C 27 A for j € Ny, (21.21)

27 luj 1)
(2 lesller) |

First, observe that if v € &', then is satisfied for u; = Aju. And if, moreover,
u € B, ,, then also is satisfied with u; = Aju and ||(27%||u;|| v ) jen_, [|a = lullBs., -
Also observe that u; € Cp° for all j € N_; due to , see Lemma

Theorem tells us on the one hand that if and are satisfied, then

2 jen_, uj exists in S’, and, on the other hand, that for u = > jen_, uj the Besov norm

< 0. (21.22)

lull s [ is bounded from above by (272 ||wj |l v ) jen_s |l a-

This theorem is useful as it can be used to estimate [lu|[p; [¢] in case calculating
Aju might be more effort. A very simple example is the following. Suppose u € B},
and A C N_;. Then Theorem tells us that v := 3 ;cy 14 A exists in &', and
moreover, it gives an estimate on the Besov norm [|A;v| B, l¢) Without calculating Ajv
for all j € N_;.

The Young’s inequality will be helpful multiple times, not only for convolutions of
functions on R? (as in Theorem , but also on Z. Both R% and Z are groups, and one
can formulate the Young’s inequality more generally for locally compact groups that are
equipped with a so-called Haar measure. More on such spaces can be found in books on
“abstract harmonic analysis”. We formulate the Young’s inequality for functions on Z
separately:

Theorem 21.17 (Young’s inequality for functions on Z).
Let p,q,r € [1,00] be such that

1,1 1
For f € P(Z), g € t4(Z) we have f*g € {"(Z) and
1 gller < [I.fllenlgllea-
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Proof. Let s € [1,00], s > r, and %%—% =1+ 21 Then | [le < | - |les, see Lemma

Therefore, we may as well assume % + % =1+ %

Now the proof follows in a similar fashion as the proof of Theorem but with
applying Holder’s inequality (Theorem [A.4)) to the sequence spaces ¢P(7Z) (observe ¢P(Z)
equals LP(u) where p is the counting measure on Z). O

Now we are ready to prove the rather technical theorem with a long statement. Let
us mention beforehand that @ and are similar to @

Theorem 21.18. Let s € R and p,q € [1,00|. Let B be a ball centered at the origin and
A be an annulus. Let ¢ be a function that generates a partition of unity (¢;)jen_, -

(a) There exist C > 0 and m € Ny such that for all sequences of tempered distributions
(uj)jEN_1 with

cuppi_i C B, suppd; C PA for j € No, ’KyﬂmﬁugﬁN H < oo,
—1||pa

one has that

ui= YN, Uy exists in S,
| (21.23)
() < C || (2 llusl o) jenr,

Mol @eS),

and

(21.24)

. < (st ) )
Jallgg g < €| (sl e |

(Here one may take C = 2||o_1||z1 for (21.24)).)

(b) If s > 0, then there exist C > 0 and m € Ny such that for all sequences of tempered
distributions (uj)jen_, with

supp tj C 2IB for all j € N_y, H (2js||uj||LP> N < 00, (21.25)
j

—1||paq

(21.23) and (21.24) hold. (Here there exists an N € N such that we may take
C =2||p=i|| 2= for 21.24).)
(¢) If s =0 and q = 1, then there exist C' > 0 and m € Ny such that for all sequences

of tempered distributions (uj)jen_, with (21.25)), (21.23)) holds and

lull g o1 = sup lles(Dulze < ||(lusllzr) s, (21.26)

JeN_1 o

Proof. First observe that if (u;);en_, is a sequence of tempered distributions, then
2/ 1
>jen_, uj exists in &' if there exists a u € & such that for all bijections ¢ : N — N_4
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the sum Z‘-]Zl Ug(;) converges to u in S as J — oo. As &' is weak™ sequentially complete

(Theorem [15.10]((b)), it is sufficient to show >>22 ; [{uj,1)| < oo for all 9 € S. In order
h

to also show that (21.23)) holds, it is sufficient to prove

> sl <€) (i) o | Wllns @wes). @
j=1 a

jeNlH

Without loss of generality, as we may take a larger ball and annulus, we may assume
supp ¢—1 C B and supp ¢ C A. We write A; = ¢;(D) for j € N_;.

In the rest of the proof we let r € [1, 00] be such that

11
S+ =1
p r

Let n € N and a C7 > 0 be such that (see Lemma [14.14])
[¥llr < CilYllns (W ES). (21.28)

Let Cy > 0 be such that (for example Cy = 2||p_1|;1 see (21.12) and (21.13) with
J=-1)

1A flle < Collflle (f € LP). (21.29)
Finally, let N € N be such that
2ANA=2ANB=0 (j>N). (21.30)

We start with @ and as these are the easier cases.
Proof of Suppose (u;)jen_, is as in By Hélder’s inequality

S g ) < 3 lullellgller < |[(luller) e

=1 j=—1

so that we obtain (21.27)) with ¢ = 1. We obtain (21.26)) by using
1Aulle < > (1A Lo

iEN_1

n,S»

ol

Proof of [(b)] Suppose that s > 0 and (u;)jen_, is as in @ By Holder’s inequality we
obtain

[ )] < Nlugllze ]l < C1277°

JS 0y -
(2 HUJHLP)JEN_IHH tlhn,s-
As s > 0, we obtain (21.27) with C'=C1 X} jen_, 278,
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By (21.30) we have Aju; =0 for all 7 > ¢+ N and so by (21.29)
251 Azulle < D0 207925 | Ajui| s
ieN_1:i>j—N
<G 3 22wl = Caaxb)()),
i€N_1:i>j—N
where a(k) = 2"“5]1(_0071\;)(16) for k € Z and b(k) = 2*%|luy||z» for k € N_y and b(k) = 0
for k € Z\N_1. By Young’s inequality (Theorem [21.17)), we obtain the desired bound as

L (N—1-k) 9(N-1)s 9Ns
— s __ —1l—Rr)s _ —
lallo = 3 2= 32 - =

kE€Z:k<N keNg
Proof of@ Suppose (u;)jen_, is as in @
e Let us first prove (21.27). Let k € Ny be such that £ > —s. Let ¢ € S. For all
j € Ng we have by Lemma [21.14 @

u; = 2_jk Z 2jd(l2jga) * 80‘uj.
aeNd:|a|=k

Therefore,

(uj ) =275 (=% Y0 (g, 2%(lyga) * 9%9).

aeNg:|al=k

By Hoélder’s and by Young’s inequality, and then by (21.28)) and (21.17)),
(g, 0) <27 luglle D 1272 Ga) 2109l
aeNd:|a|=k

<C2Mullee Y lgallllvlnins:
a€eNd:|a|=k

Therefore with

Cs= > lgalr,

a€eNg:|al=k
we have for all j € Ny
[(ug, )| < CLC32 ¥l Lo [l n-sh,5

< Cio | @) |

Hw”nJrk,S'
¢a

We may assume that the above also holds for j = —1, as by a direct application of
Holder’s inequality we have

[(u—1, )] < luallze[¥llzr < CullullLel[¢lln,s

< (12° (szHUjHLp)jGN )

¥ llnts,s-
04
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As k+ s > 0, there exists a C' > 0 such that (21.27) holds with m =n + k.

e We prove (21.24). By (21.30) Aju; = 0 for all 7,5 € N_; with |[i — j| > N. As
20=9s < 9lsIN for i, j € N_; with |i — j| < N, with (21.29), for all j € N_;

. j+N ‘ J+N ‘
2% Azulle < Y0 20Ajulle <C2 Y0 2%l = Cala ¥ b);,
i=(j—N)vV—1 i=(j—N)v—1

where a(k) = 1j_y n)(k) for k € Z and b(k) = 2k ||ug || » for k € N_y and b(k) = 0 for
k € Z\ N_y. Therefore by Young’s inequality (Theorem [21.17]),

| @Al en,

£a(N_q) < C2Ha * bHZq(Z) < CQH“H@(Z)Hngq(Z).

As [|bllgagzy = H(zjsnujum)jeN_l iy ™ llallazy = 2N 41, this finished the proof
for@ O

Remark 21.19. So again, Theorem [21.1§| gives us an upper bound of the Besov norm
of a tempered distribution u if v can be separated into smooth pieces u; for j € N_;
with certain properties which are similar to those that the Aju satisfy, although less
restrictive. Indeed, for © = 0 one may take u_; and ug to be nonzero, in LP, such that
ug = —u_1 and suppu_; = suppug C BN .A. In this case we see that the inequality
cannot be reversed as the left-hand side of is zero and the right-hand side

is not.

Corollary 21.20. Let s € R and p,q € [1,00]. Let ¢ and 1 generate dyadic partitions
of unity. Then B, [¢] = By ,[¢] and there exists a C > 1 such that

1
Llullsg o1 < lullsg 1 < Cllullzg (e s). (21.31)
In particular, || - || s o) and || - || B; ) are equivalent norms on By [].

Proof. Let (¢;)jen_, and (¢;)jen_, be the dyadic partitions of unity generated by ¢ and
1), respectively. There exist a ball B and an annulus A such that supp ¢_1,suppy¥—_1 C B
and supp ¢g, supp ¥g C A. By Theorem [21.18 @ there exists a € > 0 such that

Hu”Bg,q[@] < QtHu”Bf;,q[T/J] (ued).
By interchanging the roles of ¢ and v we obtain (21.31)). ]

Definition 21.21. Let s € R and p,q € [1,00]. We define the nonhomogeneous Besov
space By . to be equal to Bf)’q[goL where ¢ is a function that generates a dyadic partition
of unity. Often we write || - || g , for |- || [s] and without mentioning the partition of
unity, write A; for the Littlewood—Paley operators corresponding to a partition of unity.

Basically all statements that follow about the function || - || ;  are about estimations
with respect to a scalar times another function. For such statements, the choice of
partition is of course irrelevant.
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21.G. Let p € [1, 00].

(a) Let u € LP and suppose that suppu is compact. Show that for all s € R and
q€[l,], u€ By,

(b) Let u € B, , for some g € [1,00] and s € R. Suppose that supp @ is compact. Show
that u € LP.

Example 21.22. Remember that in Example we found that dy € H? if and only if
d
s < —%.

Now let us consider in which Besov space the Dirac delta, dg, lies. Using that go =1,
one has A;6p = F1(p;) for all j € N_;. Let p,q € [1,00]. Then, by (21.16) and
Exercise with the convention that % =0,

- —§(d—d) | — )
18580llze = IF M)l = 2775 NF M (@o)llee (G € No),
[A—1bollr = [|@=1] Lr-
Therefore,
§o € By, = s<—d(1—3) (¢<0o0).

. . —d(1-3) —d(1-5)—¢
So that in particular, do € Bpo " and g € By, *  forall e > 0.

Observe that for any g € [1,00] we have dou € B3, if and only if s < —%l. As the
reader may already expect from the motivation in one has B3, = H*®. The proof
of this will be given in Theorem [23.2]

21.H. Show that for € > 0 the function z — J, is continuous on Bfio but
that it is not continuous on BY .. Hint: First prove: for any f € L' and z € R\ {0},

Jim {[Taof = flloe = 2l fllzr-
This statement can be proved by approximating f by flg for a ‘large’ compact set K.

Similarly to Lemma [I12.8] Lemma [12.9] and Lemma [20.8] we have the following.

Theorem 21.23. For all oo € Ng there exists a C' > 0 such that for all s,t € R,
P1, D2, q1,q2 € [1,00], with

p22p, @ >q, t<s—d-— ), (21.32)
one has
||8auHB;;|§2‘ < Clulls;, (ue 8. (21.33)

In particular, 0% : By , — B;fqml is continuous for all s € R, p,q € [1,00] and « € N¢,
and for all s,t € R, p1,p2,q1,q2 € [1,00], p2 > p1,42 > @1,

B . — B! (t<s—d(=-21)).

pP1,q1 Pp2,q2 p1 p2
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Proof. This follows by Bernstein’s inequality, Theorem [21.15; By taking A = 27 and
using that A;0% = 0A; it implies that there exists a C' > 0 such that

- 1 1
18,;0%|ppr < C2 G2 Ajul i (we S,
Therefore

/
Hf‘)QUHB;W < Cuf tHlal+d(h — 5 (ues).

P1:92

By monotonicity of the norm || - ||ge in ¢ (see Lemma [A.8) and by monotonicity of the

norm || - ||ps  in s (see Exercise [21.D) we obtain @1.33). O
21.1. Let t € R, p,q € [1,00]. Show that for u € S, (see Definition |19.8))

S
1) 3ull oo < .

(Hint: Exercise )
21.J. (a) Let ¢ € S. Show that ¢ € B)  for all p € [1, cc].

(b) (Optional, will be proven also in the next section.) Show that ¢ € B}, for all
s € R, p,q € [1,00]. (Hint: First consider ¢ = oo and use (a) and Bernstein’s
inequalities.)

21.K. Show that the distribution |%|? is a tempered distribution which is
not in B, , for any s € R, p,q € [1,00].

21.24 (Some formal language as explanation).

Let us formally describe what Theorem means, but first give names to the para-
meters of Besov spaces. We refer to the parameters in “B; /" by calling “s” the regularity
parameter and calling “p” and “q” the first and second integration parameter. In the
literature one also says that Besov spaces are examples of function spaces with mixed
regularity.

First, let us describe what it means for an element to be in a Besov space in this
formal language. A tempered distribution u is in By, for some s,p and ¢, if Aju is
in LP for all j and ||Aju|rr cannot grow too rapidly. Take for example ¢ = oco. By
writing N for the Besov norm of u, N = ||ul|s , we see that 298| Ajul|r < N and thus
|Ajul|Lr < 2775N for all j. Now we see that if s is strictly positive, then ||Ajul|L» needs
to decrease fast enough as j increases and if s is negative, then one only allows a not too
fast growth of ||Ajul|r».

Now Theorem tells us on the one hand by taking a derivative, the regularity
parameter decreases by the number of (directional) derivatives taken. On the other
hand, it tells us that for an element in a Besov space we can increase the first integration
parameter at the cost of decreasing the regularity parameter. Also we can increase the
second integration parameter without changing the first and the regularity parameter.
The following lemma states that one can also decrease the second parameter by paying
the littlest amount of regularity.
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Lemma 21.25. For all q1,q2 € [1,00] and € > 0 there exists a C > 0 such that for all
s€R andp € [1,00]

lull gy=z < Cllullzg,, — (weS). (21.34)
That 1is,

By = Bpas:
Proof. If g1 < @2, then this follows directly from Theorem [21.23| (even in case ¢ = 0).
Therefore we assume ¢ > ¢o2. The case g1 = oo has already been treated in Exercise2I.D]
Let u € By ° and a; := ||Ajul|z». Observe that

D,q2
a2 + n—a_ g
q1 q1
Therefore, by Holder’s inequality, letting r = q‘f_‘%,

e s . q2
lull gy = 1272 jery e = ( > 2 m@ﬂaﬂ”)
jeN_

91—92 L

S( Z 2_j6q‘il—q§2) iz ( Z (2j5aj)q1>q1

JeEN_1 JEN_1
= [1277%)jen_ e [1(27%ag) jen - [lear-

So that with C' = [|(277¢)jen_, ||z~ we obtain (21.34). O

Theorem [21.23[and Lemma [21.25[imply for all s € R, ¢1, g2 € [1, 00] with g2 > ¢1 and
e>0
Bi@#}l C Bgo,qw Bgoﬂz C Bgo_;f

The following example illustrates (at least for d = 1) that those inclusions are strict, i.e.,
B’ . C B’ for go >q1 B3, € B :

00,q1 = T 00,q2) 00,q2 = T 00,41

We extend the idea behind the following example in the proof of Theorem to show
that all inclusions that one obtains from Theorem R1.23 and Lemma RT.25] are strict.
Example [21.26]| will be considered again in the next section.

Example 21.26. Let d = 1. Let (¢j)jen_, be a dyadic partition of unity such that
¢o = 1 on a neighbourhood V of 1 (so that ¢; = 1 on 27 if i = j and 0 otherwise). For
n € N, define vy, u, € S’ either by

Un = 5(0on +0_9n)  u, = cos(272"%),
or by
Un = %(52" —6-9n) Uy = sin(272"x).

Observe that for n € N,
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e Uy = Uy and U, = vy,
o Uy € L™ and ||up|[r~ =1,

e vy, = vy, and Aju, = u, if j =n and 0 otherwise for all j € N_y.
Let ¢ € [1,00], s € R. Define a,b: N — R by (L =0)
a(n)=n"1, b(n) =2""%a(n) (n e N),
so that
acll < rzq  [(2%b0)nenller = llaller  (r € [1,00]).
Because [|(2™||b(n)un || £ )nen|les = [|alles < 0o, by Theorem [21.18][(a)]

u = Z b(n)uy, exists in &,
neN

Moreover, for r € [1,00] and t € R

lullse,, = 12" Da(n))nenller
which is finite if and only if t = s and r > ¢ or t < s. Therefore

t=s,12>¢
ue B, e
ot {t < s.
The previous example can be used to explain the usage of the word “frequencies”, a
term that is used regularly in the literature:

21.27 (Formal language in terms of frequencies).

Let us consider the formal language in [21.24] with regard to Example 21.26] We can
say that the frequency of u, is equal (or proportional to) 2. Observe that A,u is a
multiple of u,, which is either of the functions cos(272"x) and sin(272"%) for n € N. It
is rather natural to call “2™” the frequency of such a u,. Formally, for general tempered
distributions u, one often says: “Aju captures the behaviour of u at those frequencies of
order 2/”. Moreover, for example in [Saw18], the support of 4 is also called the “frequency
support of u”.

With this language, the decomposition of u in terms of its Littlewood—Paley blocks
Aju, also called the Littlewood—Paley decomposition, is a decomposition of w into fre-
quency levels (or blocks of frequencies) of different (dyadic) order.

Now with this “frequency” language, one could say that u € By , if the behaviour
of u at the frequencies of order 2/ does not increase too fast (s < 0) or decreases fast
enough (s > 0).
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In Theorem [21.32] we will show that Besov spaces are Banach spaces. Moreover,
we prove another property, namely: Every bounded sequence in a Besov space has a
subsequence that converges in S’ to an element of that Besov space whose Besov norm
is bounded by the lim inf of the norms of the subsequence. Probably due to this limiting
inequality, this property is in the literature sometimes called the “Fatou property”.

In order to prove this property for Besov spaces, we first prove it for the spaces LP and
M. For that, let us recall two facts from Functional Analysis. For a proof of the following
theorem, see for example [Con90, Theorems II1.5.5 and I11.5.7]. (For the definitions of
M and C see Definition and Definition [2.29] )

Theorem 21.28. (a) Letp € (1,00] and q € [1,00) be such that %—F% = 1. Then LP is
isometrically isomorphic to (L9), the dual of LY. In particular, with (v, f) = [vf
forve LP f e LY,

[vl[r = sup{l{v, /)] : f € L9, |fllea <1} (v e LP).

(b) M is isometrically isomorphic to C), the dual of Cy. In particular, with (u, f) =
[ fdp for pe M, f € Cy,

el = sup{[{p, £ - F € Cos [ fllcy <1} (1w e M).

The other fact we recall from Functional Analysis is the separable version of Alaoglu’s
theorem. For a proof combine [Con90, Theorem III.3.1 and III.5.1] or [Rud91, Theorem
3.15 and 3.16].

Theorem 21.29 (Alaoglu’s theorem, separable version).
Let X be a separable normed space. Then the closed unit ball in X', {f € X' : || fllx < 1}
s weak*-sequentially compact.

