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Abstract

We construct random Schrodinger operators, called Anderson Hamiltonians, with
Dirichlet and Neumann boundary conditions for a fairly general class of singular ran-
dom potentials on bounded domains. Furthermore, we construct the integrated density
of states of these Anderson Hamiltonians, and we relate the Lifschitz tails (the asymp-
totics of the left tails of the integrated density of states) to the left tails of the principal
eigenvalues.
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1 Introduction

In this paper, we consider random Schrodinger operators of the form

—-A-¢, (1

where A = 2?21 0? is the Laplacian on R? and ¢ is a random potential. Such operators are
also called Anderson Hamiltonians. We consider the construction of such operators for very
irregular potentials £ that do not need to be functions, hence there is —a priori— no obvious
interpretation of (1). In fact, we consider a fairly general class of irregular potentials under
the minimal assumption on the regularity of the potential £, which means that we assume
that the regularity of ¢ is —2 + ¢ for some o > 0. Typical examples of potentials that are
within this regularity regime include the white noise, namely the centered Gaussian field
with delta correlation, in d-dimensions with d € {1,2,3}. Another example is a Gaussian
noise £ whose covariance is formally given by

E[§(2)E(y)] = clz —y[™*, € (0,00), a & (0, min{d,4}).

We consider a bounded domain U and construct the Anderson Hamiltonian on U with
both Dirichlet as well as Neumann boundary conditions. For the latter, besides that the
domain needs also to be Lipschitz, we have to impose more restrictive assumptions on the
potential. For example, these assumptions do not allow us to construct the Anderson Hamil-
tonian with Neumann boundary conditions for a white noise potential on a three dimen-
sional domain. In order to construct this operator one expects — due to the work of Hairer
and Gerencsér [30] for the parabolic Anderson model — the need to perform an additional
renormalisation, but then only on the boundary.

After constructing the Anderson Hamiltonian it is natural to investigate its spectral prop-
erties. One of the most studied objects in the theory of random Schrodinger operators is the
integrated density of states (IDS), see for example [18, Chapter VI] and [42] for overviews.
The IDS is a nonrandom, increasing and right-continuous function on R and is often char-
acterized as the vague limit of the normalized eigenvalue counting functions. The left tail
asymptotics of the IDS are called Lifschitz tails. Relating the Lifschitz tails to the tail asymp-
totics of the principal eigenvalues is a classical result, see for example Kirsch and Martinelli
[41] and Simon [60].

We construct the IDS of the Anderson Hamiltonian with a singular potential and we
relate its left tail to those of the principal eigenvalues. In particular, by applying the work
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[37] by Hsu and Labbé, we derive the precise tail behaviour of the IDS for the white noise
in d dimensions, for d € {2, 3}.

In Section 1.1 we discuss the history and references towards the Anderson Hamiltonians
with irregular potentials. In Section 1.2 we state our assumptions for our main results, which
are presented in Section 1.3. In Section 1.4 we discuss the strategies and techniques that we
use to derive our results. In Section 1.5 we describe the outline of the rest of the paper and
in Section 1.6 we give an overview of some notation that is used throughout the paper.

1.1 Literature on the Anderson Hamiltonian and its spectral properties

The mathematical study of Anderson Hamiltonians with singular potentials dates back to
the work [29] by Fukushima and Nakao. They constructed the Anderson Hamiltonian with
a white noise potential and with Dirichlet boundary conditions on the one dimensional
domain (—L, L), as the self-adjoint operator associated to the closed symmetric form on
Hi((—L, L)), (formally) given by

(u,v) — / Vu- Vv — / Euv.
(—=L,L) (—=L,L)

For ¢ being the white noise one has to make sense of the term f(_ L) (uv. To do so,
Fukushima and Nakao replaced it by

/ (uwv" + vu')B,
(_LvL)

where B is the Brownian motion on (— L, L) (as £ is the derivative of B, this is an integration
by parts identity). In general, as shown in Theorem 4.6 (a), for a bounded open set U in R?
and a potential V' of regularity greater than —1, it is possible to make sense of

/ Vuv
U

for u,v € H}(U). Therefore, in that case, one can construct the Anderson Hamiltonian by
considering the associated symmetric form.

However, this approach fails to work if the regularity of ¢ is below —1. The treatment of
such singular £ became possible only after the advent of the theory on singular stochastic
partial differential equations (singular SPDEs), most notably the theory of regularity struc-
tures by Hairer [33] and the theory of paracontrolled distributions by Gubinelli, Imkeller
and Perkowski [32].

Motivated by the theory of paracontrolled distributions, Allez and Chouk [2] constructed
the Anderson Hamiltonian with white noise on the 2D torus as the limit of

_A_£5+Csv

where & is a regularized potential and c. is a suitably chosen constant. They obtained an
explicit domain of the operator and its action. Subsequently, Gubinelli, Ugurcan and Zach-
huber [31] constructed the Anderson Hamiltonian with white noise on the 2D and 3D torus
and studied SPDEs whose linear part is given by (1). Chouk and van Zuijlen [21] con-
structed the Anderson Hamiltonian with white noise and with either Dirichlet or Neumann
boundary conditions on 2D boxes. Mouzard [3] constructed the Anderson Hamiltonian with
white noise on 2D compact manifolds, which can also be viewed as a generalisation of [2],
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based on the theory of higher order paracontrolled distributions [9]. Additionally, he proves
a Weyl law for that Anderson Hamiltonian; we also prove this in Proposition 5.29. Ugur-
can [67] constructed the Anderson Hamiltonian on R? using the methods of paracontrolled
distributions.

The works [21], [31], [21], [3] and [67] mentioned above use the techniques of the theory
of paracontrolled distributions [32]. Labbé [44] used the theory of regularity structures to
construct the Anderson Hamiltonian with d-dimensional white noise (d < 3) on the box ()
with Dirichlet or periodic boundary conditions. Instead of directly constructing the operator
itself, he solved the resolvent equation

(a—A=8&g=f [el*Q) 2)
with Dirichlet boundary conditions for a large a > 0, and he defined the operator
G.f =g, where gsolves (2).

Then, the Anderson Hamiltonian with Dirichlet boundary conditions is defined as G;l —a.
Although this approach is robust, the construction is abstract and the domain of the operator
is implicit.

Fukushima and Nakao [29] studied the integrated density of states (IDS) for the Ander-
son Hamiltonian with white noise potential on one dimensional intervals and derived the
explicit formula that was predicted by physicists. The IDS for the Anderson Hamiltonian
with white noise potential on two dimensional boxes was constructed by Matsuda in [48].

Besides the study of the IDS, quite related are the studies of the asymptotics of the
eigenvalues. Chouk and van Zuijlen [21] showed the asymptotics of the eigenvalues in
two dimensions for a white noise potential and Labbé and Hsu [37] extended this to three
dimensions. Most recently, Bailleul, Dang and Mouzard [5] studied different properties of
the Anderson Hamiltonian and its spectrum, for example the corresponding heat kernel and
heat kernel estimates are studied, estimates of the norms of the eigenfunctions in terms of
the size of their corresponding eigenvalues are given and a lower estimate on the spectral
gap is given.

We remark that in one dimension with white noise, beyond the asymptotics of the eigen-
values and the study of the IDS, more is known about the spectrum properties.

Namely, McKean [49] showed that appropriately shifted and rescaled principal eigen-
values converge, as the segment size grows to infinity, to the Gumbel distribution in law.
Cambronero and McKean [15] and Cambronero, Ramriez and Rider [16] derived precise
tail asymptotics of the principal eigenvalue on the fixed torus. Dumaz and Labbé investi-
gated the detailed statistics of the eigenvalues and the eigenfunctions in a series of works
[26], [27] and [25]. No analogous results are known for singular potentials other than the
white noise in one dimension (see the conjectures in the introduction of [37]).

1.2 Assumptions

The following will be assumed throughout the paper.

Assumption. We fix the dimension d € N\ {1}. We let Q := S'(R¢), P a probability
measure on the Borel-o-algebra on 2 that is translation invariant. The random variable
¢ is defined by {(w) := w. There exists a 6 € (0,1) such that for all ¢ € (0,00) one
has P(¢ € C72+%7(R%)) = 1. where C~2*%7(R?) is a weighted Besov-Holder space, see
Definition 2.2. A smooth, symmetric function p € S(R?) with [ p = 1 is given and we set

pE(ZL“) = g_dp<5_1m) and & = p.*§.
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Besides the above assumptions, the following three assumptions will appear in our main
results.

I Assumption I (see 3.10) guarantees the convergence of the BPHZ models associated
to the regularity structure of the generalized parabolic Anderson model

d d
Ou = Au + Z Gi.j(w)0udju + Z hi(uw)Ou + k(u) + f(u).
i=1

ij=1

In principle, we assume this convergence to hold throughout the paper. However, since
its precise formulation requires a labour, it will be stated at the end of Section 3.1.

I Assumption II (see 5.7), stated in Section 5.3, is necessary to construct the Neumann
Anderson Hamiltonians by our approach (but not necessary for the Dirichlet Anderson
Hamiltonian). This assumption allows the 2D white noise but excludes the 3D white
noise.

IIT Assumption III (see 5.22), stated in Section 5.4, supposes that the probability mea-
sure [P is ergodic under the action of translations. This assumption is very natural to
construct the integrated density of states.

Remark 1.1. We do not allow d to be equal to one for the reason that in that case we are
not guaranteed to have an admissible kernel for our green kernel G as mentioned in the
beginning of Section 3.1.2. However, the use of the theory of regularity structures in this
case is an overkill. Moreover, the case d = 1 has been well-studied (for a white noise
potential).