Lemma 21.30. Letp € (1,00]. Let X be either the Banach space LP or M. If (un)nen s
a sequence in X that is bounded with respect to the norm on X, then it has a subsequence
(Un,, )meN that converges in S’ to an element u of X with

lullx < lim inf{lug,, |- (21.35)

Proof. Let 2 be either §) = L9 or ) = Cy (see Theorem [21.28)); so that X is isometrically
isomorphic to 9)’, the dual of ). Then there is a pairing (-, ) between X and ) with

lullx = sup{[(u, f) : f €D, [Iflly <1} (ueX).

Alaoglu’s theorem ensures the existence of a subsequence (uy,, )men and an element
u € )’ such that

lim (un,,, f) = (u,f)  (f€D)

m— 00
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For f € 9 we have
[, £)] = T inf | (g, S)] < i nf [, 2 .

so that ||lu|lx < liminf,, o [|tn,, |-

The continuous embedding S < 2) entails that u may be viewed as an element of S’
and that lim, o u,,, = u in §'. O

21.L. Show that the statement in Lemma [21.30|for p = 1 does not hold.

With an additional assumption on the supports of the Fourier transforms, we do
derive the same conclusion as in Lemma [21.30] even for p = 1.

Lemma 21.31. Let p € [1,00]. Let K C R? be compact. If (un)nen is a sequence in LP
that is bounded in the LP norm and such that suppu, C K for all n € N, then it has a
subsequence (U, )men that converges in S’ to an element u of LP, suppu C K, and

llullr < liminf ||u,,, ||ze- (21.36)
m—r0o0

Proof. 1If p > 1, then this immediately follows from Lemma [21.30] If p = 1 and (up)nen
is bounded in L', then it is bounded in M as (see Lemma, [2.26))

IFlle = 1fllae - (f €LY, (21.37)

(where we identified f with the distribution f which corresponds to the Radon measure
fA with A the Lebesgue measure). By Lemma [21.30|it has a subsequence (uy,, )men that
converges in 8’ to an element u of M such that (21.35) holds. As @, — u, suppu C K.

This implies u € C3°, and therefore, by (21.37)) we have u € L' and (21.36) forp=1. O

Theorem 21.32. Let s € R and p,q € [1, o0]. B, , is a Banach space that is continuously
embedded in S'. Moreover, if (up)nen S a sequence in B, , that is bounded in the B;
norm, then it has a subsequence (un, )men that converges in S’ to an element u, which
is also in B, , and

lullz;, < liminf [lu,, 5,

Proof. That Bj , is continuously embedded in S’ follows from ([21.23) in Theorem [21.18
We will prove that By , is complete after proving the “Moreover” statement.

Let (upn)nen be a sequence that is bounded in B, - Without loss of generality we
may assume that [lup|p;, <1 for all n € N. Then

[Ajunllr <277 (neN,jeN,).
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By applying Lemma [21.31] to (Ajup)nen for each j, and applying Cantor’s diagonal
argument, we find a subsequence (up,,)men of (un)neny and v; € S’ for all j € N_; such
that

m—0o0

Ajuy, — v; in &, lvjllrr < lim inf 1A jun,, || r < 275 (j e N_p).

As the support of the Fourier transform of Aju,, is in the annulus 274 (or ball B), so is
the support of v; for j € Ny (for j = —1).

As [|(2%||vj] e ) jen_y e < 1, Theorem @! 1mplies that v :=}",cn , v; exists
in §’. Observe that v; = Ajv for all j € N_j: As is continuous as a map S’ — &' for

j € N_1, we have by lettmg A_ou =0 for all u € S’,

Jj+1 Jj+1
Ajunm = A]’ Z Aiunm — A]’ Z v = Aj?] (] S N_l).
i=j—1 i=j—1
Therefore
(951
lollsg, = | (2 losles) o

< |27 tmint 130, 1)

JEN_1][pq

< lim inf
m—0o0

(2180 lr),

o = it L

To prove that By, is complete, we assume that the sequence (un)nen as above is also
Cauchy. It sufﬁces to show that with u = v as above, u,, = u in By ;. Let ¢ > 0 and
N € N be such that m,k > N implies |[ux — umllp;, <e. Let k> N. Apply the above
limiting argument to the sequence (u, — ug)nen, so that for some sequence (7, )men in
N

[|u — ukHBg,q < lirrzgio%f [ttn,, — ukHBzﬁyq <&

Then u, — u in B;,q‘ O

21.1 Comments ...

For our purposes we did not need this, but one can be a bit more specific about the
dependence of the C' in the Bernstein inequalities on k as in T heorem (or differently
said, in the statement we can interchange the “for all k € Ny” and “there exists a C' > 07),
as follows. For a proof see Exercise [25.A]

Theorem 21.33 (Bernstein inequalities). Let A be an annulus and B be a ball around
the origin in R%. There exists a C > 0 such that for all k € N and p,q € [1,00] with
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q > p and any u € S’ we have for all X > 0

1 1
supp u C AB = max 0%l e < CkJrl)\ker(?fa)HUHLp, (21.38)
a€eN
|a\:2
supp it C A = CFI\¥|ju) 1» < max 0% e < CEFIN¥||u) 1o (21.39)
aeNj
la|=k

22 ¢ Diversity of Besov spaces and inclusions

In Example [21.26] we have seen that the inclusions that one obtains from the embeddings
in Theorem [21.23| and Lemma [21.25| are strict in case p; = py = oo. In this section
we show this for general p; and ps in [1, 00] and consider under which conditions Besov
spaces are equal or included in each other.

We recall the Inverse Mapping Theorem, which is a consequence of the Open Mapping
Theorem (see for example [Con90, Theorem II1.12.1 and I11.12.5] and [Rud91), 2.11 and
2.12]).

Theorem 22.1 (Inverse Mapping Theorem). Let X and Y be Banach spaces. If A :
X =Y is a continuous linear bijection, then A is a homeomorphism.

Theorem 22.2. Let Z be a topological vector space. Let || - ||1 and || - ||2 be norm-like

functions on Z (Definition . Let
Xi={zx e Z:|z|; < oo} (i € {1,2}).

Suppose that (X1, - |l1) and (X2, - |l2) are Banach spaces, that are both continuously
embedded in 7,

X)) =2, Xzl ll2) = Z (22.1)
If X1 C Xa, then there exists a C > 0 such that || - |2 < C|| - ||1. Consequently, if the sets
X1 and Xy are equal, then || - ||y and || - ||2 are equivalent; (X1, |- ||1) and (Xa, || - ||2) are
homeomorphic.

Proof. Suppose X1 C X5. Let us write X = X;. Define || - |3 : Z — [0,00] by | - ||3 =
|- lli + I - l2- Then || - ||3 is a norm-like function and X = {x € Z : ||z[3 < co}. By
definition, the identity map (X, ||-||3) — (X, ]|-||1) is continuous (and linear and bijective).
We are done if we show that (X, || - [|3) is a Banach space, as then, by Theorem [22.1] it

follows that also the identity map (X, || - |l1) = (X, || - |l3) is continuous, i.e., there exists
a C > 0 such that || - |3 < C| - |1 and thus || - |2 < (C = 1)|| - |l1- Let (z5)nen be a
Cauchy sequence in (X, || - ||3). Then it converges in (X, || - ||1) to some limit z and in
(X2, - |l2) to some limit y. By it follows that © = y. Therefore ||z, — z||3 — 0
and so (X, || - ||3) is indeed a Banach space. O
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Lemma 22.3. Let g € [1,00]. Let a: N — R be given by (= =0)

1 ‘
“m*:Qn+n&gm+my) (n € N).

Then a € " if and only ifr > q. Let f : [2,00) — R be given by f(x) = (z(logx)?)™! (z €
[2,00)). Then, for o € (0,00), [5° f* < oo if and only if « > 1.

Proof. 1t is sufficient to show the statement for the function f as a(n)? < f on [n,n + 1]
and f <a(n)?on [n+1,n+2] for all n € N with n > 2. That f¢ is integrable for v > 1
will be clear. That f itself is integrable, follows as it is the derivative of (logx)~!. Let
a € (0,1) and choose € > 0 such that a(1+42¢) < 1. As 2 °logz — 0 as © — oo, there
exists a C' > 0 such that logz < Cz® on [2, 00), therefore

1 a 1 o 1
<x(logx)2> 2 (Cxl—i—%) = Cogali+2) (x € [2,00)).
So that f® is not integrable. -

Remark 22.4. Observe that one needs the square on the logarithm, in the sense that
(rlogz)~! is not integrable.

Theorem 22.5. Let s, 1,52 € R, p,p1,p2,9,q1,92 € [1,00] and € > 0.

(a) There exists a uw € By , such that for all m,r € [1,00] and t € R,

t<s—d(
t<s—d(

). > q,

req (22.2)

u€ B, < {

SRS
3= 3=

(b) By, = B2, = p1=Dp2,q1 = q,51 = 2.
(c)

d(L,L

o
p1<p2 = B;Mh C Bpot @>q = B, < B,

p,q2 + p,q1

S < s1—d(E— 1), < g9,
Bplar C Bpg, < p1<p2 and o (pll p12> ne
sp<s1—d(5— o), @ > g
Proof. We consider a similar setting as in Example [21.26| (although, without restricting
d to be equal to 1. Let (¢;)jen_, be a dyadic partition of unity such that ¢ := ¢g =1 on
the annulus A(1 — 2,1+ 2¢) and ¢_1 = 1 on the ball B(0, 5 + 2¢) for some £ > 0 (such
a dyadic partition of unity exists, see the proof of Theorem [21.6)). Let ¢ € C2° be such
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that suppy C A(1 —¢,1+¢). Observe that J € LP for all p € [1, 0] as @Z is a Schwartz
function. For n € Z define

Up = Unt) =27 lgnth, Uy =Ty = lond).

Then,

o up € L™ and |up||pm = 2_%HQZHLM for all n € Z, m € [1, 00] (Exercise [21.E)).
e« Forn e Nand j € N_y, pjv, = v, and Aju, is u, if j =n and 0 if j # n.
o suppl_, C 2 "A(l—¢,1+¢) C B(0,4 +¢) for all n € N.

e ForneNand j € N_y, Aju_,, =u_p if j = =1 and 0 if j € No.

@ Let us construct the u such that (22.2). Let p,q,m,r € [1,00], s,t € R. Let a be as
in Lemma so that a € ¢" if and only if » > ¢. Define b: N — R by

_n5+Ld
b(n) =2 » a(n) (n € N).
Then v := Y, oy b(n)u, exists in S’ (Theorem and
n n(t—s+d( -1 -
lull e, o = 1@ b)Yt | menller = 12" a(n) pewlor 8] -

Therefore, (22.2)) holds.
[(b)] Then, for all m,r € [1,00] and t € R

nd |~
lu-nllps,, = lu-nllzm = 2 ||l .

By Theorem I Ilgz, and || ||z~ cannot be equivalent if py # pa. Moreover, if
1-91 2,92
p1 < ps, then by the above we see that for each C' > 0 there exists an n € N such that

nd nd
|lu—nllgss = 2P1 > C272 = Cl||lu—p| g2 , so that there does not exist a C' > 0 such
P1,91 p2,92

that || - ||B;}qu <C| - HB;;%, hence B2 ¢ B! .

p1 < py = BIS);qQ 4 B;}’ql. (22.3)

Let u € By, be as in Ift > s, then u ¢ Bj,, for any 7 € [1, oq]:
s1# 52 = By # Bl
And if r < g, then u ¢ B, ,:
@ # a2 = By # By

By the above three implications we obtain @

follows by @ and Theorem [21.23| and Lemma [21.25
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@ The <= we have already seen in Theorem [21.23] Suppose

B’ C B2

P1,q1 Pp2,q2° (224)

By @ with p = p1,q¢ = q1 and s = s1 this implies either one of the following cases

{82§81—d(p11—p1 )7 ChSQQ,

P2 (22.5)
59 < 81 —d(p% - p%)a q > qo.

(22.3)) implies p1 < po. O

23 Embeddings of Besov spaces and Sobolev spaces

In this section we consider embeddings between Besov and Sobolev spaces. First we
prove that B3, is equal to the fractional Sobolev spaces H® (Definition , as the
motivation of Besov spaces 21.1] already suggested. Then we compare Besov spaces with
Sobolev spaces and consider in which of these the spaces the testfunctions are dense.

For the proof of B, = H® we use the following lemma.

Lemma 23.1. Let (¢;j)jen_, be a dyadic partition of unity. For all s € R there exist
¢, C >0 such that

c(1+16P) < 3 22pi0? < (1+1€?)” (€eRY), (23.1)

JEN_3

Proof. Let a,b > 0, a < b be such that supp pg C A(a,b). Because supp ¢y C A(a,b), we
have supp p_; C B(0, %) =271B(0,b) (as for example ¢_1 + o = l%go_l and supp p_1+
wo C B(0,b)). Without loss of generality, we may assume a < 1 and b > 1. Using that
1+2%b% < b?(1 +2%) and that 1 < 4-2% for all j € N_;, we obtain

£ esuppp; = £ € PB(0,b) = 1+ [¢* <56°2%  (j € N_y),

¢ €suppyp; = £ € PV A(a,b) = 1+[¢* > 2% (j € Ny),

§esuppp = 1+[¢* >1>27%a%

Therefore
1+ ¢ 1+ [¢]?
502227 — T T q222%i

Let A; = {¢ € R : gp?(f) > %} for j € N_;. Observe that by definition of the dyadic

partition of unity, see (21.3]) and (21.4)), it follows that

U 4,=R%

jeEN_1

£ € supp p; = (j € Ny).
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Let t > 0. Then
. —t
11+ ¢ > 11+ ¢ 5
(edj= ( sprgrr | S @€ and g T | = ¢5(9);

1+ g2’ 1+ 2\
¢ € suppp; —> ¢2(0) < ( *f’) and 2(¢) < (J’j‘)

Then, because

li—jl>2= A;NA; =suppp; Nsuppp; =0 (i,7 € N_y),

we have

L (1416R) € Y Mgy <a® (1+)¢f) (erd,

2
4(5b2) N
a2t —t ops —t
T (1HIP) < X 29 < 68 (1+ 1¢P) (€ € RY),
JeEN_1
O
Theorem 23.2. For all s € R we have
B§72 — HS,
with equivalent norms.
Proof. By the Plancherel formula (Theorem [16.27)),
lulBy, = > 227 NeiDullz: = Y 2% |wsillz:
JEN_; JEN_
= [, 2P O
jeN_1
The rest follows from Lemma 23.1] O

23.3. In particular, Theorem 23.2 implies L2 = BY,. However, there do not exist s € R,
p,q € [1,00] such that L' = B see Exercise

p,q’

23.A. Show that there do not exist s € R, p,q € [1,00] such that L' =
B - Hint: Use the property of Theorem [21.32] and Exercise 21.1] - and observe that by

Theorem the sets L' and B, , are equal if and only if the norm-like functions || - ||
and || - [| g3, are equivalent.
Theorem 23.4. Let k € Ny and p,q € [1,00]. Then
k k k
By = WP < B o,

k,
Bf,,q<—>W P — By, (s,teR,s<k<t).

More specifically:
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(a) For all k € Ng and s € R with s < k there exists a C > 0 such that
lulls;, < Cllullwrr  (uwe S pqell,o0)) (23.2)
lullpg < Cllullwes (e S,pe Lo (23.3)

(b) For allk € Ny and t € R with t > k there exists a C > 0 such that
lullyrs < Cllullp,  (we &,pqe[1,00)) (23.4)
lullwes < Cllullge  (u€Spel,00]). (23.5)
Proof. Proof of @ Let k € Ng. By Bernstein’s inequality (Theorem [21.15)) there exists

a C7 > 0 such that

[Ajulle < C127% max  |0°Ajullr  (ue S, j€No,pe[L,00]).
BeNZ:|B|=k

By Lemma (in particular and ) there exists a C' > 0 such that
1Ajulle < Collullr (v € 8’5 € Ny, p € [1,00]).
Let s € R and ¢ € [1, 00| be such that either s < k or s = k and ¢ = co. Then
M = 207 jen_, oo < oo

and thus, with C' = C1Co M,

ullps < C'(||ullrr V. max o’y < Oy, ueS, pell o).
g, < €' (Il v | max  [10%ulzr) < C'lllwns (w€ S'up € [1,00)

This implies ([23.3). If s < k, then M < [267%)),cn ||o (Lemma |A.8) so that (23.2)
holds for all ¢ € [1, 00] with C' = C1C2|[2677)7) ey, |1

Proof of [(b)] First, observe the following. Let r € [1,00] being such that 1 = % + é.
Then by Hélder’s inequality (Corollary ,

o0
lulle < D 2792 Ajullr < 1(27)jen, llerllullBs, — (uweS,aeR,pe(l, o).
j=—1

By Theorem there exists a C'3 > 0 such that
||8au||B;:1k < Cs|lulls;, (ue S aeNg ol <kpqell, o).

Let t € R and ¢ € [1,00] be such that either ¢t > k or t = k and ¢ = 1 (and thus r = 00).
Then

N =127 ) jen_,[ler < oo,
and thus for all o € N¢ with |a| < k,
10%ul|r < N(|0%u]| gr-r < CsNullg,,  (u€ S p€[1,00]).
This implies [235). If t > k, then N < [|(2=#=k)7) ;o[ so that ([23.4) holds for all
p,q € [1,00] with C' = CgH(Q*(t*k)j)jeN_lHﬂ. O]
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For p = 0o we do not only have that Bgo’l is embedded into the bounded functions, but
also into the continuous bounded functions. Moreover, we have the following statement.

Theorem 23.5. For all k € Ny

k k k
Boo71 — Cb — BOO,OO‘

Proof. That CF — Bgopo follows by the fact that W™ — B]go,oo and Cf — Wk By
Theorem it is sufficient to show the inclusions Bé“o,l C Ck. Asforu e B’O“Q1 one
has 0%u € B, ; for all a € NZ with |a| < k (by Theorem [21.23)), it is sufficient to show

ngl c Cyp. We leave the proof of this for the reader (see Exercise [23.B). O
23.B. Prove that any element of Bgo’I is (represented by) a continuous func-

tion.

Corollary 23.6. Let s € R and p,q € [1,00|. Then

S
D —geq S — Bp,q.

Proof. By Theorem D —geq S. Let k € Ny be such that £ > s. By Lemma
and Theorem [23.4]

S W — BS .

O

In Theorem we will show that D is also dense in B , in case p and ¢ are both
finite. For this we will use the following lemma.

J

Lemma 23.7. Let s € R and p,q € [1,00]. Suppose ¢ < oo. Then 375_

By, as J — oo forallu € B, .

23.C. Prove Lemma m

Theorem 23.8. Let s € R and p,q € [1,].

_1Aju — uin

(a) If ¢ < oo then C5° N By, is dense in B, .
(b) If p< oo and g < oo, then D is dense in B, .

Proof. By|[(b)]it is sufficient to prove [(a)| for p = co. But this follows from Lemma
as Aju € L> for all j € N_j and u € B, .

Let p,q < co. By Lemma @ it is sufficient to show that for all u € By ; such that
supp ¢ is compact, there exist ur € D for R > 0 such that ug B0, 4 in B -

Let u € By , be such that supp @ is compact. Then u € C5° (Lemma|17.8) and 0%u €
LP for all a € Ng' by Bernstein’s inequality (Theorem [21.15)) and because u = Z}']:—1 Aju
for some J € N_; and Aju € LP for all j € N_;. Consequently, u € WkP for all k € Nj.
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Let x and xg for R > 0 be as in Lemma [8.16] Then xgru € D and
10%(xr = 1) - 0ulls =20 (@, 5 € NG). (23.6)

Let k € Nog, k > 5. As WhP — B, , (by Theorem it is sufficient to show that

R—o0

|(xr — D)ulyrr —— 0. But this follows by (23.6]) because by Leibniz’ rule (see )
there exists a C' > 0 such that

I(xr — Dullyrs < C max max [|0%(xr — 1) - 8% 1».
BeNZ aeNg
18I<k |o|<E

O

23.D. Show that 1 € B, , if and only if either s =0 and ¢ = oo or s < 0.
Conclude: CY° C BS, , if and only if either s =0 and ¢ = 0o or s <0.

23.9 (S is not dense in B5 ). As A1 = 1, we have 1 € B5 , for all s € R and
q € [1,00]. For each ¢ € S we have A_1p € S and thus ||[A_jp — A_11||p~ = 1.
Therefore S and thus D are not dense in B3, , for any s € R and ¢ € [1, oq].

The following lemma implies that if S is dense in B, , that for all u € B, , one has
lim; 00 2| Ajul L» = 0. Observe however, that the converse is not the case: If uwe S is
such that , this need not to imply that u is in the closure of D in B, ; (even though
this is claimed to be obvious in [BCDI1I, Remark 2.75]); indeed, for p = oo this is the

case for 1, see[23.9]

Lemma 23.10. For ¢ € S

lim 27%|Aj)lr =0 (s €R,p € [1,00]). (23.7)
Jj—00
Consequently, if s € R,p,q € [1,00], u € B; , and u is the limit of testfunctions in B ,,
in other words, u is in the closure of S in By ,, then
lim 27%||Ajul|» = 0. (23.8)
Jj—00

Proof. (23.7)) basically follows because S C B, , for all 7 € R and p,q € [1,00]. The
details and the proof of the rest of the statement are left for the reader (Exercise [23.E)).

O
23.E. Complete the proof of Lemma [23.10
In the following example we will show that the inclusion W c Blgo oo Which one

obtains by Theorem is strict. Therefore, in particular L C BOO’
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Example 23.11 (W, C B’gom). Consider the setting of Example [21.26| with ¢ = oo.
Let

up = cos(2m2" %), wy, = sin(272" %) (n € N).

Then Uy := Y ,en 27y, and Wy := 3, oy 27w, are tempered distributions for k € Ny
and

t=k,r=o00

Up, W € B!, <
’ t<k

And, as 027w, = 27wu,, 027 "u, = —2ww, for alln € N,
OWiy1 = 2nUg and Uy = —27Wy in S (k € Np).

Let £ € N. We will show that L> C B’o“o’oo by showing that 0*Uy ¢ L> (remember
Lo = W0,

It is sufficient to show that O*Uj, ¢ L

loc*

0*Uy, is a multiple of Wy or Uy. Therefore, we may as well assume k = 0. Write
u=Uyand w = %Wl so that Ow = u in S'.

w is a Weierstrass function, as Hardy showed, see [Har16] (he showed that functions
of the form 37, -, a™ cos(b"7x) or 3, oy, a” sin(b"7x) for a € (0,1) and b € (1, 00) with
ab > 1 are nowhere differentiable). This means that w is a continuous function that is
nowhere differentiable.

By showing the following statement we conclude that w is not given by a locally
integrable function and therefore not in L*°:

Lemma 23.12. Let u,w € L{ _(R) and suppose Ow = u in D'(R). Then w is almost
everywhere differentiable with derivative u.

Proof. First observe that for a,b € R, a < b and ¢ € D(R), ¢ * Ljgy(x) = [} @ for
z € R and thus

(e * L) = Tap — Tow in D(R).
Choose a mollifier ¢ with 0 < ¢(z) < 1 for all z € R and let 9. for £ > 0 be as in

Definition R.11]

Let a,b € R, a < b. By Theorem [7.15 1 * L4y =0, 1}4,5 Pointwise except possibly
at a and at b, whereas 0 < 1y z) < 1 for all z € R and € > 0. By Lebesgue’s
dominated convergence theorem it follows that

b
. T - 1 7 /
/a u = /U]l[a,b] = 161&)1/% Ve * Ly 16%1@7 Ye * Ligp) E{g(w s e * Ljap))

= — lim{w, O(e * Lioy)) = lim(w, Ty — Torie) = w(b) — w(a)
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By Lebesgue’s differentiation theorem it then follows that w is almost everywhere differ-
entiable with dw = u almost everywhere, because for example

w(z + h) —w(z) 1 etk
‘ ) - u(m)‘ <+ /x|h| lu(s) —u(z)| ds (b #0).

O

23.F. Show that Uy as in Example [23.11]| does not lie in the closure of D in

k
B 00

24 ¢ Besov spaces related to other spaces

In this section we give an overview of Besov spaces and some other spaces, and of em-
beddings between them.

Definition 24.1 (Hélder spaces). Let Q be an open subset of R? and k € Ny. We write
also C*0(Q) for C*(Q). Let a € (0, 1].

e A function f: Q — F is a-Hélder continuous if there exists a C' > 0 such that
[f(@) = f) < Clz —y|* (2, €Q). (24.1)
o A function is called Lipschitz continuous if it is 1-Holder continuous.

o C%(Q) is defined to be the space of a-Hdlder continuous functions Q — F. The
a-Holder coefficient of a function f is given by

floveg = sup D ZIWI

z,yeQ:x#y |CC - y|a

C*2 () is defined to be the space of functions Q — F that are k-times continuously
differentiable for which their derivatives of order k are a-Holder continuous.

We defined CF(2) to be the subspace of C*(2) that consists of functions f for which
|| fllcx is finite. Similarly we define

Ifllora@ = Ifllor@y + D 107 flooay — (f € CHH(), (24.2)
ﬁENg:LB\:k
CP(Q) = {f € CP(Q) ¢ | f | gy < o0} (24.3)

24.2. For the rest of this section we consider @ = R¢ and write “C*“” instead of
acck,a(Rd)w'

Observe that C%! consists of all the Lipschitz functions and that for k € N, C{;H -
ot

For s € (0,00) \ N it is also common in literature to write C* for C**, where k = |s|
and o = s — |s].
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24.A. Can you classify the space of a-Holder functions with o > 1, that is,
which functions f satisfy (24.1]) for o > 17

In Definition we introduced the Sobolev spaces W*? for k € Ng and p € [1, 00].
In Definition [20.5] and [20.10] we introduced the fractional Sobolev or Bessel-potential
spaces H, for s € R \ Ny and p € [1,00]. We will now consider Slobodeckij spaces, WP
with s € (0,00) \ N as subspaces of W*P with k = |s] in a similar way as C* or C* for
a € (0,1] is defined to be a subspace of C*.

Definition 24.3 (Slobodeckij spaces). Let p € [1,00) and s € (0,00) \ N. Let k € Z and
a € (0,1) be given by

We define the norm-like function || - ||ys» : W*P — [0, 00] by

108 f(x) — 0P p v
£l = e + ([ [ 40 0))" (e,

_ old+ap
BeNd |Bl=k ‘x yl

The Slobodeckij space W*P is then defined by
WP = {f € WFP . || fllwss < 00}

Definition 24.4 (Zygmund spaces). Let s € (0,00). Let k € Ny and o € (0, 1] be given
by

kE=1s—1], a=s—k, (24.4)

in other words, k is such that s — k € (0,1]. We define the norm-like function || - ||¢s :
C* — [0, 00], by

1298 f|| -0
e =fles + Y sup MW=V lleo o oy,

BENd:| 3=k PER\{0} ||
The Zygmund space C* is then defined by
C*={f €C":|[|flles < o0},
Observe that

(Th = 1’g(x) = (Th — 1)(Th — Dg(x) = (Tr — Dg(z — h) = (Th — 1)g(=)
= g(x —2h) — 2g(z — h) + g(x).
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Definition 24.5 (Besov—Lipschitz spaces). Let s € (0,00). Let k € Z and « € (0, 1] be
as in (24.4). For p,q € [1,00] we define the norm-like function || - [|a; WP — [0, o0]
by

1
(Tn—1)208 f||2 q
ZBeNgzl,BI:k (fRd H h|h|«)i+aq Iz dh q < o0,

I(Tn—1)%0° ]I}
2 BeNd:|8|=k SUPheRrd\ (0} — JpE 4 = 00,

1fllag , = [1fllwen + (f € WhP).

For p,q € [1,00] we define the Besov-Lipschitz space A;, , to be the set of functions
k
Apg ={F € WP [ fllag,, < o0}

The Triebel-Lizorkin spaces are defined as the Besov spaces, but with the “LP” and
“¢9” norm interchanged:

Definition 24.6 (Triebel-Lizorkin spaces). Let (;);en_, be a dyadic partition of unity.
Let s € R. For p € [1,00) and g € [1, o0] we define the norm-like function [ - ||ps : &' —
[0, 00] by

lullms, = 27| Aul)jen s lleall,,  (we S,

for example, for ¢ < oo this means

[ullps, = [/ ( 3 295 Au(x )

JeN_1

Q3
s

We define the Triebel-Lizorkin space Fy , to be the set
’
Fpo={ueS :|ullps, <oo}.

Remark 24.7. As for Besov spaces, the norm of I}, depends on the choice of dyadic
partition, but the space itself does not. This is shown in [Tri83, Section 2.3.2] .

24.8. Let us summarize for which parameters we have either continuous embeddings or
equality between spaces with equivalent norms. Here, “A = B” means that A and B are
the same space with equivalent norms, i.e., A — B — A.

(a) [Txi83, p.90, (9)] Cg =C* for s € (0,00) \ N (C* is as in 24.2).

(b) [Txi83) p.90, (9)] WP = A7  for s € (0,00) \ N and p € (1, 00).

(c) [Txi83l p.88] H, = F;, for s € R and p € (1, 00).

(d) [Tri83, p.8§] Hk = WkP for k € Nand p € (1,00).

(e) [Txi83, p.89] BY; < LP — BY  for p € [1,00). (See also Theorem )
(f) |Tri83, p.89] B OO L= O — Bgo,oo. (See also Theorem 77?.)
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(g) [Mxi83, p.90, p.113] A5 =B, for s >0, p € [l,00) and ¢ € [1, oq].
(h) [T¥i83, p.90, p.113] C* = B3 for s > 0.

(i) [Tri83, p.47] B;,min{p,q} — inq — B;max{p’q}
(J) [TI'183, p60] For S1,82 € Rv P1,P2,41,92 € [17 OO]:

By (RY) =~ B;;%(Rd) if and only if s1 = s9 and p1 = pa2,q1 = ¢2 (see The-

orem [22.5)).

For p1, po < o0:
F51 (RY) = 32 (RY) if and only if 51 = so and p; = p2, q1 = qo,

forse R, p€[l,00) and ¢ € [1, o]

PLA1 P2,q2
o (RY) = B2 . (RY) if and only if s1 = 52 and p; = p2 = q1 = qo.

Observe that we can combine some of the above to obtain:

Cp=C"= B (s € (0,00) \ N),
WP =A; , =B, ,=F,, (s € (0,00) \N,p € (1,00)).
o =wk? =FF,  (keN,pe (1,0)).

24.9. In we mentioned that no Besov space is equal to L. We can generalise this
as follows: For r € [1,2) U (2,00) there are no s € R, p, q € [1,00] such that L" = By .

24.B. Let 7 € (1,00). Show that B, , = L" if and only if p = ¢ = r = 2 and
s=0. Hint: H? = L" (see [20.10)).

Remark 24.10. The proof of C* = Bg, ,, for a € (0,1) can also be found in [MS13|
Lemma 8.6] .

25 The Hormander-Mikhlin inequalities for Fourier multi-
pliers

The derivation operator 8 maps C* into C*~1ol. It behaves similar on Besov spaces as

we have seen in Theorem [21.23) namely, 0% maps B, , continuously into B;,;'a‘

In this section we consider the action of Fourier multipliers on Besov spaces, and ba-
sically show that those who behave similarly as the Fourier multiplier 0%, i.e., (27ix)*(D),
also map B, , continuously into BIS,;J‘OC'. Moreover, we can also use this to treat “inverse
derivation operators™: for example (1 — A)~! forms a continuous map from B, , into
Bf;gl. This turns out to be very useful in order to solve (elliptic) partial differential
equations, as we will see in Section (it allows us to find a solution by finding a fixed

point of a map that involves an inverse of the form (3 — A)™1).

Like Theorem [21.23] it proven by using the Bernstein inequalities Theorem [21.15
which describe the action of 3% on L? functions whose Fourier transforms are supported
within annuli and balls, we start here by considering similar inequalities for Fourier
multipliers on LP functions whose Fourier transforms are supported within annuli or
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balls. Then we use this to obtain the action of Fourier multipliers on Besov spaces and
apply this to the fractional Laplacian (—A)® and Bessel potentials (1 —A)* (see and
. A summary of the main results in this section is given at the end, without the use
of some of the introduced notation in this section, see Theorem

The first theorem is a direct consequence of Young’s inequality and describes the
action of a Fourier multiplier of a function whose Fourier transform is integrable on both
LP and Besov spaces.

Theorem 25.1. If o € C° and 0 € L', then there exists a C > 0 such that for all
s€R, p,q €[l o0

lo(D)ullr < Cllullzr  (u e LP),
lo(D)ullps, < C||U||B;,q (u€ By,

p,qa —

So o(D) forms a continuous map LP — LP and B, , — B, ,. One may take C = ||&|| 1.

Proof. The first inequality follows as o(D)u = F (o) x u for all u € &', so that
loD)ullre < ||G|lz1]|ullze- The inequality for the Besov norms follows by applying the
inequality for the LP norm to Aju for all j € N_;. O

Now we continue to consider Fourier multipliers for smooth ¢ whose Fourier transform
may not be integrable, but which satisfy some other conditions. We first turn to the action
of Fourier multipliers (D) on LP functions v whose Fourier transforms u are supported
in annuli. For these Fourier multipliers the function ¢ does not need to be defined on
the whole of R? (Definition .

For example if Q C R is open, o € C*°(Q) and u € LP, suppu is compact. Then
o(D)u = (ox)(D)u for some x € CX. So ¢ = oy is in CF. As ¢(D)u = F~ () * u,
by Young’s inequality we have ||[¢(D)ullrr < [|[F'¢||p1|lullze. Furthermore we have

|IF L8 11 = ||RF |11 = |||l 1, so that this motivates us to consider estimates of ||@| .1
first:

Lemma 25.2. Let k=2|1+ %j and r € [1,00). There exists an M > 0 such that
~ k
Igllr < M1 = A)2gll,r (g€ S). (25.1)
Moreover, for all compact K C R? there exists a C > 0 such that
|6l < Cligler (¢ € % suppé C K).

Proof. We have already used the following inequality a couple of times, but let us recall
k
it. Observe that (1 + 47%|%[?)”2 and thus the r-th power of this function are integrable
k
(Lemma [14.13). Let M = ||(1 + 472|x[>)"2||r-. Then

k
2

IFllzr = [[(1+ 42|22 75 (1 + 4x2(x[%)% fllor < M||[(1+47%|%D)2 flliee (f €S,
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which implies ([25.1)).
By the Multinomial Theorem (Theorem [20.4)) there exist ¢, € R for a € Ng with
|a| < k such that

k
2

(1+472|z|*)2 = Z Co(2miz)” (z € RY),

aENg
|| <k
and thus
(1-A)2 =Y ¢,

aGNg
la] <k

Let € = Y {|cal : @ € N¢,|a| < k}. Then, with L € [0,00) being the Lebesgue measure
of K,

k
(1 =A)2¢)r < > feal - 0%l < €L|@llcx (¢ € CF°,supp ¢ C K).
aGNg
|| <k
O

25.A. Let A, B, x and ¢ be as in Lemma [21.14} Let A be an annulus and B
be a ball centered at the origin in R?, x € C> be equal to 1 on a neighbourhood of B
and ¢ € C° be supported in an annulus equal to 1 on a neighbourhood of A.

Show that there exists a a C' > 0 such that for all r € [1, 0]
lhallzr, gallzr < CHE (o € Ng).
With this, prove Theorem [21.33

25.B. Prove the following statement: Let p € [1,00] and k = 2|1+ %|. Let
w € LP. Then there exists a C' > 0 such that

(@) <Clldlles (¥ €S).

As a consequence of the previous lemma we have the following, which is already
mentioned in the text preceding Lemma [25.2]

Lemma 25.3. Let k = 2|1 + 2|. Then there exists a C > 0 such that for all open

QCcRY o€ Ce(Q), ¢ € C such that supp ¢ C Q2 and p € [1, 0]
[(e@)(D)ullr < Cllllcrllollor suppgllulle  (u € LP). (25.2)

Proof. This follows by Young’s inequality, Lemma [25.2] and Proposition [5.3 O
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As we will consider the complement of {0} and of closed balls numerous times in this
section, it makes sense to introduce a short notation. Remember Definition [21.3

Definition 25.4. For a € [0, 00) we write

Ala,00) = {z € R? : |z| > a}.

Observe that A(0,00) = R%\ {0} and that for A > 0,

A(a,0) = A(Aa,00), AA(b,c) = A(N\b, \c) (a €1]0,00),b,c€(0,00),b<c).

We use the following functions, called Mikhlin norms, to describe the action of Fourier
multipliers on LP.

Definition 25.5 (Mikhlin norm). Let m € R, k = 2|1 + 4] and § > 0. We define
My g : CH(A(B, 50)) — [0, 50] by

Mogo)= max  sup |00 (0 € CHAW, 00)))
7 aeNg:|a|<k ze A(6,00)

Even though 9, ¢ is only a norm on the space {0 € C¥(A(6,00)) : M, o(0) < 00}, we
call M, 9 a Mikhlin norm.

We will also write “O,,,” instead of “9M,, 0"

Let 0 € C*(A(f,00)). Then we observe the following facts.
(a) My, 0(0) < oo if and only if there exists a C' > 0 such that
0% ()| < Clz|™™ 10 (2 € A0, 0),a € N, |a| < k). (25.3)
Moreover, if M, o(0) < oo, then is valid for C' =M, 9(0).
(b)
Mya(o) <Myo(0) (a>6). (25.4)

(c)
Ma(ro) = XMy ra(0) (A >0,a > 9). (25.5)
(d) If & > 0 and IM,;, (o) is finite for some a > 6, then M, (o) is finite for all b > 6
(we view C*(A) as a subset of C*¥(B) if B C A).

Example 25.6. (a) For all B € N¢ we have M,,(x°) < oo if and only if m =
—|B], and thus 9M_,(P) < oo for n € Ny and P being a polynomial of the form
ZaeNg7‘a|:n CcoX® for some ¢, € F.

(b) M, 1(y) < oo for m € R and ¢ € S, as every derivative of ¢ is of rapid decay.
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Now by the previous lemma we obtain the following inequalities for Fourier multipliers
acting on LP functions whose Fourier transforms are supported in annuli.

Lemma 25.7. Let m € R. Let A be an annulus in R®. There exists a C > 0 such that
for all p € [1,00], A > 0 and all 0 € C°(R?\ {0})

supp@ C M = [|o(D)ullrr < CMpm(@)N ™ ullr  (we LP).  (25.6)

Moreover, if a > 0 is such that A C A(a, ), then there exists a C > 0 such that for all
p€[l,00], A >0 and all 0 € C®(R?*\ {0})

supp @ C M = [[o(D)ullr < CMmra(@A ™ ullr  (u € LP). (25.7)

Proof. 1t is sufficient to prove the “Moreover” statement because M, rq(0) < My, (0)
for all A > 0 and o € C®°(R%\ {0}).