1.3 Main results

Now we state our three main results of the paper. The first result concerns the construction
of Anderson Hamiltonians on bounded domains, with Dirichlet boundary conditions. With
a “domain” we mean an nonempty open subset of R? (remember we assume d € N\ {1}).

Definition 1.2. Assume I (see Assumption 3.10). Let ¢ > 0 and c. be the constant defined
as in (89).

(a) For a bounded domain U we define H2V to be the self-adjoint operator on L*(U),
—A - fe +ce (3)

with Dirichlet boundary conditions.

(b) For a bounded Lipschitz domain U we define HXV to be the self-adjoint operator (3)
on L*(U) with Neumann boundary conditions.

Remark 1.3. Actually, in Section 5 we first define the operators H>U and H'V as those
that correspond to symmetric forms given in terms of the stochastic terms that we introduce
in Section 3. Then we show that these equal (3).

Definition 1.4. [55, Definition p. 284] Let A, Ay, Ay, ... be self-adjoint operators on a
Banach space X. We say that the sequence (A,,),en converges in norm resolvent sense and
write

NR
An —n—oc0 A



if
Jim [+ A42) 7 = (14 A) " xox =0,

A sequence converges in norm resolvent sense if and only if the above convergence holds
with “1” replaced by “\” for any A\ € C \ R [55, Theorem VIIL.19].

Theorem 1.5 (Theorem 5.4). Assume I (see Assumption 3.10). Let U be a bounded domain.
There exists a self-adjoint operator H>Y on L*(U) such that

HOU —>5¢0 H"Y in probability.

Furthermore, each of the operators has a countable spectrum of eigenvalues and the eigen-
values of H>V converge in probability to those of HV.
The limit H™V is independent of the mollifier p.

The second main result concerns Anderson Hamiltonians on bounded Lipschitz domains
with Neumann boundary conditions.

Theorem 1.6 (Theorem 5.17). Assume I and II (see Assumptions 3.10 and 5.7). Let U be a
bounded Lipschitz domain. There exists a self-adjoint operator H™Y on L?(U) such that

HYU IR0 BN in probability.

Furthermore, each of the operators has a countable spectrum of eigenvalues and the eigen-
values of HY'Y converge in probability to those of H™V.
The limit H™Y is independent of the mollifier p.

Remark 1.7. The statement of Theorem 5.4 is actually slightly more general. Convergence
in probability implies that there exists a subsequence and a set {2; C () of probability one
such that the subsequence converges everywhere on (2. For the convergence of the Dirichlet
operators, this set {2; can be chosen independently from the choice of bounded domain U.

The last main result concerns the integrated density of states (IDS) of Anderson Hamil-
tonians. For example, we show that the notion of the IDS for Anderson Hamiltonians with
smooth potentials can be extended to irregular potentials.

For a bounded domain U and L € [1,00) we write |U| for the Lebesgue measure of U
and

Up:=LU ={z R | L'z € U}.

Recall that for the Anderson Hamiltonian with a smooth ergodic potential V' the integrated
density of states Ny is given by the right-continuous and increasing function R — R with
limy_, o Nv(A) = 0 for which, with (A} (U))ren being the eigenvalues of —A — V with
Dirichlet boundary conditions on U (counting multiplicities), for any bounded domain U
and continuity point A of Ny,

lim | Z Loy <y = = Ny(A).

L—oo |UL JeN

Theorem 1.8. Assume I and Ill (see Assumptions 3.10 and 5.22). There exists a right-
continuous and increasing function N : R — R with

lim N(\) =0,
A——00

such that the following holds:



(@) For (A2(U))ken being the eigenvalues of H>V as in Theorem 1.5 (counting multiplici-
ties), almost surely, one has for every bounded domain U and every continuity point \
of N

hm |UL ZH{AD(UL)<>\} N()\)

L—oo
keN

(N is called the integrated density of states of the Anderson Hamiltonian with potential
£)
(b) Let N. be the integrated density of states of the Anderson Hamiltonian with potential

& — c., where c. is the constant defined by (89).

Then, N . converges vaguely to IN (see Definition 5.33).
(¢c) One has limy_, )\_gN()\) = %.

(d) For any bounded domain U and o € (0, 00), the following identities hold in [—oc, 0]:
lim sup(—A)"*log N (\) = limsup(—\) " log P(AL(U) <)),

A——00 A——o00
liminf(—X)"%log N (A) = liminf(—X\)"“log P(AL(U) < ).
A——00 A——00

(e) Assume furthermore Il (see Assumption 5.7). For (A} (U))ken being the eigenvalues of
HNY as in Theorem 1.6, for every bounded Lipschitz domain U and every continuity
point \ of N,

hm Z]l{,\ wy<ay = N(X),  almost surely.
e % ULl Ll keN

Proof. See Theorem 5.38, Theorem 5.41 and Theorem 5.42. L]

With the above theorem in combination with [37] we obtain the precise tail behaviour of
the IDS for the Anderson Hamiltonian with white noise potential in d dimensions.

Corollary 1.9. Let d € {2,3} and & be the d-dimensional white noise. Then,

. _4-d 8 —4
AEIElOO(_A) 2 log N(A) = _dd/2(4 — d)g_d/g"id )

where K, is the best constant of the Gagliardo-Nirenberg inequality

d/4 1—d/4
| Fllzaeey < CIV AN ot |11 oty
Proof. This follows from Theorem 5.42 and [37, Theorem 2]. [

Remark 1.10. The case d = 1 is of course known, see [29]. The case d = 2 was proved in
[48]. In physics literature, these tail behaviours have been already expected (e.g. [17], [12]).

1.4 About the strategies and techniques

Let us discuss our strategy of proving Theorem 1.5. The core idea is the following: instead of
directly working on the operators themselves, we work on the symmetric forms associated to
them. In fact, we are inspired by Gubinelli, Ugurcan and Zachhuber [31], where they figured
out that the form domain of the Anderson Hamiltonian is quite simple on the torus with 2D
or 3D white noise. To see how we can benefit from this idea, we observe the following
elementary lemma (the proof follows by integration by parts, see also Lemma 4.5).
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Lemma 1.11. Let U be a bounded domain, (,w € C=(U) and u € C*(U). Set v’ :=
e~ “u. Then, one has

/(\Vu|2 —(u?) = / eQw\VubIQ — / e (¢ + |[Vw|® + Aw)(ub)Q. 4)
U U U

As Lemma 1.11 suggests, to make sense of the symmetric form

(u,v) — /U(Vu - Vv — &uv),

for the singular potential £, one hopes to find smooth functions w. such that the sequence of
functions
e*= (& + |[Vw > + Aw,) ®)

converges to some limit y of sufficient regularity such that (yu”, v") makes sense for u”, v” €
H;(U). It turns out that this is possible, when we replace & in (5) by & — c. for some
constants c. that diverge as ¢ | 0. For a description on how to choose w,, see the discussion
after Theorem 3.3.

As mentioned, our proof of Theorem 1.5 relies on the theory of symmetric forms. In
particular, the work [43] by Kuwae and Shioya is important for us as it provides a correct
notion of convergence of symmetric forms bounded below. Another key ingredient to the
proof of Theorem 1.5 is the theory of regularity structures initiated by Hairer [33] and de-
veloped by Bruned, Hairer and Zambotti [13] and Chandra and Hairer [19]. Regarding this,
see Section 3.

An important idea used in Lemma 1.11 is the exponential transformation. This is now
a well-known technique in singular SPDEs. The most notable one is the Cole-Hopf trans-
form of the KPZ equation as used by Bertini and Giacomin [10]. Hairer and Labbé [34]
used the exponential transformation to simplify the 2D parabolic Anderson model. As al-
ready mentioned, Gubinelli, Ugrucan and Zachhuber [31] used it to construct the Anderson
Hamiltonian with 2D or 3D white noise. Recently, Jagannath and Perkowski [39] applied it
to simplify the construstruction of the dynamical ®3 model and Zachhuber [68] applied it to
prove global well-posedness of multiplicative stochastic wave equations. A major drawback
of the exponential transformation is the lack of robustness. For instance, it does not work if
we replace the Laplacian with a fractional Laplacian.

The strategy of proving Theorem 1.6 in which the Neumann operator is considered is
similar to that of Theorem 1.5 in which the Dirichlet operator is considered. However, as
one has to deal with a boundary term in the Neumann setting (basically due to the integration
by parts formula, see Lemma 4.5), we will have to impose an additional assumption.

Finally, let us discuss Theorem 1.8. There are two standard approaches to construct the
IDS: the path integral approach [18, Section VI.1.2] and the functional analytic approach
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[18, Section VI.1.3]. In our framework, we cannot use the path integral approach. Indeed,
it was shown in [48] that the 2D white noise is critical for this approach in that the Laplace
transform of the IDS is finite only for small parameters. Therefore, if the regularity of the
potential ¢ is lower than that of the 2D white noise, we expect the blow-up of the Laplace
transform of the IDS for any parameter. Hence, in this paper we adopt the functional analytic
approach. This approach, introduced by Kirsch and Martinelli [41], is based on the super-
(sub-)additivity of the Dirichlet (Neumann) eigenvalue counting functions and the ergodic
theorem by Akcoglu and Krengel [1]. There is one significant problem in our situation. That
is, without Assumption 5.7, we do not have Neumann Anderson Hamiltonians. To solve this
problem, we introduce artificial Neumann Anderson Hamiltonians (see Definition 5.19). For
this to be possible, it is crucial that we have a rather explicit representation of the symmetric
form associated to the Anderson Hamiltonian. Many technical estimates here are inspired
by Doi, Iwatsuka and Mine [24].