Step 1 Let us first argue that it is sufficient to consider A = 1 only. Let A > 0 and
u € LP be such that suppu C AA. Then suppl @ C A and thus supp ]-"(l%u) C A. Let

us write v = l%u so that u = [ v. By Lemma (119.2)

loD)ollze = [a[(ro)D)ulll e = A~ [[(1r0)(D)ul| e,

d
[ollzr = [[Lrullr < Av[luliLe.

Therefore, if (25.6)) holds for A = 1, we can apply it to v and then obtain (25.6)) for any
A > 0 because My, (Ino) = A7, (0), see (25.5).

Step 2 Let b,c,d > 0 be such that a < b < c < d and A= A(b,c). As A C A(a,o0),
we have a < b. Let ¢ € CZ° be such that ¢ =1 on a neighbourhood of A and supp ¢ C
A(a,d). Then o(D)u = (0¢)(D)u forallu € &' with suppu C Aand all ¢ € C5°(R4\{0}).
By Lemma we can conclude the existence of a C' > 0 such that by observing
that for all 8 € N¢ with |3| < k we have

sup  [0°0(&)] < Mmalo) sup [¢7P (0 € CRRE {0})),
£Esupp ¢ £€eA(a,d)

and that MaX gend |5 < SUDgE A(a,d) €]~ 18l < . O

25.C. Let A be an annulus and k € Ny. Show that there exists a C > 1 such
that

sup ¢ 18l < ¢lm (B eNd |8 < k).
(e A

From this conclude the slightly more general statement than the one of Lemma [25.7]
(similar to Theorem [21.33] see also Exercise [25.A)): Let A be an annulus in R?. There
exists a C > 0 such that for allm € R, p € [1,00], A > 0 and all o € C°(R?\ {0})

supp C A = |lo(D)ul|r < CH™ION,, (0)A™|u) o (u € LP).
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By these inequalities we obtain the following action of Fourier multipliers acting on
elements of Besov spaces whose Fourier transforms are supported away from the origin.
For this we introduce the following notation:

Definition 25.8. Let A ¢ R?. We write
Sy ={ueS :suppu C A}.
Theorem 25.9. Let m € R and € > 0. Then there exists a C > 0 such that for all
s€R, p,ge[l,x], and o € C’SO(Rd \ {0})
lo(DYull i < CMon(o)ullmy, (€ Byy N Sl (258)
In other words, o(D) forms a continuous operator
Byg NS0 = Bpg™ N Si(e0):

Proof. We can consider a dyadic partition of unity (¢;);jen_, such that for the correspond-
ing Littlewood—Paley operators (Aj)jen_, one has 37y, Aju = u for all u € 81’4(5 00)"

By Lemma m (applied with A an annulus that contains the support of ¢g) there
exists a C' > 0 such that

2jm||U(D)AjuHLp < CM (o) ||1Aju|| e (j € No,u e By, N 51/4(2700)).
As 0(D)Aju = Ajo(D)u, (25.8) follows. O

Remark 25.10 (Homogeneous Besov spaces). The statement of Theorem is rather
ugly as one has to take the intersection with &’ c.00)- Lhis requirement is done so that
one only has to deal with the Littlewood-Paley blocks Aju for j € Ny, that is, those of
the form ¢;(D)u, where ¢; = l5-;¢. Let us define ¢; = l5-;¢ and Aj = ¢;(D) for j € Z,
so that ¢; = ¢; for j € Ng. Analogously to the definition of nonhomogeneous Besov
spaces, one defines homogeneous Besov spaces B;’q for those tempered distributions

for which limj_, Z;’-’;f J Aju = u in &’. We will not introduce these spaces but want
mention that the inequality in (25.8) holds for all u € B;’q.

A typical example of such a Fourier multiplier is the fractional Laplacian. For that,
let us first show that the corresponding Mikhlin norm is finite.

Lemma 25.11. Letl € R and 8 € Nd. Then
Mu(x]) <o = m=—1l, Mu(x°|x]") <00 <= m=—(+]|8]).

Proof. First we observe that for & = 0 we have

[l 0% (27 x| = ™ x| L
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The supremum over R?\ {0} over this function is finite if and only if m = —(I + |3]).
Let i € {1,...,d}. Then

d d 1 _
el = e = e e (e RY), (25.9)
and thus (on R\ {0})
0 (2P x|") = gixl e x|t + 1xPte x| 2, (25.10)

By induction it follows that 0%(x”|x|') is a linear combination of functions of the form
x7|x|® with v € N¢, a € R such that a+|y| = [+|8| —|a|. Therefore |x|/®F™.|0%(x%|x|")|
is a bounded function for all a € N& if m = —(I + |3]). O

Corollary 25.12. Let s,t € R, p,q € [1,00]. For all € > 0 the fractional Laplacian
(—=A)® forms a homeomorphism

t t—
B,,N 52(5,00) — B, N Sg(syoo).

Proof. The continuity follows by Theorem [25.9] and Lemma [25.11] That it is a homeo-
morphism follows from the fact that (—A)™* is the inverse of (—=A)® on & O

(g,00)"

One of the other main examples that we will consider is the Bessel potential (1—A)® =
(1 + |x[?)*(D). We have seen that 9,,(|27%|*) is finite if and only if m = —s, but
M, (1 + |x[?)® is infinite for all s > 0 and m € R (because (1 + |x|?)* equals 1 at 0).
However, as we will see, M _o; o((1 + |%|?)*) is finite for all 6 > 0.

Theorem 25.13. Let m € R and o € C3°, My, 1(0) < oo. Then there exists a C > 0
such that for all s € R, p,q € [1,00],

lo(D)ullgosm < Cllullp;, — (ue B,). (25.11)
p,q

In other words, o(D) forms a continuous operator By, — B;:tm.

If additionally, @ € L' and m > 0, then there exists a C > 0 such that for all s € R,
p.q € [1,00],

1) D)ull gsem < Cp™™ vV Dullpg,  (u€ By

5 g 11> 0). (25.12)

Proof. Besov norms corresponding to different dyadic partitions of unity are equivalent,
we may as well consider a dyadic partition of unity (y;)jen_, such that suppyy C
A(2,0). By Lemma (applied with A C A(2,00) such that suppgy C A) there
exists a C1 > 0 such that

2jm”(luo‘)(D)A]’UHLp < C1My, 05 (1uo) | Ajul| e (n>0,0€C,j€Ng,ue S).
(25.13)
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Let x € C2° be such that yp_1 = ¢_1 and thus x(D)A_; = A_; and o(D)A_; =
(ox)(D)A_1. Then by Young’s inequality

loDA_tullr < [F o)l lA wullee (o€ CFues). (25.14)

By (25.14) and (25.13) for u = 1 we obtain (25.11)), because IM,,, 9 (c) < My 1(0).
Let o € C7° be such that 7 € L' and assume m > 0. Then, (see also Theorem [25.1)

1) D)Ajull e < (1351 L1 | Ajulle < (|G| [[Ajulle (1 >0,j €NojueS).
(25.15)

By this we may as well assume m > 0. Then it is sufficient to show that there exists a
C > 0 such that

20™|(1,0) (D) Ajul| Lr < Cp™ ™| Ajul| Lo (ue S, jeNy,u>0). (25.16)
By the observations in Definition [25.5
M, 21 (1u0) = p~" My 03 (0) < "M i (o) (=277, 5 € No).

As for ;1 < 277 one has 2/™ < ;=™ by ([25.13)) and (25.15)), for all ;& > 0,

im WM 1 (0) | Ajul| e if > 27, )
W|wamAwmm§{_mA A ulr A2 27y,
pmM el llAgulle i p <2
So that ([25.16)) follows (with C' = 9, 1(0) V ||&||11). O

One can formulate the condition M, 1(c) < oo for smooth o differently:

Lemma 25.14. Let m € R, k =2|1+ gJ and o € C*®. Then My, 1(0) < oo if and only
if there exists a C > 0 such that

0% (z)] < C(1+|z))™™ 1 (z e RY a e N, |a| < k). (25.17)
Proof. As
1
SAtle) <lal <14zl (@eRY[2[>1),

by observation [(a)| of Definition we have My, 1(0) < oo if and only if there exists a
C > 0 such that

0% (z)] < C(L+ |z))™™ 7 (zeRY|z| > 1,0 e NG, |o| < k). (25.18)

Let us show that (25.18]) is equivalent to (25.17)).

As1 <1+ |z| <2forall z € B(0,1), there exists an C1 > 0 such that

1< (14 [z)) ™ (2 e B(0,1),0 € NZ, |a| < k).
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As o is smooth, its restriction to B(0, 1) is bounded in C*-norm, i.e., Cy = lollex o)) <
co. Then

0% ()| < Cyp < C1C(1 + ||)~™ I (x € B(0,1),c € N, |a| < k).

This shows that ([25.18]) is equivalent to (25.17]). O

25.15. The previous lemma can be used to prove the following (Exercise [25.D|): For all
o € C° there exists a mg € R such that My, 1(0) < oo for all m € R with m < my.

25.D. Prove the statement in |25.15

Lemma 25.16. Leta,b,l € R, a >0, f € Ng. Then
M1 (27211 + [%])?) < 00 = m < —(|B| + 1+ ab).
In particular,
M_ap1 (1 4 [2]*)°) < oc.
Proof. For x € R, |z| > 1 we have |z|* <1 + |z|* < 2|z|* and thus

sup |z[™ - [ 2] (1 + [2]*)"] < 00 = m < ~(|] + 1+ ab).

x€R?
|z[>1

Let i € {1,...,d}. Then, see (25.9)),
d

.y (1+ |24 = b1 + |2 - a2 (z € RY).

Therefore, by (25.10) (on R?\ {0})
0;x”|2[' (1 + |%])" = Bix" = |2 (14 |2|")” + 1277 72 (1 + [x])°

+ axPrei x| 2p(1 4 |x|4)b L

By induction it follows that 0%(x?|%|'(1 + |%|%)°) is a linear combination of functions of
the form (x7|x[¢(1+4|x|*)9) with v € N4, ¢, d € R such that |y|+c+ad = |3|+1+ab—|al.
Therefore |x[1*1=710%(x8|x[ (1 4 |%|*)®)| is bounded for all o € N if m < —(|B| +1 +
ab). O

Corollary 25.17. Let s,t € R, p,q € [1,00]. The Bessel potential (1 — A)® forms a
homeomorphism

t t—2s
Bpaq — prq :

Proof. This is a consequence of Theorem [25.13] and Lemma [25.16] O
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We summarize the different inequalities that we have obtained, but without the intro-
duced notations M., y and A(a,c0) (however, incorporating the scaling properties that

one obtains via for example (25.5))).
Theorem 25.18 (Hérmander—Mikhlin inequalities). Let m € R.

(a) (Lemma [25.7) Let A be an annulus. Let 0 > 0. Let o € C®(R%\ {0}) and suppose
that there exists a M > 0 such that

0% ()| < Mlz|7™ 1l (2 e R%, |z| > 0,0 € Nd, |a| < k). (25.19)
For all A\g > 0 there exists a C > 0 such that for all p € [1,00] and A > Ao

suppt C AA = |[({u0)(D)uljrr < Cp™ ™A ||ul|1r (u € LP).

(b) (Theorem [25.9) Let m € R and € > 0. Then there exists a C > 0 such that for all
seR, p,ge[l,00], and o € CSO(Rd \ {0}) such that (25.19) holds for 6 =0,

|Guo) DYl gyt < Cp gy, (1> 0,u € B, suppn B(0,e) =)

(c) (Theorem [25.13)) Let o € C5° be such that (25.19) holds for some 6 > 0 or equival-
ently, such that there exists an M > 0 such that

0% (z)| < C(A+|z))™™ 7l (z e RYa e NE, |o| < k).
Then there exists a C > 0 such that for all s € R, p,q € [1, 0],
loullpsom < Cllulss, (e By,).
d) (Theorem [25.1)) Let o € C° be such that ¢ € L'. There exists a C > 0 such that
P
forall s € R, p,q € [1, 0],

lo(D)ullg;, < Cllullsg,  (u€ By

(¢) (Theorem [25.13) Let m > 0 and o € Cp° be such that o € L'. Then there exists a
C > 0 such that for all s € R, p,q € [1,00],

| L) D)ull i < O™V Dllullpg, (€ By >0).

Let us apply Theorem [25.18 @ to the heat semigroup. We consider this semigroup
later on again to find solutions to the heat equation.

Definition 25.19. For ¢t > 0 let h; : R — R be the Schwartz function (as in Ex-
ample |11.15)) given by

hi(x) = (47rt)*%e*i|x‘2 (x € RY).
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We define H; : 8" — S’ by
Hyu=hy xu (ued),

and Hy : 8" — S’ to be the identity map, Hou = u. The collection (Ht)sc[0,0) is called
the Heat semigroup, in the sense that

25.E. Show that (Hy)ic[0,00) is a semigroup, i.e.,

HiHsu = Hyo Hou = Hyysu (s,t €]0,00),u €8).

As the convolution of a tempered distribution with a Schwartz function is a C3°
function, Hyu is smooth for all ¢ > 0. By the following theorem it follows that if u is in
LP, then Hyu is in the Sobolev space W*P for all k € Ny. Moreover, if u is in a Besov
space By , for some s € R, then u is in th),q for all t € R.

Theorem 25.20. Let s € R, m >0, k € Ny, p,q € [1,00].

(a) There exists a C' > 0 such that
k
[Hefllwrr <CE 2V flle (f € LP2>0).

(b) There exists a C > 0 such that

|Houl g < CEV Dullp,  (ue B

ot > 0).

25.F. Prove Theorem [25.20, (Hint for Show that 9%h; € L' for all

o € Ny by showing that y — |y|"e¥I" is integrable for all n € Ny; either by showing
that (14 \y[z)"e*‘y|2 is a Schwartz function or one can use that the gamma function T" is

finite everywhere (Definition [11.22)). Hint for [(b)): Example 25.6])

25.1 Comments ...

In this section we have considered Fourier multipliers of smooth functions on R?\{0}. The
Mikhlin norm 90, ¢ is however defined for C* functions on A(f, c0). One can actually
also consider Fourier multipliers corresponding to such C*(A(6,c0)) functions. Let us
comment on “taking k € Ny instead of k = 00” and on “6 > 0 instead of § = 0” separately.

First of all, instead of taking smooth functions one may take C* functions basically
because of Exercise [25.B} For v € &’ for which there exists a C' > 0 such that [(v, )| <
Cll¢llk,s One can show that if o € CF = U,,en, Ck,, (see Exercise [14.E)), that is, there
exists an m € Ny such that g (o) < oo, then

p = (v,00)

defines a tempered distribution, which we call ov. Then, by Exercise for any u € LP
we have ot € 8’ and so we may define o(D)u to be the tempered distribution F~!(o@).
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Similar as in Definition one may extend this definition in case o is only C’{; on a
neighbourhood of the support of u. The arguments in this section do not depend on the
smoothness of o, well, only in terms of the Mikhlin norm, which only requires o to be
C*.

Consider the situation as in Lemma but with o € C*°(A(f,0)) for some 6 > 0.
Then o(D)u may not be defined for all A > 0 (and v € LP with suppu C A\A), as \A
needs to be a subset of A(#,00). We have AA C A(#,00) for A > Z if a > 0 is such that
A C A(a,00). The following lemma is an extension of Lemma which entails this in
its premise.

Lemma 25.21. Let m € R. Let A be an annulus in R%. Let 6 > 0 and a > 0 be such
that A C A(a,00). There exists a C > 0 such that for all p € [1,00], X > % and all
o€ C>®(A(h,x))

suppt C AA = |lo(D)ullrr < CMpy 2o (o)A ||uf| 2r (u € LP). (25.20)

Proof. For § = 0 this is the “Moverover” statement of Lemma Let 6 > 0. Let
r > 1 be such that A C A(ra,00). Let x € C°(R?) be equal to 1 on A(rf, 00) and
suppy C A(#,00). Then o(D)u = (ox)(D)u for 0 € C*®(A(h,00)) and u € S’ with
suppu C A(rf, o), which is the case if suppu C A\A for A > %. As there exists a € > 0
such that My, xq(x0) = My ra(0) for A > g we obtain ([25.20)) by (25.7)). O

Remark 25.22. We called the inequalities in Theorem [25.18] Hérmander—Mikhlin in-
equalities as they are closely related to what in literature are called the Hérmander—
Mikhlin multiplier theorems, see [Sha66] for example, or [Mic57] (in Russian) or [H60)
for the work of Mikhlin and Hérmander. As unfortunately happens with names from
languages with different alphabets, we also found instead of Mikhlin the names Michlin
or Mihlin.

The theorems of Hérmander and Mikhlin deal with the case m = 0. See for example
also [HYNVW16|, Theorem 5.5.10] (which looks again a bit different). We decided to call
the norm the Mikhlin norm as that seems to align with the literature and it seems that
the Hormander and Mikhlin statements are slightly different.

26 Products of tempered distributions

For functions f,g : R? — F their product fg (or f - g) is the function RY — F defined
by fg(z) = f(x) - g(x) for x € R%. We defined the product of a smooth function with
a distribution in Deﬁniti and the product of a Cp° function with a tempered
distribution in Definition [15.3|in such a way that they extend the product of functions:
if f € Ll and ¢ € &, then the product of the testfunction with the corresponding
distribution tuy equals the distribution uys that corresponds to the product of the
functions f and v (similarly this equality holds in & if f € L] is such that uf € S" and

b € C).
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In this section we investigate for which distributions one can make sense of their
“product”. It would make sense to call an operation x : &' x & — &’ that extends the
product C5° x S — &, (o,u) — ou a “product” if it is continuous in both variables,
commutative and associative.

However, such an operation does not exist and so we may only make sense of a kind
of “product” for certain pairs of (tempered) distributions.

First of all, let us observe that there does not exist an operation x : &’ x &’ — &'
that extends the product map

Cr xS =S8, (o,u)—ou, (26.1)

and is continuous in both variables, as then, dy X dp by some approximation argument
would be the tempered distribution that is equal to the Fourier transform of 1 % 1 (by
the continuity of the product and the Fourier transform), which is not defined (or, if one
wants, is infinity everywhere). On the other hand, let u be defined as in Exercise
see also Exercise [[5.Bt

h T ( )
:= lim — dz p e S(R)).
U(SD) é}w \Led] ( ( ))

Then xu = 1, 1§y = dy and %)y = 0, and Ou = 0. By means of these identities let us
show that there does not exist an operation x : &' x &’ — &’ that extends the product
map ([26.1) and is commutative and associative, that is,

P X u=Pu (Y eCrued),

UXV=0vXu, (uxv)Xw=ux(uxw) (u,v,w € §).
If x were such an operation, then we would have

3€><(u><50):(36><u)><60:(3€u)><50:]l><50:ﬂ§0:50,
XX (uxdy)=ux(xxd) =ux(xd) =ux0=0u=0.