1.5 Outline

In Section 2, we introduce some notation related to the function spaces that we use. Tech-
nical estimates related to the objects introduced in Section 2 are postponed to Appendix A.
In Section 3, we describe a theorem (Theorem 3.3) to construct some continuous functions
W and some distributions Y} that are required to define the symmetric forms associated
to the Anderson Hamiltonians. We postpone the proof of this theorem to Appendix C: This
is done because it requires the full-fledged theory of regularity structures [13], which will
be reviewed in Appendix B. In Section 4, we cover some theory on (deterministic) symmet-
ric forms that will be relevant to our problems. In Section 5, we give the definition of the
Anderson Hamiltonians and prove the main theorems.

1.6 Notation

We set N := {1,2,3,...} and Ny := {0} UN. We call a subset of R? a domain if it is an
open subset of RY. We denote by U the closure of a subset U of R%. Given a subset U of
R%, L € (0,00) and z € RY, we set

Up:=LU={ycR| Ly cU},

d(z,U) = inf{lz —y| |y € U}, BUR):={y € RY|d(y,U) < R} and B(x, R) :=
B({z}, R). We denote by |U| the Lebesgue measure of a measurable set U.

We denote by S(R?) the space of Schwartz functions equipped with the locally convex
topology generated by the Schwartz seminorms, and, by S’(R¢) the space of tempered distri-
butions, that is, the dual space of S(R?). We denote by supp( f) the support of a distribution
or a continuous function f in R% Let k € N U {oo}. For a domain U, we write C*(U)
for the k times continuously differentiable functions on U and C*(U) for those functions
in C*(U) with compact support. For a closed set V' C R? (we will consider U and OU for
domains U), we define

CHV) :={flv: f € C*RM)}.
For a subset U of R?, either open or closed, we define

I fllcr ) = Sug Z 0% f(z)| ifk < oo
PAS

leN:|1|<k
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We denote by LP(U), p € [1, 00|, the usual Lebesgue LP-space on U. We denote by (F, f)
the dual pairing of /' € S'(RY) and f € S(R?) and the dual pairing of Besov spaces [58,
Theorem 2.17]. We denote by f * g the convolution of f and g. By duality, the convolution
f*gfor f € S(RY) and g € S'(R?) is defined and represents a smooth function.

Let A, X besetsand f,g : Ax X — [0, 00]. We write f(a,z) <, g(a, z) if there exists a
constant C' € (0, oo] (possibly) depending on a —for which we also write either C' = C'(a) or
C' = C,—such that f(a,z) < Cg(a,x) for all z. We will not explicitly write the dependence
on the dimension d, i.e., we write “<,” instead of “<4,”.

2 Function spaces

2.1 Besov spaces on R?

Here we describe definitions and important properties of Besov spaces on R?. Technical
estimates related to Besov spaces will be given in Section A.1.

Definition 2.1. The Fourier transform of f is defined by
Filw)= [ fle)e?mvds
R4

for f € S(RY). We define F f for f € S'(RY) by duality: (Ff,g) := (f, Fg) forg € S(R?).

Definition 2.2. Let Y, x be smooth radial functions with values in [0, 1] on R? with the
following properties:

* supp(X) € B(0, 3), supp(x) € {z € R*| § < |2| < §}.
* X(x) + E;)C:)O X(Q_J,’]j) == 1 fOl‘ xXr E Rd and ZjGZ X(2_]$) = 1 for €T E Rd \ {O}.

The existence of such ¥ and Y is guaranteed by [4, Proposition 2.10]. For f € S'(R%) we
set

Aaf=F&Ff,  Af=F'(x@7)Ff), jeNo
Let p,q € [1,00] and r € R. For 0 € R, we set
we(z) = (14 |z|*)"%.

The weighted nonhomogeneous Besov space B;:g(Rd) consists of those distributions f in
S'(R?) such that || f|| gr.o rey < 00, where

1 gy = || (27 wo s e

j=—1

A

Let us mention that the norm actually depends on the choice of x and Y, though the space
does not. See for example [4, Corollary 2.70]. [4, Lemma 2.69] implies that different
choices of y and x as above give equivalent norms.

We set C"7(R?) := BL7 (R?) and write C"(R?) := C"°(R?), By (R?) = B0(R?).
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2.2 Sobolev-Slobodeckij spaces on bounded domains

Recall that a bounded domain U of R? is called a bounded Lipschitz domain if its bound-
ary can be locally approximated by Lipschitz functions (for the precise definition see [66,
Definition 4.3]).

66

Definition 2.3. Let U be a domain in R%. Let p € [1,00] and r > 0.

(a) The space W (U) is the completion of {f|y | f € C=(U), [ flollwg@) < oo} with
respect to the norm

[ llwgwy = Z 10° fll ey + Z (0% Flyyr=1r1 5

a€eNG al<r a€eNg al=|r]

where [glwo() = 0 and for s € (0, 1),

f lg(z)—g(y)|” dzd > <
. — UxU |Jj y|d+p5 y p OO? .
[9lws (o) l9(z) g ()]

Supx,yeU,|x7y|§1 [z—y[* p = 0.
We set H"(U) := W5 (U). We denote by W} ,(U) the completion of C2°(U) with
respect to the norm ||[|yyr ga) (00t ||-|[wy (1)) and we set Hg(U) := W3, (U).

(b) Let U be a bounded Lipschitz domain and r € (0,1). The space W (0U) is the
completion of C'*(0U) with respect to the norm

lglov lwy ou) = 119l e 00y + [glwy o0
where
l9lwyou) = <f8UX5Um—1L”(T)(1x(j)y> P =< 00
SUPy yedU,|lz—y|<1 ™~ [o—yr p = 0.

Remark 2.4 (Equivalent definitions). For a bounded domain U, let Wpr (U) be the space
of f € LP(U) such that the distributional derivatives 0 f for |a| < r are in LP(U) and
| Fllwgon < oo. N

Then Wp,o(U ) is the closure of C2°(U) in W (U) and if U is a bounded Lipschitz do-
main, then W) (U) = W/ (U), see for example [53, Theorem 1.2] or [51].

Definition 2.5. For U a domain in R? and r > 0 we also write C"(U) = W/ (U) and
| fller@y = I fllwe @)
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The following lemma relates the Sobolev—Slobodeckij spaces W (and C") for U = R?
to the Besov spaces.

Lemma 2.6. Let s € (0,00) \ Nand p € [1,00]. Then W;(R?) = B (R?), C*(R?) =
C*(RY) and the norms ||- lws(ra)y and ||-|| s, ra) are equivalent (hence ||-|
are equivalent).

Cs(Rd)

Proof. This follows by [65, p.90]: For p € [1, 00) one has W3 (R?) = B (R?) with equiva-
lent norms, see [65, p. 90 and p.113] (W*?(R?) is written instead of W (R?) and it is shown
that W3(R?) = A3 (R?) = B:, (R%), for C*(R%) = C*(R?) = B:, _(R%) with equivalent
norms, see [65, p.90 (9), (6) and p.113] (actually, in [65] C*(R?) is defined differently but
shown to be the same as B, (R?)). O

Lemma 2.7. Let U be a bounded Lipschitz domain.
(a) Set D := Upept,o0]refo,00) W, (U). There exists an extension operator 1 : D — S'(R?)
such that
* (f) = f as distributions on U for f € D,
* [NelHlwyray Svpr 1fllwy @) for every p € [1,00], 7 € [0,00) and f € D,
L(f) € C®(R?) forall f € C=(U).
(b) Letp € (1,00) and r € (i, 1+ %) Then, the map C>(U) — C>=(0U), f — flov
extends uniquely to a bounded linear operator T = Ty : Wy (U) — W, * (0U).

Furthermore, there exists a bounded linear operator that is the right inverse of T.

Proof. For (a) see [62, Chapter 6] in combination with [64, Section 4], or, for r € [0, 1),
[23, Theorem 5.4]. For (b), see [46, Theorem 3]. [

Definition 2.8. An extension operator ¢ as in Lemma 2.7 (a) is called a universal extension
operator from U to R%. The operator 7 as in Lemma 2.7 (b) is called the trace operator.

3 Stochastic terms for the Anderson Hamiltonian

As we motivated below Lemma 1.11, for a singular random potential &, in this section, see
Theorem 3.3, we derive random functions W, and scalars ¢, such that

Ve (& — o + VW > + AW,)

converges to some random Y of sufficient regularity.

In the rest of the section, i.e., in Section 3.1, we discuss the necessary definitions of the
theory of regularity structures such that we can describe our main assumption: Assump-
tion 3.10. The proof of Theorem 3.3 needs the full-fledged theory of regularity structures
and is therefore postponed to Appendix C.

The W, are given in terms of a convolution with the Fourier cutoff of size N of the
Green’s function. We tune this NV (randomly) in such a way that we can get desired bounds
on W.. Therefore, we first introduce some notation on the Green’s function and its Fourier
cutoff of size V.

12



Let GG be the Green’s function of —A on R? (d > 2), which means that —AG * f = f
for f € S(R?). That is, G is the distribution which is represented by the function defined

for x # 0 by
1 -1 _
G(l‘) _ 2 l?g’ﬂ ) d 27
T 12| d >3,

where w, is the volume of the unit ball in R? (for d > 3,G = F (|27 - |72)).
Definition 3.1. Let y be the function introduced in Definition 2.2. For N € N, we set
Gy = F (1 —x@2M))[2r|7?).

Remark 3.2. Let ¢ € C°°(R?) be such that ¢/ is a Schwartz function for all 1) € S(R?)
(equivalently, ¢ and all its derivatives are of at most polynomial growth). If g is a tempered
distribution, i.e., g € &’ (Rd), then the product ¢g is defined by

(b9, ¥) = (9,0%), ¥ €SRY).