We use the decomposition of tempered distribution in terms of Littlewood—Paley
blocks as a starting point to define a product on a class of pairs of distributions. Let A;
for j € N_; be the Littlewood—Paley operators as in Definition [21.12] (for a given dyadic
partition of unity). For u,v € §’, by Lemma we have

u = Z Au, v= Z A,
i€EN_1 1€EN_1
Let us write “-” also for the product between functions, so that Aju - Ajv is (Aju)Ajv
(we do not want to write A;uA ;v as this can be read as A;(uA;v)). For those tempered
uw and v such that

> A Aju (26.2)

1,j€EN_1
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exists in &’ (for the summation notation see , one could call the tempered distribu-
tion a “product” of v and v. A priori it is not clear whether this product agrees
with fg, or better said, us, using the notation as in if u and v are represented by
locally integrable functions f and g, respectively; i.e., v = uy and v = uy.

In this section we introduce a certain product on tempered distributions, and call
it the Bony product. In Section [27] we consider this Bony product between elements of
Besov spaces, here we it between Cp° functions and Schwartz functions (Theorem
and between Cp° functions and tempered distributions (Theorem and show that
in these cases the product agrees with the pointwise product and with the product as
defined in Definition Moreover, we show that the Bony product between a function
in LP and a function in L? for p and ¢ such that % + % = 1 is equal to the product of the

two functions, which is an L! function by Hélders inequality. Finally, in Example
we given examples of locally integrable functions which represent tempered distributions
for which their Bony product exists but is not equal to their product as functions (the
pointwise product).

Definition 26.1. Let ¢ generate a dyadic partition of unity (¢;)jen_, and A; = ¢;(D)
for j e N_;. Let u,v € §'. If

J
Z Alu . Ajv

ij=—1
converges in & as J — oo, then we say that the p-Bony product of u and v exists and
write u e, v or v e, u for the limit and call it the p-Bony product of u and v, i.e.,

J
U,V = Jlim Z Aju - Aju.

—00 . 7
t,j=-1

If for all v that generate dyadic partitions of unity the ¢-Bony product of u and v exists
and u e, v = u ey, v, then we say that the Bony product of w and v exists and call it the
Bony product of u and v and write u e v instead of u e, v.

The Bony product can be viewed as a bilinear operation in the following sense:

Lemma 26.2. Let ¢ generate a dyadic partition of unity. Let u,v,w € §" and A € FF.
(a) Ifue,v and w e, v exist, then (u+ w) e, v exists and
(u+w)e,v=ue,v+we,uv.
(b) If ue,v and u e, w exist, then u e, (v+ w) exists and
ue, (V+w) =ue,v+ue,w.
(c) If ue, v exist, then (Au) e, v and u e, (\v) exist and

Mu e, v) = (Au) o, v+ u ey, (Av).

Proof. The proof is straightforward and left to the reader. O
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We have already seen that 3772 ;1 Ajo = ¢ in S for ¢ € S and that 3°72_; Aju = u in
S’ for u € &', see Lemma We consider some similar convergence for Cp°, that we
will use for the Bony products of such functions with Schwartz functions and tempered
distributions. We state this convergence in Lemma as a consequence of the following
convergence of mollifiers of C5° functions.

Lemma 26.3. Let ¢ be a Schwartz function with [ = 1. Let v = 31 for e > 0. For
all n € C’go and m € Ny there exists a k € Ny such that

el0
(Ve 1 = 1) <% 0.
In particular, if n € Ny is such that qmn(n) < 0o, then it suffices to choose k =n+ 1.
Proof. As 0%(pe * 1) = e * (0%n) and 9%n € Cg° for all a € N¢ and 7 € Cpe, it is
sufficient to prove that for all n € C7° there exists a k € Ny such that
_ 10

(e % = m) (1 + %) * | == 0. (26.3)
Let n € Nd be such that n(1 + |%]?)™" is bounded. Let M = ||n(1 + |%/?)™"||z~ and
N = [|i(1+ |%])?)"| ;2 V 1. As

L+ [2)" <201+ —y)"(L+ 2" (2,y € RY,

for € € (0,1) we have

(e % m)(1 + %[*) (|0 = sup / el = y)n(y) (1 + =) dy
zeRd JRE

< suwp [ (o —y)(1+ o =y nw)1+ ) " dy
z€Rd JR4

= (e (1 + [x[*)") % (n(1 + |2]*) ") || oo
< e (14 (2™ prlIm (L + [2[*) ™[ 2o
< M|+ %)) |0 < MN,
where we used that (1 + |%[*)" < (1 + [Z*)" for all € € (0, 1).
Let d,¢ € (0,1). Let R > 0 be such that 2M N(1+ R?)"! <e. Let k =n + 1. Then

(e —n) (1 + |%[*)F|| oo

< sup (e () — @)1+ [2*)7F]
2€B(0,R)

+ (1 R (1@ m) (1 227z + (1 + %)™ 1)
< sup e xn(z) —n(x)| +0.
z€B(0,R)

174



By Theorem @

el0

sup e *n(z) —n(z)| — 0,

2€B(0,R)

so that we conclude (26.3]). O

Lemma 26.4. Let ¢ generate a dyadic partition of unity (¢;)jen_,. Let Aj = (D) for
J€N_1. Let n € Cp°. For all m € Ny there exists a k € No such that

i Z Ajn =) 225 0.
Jj=—1

Proof. For 1 = F~1(p_1) we have 23—71 Ajn = »7:71(2]—71 @j)xn =15_;.10*n (see
(21.10)) and [¢ = [ @_1 = ¢_1(0) = 1. Therefore this follows by Lemma [26.3] O

Theorem 26.5. Forn € Cy° and ¢ € S, ney exists in § and
np=ney  (neECT YES).

Proof. Let ¢ generate a dyadic partition of unity (¢;)jen_,. Let A; = ¢;(D) for j € N_;.

It is sufficient to show Z”——1 Ain-Ajp = mpin S as J — oo. This follows as

J J J J
S Am- A= (3 Am—n) Y Agn- (Y Aw—v). (264)
ij=—1 i=—1 i=—1 j=—1

The second term converges to zero in & by Lemma [21.9] For the first term we use
Lemma Let m € Nyg and let C' > 0 be as in (14.5). Then for all £k € Ny

qm,k( zJ: Ajn — 77)-

m+k,S j=-1

< C sup
IeEN_,;

> A

i=—1

RSN

i=—1 i=—1

m,S

As Z‘j]:,1 Ajp — 4 in S, the supremum sup;cy_, Ziqu Ai¢)’m+k8 is finite for all
k € Ng. By Lemma there exists a k € Ny such that

qm,k( ZJ: Ajn — 77) T2,
j=—1

from which we conclude that the first term on the right-hand side of (26.4]) also converges
to zero in S. O

The following auxiliary lemma will be used for Theorem in which we consider
the product of C7° functions with tempered distributions.
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Lemma 26.6. Let ¢ generate a dyadic partition of unity (¢;)jen_,. Let A; = (D) for
j € N_q. For all m € Nqy there exists a k € Ny and a C > 0 such that

H Z Aﬂ/}HmS < ClY|k,s (F C N_1, F is a finite set,y € S).
JEF ’

Proof. By Lemma [I4.7], by Lemma [21.8 and the continuity of the Fourier transformation
in S there exist Cq,Cy,C3 > 0 and k, [l € Ny such that for all finite subsets ' C N_; and
Yves

|2 a5, s <ol 2 o], < e Z e
JjeEF ’ jeF ’ JEF

< C1CRCs ||y

Ml

1S

Theorem 26.7. Forn e C° andu € §', neu exists in S’ and
n=neuinS'.

Proof. Let ¢ generate a dyadic partition of unity (¢;)jen_,. Let A; = ¢;(D) for j € N_j.
We have to show that

J
(3 A 2w} £ i) (wes) (265
ij=—1
Observe that (nu, ) = (u,n) and
J J J
ij=—1 j=—1 i=—1
Hence it suffices to show E}-]:_l Aj(E;-]:_l Ain-1) — np in S. Observe that

J J J J J
> Aj( > Am-@b)—mﬂ: DTN Am-yp) = D> Am-

j=—1 i=—1 j=—1 i=—1 1=—1

J
+ Z Ain - —mp. (26.6)

i=—1

By Lemma and Lemma it follows that 337 | A1) — n-1 in S, and by those
lemmas and Lemma it follows that

ZJ: Aj<< zj: Am—n)-iﬁ) — 0.

j=—1 i=—1
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Now we turn to the product of LP functions with L? functions, in case % + % =1. As

before, we first consider the convergence of the partial sums Z;I:_l AjfasJ— ooin LP
for f € LP. For this we adapt Theorem [7.15][(d)}

Lemma 26.8. Let i € C(RY) N LY(RY). Let p € [1,00). Write . = I*¢ for ¢ > 0.
Then, for any f € LP(R?)

verf = ([0f. (26.7)

Proof. Let x € C.(R%) be equal to 1 on a neighbourhood of zero. Write yr = l1 x for
R > 0. By Theorem n@ we have

&40,
Z(Yxr) * L/wXRf” -
By Young’s inequality we have

1@ = xr)) * fllr < (0 = xp)[2 1 fllze (> 0).

As both [|[¢(1 — xgr)|| 1 L2, 0 and Jioxr — s [, and

~(f w\)m < 26— xm)) * fllue

s+ £ = ([oxwf| |+ oxwr - ([ or

< 1@ — x)llza £ l1s
+zwxn) s £ = (foxws| |+ oxn) = ([ 0)]I71.

we conclude ([26.7)). O

Lemma 26.9. Let p € [1,00). Let ¢ generate a dyadic partition of unity (¢;)jen_,. Let
Aj=¢;j(D) for j € Noy. Then 3332 | Ajf = f in LP.

Proof. This follows from Lemma [26.8] similarly as in the proof of Lemma O

Theorem 26.10. Let p,q € [1,00] be such that

S4-=1.
P g

Let f € LP and g € L9. Then fg € L' and f e g exists in L' (and thus in S’) and
fg=fegin L.

. . . / _
Or, more precisely, uy ® ug exists in S" and upy = uy ® ugy.
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Proof. Without loss of generality we may assume ¢ < oo (otherwise one has p < oo and
we can interchange roles). We have

ZAfZAJg fg

1=—1 Jj=—1

<> ay

i=—1

I1

ZAJQ g

j=—1

z:Af f

i=—1

lgllza s

Lr L4 Lp

which converges to 0 as J — oo by Lemma and by Lemma [21.9] (in particular
@1.13)). 0

Example 26.11. Consider d = 1. Let f,g: R — R be given by

1 )52 x>0 1 Jo x>0
= 2 = ﬁ ’ = R -7 ER
o) = {0 SEFCEE= RS SN

Then both f ang g are locally integrable. fg = 0 everywhere but, as we will show, f e g
exists in &’ and

feg= géo. (26.8)

Indeed, let ¢ € S, ¥ = ¢¥(—%) and [ = 1 and write ¢, = [2). It suffices to show (see
for example the proof of Lemma [26.4])

(wa*f)'w}a*g)ﬂg&) in S’

For h € L] . one has

we*h:/Rs_d@Z)(g x—y dy-/vﬁ h(x —ez dZ—w*lh() (z € RY).

Therefore, for ¢ € S (the convergence follows by Lebesgue’s dominated convergence
theorem, as ¢ is bounded)

(e s 1) Werg)0) = [ (e x Nt = 9)(@)p(a) da

= [ (] vts@—ey ) /R b)g(r —e2) dz)p(a) da

-/ (] w(y)f(ew—sy) a)( | w<y>g<sw—sz> dz)p(ew) du

AV / v

=40, / / U(y /w Jl_iwdz) dw
1

/w/w/ﬁﬁ
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Now, for all y,z € R, z > v,

| 1 =y 1 1
/ dw = ——— dw
y VW —y+\z—w 0 Jwyz—y—w

/1 1 1

= ———— duw,

0 Vw+1—w

which equals 7; the latter equals the Beta function evaluated in (%, %), which equals

152
LQ” _ o (see for example [AAR99, Section 1.1], and see Definition |11.22| for I'). By
using that 1) is symmetric, i.e., ¥ = R, we have

(1)
L) [ ez ay= [vw) [ ) azay

and as [p 1) [z ¥ = 1, the above integrals equal 3 and thus

(e 1) - (e %9).9) =5 Z0(0) (0 € S),
ie.,
(e J) - (% g) = Sd0.
We conclude (26.8).

26.1 Comments...

The statements in this section are similar to those of Johnsen [Joh95], though different
tools are used for the proofs. Moreover, the statements differ slightly in the sense that in
this section we have considered the Bony product in &', whereas [Joh95] only considers
it in D'. [Joh95L Theorem 3.8] considers a more general statement than Theorem
Instead, f € LY g€ LL _ and %—l—% < 1. It is shown that fg = fegin D', and moreover

loc? loc
that the product is in Lj ., with r € [1, 00] being such that % = % + %.

For a more comprehensive reference on products of distributions we refer to the book
by Oberguggenberger [Obe92].

Example [26.11] is [Obe92, Example 2.3] (and is also mentioned in [Joh95, Example
3.2].

27 Paraproducts and resonance products in Besov spaces

In the previous section we defined the Bony product of two tempered distributions u and
v to be the limit (if it exists) of Z;{j:_l Aju-Ajvas J — oo. In this section we consider
the Bony product between elements of Besov spaces by considering limits of three parts
of Z;{ j=—1Au - Ajv, namely one that considers the sum over a left-upper triangle of
{-1,0,1,...,J}2, one over a right-lower triangle and one over a thickened diagonal:
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Definition 27.1. Let ¢ generate a dyadic partition of unity (¢;)jen_, and A; = ¢;(D)
for j € N_;1. For j € N_; we define

A_su:=0, A _su =0, ASju = Z Au (] eN_j,ue Sl)

Let u,v € §'.

(a)

If

J j-2

J
Z Agjfgu . Aj’U = Z Z Aiu . A]”U

j=—1 j=li=—1

converges in 8" as J — oo, then we say that the p-paraproduct of u with v exists
and write © ©, v or v S, u for the limit and call it the p-paraproduct of u with v,
i.e.,

0o oo J—2
U@SOU:U@@’U]: Z Aﬁj—Qu'AjU:Z Z Aiu'A]"U.

j=—1 j=1i=—1

If for all ¥ that generate dyadic partitions of unity the t-paraproduct of u and v
exists and ©u @, v = u @y v, then we say that the paraproduct of u with v exists and
write u © v instead of u ©, v and call u © v the paraproduct product of u with v.

If

J
Z Aj_lu . Ajv + Aju . Aj’l) + Aju . Aj_lv
j=—1

converges in 8" as J — oo, then we say that the ¢-resonance product of u and v
exists and write u ©, v for the limit and call it the ¢-resonance product of u and
v, i.e.,

o0
UOpV = Z Aj_lu . Ajv + Aju . Aj’l) + Aju . Aj_lv.
j=——1

If for all ¢ that generate dyadic partitions of unity the 1-resonance product of u
and v exists and u ©, v = u Oy v, then we say that the resonance product of u and
v erists and write v © v instead of u ©, v and call u © v the resonance product of
u with v.

Observe that u ©, v = v Oy u.

If both u ©, v and u ©, v exist, then we write u @ ,v = U Q, vV + u Oy .

If both u &4, v and u ®, v exist, then we write u ® ,v = u Oy v + u Oy v.
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o If both u ©, v and u S, v exist, then we write u® ,v =uQ, v +u S, v.

We refer the reader to Remark 27.18 about the different notations for paraproducts and
resonance products in the literature.

Let us make the following observation, which one could interpret as bilinearity of the
different products:

Lemma 27.2. Let ¢ generate a dyadic partition of unity. Let u,v,w € §" and A € FF.

(a) If uey,v and w , v exist, then (u+ w) O, v exists and

(U +w) ©pv=uBu v+ wey .

(b) If u©y, v and u©, w exist, then u Q, (v + w) exists and

Uy (V+w) =uyv+uy,w.

(c) If u®y, v exist, then (Au) ©, v and u Q, (Av) exist and

Au©ypv) = (Au) O, v+ u 8y, (Av).

The statements @, @ and are also valid if we replace each occurrence of “©,” by
“©y 7, or each occurrence of “@,” by “©, "

Proof. The proof is straightforward and left to the reader. O

The existence of each of the paraproducts and the resonance product imply the ex-
istence of the Bony product:

Lemma 27.3. Let ¢ generate a dyadic partition of unity. Let u,v € 8'. If u®,v, u®,v
and u S, v exist, then u e, v exists and

U,V =U, U+ UQpv+ U, v.

Proof. See Exercise O
27.A. Prove Lemma m

In Theorem [27.5] we consider estimates on paraproducts in Besov spaces. These
rely on the Holder inequalities and the following theorem, which essentially says: For a
negative regularity index s the Besov norm is equivalent to the norm-like function which
looks like the Besov norm but with “A<;” instead of “A;”.
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Theorem 27.4. Let s <0 and p,q € [1,00]. Then we have for u € S’

u € B?

e = 12| Agjullzr)jen_; |len < o0.

Moreover,

(1+29) Mlulls; , < 17| A<jullzr)jenillee < (1 =20 Yullg;,  (weS'). (27.1)
Proof. 1t is sufficient to prove . For the inequality on the left—hand side of :
25 Ajull e < 2% Agjullzr + 22975 Agjrul 1o

Therefore
lull g , < (1 +2°) 127 | A<jullze) jen_y llea-
For the inequality on the right-hand side of (27.1)):

J J
25| Acjulle <27° 3 Al = Y 207052 | Ajul pr = (a ) (j),

i=—1 i=—1

where a,b : Z — R are given for j € Z by

a(jg) =
D=0 j<-1, 0 j< -2

Yt jeN, o [20NAull j e N,
{ b(j) = { ’
Hence, by Young’s inequality Theorem
12| A<jullze)jen_yllea = llax bllea < llallgr [blles = llaller [fulls;,, -

As s < 0 we have ||a||p = > jeN 205 = (1—2%)"1. H

Theorem 27.5. Let ¢ generate a dyadic partition of unity. Let p,p1,p2,q,q1,q2,7 €
[1,00] be such that p% +L <1 and

p2 =
1_ 1,1 1 oingq Lo L
= b b qa min{1, ot qz}’ (27.2)
(a) For all s € R, u € LP', and v € B,, . the paraproduct of u with v exists in By ,.
Moreover, there exists a C' > 0 such that
[uepulsy, < Clullnlols,, (weIPweBy,).  (273)

(b) Foralls<0,teR, ue B , andv € B!

1.1 pa.qo Uh€ paraproduct of u with v exists
in Bytt and

v e B

.12 ) (27.4)

lu®p vlges < Cllullsg, , Iolsy,, (e By
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(If the Besov norms in (27.3) and (27.4)) are with respect to ¢, as in Definition
21.14), then we may take C = 3||@_1||;1 in @7.3) and C = 2||@_1|/;12%(1 —2°)~! in

779).)

Proof. Let u,v € §’. For j € N_j let w; = A<j_ou-Aju = Z{;El Aju - Ajv. For both
@ and @ we apply Theorem [21.18 @ Let us first show that there exists a ball B and
an annulus A such that

supp@w_1 C B, supp@w; C 2/.A (7 € Np).

Observe that A<_su-A_jv = 0 and A<_su - Agv = 0, and so their Fourier transform
is trivially supported in any ball and annulus. Let us check that for j € N the Fourier
transform of A<;_ou - Ajv is supported in 2J A for some annulus A.

Let a,b > 0, a < b be such that suppy C A(a,b). By the disjointness property of
dyadic partitions of unity, , we may assume that a and b are such that 4A4(a,b) N
A(a,b) = 0, i.e., 4a > b. Moreover, suppy_1 C B(0, %) = 271B(0,b) (as for example
-1+ = l%go_l and supp ¢_1 + ¢ C B(0,b)). Let C, B and A be given by

C = A(a,b), B = B(0,b), A=A(a—1b20)=1B+C.