The function ¢ = (1 — x(27+))| - |72 is such a smooth function. Therefore we can define
its Fourier multiplier, for which we use same notation as the convolution (as it generalises
the convolution), i.e., we write G * f = F~1((1 — x(27V))| - |72Ff).

Theorem 3.3. Under Assumption 3.10 stated below, for ¢ € (0,1) and N € Ny there exist
random variables X¢ and Y5, in C*°(R%), X in 8'(R?) and Yy in S'(R?) with the following
properties:

e For every o € (0,00), X is almost surely in C~**%°(R?) and Yy is almost surely in
C~14%(RY), and for all p € [1,00)

lsiﬂ]lHXs = X||o(pc-2+oomay) = 0,

hLI)lHY]\Ef — YNHLp(]p’c—l-&-é,a(Rd)) =0, N e N.
B

Furthermore, for all p € [1,00), X — £ is an element of LP(P,C~2+27 (R)),

13?01“)(6 — & — (X = o c-2r260may) =0,

and there exists an integer b = b(0) € N, independent of o and p such that

a:=a(d,0) = sup 27°N||Yy|lc-1+s0(ray € LP(P). (6)
NeN

The limits X and Yy are independent of the mollifier p.

* For N € Nyset W5, := Gy*X®and Wy := Gy*X, where G is as in Definition 3.1.
Let U be a bounded domain.

If M and e are random variables (depending on U) with values in Ny and (0, c0),
respectively, such that ||Way|| @y < 1 and ||W5; — Way|| ey < 1 almost surely,
then one has

VW 2+ AWS + e 2WuYs = —¢ +c.  on U almost surely,

for some scalars c. that are defined in (89).
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Proof. It follows from Proposition C.27 and Corollary C.36. [l

Let us present the heuristic idea behind the derivation of I¥. For this purpose, we intro-
duce a formal notion of degree deg, which coincides with ||, given below. We set deg(&) =
—2+40,deg(9;7) = deg(1)—1, (—A)'7 = deg(7)+2 and deg(7; - 72) = deg(;)+deg(m).
The degree deg(7) more or less reflects the regularity of 7.

Remember that we are going to construct a W such that £ + |VW |2+ AW is sufficiently
regular. Our strategy is to first neglect the [V |? term (as its degree deg(|VW|?) is greater
than deg(AW)) and try to find a W such that ATV compensates the irregularity of £. The
most natural choice for this is W = (—A)~'¢. Then,

E4+ VWP + AW = |[V(=A) ¢ = 7.

Observe deg (1) = —2 + 24, which is greater than deg(§) = —2 + 4. If the degree —2 + 2§
is too small to our taste, then we instead set

W= (=A)"(E+ 7).
For this W we obtain

E+ VWP + AW =2V(=A)"'¢ - V(=A) ' + [V(=A) '

where deg(7y) = —2 + 30 and deg(73) = —2 + 46 are both greater than —2 + 26. One can
repeat this argument until one obtains a sum of terms for & + |[VW|? + AW such that each
term has sufficiently large degree. (As Theorem 4.6 (a) shows, “sufficiently large” means
that the degree is greater than —1.)

The above arguments are not yet mathematically rigorous, as for instance, the term
|V(—A)~1€|?, that is the inner product of V(—A)~!¢ with itself, a priori does not make
sense since V(—A) !¢ is not a function in general. Moreover, it turns out that |V (—A) &, |?
itself does not converge as ¢ | 0, but if we take a “renormalization” of it, namely

[V(=2) & —E[[V(=A) & [*(0)],

then it does converge in probability. Then, we take the limit of it as our definition of 7
(instead of the nonrigorous definition |V (—A)~1£|? above). The theory of regularity struc-
tures, which aims to solve singular stochastic partial differential equations, provides a cor-
rect framework for this operation of renormalization.

3.1 A brief discussion on regularity structures

The theory of regularity structures was first introduced by the seminal work [33] and de-
veloped by [13], [19] and [14]. It provides a general framework to solve singular stochastic
partial differential equations. There are other theories to solve singular stochastic partial dif-
ferential equations, most notably the theory of paracontrolled calculus [32], [9], [7], [8]. In
this paper, we use a regularity structure (A, .7, G) for the generalized Parabolic Anderson
model (gPAM)

d d
Ou = Au + Z gi.j(w)0udju + Z hi(uw)0iu + k(u) + f(u)€,
i=1

ij=1
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as constructed in [13]. In what follows, we simply say that .7 is the regularity structure for
the gPAM instead of the triplet. The vector space .7 is equipped with Hopf algebras

(g+7%7+71+7A+71/+7%+) and (977%7_7177A771/—7d7)

(written in the following order: vector space, product, unit, coproduct, counit and antipode)
and coactions

AT 5 T®T, and A°:T T @7.

For the precise definitions of them, see Definition B.26. In the terminology of [6], the
pair (.7, .7,) is a concrete regularity structure and the pair (.7,.7_) is a renormalization
structure.

A decorated forest is a 5-tuple (F), F.N,o0, ¢) equipped with a type map t, see Defini-
tion B.3 for the precise definition. If F' is a tree, we call it a decorated tree. We write
(F, F')¥° for brevity. The vector space .7 has a canonical basis B(.7) = B(HZE) (see Defi-
nition B.22), whose elements are decorated trees. The symbol =, which represents the noise
&, is identified with the decorated tree

a
o= Je (7
p

with F'(p) = F(a) = F(e) = N(p) = N(a) = o(p) = o(a) = ¢(e) = 0 and t(e) = Z. This
decorated tree belongs to B(.7). The polynomial X* is identified with the decorated tree o
with F'(e) = 0, N(e) = k and o(e) = 0, which belongs to B(.7). We write 1 := X°.

A grading |-|; (see Definition B.6) is assigned to each element 7 of B(.7) and one
has a grade decomposition .7 = @3.73, where .75 is the subspace generated by {7 €
B(T) | |t|+ = B}. In fact, the index set A of the regularity structure is identified with
{I7|+ |7 € B(7)}. We have |Z| = —2 + J. One has integration operators .¥ = %, .9, :
T — 7 for k € Nd with |k| = 1 (see Definition B.5). We often write .%; := .7,,, where e;
is the ith unit vector of R%.

3.1.1 Models

Recall the notion of models % = (II,T") from [33, Definition 2.17]. In our situation, the
scaling s is uniform: s = (1,1,...,1). We also need the functional ||-||,.s and the psuedo-
metric ||-; ||, from [33, (2.16) and (2.17)].

33 13

33
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Definition 3.4. A smooth map K : R?\ {0} — R with supp K C B(0,1) is called an
admissible kernel if it satisfies [33, Assumption 5.1] with K (z,y) := K(z — y) and with
B =2andif [, 2"K(z)dx =0 for|k| < 1.

Definition 3.5 ([33, Definition 5.9]). Given an admissible kernel X', a model (II, ") for .77
is said to realize K if one has

)
0, %71 =0"K « 1,7 — Z #

i (0" K+ I1,7](x)

JENG:|T|4+2—|j]~[k|>0

for every 7 € B(.7), k € N¢ with |k| < 1 and # € R?. The space .Z (.7, K) of all K-
admissible models is endowed with the topology induced by the collection of pseudometrics
(I 5 -+, )~. 5 - In fact, the space .# (.7, K) is a complete metric space.

Definition 3.6 ([13, Definition 6.9]). We call alinear map I : .7 — S'(R?) a (¢-)realization
if
M1 =1, TIE=¢, TII(X"r)=2a"TIr forevery T € B(T).

A realization is called smooth if its image is a subset of C*(R?). Given an admissible kernel
K, arealization II is called K-admissible if it additionally satisfies

I1.7,(7) = 0K 7 forevery 7 € B(.7) and k € N¢ with |k| < 1.

Definition 3.7 ([13, Definition 6.8]). Let K be an admissible kernel. To a smooth K-
admissible realization II, one can associate a model

Z(I1) == (I,T)

realizing K as in [13, Definition 6.8].
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We denote by .7 (.7, K) the closure in . (.7, K) of
{Z(IT) | I1 is a smooth K -admissible realization}.

Definition 3.8 ([13, Proposition 6.12]). A (K-)canonical realization I1°*™* for &, is the
smooth K -admissible &.-realization characterized by the identities

Hcan,e(TO,) _ Hcan,€<7_)1—[can,s(o_)’ TIcane (%QT) — Hcan,sT,
where %, is obtained from 7 = (F, F')° by resetting F'(p,,) = 1 and o(7) = a. We set

greane . (Hcan,a’ Fcan) — 'ﬂp(Hcan,a)‘

3.1.2 BPHZ renormalization

In this section, we fix an admissible kernel K : R?\ {0} — R such that the function K — G
on R?\ {0} extends to a smooth function on R? and K = K (—-). The existence of such K
is guaranteed by [33, Lemma 5.5]. All models below are supposed to realize this K.

In the situation of our interest, the model 2°““™* does not converge as £ | 0. To ob-
tain a limit, one has to “twist” the realization II°*™°. This operation of twisting is called
renormalization. The most natural renormalization is called the BPHZ renormalization, as
introduced in [13].

Definition 3.9 ([13, Theorem 6.16]). The BPHZ realization TI®YH%< is a unique &.-realization
characterized by the following properties:

o TIBPHZE = (g @ TI°™°)A° for some algebraic map g : 7~ — R;
e For every 7 € .7 with |7], < 0, one has E[ITB*H2<7(0)] = 0.

We set
gyBPHZe . _ (HBPHZ,s FBPHZ,E) — ff(HBPHZ,s)‘

Now we can state our important assumption of the noise £. Heuristically, it claims the
convergence of ZBPHZe in [P(P).

Assumption 3.10 (Assumption I). As ¢ | 0, the family of models (2 BPHZ’E)ae(o,l) con-
verges to some model Z°BPHZ — ([[BPHZ TBPHZ) 'ipdependent of the mollifier p, in .# (.7, K )
in probability. Furthermore, there exists a ' € (0, 1) with the following property. For every
p € 2N, there exist constants C**"'* € (0, 0o) and a map """* : (0,1) — (0, 00) such that

BPHZ .
lim. o €7 (g) = 0 and the estimates

E[[(Tr, ¢2)[7] < G earirte,

EH <HEPHZT o HEPHZ’ST, ¢i\>‘p] < EEPHZ(S))\p(|T|++6/)

hold forallz € R%, X € (0,1), ¢ € C*(R?) with ||¢]|c2ga) < 1 and with supp(¢) € B(0,1)
and 7 = (T,0)¥° € T with |7]|, < 0. Here we write ¢ := A" 2p(\ 71 (- — x)).
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Remark 3.11. The work [19], see especially Theorem 2.31 and Theorem 2.34 therein, gives
conditions of the noise £ under which Assumption 3.10 holds. It is worth observing that
Assumption 3.10 holds for the 2D and the 3D white noise, and the Gaussian noise & whose
covariance is formally given by

E[¢(x)¢(y)] = v(z — y),

where v : R?\ {0} — [0, 00) is smooth and bounded away from 0 and for some § € (0, 1)
we have

sup  sup  |90Fy(x)||ami A0 E o o0
keNg, x€B(0,1)\{0}
|k|<6d

see [19, Theorem 2.15]. For example one could take v to be given by

V(@) = cla|

for some ¢ € (0,00) and o € (0, min{d, 4}).
19
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4 Analysis of symmetric forms

It is common practice in the theory of rough paths [45] to first show the existence of suf-
ficiently many stochastic objects and then apply deterministic analysis to derive results. In
this section we consider the (deterministic) analysis of symmetric forms, which we use in
Section 5 in combination with Theorem 3.3 to construct the Anderson Hamiltonian and
derive its spectral properties.

First we recall the definition of a symmetric form and some related definitions in Defi-
nition 4.1, then we describe the symmetric forms SV[{,, ~ (in Definition 4.2) that we will study
in Sections 4.2 and 4.3. We motivate the study of 5{,{,} - from the viewpoint of the Anderson
Hamiltonian, before we turn to the examples of bounded symmetric forms in Section 4.1,
basic spectral properties of the symmetric forms and their associated self adjoint operators
in Section 4.2 and finally consider estimates of eigenvalues in Section 4.3.

We recall some definitions of symmetric forms.

Definition 4.1. Let H be a Hilbert space over R. A bilinear map Q : D(Q) x D(Q) —
with D(Q) a dense subspace of H, is called a symmetric form on H if Q(u,v) =
for all u,v € D(Q). Let Q be a symmetric form on H. We write

Q= sup  [Q(u,u)l. @)

u€D(Q),[[ul|p=1

v, U)

If [Q]n < oo, then we call Q a bounded symmetric form. In that case, without loss of
generality we assume D(Q) = H. The set of bounded symmetric forms is a Banach space
under the norm [-] 5. Then, a sequence (Z,,),cn of bounded symmetric forms converges to
a bounded symmetric form Z if

18



Let M > 0. A symmetric form Q is called M -bounded from below if Q(u, u)+ M||u|[% > 0
for all uw € D(Q). It is called bounded from below if it is M-bounded from below for some
M > 0. If Q is M-bounded from below and (D(Q), Q + M (-,-)y) is a Hilbert space
for some M > 0, then Q is said to be closed. If Q is a closed symmetric form and M is
as above, then a subset of D(Q) is called a core for Q if it is dense in the Hilbert space
(D(Q)v Q+ M<'7 >H)

Observe that a symmetric form is determined by its values on the diagonal of H x H,
ie., Qu,v) = 35[Q(u+v,u+v)— Qu,u) — Q(v, v)]. For this reason we often only define
symmetric forms on the diagonal.

Definition 4.2. Let U be a bounded domain, W € L*(U) and Z be a bounded symmetric
form on H*(U) for some s € [0,1). We define the symmetric form £ = £ff, > on " H'(U)
as follows: for u = eV’ with v’ € H'(U), we set

E(u,u) ==& z(u,u) == / A\ ()2 dz + Z (v, ).
U

Let us turn to the motivation of studying the symmetric forms of the form 55{,’ - as above,
by extending the motivation given below Lemma 1.11. As we also want to motivate the con-
struction of the Anderson Hamiltonian with Neumann boundary conditions, in Lemma 4.5
we prove a generalisation of Lemma 1.11 that allows to consider smooth functions up to
the boundary. For that we first recall an integration by parts formula on bounded Lipschitz
domains.

Lemma 4.3 ([28, Theorem 5.6]). Let U be a bounded Lipschitz domain. Then, the outer
unit normal v exists a.e. on OU and we have

/ Vf(a) - Volr)de = - / f@)Ag(@)de+ | f@)V.g)dSE) O
U U oU

forevery f € H\(U) and g € C*(U), where S is the (d — 1)-dimensional Lebesgue measure
on OU and for x € OU

o glo+h(z)) = g(2)

If U is not necessarily Lipschitz, then

/Vf - Vg(x /f JAg(z

forevery f € H'(RY) and ¢ € C?(U).

Definition 4.4. Let U be a bounded Lipschitz domain and v be the outer unit normal on OU..
For measurable functions f and g such that g is continuously differentiable, and fV,g is
integrable on QU (with respect to S, see Lemma 4.3) we write

fVg-dS:= [ fv,gds.
ou oUu

Lemma 4.5. Let U be a bounded Lipschitz domain, (,w € C=(U) and u € C*®(U). Set

u’ = e “u. Then, one has

[ vuk = ¢t

= / |V |? — / (¢4 [Vw)? + Aw)(u’)? —|—/ e (u’)*Vw - d8S.
U U

ou
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Proof. One has

[ emwir = [ enweap = [ vk« 1908 - [ vo- 9
U U

and by integration by parts (Lemma 4.3) one has

/UVw-V(UQ):/aUuQVw- dS—/U(Aw)UQ. O

By this lemma (or Lemma 1.11) and by Theorem 3.3 (with the notation as therein) we
see that the Anderson Hamiltonian with potential . — c.,

~A—¢& e, (10)

on U with Dirichlet boundary conditions, corresponds' to the symmetric form on Hg(U)
given by

/ |Vul? — (& — c)u® = / Vi |V )2 + 25, (0, 0), W =e W
U U
_ U
o gWJEWZif (u’ u)’
where, due to the identity
Eo—co + |[VWE P+ AWS, = —e 2y,

the symmetric form Zj, is given by

Z&(v,v):/UYf/[vQ.

When we instead consider (10) on U with Neumann boundary conditions, we additionally
have a boundary term, in the sense that the corresponding symmetric form on H!(U) is

given by £V o3 Where
M>

Zii(v,v) = 25,(v,v) +/ W2 VIS, - dS.
oUu

The latter integral over the boundary OU will be decomposed into a few different terms. Let
us recall from Theorem 3.3 that Wj, = G * X*. Then

/ Wil VWe, - dS = 25, (v, v) + Z5,(v,v),
U
where
Z~§J(v,v) :/ WiV V(G *&.) - dS,
U

2;4(11,@):/8[] V27 (G + (XF — £.)) - dS

'For a discussion on the correspondence between operators with Dirichlet (Neumann) boundary conditions
and symmetric forms on H (on H?), we refer to [22, Section 6 and 7].
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+/ WiV (G — Go) x &) - dS.
oUu

In order to study the convergence of the Anderson Hamiltonian with potential £, — c. with
Dirichlet and with Neumann boundary conditions in the resolvent sense, as we will show
in the present section (see Lemma 4.15 and Theorem 4.17), it suffices to consider a certain
continuity of 5%,7 ~ as a function of W and Z.

Before we turn to that more general setting, let us elaborate on this a bit more for the
limits we want to consider. By Theorem A.3, for all o € (0, 00) we have & — £ in C~2H%¢
almost surely (as Assumption 3.10 actually guarantees that & € C~219+%7 for some x > 0),
and by Theorem 3.3 we have almost surely

Y, — Yy in CTHO0(RY), (11)
X = XinC*RY), X —¢& — X — £inC 20 (RY).

Therefore, by Corollary A.10 and Lemma A.6 we have the following convergences almost
surely

Ws, — Wy in C%7(RY), (12)
V(Gyx &) — V(G * &) in C™1T07(RY), (13)
V(G * (XF=£)) = V(G * (X =€) in C~1T%0(RY), (14)
V((Gy — Go) *£2) = V((Gyr — Go) % €) in C%7(RY). (15)

For the convergence of the Anderson Hamiltonian with potential £, — c. on U with Dirichlet
boundary conditions, (12) and (11) suffice (the latter convergence implies the convergence
of the symmetric form Z5,).

If we instead consider Neumann boundary conditions, we additionally need Z5, and 254
to converge. The convergence of 2}?4 is guaranteed by (15) and by (14) if we assume § > 1,
as then both convergences imply convergence of the restricted function to OU in L>(9U).
In order to deal with the convergence of Z¢,, the convergence (13) does not seem to suffice,
due to the integration over the d — 1 dimensional boundary OU. Let us elaborate on this.
We can write 25, = (YU, e2Wirv?), where Y.V is the distribution ¢ > [, V(Go * & )p dS.
The distribution YEU could be formally interpreted as the product of V(G * &) with the
distribution g7, given by ¢ +—> f ory ® dS. The distribution dgy; is of regularity —1 (e.g., for
F =10,1]""" x {0}, dp is the tensor product of 1, ;ja-1 and dy, which are in C°(R*"") and
C~1(R), respectively; hence the tensor product is in C~(R%), see [59]). Hence the product
of these two, and thus f/aU, converges only in the space of regularity —2+-9. Under additional
assumptions (Assumptions 5.7) on &, we will basically show the latter for § > % This turns
out to be sufficient; and we do not need to have regularity > —1 but only > —%. This is due
to the following identity

Zir(v,0) = (Y, R(VHT (0)%).