As F(Aju - Ajv) = (p;ii) * (p;0), we have (see Theorem and Lemma [7.11):

supp F(Aju - Aju) C 2/(277B+C) C 2/(3B+C) (1€ N_1,j €Ny, i <j—2),
and thus
suppw; C 27A (j € Np).

For @, by Theorem [21.18 @ it is then sufficient to show
751w b1 s
| luslen) [ < Wl ol

po,T

This follows by Holder’s inequality (Theorem [A.4)) and by (21.13):
lwillp = [[A<j—2u - Ajvll, < [|Agj—2ullLe | Aj0] Lr2
<l llullze[Ajollzee (G € Noa).

And for @ it is sufficient to show

) 225
+t
”(m >ij|pr)jEN1H£q < 2 lullsg, , ollsg, (27.5)
By Hoélder’s inequality (Corollary , we get
G(SH) |1y < |l(23sA_ . A
H(2 HwJHLp)jGN—ngq < H(2 HASJ_QUHLP12 HA]UHLPz)jGN_l v
< |l(27%]| A< 27| A .
_H( I18sjullen) - CULLED (a2
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By Theorem [27-4]

2s
js . — 92s js . < s
H<2 ”AS]_WHLm)jeN,l a1 2 (2 ”A<ﬂu||Lp1)jeN1Heq1 < 1o il
so that we conclude ([27.5)). O

27.6. Here we consider some consequences of Theorem in combination with The-
orem [21.23] and Theorem [23.4] The statements that we obtain for the “© ” product are
summarized in Corollary

Let C; > 1 as in Theorem [21.23| be such that

lullsg, < Callullgy,  (ue S paelloc]ts R t>s).

p,a —

Let Cy > 1 as in Theorem be such that

luller < Callullgy,  (ue S t>0)

[ullze < CzHuH331 (uwed8).

Let ¢ generate a dyadic partition of unity. We write Cs = ||@_1]||z1 (so that holds
with C' = Cj for all p, p1,p2,q,q1, 92 € [1,00] such that is satisfied). For s < 0 we
define Cy = (1 —2%)7! (so that holds with C' = C; for all p, p1, p2, ¢, q1,q2 € [1, 0]
such that is satisfied). Let s,t € R and p,p1,p2,9,q1,92,7 € [1,00] be such that

. . t
(27.2) is satisfied. Let w € By , andv € B, ..

(a) If s <0 and ¢ € R, then u ©,, v exists in Bjt".
Observe that if £ < 0, then the regularity of u ©, v is worse than the regularity of
each of the terms u and v and that if ¢ = 0, the regularity of v ©, v equals the
regularity of u and if £ > 0 the regularity of u @, v is larger than the one of w.

(b) If s =0, t € Rand r € [1,00] then u @, v exists in B}, if u € L”* and v €

B;, ;- Observe that if u € thl (or differently said; if ¢ = 1), then w € LP' (by

Theorem 23.4)). Therefore,

w6y vlzy, < Collulln o]z, , < CoCllull ol

(c) If s> 0andt € R, then u©, v exists in By, for all 7 > g and

< C1C2Cs[ulBs, , vl B

T

lue, vz, < Callullzer [v]1s,

By the above we obtain the following.

o If both s and t are in (o0, 0), then u©, v and u G v and thus u & ,v exist in By’
and

lue gollgsse < (Cs + Collullsg, , 0]z

p2.a2
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e If s<Oand >0, then u©wv is in Byt byand uQuv=vOuisin By, for all
r > qp by Moreover, as r > ¢ implies r > q,
lu& gollss, < llu@vlge + lveuls;,

< (Cs + C102C3)|ul| s

P1,91 HUHB;EQ,qQ (7" > (J1)-
e Ifs>0andt>0,thenuuve Bf,’qz and vOu € By | byso that u@uv € B;ﬁf
for all 7 > g1 V g2. Moreover,
Hu@w’UHngt < 2C’1C’2(73Hu!hg;l,q1 HUHBZM2 (r>q V).

e (000)Ifs<Oand?=0and g2 =1 (so that ¢ = 1), then u@uw exists in By, by@

and u©v =vQu exists in B, , by @ and thus u @ ,v exists in By , . Moreover,

lue gvlls;,, < (C1Cs + CoCy)llullsg, , 10llBe

1

o (0o0)Ifs=0andt=0and ¢ =¢q2 =1 (so that ¢ = 1), then u@ v € B;l and
v©u € By, by|(b)so that u© v € Byj'. Moreover,

lu® pvllpsye < 2C2Cs]lulls;, | vl |-

o (000)Ifs>0andt=0and g =1 (sothat ¢ = 1), then u©wv exists in B! by

p,q2
and u @ v =v Qu exists in B, , by and thus u & ,v exists in Bgm‘ Moreover,

lue pvllpg,, < (CiCs+ CoCi)llullzs | lollng

p2,92
We summarize the above observations in the following corollary.
Corollary 27.7. Let ¢ generate a dyadic partition of unity.

(a) Let s,t € R\ {0}. There exists a C > 0 such that for all p,p1,p2,q,q1,q2 € [1,00]
withpil—l—p%gl and

1_ 1,1 I _mi 1,1
p = b T pa q_mln{l’q1+qz}’
forallue By, andve Bl - u® v exists in By, for all v € [1,00] such that
q if s,t <0,
q1 if s >0,t <0,
=
Q2 if s <0,t >0,

g Vg ifs>0,t>0,
and for such r,

ve B!

HU@SDUHB;’ATM(SH) < CHUHBS pg,qg)'

P1:91

HUHBEWJ2 (ue B;Mh’
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(b) (¢o0) Lets,t € R, s <t and either s =0 andt# 0 or s # 0 andt = 0. Then there

exists a C' > 0 such that for all p,p1,p2 € [1, 00] with p% + p% <1 and % = p% + p%,

for all q € [1,00], for allu € B, , and v € B]’i%l, u® ,v exists in By, and

lue pvllBs,, < Cllulls;

S
5 < sallollsy , (uweB

t
p1.q0 Y € sz,l)'

(c) (¢0o©) Then there exists a C > 0 such that for all p,p1,p2 € [1,00] with p% + p% <1
and % = p% + p%, for all g € [1,00]: for all u € thl and v € B, 1, u® v eists
in 3271 and

luepvllp, < Cllullp lvllps  (we By 10 € Byy).

Example 27.8. We consider the situation as in Example[21.26; Let d = 1. Let (¢;)jen_,

be a dyadic partition of unity such that g = 1 on A(%, %) (see Exercise . Forn € N,
consider vy, u, € 8’ given by

Up = 2(0on + 5_on) uy, = cos(2m2"x).
As in Example [21.26] for s € R one has

I —2ns s
Ug i= Z 2 u2n € B, oo
neN

We considered here the summation over even numbers, as this simplifies the calculations
that we make later.

We consider the existence of the paraproduct, resonance product and Bony product
Us ©p Ut, Us Op U and us o, uy for s and ¢ in R.

e Paraproducts. Observe that Aju, = 272"uy, if j = 2n for some n € N and
Ajug = 0 otherwise. Therefore

J—-2
Wnst J =2n for some n € N,
Acyous - Djvg = > Ajug- Ajup = ,
== 0 otherwise,
where
n—1 n—1
—2nt —21
Wn,st ‘= Z Agiug + Nopuy = 2 " Z 27 ugiuon, (n S N)
i=1 i=1

It follows that us ©, u; exists in S if > neN Wn,s,¢ €xists in S’. To show the latter we
invoke Theorem [21.18 @ By considering the trigonometric identity for the product of
two cosines, or equivalently, the convolution of vy; * v9, one finds

UiUgp = %COS(?W(QQTL + 220 %) + %cos(27r(22” —2%)x) (i,n € N). (27.6)
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Observe that for alln € Nand ¢ € {1,...,n — 1} we have
%22n — (1 o %)22n < 22n o 222' < 22n + 222’ < (1 + i)22n — %22n

Hence

suppWnsr = |J  suppagius, C 27" A%, 3),
ie{l,...n—1}
and thus, by our choice of dyadic partition of unity,

Aj (wn,s,t) _ {wn,s,t Jj=2n,

0 otherwise.
It is not difficult to see that (evaluate at the origin)

(n — 1)272nt s =0,

n—1
‘ _ 9—2nt Z 9—2is _
_ t272n57272s
Lee P 2 e 570

Hwn,s,t

Now, as for example

9—2ns _ 9—2s 1 — 92(n—1)s 1
st T = = <0),
S e T ey w050

it follows by Theorem [21.18 that us @y U = Y ey Wn,s,t €Xists in ngtoo for s < 0

and t € R and by (27.7]

1 225

(27.7)

s ©p uell gt () = 925 1  1_9% lusliBs, gllluellBe, o) (s <0t €R).

On the other hand, if s > 0, then

272715 o 2723 _ 1
N 272 1 925 1’

and thus u; ©,, u; exists in Bl  for s >0 and ¢t € R and

1 1

s @ uellBs, ol = 5o =7 = g2 —yIusllBa wiallvellBy fe) - (s> 0,2 €R).

If s =0, then

sup2™(n—1) < oo <= r <0,
neN

so that ug ©, u; exists in ngéo for any r < 0, but ug ©, u; is not an element of Béopo

for any t € R.

187



e Resonance products. By our choice of our dyadic partition of unity we have
Aj_lus . A]‘Ut + Ajus . Ajut + Ajus . A]‘_lut

{Agnus - Agpuy  if j = 2n for some n € N,

0 otherwise.

Similarly as above, see (27.6|), we have

Aopug - Aoy = 2*”@“)% (cos(27r22(”+1)3€) + ]l) ,
and thus
S Aoty - gy = l(iri(t*s))n N §2f(i71><t+s>lu |
i=1 TR T i=1 =2 27"
Therefore

M et e
!

n
Aj(ZAQius : AQiUt) = (”_1)(”5)%1@” j = 2n for some n € N,n > 2,

i=1 .
0 otherwise.

From this we see (Exercise [27.B)) that if

n
> Agiug - Agiuy

=1

converges in 8’ as n — oo then

;(irdws)) < o0,

which is only the case for t+s > 0. And if t4+s > 0, then u, O, us = >, ey Aonts - Aopuy
exists in Béjio and

1276+ v o-(tte)l

—o—(st)2_ <2 = "
||u3 ®<p utHngyf)o[@] =2 21 _ 2—(s+t) 2

27.B. Show that in the situation of Example > ;" ; Agjus - Agju; converges
in 8’ as n — oo only if

1 - —1 s
2(;2 (t+ )).

(Hint: Show there exists a symmetric ¢ € S such that A]@ =0 for j € Ngand (¢, 1) # 0
and test against ¢.)
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27.9 (Formal explanation of paraproducts and resonance products). Inwe discussed
the language of frequencies corresponding to the Example which of course closely
corresponds to Example 27.8 In this language, one may say that the paraproduct u @ v
is the distribution that considers the product between the “low frequencies” of u times
the “high frequencies” of v.

In Example we have seen that the frequencies of A<gy,_oug - Aopu, are of order
227 which is the same order as the frequences of Ag,u;. See for example also Figure
and Figure [ for an illustration that the frequency of the product of two functions of
different frequencies is close to the larger one of the two.

/M ﬂ\ /’w 0

\I} 1)

Figure 3: A function with high and one Figure 4: The product of the functions
with low frequency. with high and low frequencies.

Observe again, as we have seen in that the regularity of us © u; is at most the
regularity of t. One therefore could say, in the above language: “One cannot improve the
regularity of u; by multiplying the high frequencies of u; by the low frequencies of ug”.
If, however, we turn around the roles of us; and u;, we see that if us is of low regularity,
say s < 0, then: “One can improve the regularity of us by multiplying the low frequences
of us by the high frequencies of u;”. Possibly this formal language helps the reader with
having some intuition about the estimates we have for paraproducts.

The term “resonance product” can be explained as follows. Contrary to the effect of
the paraproduct, the order of the frequencies of Aj_jus - Ajuy + Ajug - Ajup + Ajug -
A, _1u; may range between frequencies of order 1 to frequencies of order 2n+1 Indeed, in
Example[27.8] we have seen that taking the product of two functions of equal frequencies
may give a function of larger and a function of lower frequency: cos®?x = % + %cos 2x
(see Figure [5)). This effect relates to the word “resonance”, as it relates to two ‘systems’
that interact on the same frequency, which may ‘strengthen’ the outcome.

Theorem 27.10. Let ¢ generate a dyadic partition of unity. Let p,p1,p2,4,91,q92 €
[1,00] be such that p% + p% <1 and

— 1, 1 1 _ mi 141
- + q mm{l’q1+qg}’

(a) For all s,t € R with s+t >0, forue B . andv € B,

o po.q UIE TESONANCE product
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NN N
/N 4
N N N\

COS T COS
cos?xr =1+ % CcoS 2x

Figure 5: The sine function and its square and the decomposition of the square of the
sine function in a low and high frequency function.

of u and v exists in B;:gt. Moreover, there exists a C > 0 such that

lu @y ol g < Cllullsg, , llollsy, . (we By g veBl,), (208
(b) (0o0) Forall s,t € R with s+t =0, foru e By | and v € B},  the resonance

product of u and v exists in BO7 Moreover, there exists a C > 0 such that

(ue By 1,ve DB

.00 (27.9)

lu©p vllpg , < Cllulls;, ,llvils

p2,00

(If the Besov norms in (27.3) and (27.4) are with respect to ¢, as in Definition
(21.14)), then there exists an N € N such that we may take C' = 2||¢_1]| 11 225 — (25+1+2t)

in @78) and in Z79).)

Proof. Let u,v € §'. For j € N_j let w; = Aj_ju-Aju+ Aju-Aju+ Aju- Aj_1v. For

@ we apply Theorem [21.18 @ and for @ we apply Theorem [21.18 Let us first

show that there exists a ball B such that

supp @; C 2/B (j e N_y). (27.10)

Let C be a ball such that suppp; C 2/C for all j € N_j. Similarly as in the proof of
Theorem by using that F(A;u - Ajv) = (@) * (p;0), we have

suppw; C | J 27'C+27cc2(2€)  (j €N_y),
1€{0,1}

from which we have (27.10]) for B = 2C. For @ and @ (the latter case we have ¢; = 1
and g2 = oo and thus ¢ = 1), by Theorem [21.18 @ and it is sufficient to show

(2° + 1+ 2 ully, ,, vl (27.11)

oo
| @O hwglas)sen ], < b

We use HU}]‘HLp < HA]',1U : AjUHLp + ||A]u . AjUHLP + HAJU . Aj,11)|’Lp. By Holder’s
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inequality (both Theorem and Corollary [A.9)):

H(2j(5+t) HAj—lu . A]"UHLP)jeN_l

£a

P T

JEN_11lpq

<2 (207185 10l ) (" 185012r2),
JEN_11lpgy JEN-1]lgaz
= 2 ullyy, ol -

One obtains similar estimates with “A;_ju-Ajv” replaced by “Aju-A;v” or “Aju-A;_1v”

by which one can conclude (27.11)). 0

27.C. Consider the situation as in Theorem [27.10t Let p,p1,p2,49,91,q92 €
[1,00] be such that p% + p% <1 and

11 1 1_
p =t g - minflg+g)
Let s,t € R, ueB]‘jlql,ver)zq2 Show that if either s +¢ > 0 or s+t = 0 and

{g1,02} = {1, 00}, then Ayiu-Ayyjv—0in S as J — oo for all 4,5 € Ny.

In the following theorem we consider the product between elements of Besov spaces.

Theorem 27.11. (a) Let s,t € R\ {0}, s+t > 0. Let5 > 0 There exists a C > 0
such that for all p,p1,p2,q,q1,q2 € [1,00] such that + = <1,

1 _ 1 1

p p1 p2’
we have for all r € [1,00] such that

q1 if s >0,t <0,
r >4 g if s <0,t>0,
G Vg ifs>0,t>0,

u e v erists in B;ﬁf forallu € By . and v € Bp2 s and for such r the operation
e forms a bilinear continuous map By, . X B;Q @ = B;/y,
¢
[uev|psye < C||u||B;,1 " I ||Bp2 - (uwe By, . v€E B, ,.) (27.12)

and, consequently, u e v exists in BSM S for allu € B? and v € B! and the

P1,91 p2 q2’
operation e forms a bilinear contmuous map B;l a1 X B;2 e BS/;t ;
||ue 'UHBS/\t s < C’HuHBp1 o ||lv HBim (u e B;l gV € B;,Q qz) (27.13)

There exists a C' > 0 such that for all p,p1,p2,q € [1,0]
———I——,forallueBllcmdUEBp u e v exists in

(b) (¢ o) Let s € (0,00).
withi p%glad%
BO1 and

2,9’

||ue ’UHBSJ < CHUHBZN”UHBSM (u€ By 1,v€ BY (27.14)

paa):
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(c) (0©o) There exists a C' > 0 such that for all p, p1, p2, € [1, 00| with p% + p% <1 and
1_
P

1, 1 0 0o . ; ; 0
ot o for allu € By ., andv € By, : uev exists in By, , and

lusvlpy, < Clully lvlpy,  (weBYweBy,).  (2715)

In all cases, also v e u exists and is equal to u e v.

Proof. Let ¢ generate a dyadic partition of unity. For each of the cases, we first show the
statements for “u e, v” instead of “uev” and then show that the product is independent
of the choice of ¢. The bilinearity follows by Lemma The continuity follows by the
norm estimates, see Exercise

@ (127.13)) follows from (27.12)) by Lemma [21.25} Let r be as in the statement and

q any element of [1,00]. Then for all § > 0 there exists a C' > 0 such that
s— < S ! .
lull s < lullsy,  (ues)
The existence of u e, v and the estimate (27.12) for u e, v, i.e.,

v e B

lu o vll sy < Cllulzg, , lollsy, ,,  (u€ B; )

P1,91 P1,91°

follows from Corollary [(a)] and Theorem [27.10

@ follows from Corollary and Theorem @ as -l gy, < ”HBS g
follows from Corollary and Theorem @ as || - | By <
- T,

We are left to prove that u e, v, so to say, is independent of the choice of ¢ (that
is, if 7 generates a dyadic partition of unity, then u e, v = u e, v). If either u or v is in
Cye, then this follows by Theorem @ We continue by using that we can approximate
elements of Besov spaces whose second integration parameter is finite by C'S° functions,
see Theorem @ or Lemma We give the proof in the situation of the proof
in case of andis similar. Let us first assume that either ¢; < oo or g2 < co. We may
assume q; < 0o. Then there exists a sequence (7,)nen in Cp°N By - (take for example

P1,q1
Mn = A<pu) such that 7, — w in B;lﬂl' so that limy, o0 7,0 = limy, 00 9 @, v = v e, v,
so that the limit is independent of . Now suppose ¢ = g2 = co. We may assume s > 0.
Then we choose k£ > 0 such that s —x > 0 and s +¢ —x > 0 and thus v € B, | and

ue,v e Byt for all r € [1,00] and

v e B

p2y‘12)'

Jues vllmge < Cllullgsglollsy,,, (@€ By,

We may repeat the above limiting argument and obtain that in v e, v is independent of
the choice of . O
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27.D. Let X, Y and Z be normed vector spaces with norms || - || x, || - ||y and
|| - || z, respectively. Suppose F': X x Y — Z is bilinear and

1F(z,y)llz < =l xlylly (e X,yeY).
Show that F' is continuous, i.e., if z,, = z in X and y,, — y in Y, then
F(zn,yn) — F(x,y) in Z.