The allowance of % less/ regularity is due to the use of the trace operator 7 and the operator
‘R (which is the composition of the right inverse trace operator and the extension opera-
tor); observe that v — v forms a map Wi, (U) — W/~¢(R?) whereas v > R[(Tv)?

forms a map W;;(U) — WqBJrT"iE(Rd)
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4.1 Main examples of bounded symmetric forms

Recall the notation [-] from (8) and the constants in Definition A.11.

Theorem 4.6. Let § € (0,1), 0 € (0,00) and s € (1 —9,1).

(a)

(b)

(c)

Let Y € C~'%9(R%). For any bounded domain U and ¢ € C>°(R?) such that ¢ = 1
on a neighborhood of U, the formula

2y (v,v) = (¢Y, 1yv?)

defines a bounded symmetric form on H3(U) and if U is moreover Lipschitz, it also
defines a bounded symmetric form on H*(U). The symmetric form ZY is independent
of the choice of ¢. Moreover, for L > 1

12V i) Ssewr LN o140 ey, (16)
and if U is a bounded Lipschitz domain, then

(25 Vi) Sser L27||Y |lem1+o0 ey (17)

Let U be a bounded Lipschitz domain. Suppose that § € (1,1) and s € (3 —6,1). Let
e€(0,6—3).pe(2,00) andq € (1,2) besuchthat%—i— % = 1and

1 1 d
B:=2—04+¢c— §§, 2—-0+e——+—<s. (18)

29  2p

|

LetY € B2 (R?) with supp(Y) C U, ||Y. — §7||B;127+5(Rd) AN 0 for some Y.
given by ¢ — [, of-dS for f. € L*(OU), and V € CP(U). Then, with T =

T s+ Rarightinverse of T and v a universal extension operator from U to R?
Wy, “1(U)
q

as in Lemma 2.7,

Z(v,v) = ZY (v,v) = (Y, Lo RV (Tv)?)

V

defines a bounded symmetric form on H*(U) that is independent of the choice of R
and .

IfY; € B2 (RY) with supp(Yz) € OUL, and Vy, € CO(UyL) for L > 1, then

17 ~
[[ZY/;’VLHHS(UL) SsenU L* VLl Co(Ur) 1YL ||B;§+5(Rd) : (19)

Let U be a bounded Lipschitz domain. Suppose § € (0,1) and s € (3,1). Let

Y € CY9(RY) and V € C(RY). Then, with T = Tuswy as in Lemma 2.7 (for the
notation see Definition 4.4),

2Y (v,0) = /M V(Tv)*VY - dS

defines a bounded symmetric form on H*(U) for every s € (%,1). Moreover, for

27
L>1 R ~
125 Vi) Soow LIV lloswn ¥ oo, 20)
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Proof. (a) Let us first consider U to be a bounded Lipschitz domain and v € H*(U}).
We comment on how to obtain (16) afterwards. Let ¢ be as in the statement. It is rather
straightforward to check that the definition of Z{ does not depend on ¢. Observe that
therefore ZU* (v,v) = (¢(L~1)Y,1yv?) for all L > 0. Choose a p € [1,00] and an
e € (0,0) suchthat 1 — 0 + ¢ + 2% < s and po > d. By the duality of Besov spaces [58,
Theorem 2.17], we have

(ALY, L, 02| S IO )Y N o5 g 1200 g
By Lemma A.4 and Lemma A.1 (more specifically, (62) using that po > d) we have
ISL Y N g5 gty Spsors LY N grs0 oy Spsr LAY lesvao oy

Then by Lemma 2.6 (see Definition A.11 for Chypy; and Cpyoq)
U _
H]lULUQHB;;f(Rd) Sop H]lULUQHWI*‘;(Rd) < CMﬁlt[Wl §]HU2HW1*5(UL)
U U

< Oy [Wl é]CPrLod [Wl ot Wl 5] HUHW1 S+e(y)

Now we apply the embedding estimate (see Definition A.11 for Cgppeq) and the estimate

HUHH”‘”E*%(UL) Soep |Ullas@,) (@s1 =0 4+¢ + 2% < s), we have

U 1—64e+2 -
0ll-+e,) Socw Crmpea 72 = War*|Jol

Hs(Up)-
Hence
o U —a1 U —ate —a
[2] 1 (1) S L2 Crfins[Wg ™1 Cpiog[H' =0 — W]
X CEUébed[Hs - W;q_aﬁ]||Y||c—1+6vff(Rd)-

Therefore (17) follows by Lemma A.15. If U is not necessarily Lipschitz butv € H3(U),
in the above estimates, we can replace the constant C{; [W!~°] by 1 and the estimate (16)
follows similarly.

(b) First, observe that the requirements for the existence of 7 and R as in Lemma 2.7 are
satisfied. Indeed, S+ 5. € (5., 1+5.), or equivalently, 3 € (0,1),and 2—d € (;,1+;): On
the one hand we have 2 — 6 € (1,3) C (%, 1+ %) and because ¢ € (0,6 — 1) and é € (3,1),
on the other hand we have 5 = 2—54—8—% < 2—%—% =landf >2—-0—-1=1-6 > 0.

Again by the duality, we have

(V00 RIV(T0))] S IV L2 lle 0 RIV(T0)?] | o gy @
Again, by using Lemma 2.6,
le o RIV(T) ]l g5y Sow lellwz-s0yswe-s@a IRIIV(TOY ey (22)

Now we estimate ||V (7T v)?
set ¢ := (Tv)?, then

V(2) = V)l :
Vil o < /a /a |x_ |d R ds<x>ds<y>)

“Wf*f(aU)' Recall the notation [-] from Definition 2.3 (b). If we




S Wl ([ [ 0l as(0)4500) " + IVl <

dS(y) \+
5675 ||V||C5(R’1) (]. +f§9%/3(] |ZL’ — y|d_1_q5> ||¢||W(IB*E(8U)’

where we used ||V oy V IV Iy S IV IIws @) = [V llos@w) which holds because
B< i<
Therefore, by observing

T2 <oy < ChroalWag = Wi N T ol o ' ou)

< CfroalWay = Wi IT P[0l

B+T
2q

B 2q

< CEUmbcd[Hs - W ]HUHHS(U), we obtain

/3+2q )
~ —€ s Btsy —
[Z]ms ) Soew Cgond[Wfq - W(}B JClmpea H® — Wy, QQ]QC?{U[Wi 5]
dS(y) % U q 2
X (1 +sup /8 ; W) CExt[Wg_a]Hwafs(aU)HHTW;ﬁ (U)II

X ||V||06(U)||Y/||B,;§+“(Rd)-

Let us now check that Z is independent of the choice of R and ¢. For ¢ € C>(U) N Wi (U)
and V € C>(U) the function ¢ o R[V(T¢)?] is equal to V2 on QU and thus for ¢ > 0

f-(LoRWV(Te)?))dS = | f.Ve*dS.

U U

By the above estimates we have already seen that 25 (V) is continuous as a function of Y,
V and v. As C*°(U) N W/ (U) is dense in W (U), V is the limit of smooth functions in

C*(U) and Y is the limit of Y., it therefore follows that Z is independent of the choice of
R and ..

Therefore, by (21) and (22) (as we may take the infimum over ¢ and R),
|<Y/7 Lo R[V(Tv)?)| < ~d.p ||Y||B 249(Rd) C’Ext[VV2q 5]||V(Tv) HW»B <(8U)"

With this (19) follows from Lemma A.15 (for the estimate on the Cgppeq We use the
second inequality in (18)) and because

/ dS(y) _ / i1 dS(y) _ qu/ dS(y)
ouy, |z —y|d-1meE oU |Lx — Ly|d-1-¢ ou | — yliT1mE’

d . d 3
sup <1+/ S—Ely_)l_) < Lf sup <1+/ S—Sﬁ_) )
zedUy Uy, |J} - y| * xeoU ou |l‘ - y| *

The latter supremum is finite: |, oU |y|cfi—1qe is finite for all x € OU due to the fact that U is
a Lipschitz domain, so that by the compactness of OU it follows that the supremum is finite

as well. The other L factor comes from C’ggﬁ[WM — W] %] Spew L7, see Lemma A.15.

~P;

so that
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(c) First, observe that (for v being the outer normal on 9U)
ZU
122, (0,0)]

/aU V(Tv)*V,Y dS| < [V || o IVY |z (o | T 0l 22 0y

Secondly, use || T 200y < [[Tv| ) IV |00y < IV lles

1 < s
by = [ Te= [l v]
and [|VY || 1 (ov,) < [[9(L71) VY || emey S IS(L7)VY llesmay Soos LYY [lereae ey,
where the last inequality is due to Lemma A.4. (20) then follows by Lemma A.15 (observe

that we use that s > 1 in order to have sup -+ || Trs(u,)|| < 00). O

4.2 Basic spectral properties

In this section we study the spectral properties of the Dirichlet and Neumann operator cor-
responding to £, which are introduced in Definition 4.9.

Assumptions for this section 4.7. In this section, U is a bounded domain.

Definition 4.8. Let Q be a symmetric form on a Hilbert space H. Let D be the set of
u € D(Q) such that there exists a & € H such that Q(u,v) = (u,v)y for all v € D(Q).
For such u the element « is unique, and we will write Au = 4. Then A on D forms a linear
operator on H, called the operator associated with Q.

Definition 4.9. If Z is a bounded symmetric form on Hj(U), then we write 5‘],3[,% for 5{,{/7 z
with D(ESV%) = e H}(U) and let H® = HV = HBVUZ be the operator associated with
&% on LA(U).

If Z is a bounded symmetric form on /'(U), then we write &7 for £Y, ; with D(Ey%) =
eV HY(U) and let H = H™Y = Hy;', be the operator associated with £'% on L*(U).

Definition 4.10. Let U be a bounded Lipschitz domain and s € (0, 1). We define

s I f]
CIZ{D[H ] = Sup 1-s s ’
feH(U)\{0} HfHL2(U)HfHH1(U)

H:(U)

If U is a bounded domain that is not necessarily Lipschitz, we define CI,[H*] similarly as
above by replacing “H*(U)” by “H§(U)” for a being either s or 1.

Lemma 4.11. Let s € (0,1). Let Z be a bounded symmetric form on H§(U). Then, for any
6 €(0,1) and v € H}(U), we have

200 <5 [ (9o + (6+ 6 CRII 121550 ) 0l

If Z a bounded symmetric form on H*(U), then the above statement holds with H§ replaced
by H”.

Proof. We only prove the claim for a bounded Lipschitz domain. One has |Z(v,v)| <
[Z] ms@)|v] %S(U). By interpolation and Young’s inequality (using that a®b'~* < a + b),

s S 2(1—s S __s
Yoy < CRIE 0l o Il ) < CRIEPMllvl3n )y + 17T

0] vliZawy)
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for any ) € (0, 00). Therefore,
1Z(0,0)| < 9[Z] o) Cro [P0l ) + 17 [Z] 5o ) Cip LH Pll0l 22 1)

We can choose 7 so that § = 7[Z]xsw)Cp[H°]? and use that [|v]|3: ) = l|vllZ20) +
I Vo], O

Proposition 4.12. Let W € L>°(U) and Z be a bounded symmetric form on H§(U) for some
s € (0,1). Then 851}7% is closed and eV C°*(U) is a core. Consequently, H" is self-adjoint.

If Z instead is a bounded symmetric form on H*(U), then 53,% is closed and eV C>=(U)
is a core. Consequently, H" is self-adjoint.

Proof. In view of Lemma 4.11 and the symmetric form version of the Kato-Rellich theorem
[40, Theorem 1.33 in Chapter VI], we can assume Z = (. Observe that for u = eV,
v € HY(U)

e AWl £ o (u, 0”) < Ewolu,u) < W= g o(u”,w’).

Therefore the claim follows as & g is closed and C2°(U) is a core for & p.
The self-adjointness of the corresponding operators follows as they are closed densely
defined and symmetric, cf. [22, Section 4.4]). L]

By applying a standard result from the spectral theory, we can easily show that the
spectrum of H" on a bounded domain and that of H" on a bounded Lipschitz domain are
discrete and that the min-max formula (also known as the Courant-Fischer formula) holds
for the eigenvalues.

22

22

Proposition 4.13. The spectrum of H" is given by a sequence of eigenvalues (\})32, (count-
ing multiplicities), such that (with the notation  for “is a linear subspace of ”) \} > \§ >

’

D= X(U; W, 2):= inf su HPu,u :
k i ( ) LEDH®) UE]E ( >L2(U)
dim L=k [Jul] 2, =1
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= inf sup  E(u,u),
LEEWHé(U) uEL
dim L=k [[ull p2(¢)=1

= inf sup  E(u,u)
Lo U)  w
dim L=k ||u||L2(U)=1

and limy,_, o, \Y = oo. In particular, (A — HP) ™" is a compact operator for all X that are not
in the spectrum of H". If U is a bounded Lipschitz domain, an analogous statement for HN
holds if H}(U) and C>*(U) are replaced by H*(U) and C>=(U).

Proof. 4.2 4.2, By well-known results of spectral theory
(see e.g., [22, Corollary 4.2.3, Theorem 4.5.2, Theorem 4.5.3] in combination with Proposi-
tion 4.12), it suffices to show that the form domain is compactly embedded in L?(U ), which
follows from the compact embeddings of Sobolev spaces (see [11, Theorem 8.11.2] for the
fact that the embedding H}(U) — L*(U) is compact for any bounded domain U [11, The-
orem 8.11.4] for the fact that the embedding H'(U) — L?(U) is compact for any bounded
Lipschitz domain U). [

We show continuous dependence of the spectral structure with respect to W and Z. This
follows from the result of [43].

Definition 4.14. Let H be a Hilbert space and M > 0. Let (Q,)>, and Q be closed
symmetric forms that are M/-bounded from below. We use the following convention: if
u ¢ D(Q), then we set Q(u, u) := oo.

(a) [43, Definition 2.8] We say the sequence (Q,,)> , I'-converges to Q, if the following
hold:

(i) If the sequence (u,,)>2, converges to u in H, then

Q(u,u) < liminf Q,, (up, uy,). (23)

n—oo
(ii) For any u € D(Q), there exists a sequence (u,,)>2 ; in H such that

u, —uwin H and lim Q,(up,u,) = Q(u,u).

n—oo

(b) [43, Definition 2.12] The sequence (Q,,)5°, is said to be compact if the condition

sup Qy, (Un, up) + (M + 1)||un |3 < o0
neN

implies (u,,)7° , is precompact in H, that is the sequence has a converges subsequence
in A.

(c) [43, Definition 2.13] We say the sequence (Q,,)>%, converges compactly to Q if
(Qn)5°, I'-converges to Q and if (Q,,)> ; is compact and write

compact

Lemma 4.15. Let H be a Hilbert space and M > 0. Suppose that (Q,,)5°, is a sequence of
closed quadratic forms on H that are M-bounded from below and converges compactly to
Q. Let A, (resp. A) be the self-adjoint operator associated with Q,, (resp. Q).
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(a) [43, Theorem 2.4 and Theorem 2.5] For any bounded continuous function f on R, we
have || f(A,) — f(A)||lm—g — 0. In particular, A, B, oo A (see Definition 1.4).

(b) [43, Corollary 2.5] Let Ay, ,, (resp. i) be the k-th eigenvalue of A,, (resp. A), counting
multiplicities. Then, we have lim,,_,o, A\, = A, for any k. Moreover, for any k there

exist (a choice of the) k-th eigenfunctions ¢y, ,, (resp. ¢i) of A, (resp. A) such that
Gr.n converges to ¢y, in H.

Remark 4.16. In the proof of the following theorem we use the following elementary fact.
If (an)nen is a sequence in R and lim inf,,_,, a,, < oo, then there exists a strictly increasing
function ¢ : N — N such that lim inf,, o a,(,) = liminf,, . a, and sup,,cy apm) < 0o.

Theorem 4.17. Let s € [0, 1). Suppose that W,, — W in C(U).
« I [Z, — Zlmzw) = 0, then

D,U compact D,U
an,Zn n—00 5W,Z :

* IfU is a bounded Lipschitz; domain and [ Z,, — Z] Ho (U) 7% 0, then

N,U compact N,U
W, .2, n—oo Eypz-
Proof. We only prove the second statement. We first show that (&, 5 )nen is compact.
Suppose sup;? E, 2, (Un, wn) + (M + 1)Jupll72) < oo, We set w), := e ""u,. By
Lemma 4.11, we have sup®®, ||| 11y < oo because for any d € (0, 1),

sﬁp Ew, z, (Un, up) = sﬁp/ eQW”\Vqu + Z, (un, uy)
n=1 n=1.JyU

> sip e 2Walli= (1 _ ) / IV |2 — (5 + 05*1%[[271]],{?;[])) [unl720
U

n=1

and thus supS® , ||u, || g1y < oo as W,, — W in C(U). Since the embedding H'(U) <
L*(U) is compact, the sequence (u,,)S; is also precompact in L*(U).

Next we show that (£, )o2, I'-converges to &y, z. Since (ii) of Definition 4.14 (a) is
trivial, we focus on showing (i) Definition 4.14 (a).

Suppose that (u,,), converges to u in L*(U). As we want to show (23), we may
assume lim inf,,_, SSV:] z, (tn,u,) < oo and by Remark 4.16 we may as well assume

SUP,,en 511}/5 2z, (Un, u,) < 00 (by possibly considering a subsequence), so that by the above
Sup,en || || 711y < oc. It suffices to show

/(22W|Vub|2 Sliminf/ V|Vl |2, (24)
U n—oo U
lim Z, (v, u)) = Z(u’,u’). (25)
n—oo
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Since the sequence (u”)>, is uniformly bounded in H'(U) and converges to v’ in L?(U),
by interpolation it converges to u” in H*(U) from which (25) follows.

Forv € C*(U),
(Vui, V) 2y = <u Vo) 2y = — <u Vo) 2y = <Vu V) L2y,

which implies that (Vu?,)2, converges weakly to Vu” in L?(U). Therefore, (e Vu? )%,
converges weakly to ¢"V'Vu’ in L?(U) and this implies (24) (this follows for example by the
dual representation of the norm on L?(U)). O

4.3 Estimates of eigenvalues

In this section, we give deterministic estimates of the eigenvalues and the eigenvalue count-
ing functions of the operators constructed in Section 4.2. The motivation comes from the
study of the integrated density of states in Section 5.4.

Assumptions for this section 4.18. We assume the following throughout this section:

e W is a continuous function defined on R
* s €[0,1),U is the collection of bounded Lipschitz domains.

¢ ZY is a bounded symmetric form on H*(U) for all U € U.

ForeachU € U, welet EY = £ ., be the symmetric form defined in Definition 4.2. Recall
the notations %™V and H™V from Definition 4.9 and A} (U), AP(U) from Proposition 4.13.