Lemma 27.12. Let s1, 59,53 € R\ {0}, s1+s2 > 0 and sy + s3 > 0. Let p1,p2,p3,q1,q2,
g3 € [1,00] be such that p% + p% + p% <1. Foruy € B! ,,,u2 € By, anduz € B} .,
uy @ uz, ug @ uz, (u1 ® ug) @ uz and uy e (uz @ uz) exist in S’ and

(U1 [} 'LLQ) ®U3=U] ® ('LLQ [ ] U,3). (2716)

Proof. By choosing k1, ko, k3 > 0 such that s1—k1, s9—kKa, s3—k3 # 0, sS1—K1+S2—Kk2 > 0
and so — Ko + s3 — k3 > 0, we may as well assume that q1 = ¢ = ¢3 = 1 (as u; €

S$1—K1 S$9—K2 §3—K3
By gt ue € B2 2 and ug € B3 ws).

Let p, p12,p23 € [1,00] be such that

1 1 1 1 1 1 1 1 1 1
-—=—+ —+ —, —_— = —+ —, —_— =+ —.
p P1 P2 D3 P12 p1 D2 P23 b2 D3

By Theorem [27.11 it follows that uq e uy exists in B5/52 | uy e ug exists in B2 and

p12,1 7 p23,1
(u1 @ ug) @ uz and uj ® (uz @ uz) exist in B;ll/\SQASS. Let 1y, = A<puy and ¢, = A<yug for

all n € N. Then n,, ¢, € C5° and 1, — u1 in B;il and ¢, — us in B;;l. Moreover, by
Theorem 26.7]

(Nn @ Cn) @ U3z = NpCruz = 1y, ® (G @ u3) (n € N).
By the continuity of the product e as a map

Byl x B2, — BENS2

p12,1 7
By x Byl = B,
Byt x By = B,
Bty x B - B,
follows. O
Definition 27.13. For s € R we define C° = Bj,  and write “|| - [[cs” instead of

7

S .
B2,

For those who know the notation C! for ¢t > 0 as in Definition one may take the
above definition only for s < 0. For ¢ > 0 it does not make much of a difference as the
norm-like functions || - [lc+ and || - || g _ are equivalent, see

“H .
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By Theorem [23.2] the following statement is a consequence of Theorem [27.11}
Corollary 27.14. Let s > 0,t € R and s+t > 0. Let 6 > 0.

(a) Ift <0, u € H® and v € Ct, then u e v exists and is an element of Ht. Moreover,
the map

H* xC'— H', (u,v)—~ueuv,
is a bilinear continuous map and there exists a C' > 0 such that
lue vl < Cllufluslvllee (w0 €S). (27.17)
(b) Ifu € H® and v € Ct, then uev exists and is an element of H¥\*~9. Moreover, the
map
H® x ¢t — HN9, (u,v) — uewv,
s a bilinear continuous map and there exists a C' > 0 such that

|uwov|| gsni—s < Cllulgs||v]|ce (u,v € 8'). (27.18)

Proof. As H® = B§, and C' = B!, with equivalent norms, follows directly by

00,00

Theorem [27.11} (27.12) (with » = 2 and ¢1 = 2, g2 = o0) and |(b)| follows similarly by
(27.13) if t #£ 0. If t = 0, then (27.13)) implies

[w o vl gani—s S Mfullmsllvfl g S llullmellvlle:-

We turn now to a specific case of products between Besov spaces with p = ¢ = oo.

By Proposition it follows that if k,m € Ny, then the product map C’]’; x CfF —
CFAN™ (f,g) = fg is a continuous bilinear map. The following statement is of a similar
nature.

It is widely used in the theory of SPDEs. See for example [Hail4, Proposition 4.14]
and |GIP15, Lemma 2.1 and text below] .

Corollary 27.15. Let s,t € R\ {0} and s+t > 0. Ifu € C* and v € C!, then uev exists
and is an element of C*\t. Moreover, the map

C*x Ct = CM (u,v) — uew,
s a bilinear continuous associative symmetric map and there exists a C > 0 such that

lu o v]|csnt < Cllulles||v||et (u,v € 8. (27.19)
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The following corollary is a consequence of Theorem [27.5] and Theorem [27.10] and is
left as an exercise:

Corollary 27.16. Let s € (0,00). There exists a C > 1 such that for all p,q € [1, 0]

luevls;, <C (lulls, lvle + lull=lvlls;,)  (wovesS).

p,qa —

Consequently, L> N By, , is a Banach algebra under the norm C(|| - |z + | - ||B;,)-

27.E. Prove Corollary

Another consequence is the following;:

Theorem 27.17. Let s,t € R and s+t > 0. Let § > 0 be such that sAt—9 € (0, 00)\ Np.
For w € H® and v € H' we have u e v exists in W51 Moreover, the product map
H® x Ht — WsN=o1 (u,v) — u e v is continuous, i.e., there exists a C' > 0 such that

lwev||yysni-s1 < Cllul|ps||v]| g (u € H%,v e HY).

27.F. Prove Theorem 27.17l (Hint: Observe that it is allowed for either s or
t to be equal to zero. Furthermore: Theorem [23.4])

27.1 Comments ...

Remark 27.18 (About notation and latex). In many textbooks one writes “T,,v” for the
paraproduct instead of “u @ v” (for example in [BCD11] ). In this sense one views T, as
an multiplying operator. Also “II(u,v)” or “R(u,v)” is written for the resonance product.
In the application to SPDEs in the authors of the paper [GIP15] wrote “u < v” and
“uov” for the para- and resonance product, respectively. The latter notation changed in
the SPDE literature, with some authors creating new symbols, for example “<” and “="
with circles around them. In the latter case, “<” with a circle around it is then used for
the sum of the paraproduct and the resonance product, for which the authors of |[GIP15]
used “=<”".

For the sum of the paraproduct and the resonance product we write . The following
table presents the latex commands for the symbols used in these notes.

\varolessthan S
\varogreaterthan S
\varodot ©)
\mathrlap{\odot }{\olessthan} @
\mathrlap{\odot }{\ogreaterthan} ®
\mathrlap{\olessthan}{\ogreaterthan} &
\mathrlap{\mathrlap{\odot }{\olessthan}}{\olessthan} &
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27.19 (The notation ). We have seen multiple arguments in which different estimates
were combined, which were for example of the form

[2(@)lly < Cllzllx  (z € X),

with C' > 0, (X, |- [|x) and (Y] - |[y) normed vector spaces and ® : X — Y. Let us call
such a “C” a “toleration constant” for the moment. For example in [27.6] we had toleration
constants C1,Cs, C3 and Cy. Keeping track of those toleration constants becomes more
cumbersome and is a rather uninteresting job as the number of those constants grows.
Indeed, often one is only interested in the existence of such a toleration constant. For
this reason the notation “<” has been invented. Its usage is the following. If f and g are
functions on a set X with values in [0, 0o, we write

flx) Sg(x) (e X),
to indicated the existence of a number C' > 0 such that f(x) < Cg(z) for all z € X.

For sets X,Y and functions f,g: X xY — [0, 00| observe the difference between

flxy) S9(xy)  ((z,y) € X xY), (27.20)

and
if y €Y, then f(x,y) S g(x,y) (x € X). (27.21)
In the literature is also rendered
f(z,y) < g(z,y) (x € X), uniformly in y €Y,
also, sometimes is rendered
f,y) Syg(zy)  (z e X).

28 Solutions to elliptic PDEs in Besov spaces

In Section (13| we have considered elliptic operators with bounded coefficients (see ,
i.e., second order linear partial differential operators of the form

d d
P=- Z aijaiaj + Z b;0; + «,
ij=1 i=1
aij, b, c € L°(Q) for 4,5 € {1,...,d} such that there exists a # > 0 such that
d
Z a;; (x)yiy; > 0|y|? (almost all z € Q,y € RY).
ij=1

In this section we on the one hand restrict ourselves to Q@ = R? and a;; = 1 and a;; =0
if i # j for i,j € {1,...,d} but on the other hand, instead of considering b; and ¢ in
L%, we allow b; and ¢ to be in the Besov space BS, ,, for some s < 0 (in which L* is

embedded, see Theorem [23.4)).
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Lemma 28.1. Let s € R and
b€ BitL . c€B .  (i€{l,....d}).

00,007

Let t > 0 be such that s+t >0 and s+ 1 <t. Then b; e d;u and c ® u exist in H*° for
alli e {1,...,d} and there exists a C > 0 such that

d
Zbﬂ&u—kcou
i=1

d
< C(lellmg e + 3 Wil el (e S,
Hs= i=1 ’

Proof. This follows by Theorem [23.2] Theorem [21.23] and Theorem [27.11] Observe in
particular that as s <t — 1, (for the < notation see [27.19))

[6; ® Ojul| fs—s S [|bi @ Opull gt yne—1)-s
S Nbill o 10l - S 103l g Nulle (i€ {1,....d},ue HY).

O

By this lemma we can extend the elliptic operator from D to H' for large enough t:
28.2 (Assumptions). Let se R, ¢t >0, s+t >0,s <tand § >0. Let
b€ Bt c€Bs .  (ie{l,....d}).

00,007

Let L : H' — HG=9Mt=2) be defined by

d
Lu=—Au— Z b;Oiu — cu (w € HY). (28.1)

=1

Let us describe the goal of this section for L, s and ¢ as in 28.2] Similarly to The-
orem we want to consider conditions on L and f (in some Besov space) such that for
some class of real numbers 3 there exists a w in H? that satisfies

Lu + pu = .
This equation can be rewritten by the formula
d
(B—A)u:Zbio&'u%-couﬂLf,
i=1

which, with (8 — A)~! = (8 + 47%|%/?)~1(D), can be rewritten as

d
u:(,B—A)fl(Zbioﬁiu—f—cou—l—f). (28.2)

i=1
The following strategy is often used to find a u that satisfies this formula. First one
defines a function ® by the formula ®(v) = (3 — A) "' (2L, b; @ ;v + ce v + ) (basically
by “the right-hand side” of (28.2))). Then u satisfies if and only if ®(u) = u. One
also says that u is a fixed point of ®. In order to show the existence of fixed points, we

recall Banach’s fixed point theorem, and leave its proof for the reader.
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Definition 28.3. Let (X, d) be a non-empty complete metric space. A function ¢ : X —
X is called a contraction if there exists a 6 € (0,1) such that

d(®(z), ®(y)) < bd(z,y)  (z,y € X).

Theorem 28.4 (Banach’s fixed point theorem). Let (X,d) be a non-empty complete
metric space. Suppose that ® : X — X is a contraction. Then there exists a precisely one
z, in X such that ®(x,) = x.. Moreover, by defining ®' = ® and ¥ = & o &+~ for
k € N with k > 2, we have for each x € X that

lim ®*(z) = z,.

k—o0

Before we prove the existence of a fixed point, let us have a closer look at the operator
(B — A)~! on Besov spaces.

Lemma 28.5. Let m € (0,2]. There exists a C > 0 such that for all s € R, p,q € [1, ]
18 = &) ull gosm < CB7H(BZ VD)ullp;,  (ue S, 5> 0). (28.3)
Proof. Let o : R? — (0, 00) be defined by
o= (1+4rx>L.

By Lemma [25.16{ we have I, (o) < oo for m € (—o00,2]. Observe that

(B +4n?|x|))~t = 8711 4 4x?)/Bx)?) L = ,B*lzﬁ,%o—.
Therefore
(B — A)’luHB;?;m = ﬂ’1]|(l57%a)(D)u| Batm (we S, B>0).
Hence by Theorem @ we obtain ([28.3)). Ul

Theorem 28.6. Let s € (—2,2). Let

bi € Bl L, c€BS . fEH®  (ie{l,...,d}).
Forallt >0 witht+s >0, 14+5s <t <2+4s there exists a vy > 0 such that for all B > 7,
the formula

d
Bi(v) = (8- A7 (D biedw+cov+f)  (veH)
=1

defines a contraction H' — H'. Consequently, for such t and vy, for each 3 > v there
exists exactly one w € H such that

Lu + Bu =T,
where L is as in ([28.1) of[28.4
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Proof. First observe that as ¢ > |s|, we have ¢ > s, ¢ > 0 and t+s > 0. Let 6 > 0 be
such that t <2 — § + s. Then we can and do choose m € (0,2) such that t < s —§ + m.
By Lemma [28.5] there exists a C7 > 0 and by Lemma [28.T] there exists a C > 0 such
that for all v € H?

195(0) | go-am < CLBTH(B% V1)

d
Zbio&-v—i—cov—l—f
i=1

Hs—9¢

d
< i Ca(el .+ 3 Iollgser, )3 (5% Y Dlloll + 1
=1

123 e < 195(0) | rs-s4m (v € HY),

we see that ® defines a function H' — H'. As ®5(v — w) = $p(v — w), we see that 5 is
a contraction if

d
C102<||C\|Bgo,oo +) Hbi|Bg;§}>o>ﬁ_1(5gL V1) <1
=1

From this one can obtain a ~ such that the statement holds, for example

2

d _2

y=1V (ClCz(IICHBgo,OO +2 ||biHBé‘j,éo)> o
=1

O

The methods used above do not restrict to second order linear partial differential
operators, as the following theorem shows. The proof follows the same strategy as above
and is left to the reader.

Theorem 28.7. Let k € N. Let s € (—2k,2k). Let
bo € BS2 e Bs o (aeNE |a] <2k -1).

00,00 ?

Forallt >0 witht+s > 0,2k —14s <t <2k+ s there exists a v > 0 such that for
all B > 7, the formula

Oj(v) = (B= AT Y baedv+f)  (veH)
a€eNE
|| <2k—1

defines a contraction H' — H'. Consequently, for such t and vy, for each 3 > v there
exists exactly one u € H' such that

Bu — AFy — Z by ® 0% = .

aeNE
28.A. Prove Theorem m
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29 Overview

In this section we group statements according to their type and give references to where
the full statement can be found. Some formula’s are given without any description of the
different symbols.

29.1 Spaces of functions and distributions

C’(Q), Ck(Q),C>®(Q) F 1.5 and. D’ 2 1 and L : M(Q -
2.23 CF,Cp° P 3[3 14.2 : 15 E‘ﬁ%}ﬂ;;m

B;q[(p] 21.12 B;q :

29.2 Characterisations

Distributions of order 0 :

Distributions in terms of sequentially continuous maps : Theorem
Compactly supported distributions and &£’ : and

E'(9) in terms of linear combinations of derivatives of continuous functions :
D'(2) in terms of linear combinations of derivatives of continuous functions :
Distributions of order k : [0.6l

Convolutions : and

HY ={ue & :(1+]|x)kueL?:

B3, = 1" P33
29.3 Convergences

e Convergences of mollifications.

Pointwise for elements in Lloc Theorem [7.15
Uniformly on compacts for elements in C(U).  Theorem [7.15
In Lfoc Theorem [7.15
In L . Theorem [7.15
In D, D, E,E . Theorem [8.12]
“In C3°": g k(e —n) ) Lemma

e Other convergences.
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A0

(LX) = ¢ Lemma [14.10][(c)
1 Xn® o, 2 Lemma [14.10] (d)
ZjeN_l oY =1 Lemma [21.8
djen A =1 Lemma [21.9
EjeN_l Aju=wu Lemma [21.9
Am,k ( Z}']:_l Ajn — 77) RN Lemma @
Yien , Aif=f Lemma, [26.9

29.4 Identities

e Leibniz” Rule and the Multinomial Theorem.

0%(fg) = ZﬂeNg (%) (8°f)(0°Pg)
B<a
(14 +a9)F = ZaeNg (];):ca Theorem
la|=k

e Identities involving convolutions (and no Fourier transforms).

doxp = Lemma and Lemma [17.4
Sy x @ =Typ Lemma and Lemma [17.4
(u*xp)=1ux*p Lemma and Lemma |17.4
Ty(ux @) = (Tyu) * ¢ = ux* (Typ) Lemma and Lemma |17.4
u(p) = u* H(0) Lemma [8.2) and Lemma [17.4
0%(u* @) = ux* (%) = (0%) * ¢ Theorem [8.4) Theorem [17.6
(ux@)*1h =ux(px1) Theorem [8.9, Theorem mlﬂ
UV =0V*U Theorem [10.6, Theorem [17.13
(usv)*x) =ux*(v*h) Theorem [10.6, Theorem [17.13
dopxu=1u Lemma |10.10, Lemma [17.14
Oy *u = Tyu Lemma [10.10, Lemma [17.14
R(ux*v) =R(u) *R(v) Lemma [10.10, Lemma [17.14
Ty(u*v) = (Tyu) v =ux* (Tyv) Lemma [10.10, Lemma [17.14
0%(u*v) = (0%) xv = u* (0%) Lemma [10.10, Lemma [17.14

e Identities involving Fourier transforms.
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[ fg= ffg Theorem [16.10
F1=FR=RF Theorem [16.24
F(0%u) = (2mix)’u Theorem |16.24
0Pt = F((—2rix) u) Theorem |16.24
F(Tyu) = e 2mx0g Theorem [16.24
Ty = F(2m X)) Theorem [16.24
Fluol) = g L Tt o L Theorem [16.24
F(lyu) = ﬁ %ﬂ Theorem |16.24
F(f*g)= fg Theorem [17.1}
Flo*y) = @Z Theorem |17.2]
Flux* ) = Theorem |17.7]
F(uxv)=1u Theorem 17.13}
e Identities involving norms.
1 ll2 = IIf]l 2 Theorem [16.27
|lvllzr = sup{|(v, f)| : f € LY, || fllr« <1} Theorem [21.28
el = sup{|{p, )| : f € Co,|lfllcy <1} Theorem [21.28
e Identities involving Fourier multipliers.
7(D)o(D)u = (67)(D)u = o(D)7(D)u Lemma (19.4
a(D)(lxu) = I\[(Ixo)(D)u] Lemma [19.4
o(D)p =F (o) x¢p Lemma |19.4
o(D)yu = FY(ou) = F (o) xu Lemma (19.4
(Aju,¥) = (u, Ajap) Lemma [21.9
0% = |O“+d(l>\h ) * Lemma [21.14]
u= )\ ZaeNg:|a|:k )\ (Ixga) * 0%u Lemma [21.14]
e Identities involving “products”.
(utw)e,v=ue,v+we,v Lemma [26.2
ue, (V+w)=ue,v+ue,w Lemma [26.2
AMu e, v) = (Au) o, v+ u ey, (Av) Lemma [26.2
mh=mne) Theorem [26.5]
n=neu Theorem [26.7]
fg=feg Lemma 26.10l
(U+w)QL,v=1u,v+w v Lemma [27.2
UQp (V+w) =u,v+u,w Lemma [27.2
AUy v) = (Au) €, v + 1y () Lemma [27.2
U,V =UR, U+ Uy U+ UuUS,v Lemma [27.3
(u; @ uz) @ ug = uy ® (uz ® u3) Lemma 27.12}

29.5 Continuity of operations

Continuity of the reflection R, translations 7,, derivations 0, multiplication with a
smooth function and composition with a linear bijection: [4.4] and [15.4]

202



e Continuity of the pairing map

D'(Q) xDQ) - F, Q) xEQ) - F .25
S'(Q2) x S(Q) — F. Theorem M

e Continuity of the product maps
E(Q) x D) — D)
D'(Q) x E(Q) — D'(Q)
E'Q) x &) = E'(Q)
WHEP(Q) x Wk (Q) — Wka(Q)

Coe xS =S8
SxS§—=S
e Continuity of convolution maps
LPx L1 — L". Theorem
D'xD—E. Theorem
&' xD— D. Theorem
E'x&E—=E. Theorem
S'x8S—8. Theorem
S'x8—E. Theorem [17.10
E'x8— 8. Theorem [17.10)
E'x8 = 8. Lemma 17.16}
e Continuity of the Fourier transformation
L' — Cy(R%,) Theorem [16.6
S(RY,C) — S(R%, C) Theorem [16.16
S'(R?,C) — S'(R%,C) Theorem [16.24)
L*(R%,C) — L2(RY,C) Theorem [16.27]
e Continuity of Fourier multipliers
oD):S8" =& Lemma m

29.6 Metrizability and completeness statements
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D(Q) is NOT metrizable. 4.15

Countably many seminorms = metrizability. = Theorem m
C™(Q) is a Fréchet space. Theorem 4.19
E(Q) is a Fréchet space. Theorem {4.19
Dk (1) is a Fréchet space. Theorem {4.19
D'(Q) is weak* complete. Theorem 4.26
E'(N) is weak* complete. Theorem |4.26
E'(Q?) is NOT metrizable. M

WkP(Q) is a Banach space. Theorem 12_71
H*(Q) is a Hilbert space. Theorem |12.14
S is a Fréchet space. Theorem (14.12
S’ is weak* complete. Theorem [15.10
H? is a Hilbert space. Theorem [20.
B; , is a Banach space. Theorem [21.32

29.7 Denseness and separability statements

e Denseness:

D(Q) is sequentially dense in (). Theorem |5.10
E'(Q) is sequentially dense in D’'(12). Theorem [5.10
D(Q) is sequentially dense in D'(Q2) and £'(2). Lemma |§.14
D(Q) is dense in LP(Q). Theorem 8.1
D(Q) is dense in WkP(Q). Theorem [12.11
D is dense in S. Theorem [14.12
Cy° N B, , is dense in B, , Theorem [23.8
D is dense in By . Theorem [23.8]
§ is NOT dense in B3, , 23.9

e Separability:
D(2),D'(Q2) and E'(2) are separable. Theorem [8.15
S is separable. Theorem [14.12

29.8 Continuous embeddings

e Continuous embeddings

204




(©2) = LP(Q) — Li,
D(R2) seq ().
£'() = D'(Q).
E'(Q) — &'(RY).
cme— Cck, O — CF.
Wmp <y Wk,

D —geq S — Cp° — E£.
S—LP

S < Wk

=8 D

P — &

Wk — S’

H% — H"

B;1Q1<_>B;2QQ (tSS—d(L_L))
Bygi = Bras

BQ’2 — HS — B§’2

BE | — WkP — BF

Bt <—>W’“7Pc—>B;q (s,t eR, s <k <t)
B’“ 1= Cf = B

D —seq S — By,

e Embeddings which are not bijective.
Whee — BE

(Q) = D'(Q).

D(Q) —seq E(Q)
E'Q) = D'(Q)
D—S

S—¢&

S — 7D
&8

29.9 Inequalities

e Inequalities involving ‘products’ and convolutions.

1 gl < [[fllzellglLa
[wvllyre < Cllullyrsl[vllpe.a

lo@llm,s < Camr(o)ellmr,s
1f * gller < N1 fllevllgllea
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Theorem 4.28
Theorem [5.10
Theorem [5.10
Theorem [5.10

Lemma
Lemma

12.8
12.9

Theorem |14.11|.

Lemma

Theorem [23.2|

Theorem |23.4,
Theorem |23.4,
Theorem |23.5|

14.141

Corollary 23.6}
Example

e Embeddings which are no homeomorphisms on their image.

5.13

.13

15.11

15.11

15.11

15.11

Theorem




HUSOHm,S < CHUHCmHWHms- Lemma |14.7

le¥llm.s < Cllellmslllms- Lemma [14.7
lu©y vlBs, < Cllulle vz, , Theorem [27.5
|u &y UHB;? < C’HuHB || ”sz " Theorem [27.5

@ pvll gonencors <C’HuHBs alollse Corollary [27.7[(a)}
lu& vl < Cllulls;

5 o Corollary

HvHBt

H“@sﬂ)HBg1 < CHUHBS ||7)“BO 1 Corollary

|u ®p ’UHB;:t < Cllullgg, , llv HBP2 0 Theorem [27.10
lu©p vl < CHUHBS o v HBP2 0 Theorem [27.10
|ue 'UHBS/\t < Cllullsg, ,, || vllgy, . Theorem [27.11f|(a)
|ue UHBs/\t s < C'Hu||Bp1 o v ||Bp2 0 Theorem [27.11|(a)
|lue v||Bo < C||u||Bs v ||Bo Theorem [27.11|(b)
HuoUHBo < CHuHBo HUHBO ) Theorem [27.11{|(c)
|luev| gt < CHuHHsHvHCt Corollary [27.14
|uwov| gsni—s < Cllul|ps||v]|ce Corollary [27.14
|uwev|esne < Cllulles||v||ct Corollary [27.15
luev|p;, < Corollary [27.16

O (Ilullsg, ol + llull o] 5.,

e Inequalities of operations.

Haachkfla\,K <[ fllem x Lemma [12.8
10%fllcr—tal < (I fllcm Lemma [12.8
Haau”wk—\al,p < |Ju|lwm.r Lemma [12.9
|0%ul| gpr—tar < |l s Lemma, [20.8
1A fllze < @0l [ ]z Lemma [21.9
ISl A, < = Ie 1l Lemma P19
max,end 0%l La < C/\k+d( ||U||LP Theorem [21.15
|a|= k
. )\k”UHLP < max,end l0%ul|Lr < ON¥||ul| Lo Theorem [21.15
la|= k
Hé’auH i Lol < CHUHBP1 0 Theorem [21.23
|o(D )UHLP < Cllu| e Theorem [25.1
lo(D)ulls, < Cllullss, Theorem [25.1| and
Theorem [25.18||(d
1(luo)D)ulle < Cp= ™A™ |Jul| e Theorem [25.18)((a)
[(Zuo) (D )U||Bs+m < Cu ™ "|ullB;, Theorem [25.18||(b)
lo(D)ul] gy < Cllulls;, Theorem [25.18|[(c)}
| (luo)(D )u||Bg+m <C(p=™vV 1)Hu||Bs Theorem [25.18||(e)

|Zser el <

Lemma W
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e Inequalities related to embeddings.

lellemx < lellem < l@llm,s Lemma [14.10]

HQDHm,S S (1 =+ Supx€supp<p ’x|)mH§0HCm Lemma |14.10|

[9][k,s < Wft}s Lemma [14.10}

[ Ner <Cll - [lin,s- Lemma [14.14]

HUHB;?,q[w] <C H(WSHUJHLP)jeN,l v Theorem 21.18}

%Hu”Bé,qW] < HUHB;,q[w] < CHUHB;JW] Corollary 21.20

HaaU”BHal < Cllullps Theorem [21.23

2,42 P1,491

lull s = < Clluls;,,, Lemma [21.25]

HUHX <liminf,, Huanx Lemma [21.30|

|ul|zr < liminf,, oo [|tn,, ||zr Lemma [21.31}

|u|lBs . < liminf, o ||tn,, || Bs Theorem [21.32

P,q s 961 p,q2

c(L+€%)" < Yjen_, 2290j(€)* < Lemma

C(1+ )

HUHBg,q < Cllullyyr.e Theorem [23.41

HUHB{.foo < Ollullyep Theorem [23.4

Jullper < C||U||B;,q Theorem [23.4}

||y < C||UHBk1 Theorem [23.4]
P, . ——

(1+2°)Hlullss, < I(2*[|A<jullzr)jen_,lles Theorem 7.4,

1 (27%)| A<jullre)jen_; |lea < (1 — 25)_1||u||357q Theorem [27.41

e Other inequalities

Poincaré inequality

|ul|zr < C||Vu||re (for u € WOLP(Q)) Theorem [12.17]

Lemma of Riemann—Lebesgue

1g(a)|| < 3llg — TﬁQHLl- Lemma [16.5

(a+0) <al+’ Lemma [20.2

29.10 Other statements
supp u * v C supp 4 * supp v. Theorem Theorem
Theorem

v € & implies v € C° Lemma [17.8
Principle of uniform boundedness for D', £’. Theorem
suppu ={z} = u= ZaeNg:IaISk 0%y  Theorem 9.

Principle of uniform boundedness for S'. Theorem
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A Preliminaries on L? spaces

In this section we let (X, A4, 1) be a measure space (see Definition For the purpose
of this course, X will mostly be either be R?, A the set of Lebesgue measurable sets and
© the Lebesgue measure or X with be N or Z¢ or any countable space, A the power set
of X and p the counting measure. As usual, I is either R or C.

Before we turn to LP spaces, let us recall some standard definitions from measure

theory.

Definition A.1. Let X be a set. A collection A of subsets of X is called a o-algebra on
X if X € A and

A Be A= A\ Be A,
A, Ay e A= LJ.An e A.

neN

If Ais a o-algebra on X, then the pair (X, .A) is called a measurable space. A function f
on a measurable space (X,.A) with values in R, i.e., f: X — F, is called measurable (or
A-measurable) if f~1(U) € A for all open sets U C F.

Let A be a o-algebra on X. A function p : A — [0,00] with () = 0 is called a
measure if it is countably additive, i.e., if for any sequence (A, )nen of pairwise disjoint
elements of A,

w(J 4 = 3 nl4,).
neN neN

A measure is called finite if u(X) < oo. A signed measure is a countably additive
function g : A — R such that p(0) = 0. A complex measure is a countably additive
function p : A — C such that u(0) = 0.

Observe that not every measure is a signed measure, for example the Lebesgue meas-
ure is not a signed measure. But every finite measure is a signed measure.

Definition A.2. We say that a subset A of X is an (u-)null set, if there exists a B € A
with A C B and u(B) = 0. We write A¢ for the complement of A in X, so that A = X\ A.

Definition A.3. Let p € [1,00). L£P(p) is the space of measurable functions f: X — F
for which

J1@P due) < oo.

We say that two measurable functions f and g are equivalent, written f ~ g if there
exists a null set A € A such that f = g on A°. We write LP(u) for the space that
consists of all equivalence classes in £P(u), in formula LP(u) = LP(u)/ ~ or when we
define [f]~ ={g € LP: g~ f} for f € LP, then

LP(p) =A{[fl~ : f € L2(n)}-
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We define

i1 = ([ 15P du>;.

Similarly, we define £* to be the space of measurable functions f : X — F for which
there exists a null set A such that f is bounded on A°. We define

I fllzee = inf{M > 0:|f| < M ae. },

where we abbreviated “almost everywhere” by “a.e”. Similarly as for p € [1,00), we
define

L) =Alfl~: F e L2(w)}
and write for f € L*°(u) and g € f (the following is independent of the choice of g)

[fllzee = llgll zos-

But from now on we ‘identify’ functions f with their equivalence class [f]~, and so
use also consider elements of LP as functions.

Theorem A.4 (Holder’s inequality). [BCD11, Theorem 1.1] Let p,q,r € [1,00] satisfy
1 1 1
=+

p q T
If f € LP(u) and g € LY(u), then fg € L™ (u) and

19l < I fzellglla-

Theorem A.5 (Generalized Holder inequality). Let n € N and p1,...,pn,r € [1,00].
Suppose

1 1 1

e ==

Y41 Pn r

Forie{l,...,n} let f; € LPi(p). Then fi--- fn € L™ and
v Suller < Al fallzen - ([ fullzon

Proof. Let q € [1,00] be such that

1 1 1
= 4.+ .
q b1 Pn—1
Let g = f1--- fn—1. If g € L9, then by the Holder inequality, as % + pin = %
lgfuller < llgllzallfull o
From this one can finish the proof by an induction argument. O
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Lemma A.6. We have LP(u) C L*(p) + L (p) for all p € [1, ).

Proof. Let f € LP(u). Then [[f| > 1] has finite measure. Define f1 := f1[s< and
f2 = flyp>1. Then fi € L*>°(u) and with Holder’s inequality we have

1 f2llpe < (I fllze L pi>1llze < oo,
foqulsuchthat%%—%:l. O

Definition A.7. Let p € [1,00] and I be a countable set. We write || - |1y or || - [[¢» for
the function F! — [0, oo] given by

(SiarlaP)” < oo,

]y = ' !
sup;er |z()] p = 00, (r e ).

We write /(I for the set of # € F! such that ||z||sy < co. In other words, ¢2(I) is the
space LP(u) in case p is the counting measure on 1.

Lemma A.8. Let p,r € [1,00] and p < r. Then
lzller < llzllee (x € F).
In particular, P C 7.

Proof. If r = oo, this is immediate. For convenience, we may assume [ = N. Let 0 < 1.
It suffices (take 6 = £) to show that

(S l6) <X k@f (@ e
=1 =1

But this follows from the subadditivity of the function (0,00) — (0,00), t — t%, see
Lemma [20.2) 0

Corollary A.9 (Holder’s inequality for ¢ spaces). Let p,q € [1,00] and r € [1,00] be
such that
1 1 1
min{l, -+ -} = —.
{ , q} .
If f € P and g € 01, then fg € (" with
1fgller < ([ fllerllgllea-

Proof. Suppose that 113 + % > 1, in the other case we can apply Holder’s inequality
immediately. Then both p and ¢ are finite, and we can find p, ¢ with p < p < o0,
g < @ < oo such that

+2=1,

1
q

1
p
g € LTand [ fgllo < [Ifllezllglles < [ fllevllglles. O

Let f € /P and g € ¢9. Then f € ¢ and
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Theorem A.10 (Log-convexity of LP norms). Let p,r be such that 1 < p < r < 0.
Then LP(u) N L™ () C LY(p) for all ¢ with p < q <r and with 6 € [0,1] such that

we have

1 6 1-46
+ .

0 —0
1 £llze < I LFII

Proof. As1= %‘1 + @’

1 £1Za :/\f!e"lf!(1 De <A g I1F1C0)

(fel’nL").

L (1-0)aq G)q

we obtain by Hoélder’s inequality,

= A1 A

Lemma A.11 (Young’s inequality for products). For p,q > 0 with % + % =

1 1
ab < —aP 4+ —b?
p q

(a,b>0).

In an other formulation; if 6 € [0,1] then a®b'=% < fa + (1 — 0)b for all a,b > 0.

Proof. As the exponential function is convex, we have for p, q as above and a,b > 0,

1 1 1 1 1 1
ab = exp ( log a? + - log bq) —exp (loga?) + —exp (logb?) = —a? + —-b7.
p p q p q

Corollary A.12. Let p,q € [1,00] be such that 1%—1—

and

[fllze < *HfHLl + *HfHLoo

Proof. Note that 0 = %

1

. 1 _
is such that 5= 1 +

1 1
I flle < FI7u ]I f]lfse- Then apply Lemma |A.11

(1 0)

(f € L* N L™).

. Apply Theorem

A.10

O

% =1. Then L*(p) N L>®(u) C LP(p)

to obtain

O

A.13 (Notation). Let d € N and  C R? be open. We write B(Q2) for the Borel-o-algebra
on Q. Let A be the Lebesgue measure on the measurable space (2, B)(Q)), where B*(2)
is the completion of the Borel-c-algebra on €2, which consists of all Lebesgue measurable
sets. For p € [1,00] we write LP(Q2) instead of LP()).

Lemma A.14. Let p € [1,00). Then C.(R%) is dense in LP(R?).
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B Taylor’s formula

B.1 For one dimension

Let us first recall the fundamental theorem of calculus.

Theorem B.1. [RS82 §15] Let g : [a,b] — R be continuous. Then

= [ 9w ay = gla).

The following is a direct consequence.

Corollary B.2. If f € C'[a,b], then

B.3. If f € C?, then we have
) =@+ 1)
and thus
f@) = f@+ [ 1) dy
—s@+ [ (f@+ [ ¢ az) ay
~f@)+ @@+ [ [ d

This can be iterated:
For f € C*[a,b], we have

|
—

k i
1) =3 C L ) 4 ),

1!

s
Il
o

where by Fubini
& T (Y1 Yk—1 "
R,a(x):/ / / 0" f(yk) dyx dyg—1--- dy1

- /[ bk ﬂ{yiaﬁykﬁyk—lﬁmﬁylﬁx}(y)akf(yk) dy.

T rxr [T T
_ / / / .. / dy; dys - -- dykqakf(yk) dyk
a Jyg JYr—1 Y2

By induction one can easily see that

T rx T (.T _ yk)k:—l
B
/yk /yk—l /1/2 (k - 1)!

So we have obtained the following.
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Theorem B.4. Let f € C¥la, b], then

k-1
f(%)zz(xZ +/ =y fly) dy
=0 ’
k Z r—y
-y o+ [T 0k ) - 0]
=0
Let
k:
L—yrg[gﬁg]la fW)l
= max k — 9" a)l.
M = max [0 (y) = 9" (a)
Then
k=1, ‘
‘f(af)— @ D) < o - a
=0 ’ ’
k J—
|f(w)—Z(x (@) < Mo a
2 |

B.2 Taylor expansion in higher dimensions

Definition B.5. Let f € C*(U,RP) for U C R% open. Let a € U. The Taylor polynomial
of order k at the point a, written T]’f’a, is given by

1
= Y 0@ a
a€eNg:|al<k ’
The remainder of order k at the point a is given by Rk@(:v) = f(z) — T]’fﬂ(x).

Lemma B.6. [DKI0, Lemma 6.1] Let f € C*(U,R?). Then for 1 € {0,1,...,k} and
a,h € R? and t € R such that a + th € U we have

1 d h*
Saaflatth)y= > =0 f(a+th)
VE FE (6%

a€NG:|al=j

Theorem B.7 (Taylor’s Formula). [DK10, Theorem 6.2] Let f € C*(U,RP) for U C R?
being an open ball. Let a € U. For alll € {1,...,k} andx € U

i, (=a)* A=) o s(w— a)) ds
f<x>—Tf,a<>+a€Nzg:|a|:l ) e s ) a (B.1)
G (=@ A=)
“Thwr 3 | e st - ) 07 )] s

(B.2)
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For a,x € U let us define

[ — (x_a)oz ! (1_5)l_1 o _ e
R )= Y /O Chr (e s(e — )~ (@) ds. (B3)

-~ al (1
a€Nf:|al=l

The map U xU — R given by (a,z) — Rép’a(:v) is in C*~, and for every compact K C U
and every € > 0 there exists a § > 0 such that

’Rl,a(x)! <elz —af forz,a € K and |x — a| <.

Moreover, for all a € U the map R o U—=Risin C* and 0“R 7a(a) =0 for all « € N¢
with |a| < 1.

Proof. Let g be the one-dimensional function given by ¢(¢t) = f(a + t(x — a)). Then by
Theorem [B.4]

-1 ,5 14 l 1 4l
t d d
t) = ds.
9(t) = z' aei? +/ 1 (-1 dslg(s) 5
So that with Lemma [B.6) - one obtains and (| - O

C Integration by parts

Theorem C.1. [Eva98, Appendix C.2, Theorem 2] Let Q be a bounded open set with
C' boundary 0Q. We write o for the d — 1 dimensional “surface” measure on 0. For

f,g € C(Q) which are differentiable on Q, and i € {1,...,d} we have

[ f09==[ goir+ [ son ao

where n(x) for x € OU is the outward pointing normal vector and w; its i-th component.
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