Remark 4.19. For Dirichlet boundary conditions we do not necessarily need to consider
Lipschitz domains. Indeed, if &/ would instead be the collection of all bounded domains and
ZY abounded symmetric form on H§(U) forall U € U, then the statements of Lemma 4.21,
Lemma 4.27 (a) and Lemma 4.31 (a) remain valid.

Definition 4.20. For # € {N,D} and U € U, we define the eigenvalue counting functions
N#(U, \) for A € R by

N#(U>/\) Nﬁsz)‘ :Zﬂ{Ak#UWZ</\}
k=1

Weset N7 (U, \) == N 3% o(U, \), which is the eigenvalue counting function of the Neumann
or the Dirichlet Laplacian on U.
For L > R > 0 we set

Uiz = UL N B((‘?UL,R), C(@UL,R) = {.% € UL ‘ d(x,@UL) = R} (26)

(Observe C'(OUL, R) = OUf \ OUL.) We denote by H,, o(Uf') the closure in H'(Uf") with
respect to H'-norm of the set

{¢ € C®(UF) | ¢ = 0 on a neighborhood of C(dU, R)}.

Let NJ(UE, )\) be the eigenvalue counting function of the operator associated with the
symmetric form (u,u) — [;,z|Vu|* with the domain H), ,(Uf).
L )
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Lemma 4.21. Let U,U,,U; € U, Uy C Uy and \ € R. Then

NP(U,\) < NY(U, \),
NP°(Uy, \) < N°(Us, \).

Proof. Since HY(U) C H(U), the min-max formula (Lemma 4.13) implies A2(U) >
AN(U) for all k, and thus the first inequality. The second also follows by the min-max
formula, as H} (U;) C Hi(Us). O

Lemma 4.22. Let U € U, s € (0,1), 8 € (0,00) and A € R. We set
AW, 2) = (1 £ 0)eIWlh=an (X + Ay),

where

6 - s S
Ay = Aivf =0+ <m) cy LI H®] T 25 eCEE)IW Lo ) [[Z]]1 s

Then, one has
NB(U, Ax,(W, 2)) < N°(U,\) < N¥(U, \) < N3(U, A}, (W, 2)).

Proof. We only prove N (U A) < Ny(U, AL (U, W, Z)); the other inequality follows
similarly. By setting § := ;%5 _2”WHL°°<U> Lemma 4.11 yields

1Z(u’, )| < 5/\Vub\2 + Aye Wl /(ub)Q.
U

U

One has [, e®V|Vu’|? > e 2IWli=w) [ |Vu’[2 Therefore, by Proposition 4.13,

AN(U) = inlf( | sup /62W|Vub|2+Z(ub,ub)
LCH(U), u
dim L=k f oW E[b/)g_l v

) e 2lWllLee ) oo ol .

> inf sup —— [ VWP = Aye Wl oo (o) ()
LCHYU), e, 1+6 U U
dim L=k f 2W b)2_1

inf sup / |Vub|

LCHY (U
uPel,
dlmL k‘ ICZW(U

e 2WllLeo )
>
- 1+6

We compute

inf sup /]VubP inf sup /]Vu |
LCHY(U), ueL LCH'(U), weL,

dlmL k f 2W dlmL k f€2W 2<1

> inf sup /|Vub|2
LCHY(U), wel, U

dim L=k [y2<e Wl w)

e 2IWlleew) \N(17; 0, 0). (27)

Therefore,
e~ Wl )

1+0
and the claimed inequality follows. O]

M(U) = A (U50,0) — Ay
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As Lemma 4.22 suggests, we need estimates of [N # (U, A). The following lemma is
sufficient for our purpose.
Lemma 4.23. Let U be a bounded Lipschitz domain.
(a) Then, there exist Cyy, Ry > 0 such that

NI(UEA) < CuRE(1+ M) L1
forevery L > 1, A\ > 0and R > Ry.
(b) [57, Theorem 3.1 and Theorem 3.2] There exists a C{; > 0 such that

1B(0,1)

o |]U|)\ — CUAT log A < NR(U,N)

B(0,1 1
< Ny(UN) < %\UN +CLAT log A

for every \ > 2.

Proof. The claim (a) follows from the proof of [24, Theorem 6.2]. Indeed, we can combine
the estimates (6.20), (6.23), (6.24) and (6.25) therein. [l

Definition 4.24. Let Q; and Qs be closed symmetric forms on Hilbert spaces H; and H,
that are bounded from below. We write Q; < Q, if there exists an isometry ® : Hy — H;

such that ®(D(Q3)) C D(Q;) and Q1 (P(f), ®(f)) < Qo(f, f) forevery f € D(Qs).

Lemma 4.25. Let Qq, Qs be as in Definition 4.24 and let A, and Ay be the associated
self-adjoint operators. Suppose that the spectrum of A, and that of By are discrete and
we denote them by (ju(A1))52, and (urp(As))ee, respectively. Then, Qi < Qs implies

(A1) < jug(As) for every k.

Proof. This follows from the min-max formula. 4.2

]

In order to compare the eigenvalue counting functions on different domains, it will be
convenient to introduce the following symmetric forms.

Definition 4.26. Let J € N. Let £ be a symmetric form on a Hilbert space H; for

j € {1,...,J}. We define the symmetric form @J_l &; on the Hilbert space @ H; by

D(@jzlé’j) @j . D(&;) and for v = @ﬁ] v; with v; € D(E;), (@j 1E)(v,v) =
J

> i1 €5y, ;).

Observe that if A; is the operator associated with &; for all j, then the operator @;}:1 A,
defined by EB}]:1 A = GB}]:1 Ajv; forv = @;}:1 v; € @;.]:1 D(A;) =: D(@jzl Aj) is
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the operator associated with GB}]:1 &;. In particular, the principal eigenvalue of GB}]:1 A is

given by min;]:1 A1(A;), where \;(A;) is the principal eigenvalue of A; for all j.
Moreover, if A; has a countable spectrum for all j, then one has IN 4 5= ijl Ne¢,,
-

where N ¢ is the eigenvalue counting function corresponding to the operator associated with
Q.

Observe that using this notation, one also has N o455 =0 (%), where J is the sym-
metric form J(v,v) = ||v||?. Moreover, Q; < Q, implies Ng, > No,.

Lemma 4.27. Let U, Uy,..., U; €U, U = szlUj with Uj NU, = oU; N OUy for j # k.

(a) If
ZYi(v,v) = Z2Y(v,v), v € Hy(Uj),7 €{1,...,J}, (28)
then
J
N(U) <minA(Uy) and NP(U,0) > ) N°(U;, A). (29)
j=1
(b) If
J
2%w,0) =Y 2% (|, vly;), v e HY(U), (30)
j=1
then y
J
N{(U) > min \{(U;) and  NY(U,\) < ) NY(U;, A).
j=1

Proof. (a) follows from the fact that &7_, H; (U;) € Hy(U).

(b) As L*(U) and GB}]:1 L?(U;) are isometric, H'(U) C &/_H'(U;) and Y (u,u) =
S EV (uly,, uly,) for u € eV HY(U), we have @7/_,£%Us < €%V, Now both inequalities
follow from Lemma 4.25 (see also the comments in Definition 4.26). []

Remark 4.28. Observe that (28) and (30) hold for U,U;,...,U; as in Lemma 4.31 (a)
if 6 € (0,1), 0 € [0,00), Y € C"'*°(R?) and ZY is given by ZY for U € U as in
Theorem 4.6 (a); orif Y € C*(R%) and ZY is given for U € U by

ZY(v,v) ::/ v?’VY - dS,
oU

or if it is a linear combination of the above examples.

We can give a “reversed” inequality of (29). First we present an auxiliary lemma which
is based on the IMS formula, see [61].

Lemma 4.29. Let J € Nand U,Uy,...,U; € U. Let 1,...,n; be smooth functions
R? — [0, 1] such that there exists an A > 0 such that

J
IV <A, GE{L....J} Y ni=1onU.
j=1
Then

J
Eivolu,u) =D L o(nju, mju) — Allnjullz,  we eV H\(U).
j=1
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Proof. Observe that Z}]:1 V(n;)? = 0. Let u = e’ withw’ € H'(U). Then
IV = [V ()| — [V P(u*)? = V (0F) -0’V

and therefore

J
/€2W‘Vub‘222/ 2W 2|Vub|
U j=1
J
>3 { [ 9 - Al

7=1
O

Remark 4.30. So far we have only considered the Anderson Hamiltonians on bounded
domains, which means bounded open subsets of R?. However, whether one considers U or
U, does not intrinsically make a difference. In the following lemma and further on we will
consider the Anderson Hamiltonian on closed boxes of the form [0, L]¢ for example. One
may read (0, L)% instead in order to align with the rest of the text, though we write [0, L]? as
this is more common in the literature.

Lemma 4.31. Let Z € C'"(R?) with § € (0,1) and suppose ZV = ZY as in Theo-
rem 4.6 (a) for every Lipschitz domain U.

(a) There exists a K > 0 (which depends only on d) such that for allU € U, all [, L > 0
with L > 2l andn € N,

M(0,nL)Y) > min  N(EKL+ [, L+1]%) — =

keZAn[—1,n+1]d 12’

NP([o,nL]"0) < ) ND(kL+[—l,L+l] /\+§§)

keZ4n[—1,n+1]4

(b) There exists a K > 0 (depending only on d) such that for allU € U and s € (1 —0,1)
there exist Cy 7, Ry > 0 such that forall L > 1, A € Rand R > Ry,

NNUp,\) < N°(Up, A+ KR™?)

dd 2s

1
+ Cop RIS e = W= wn (1 4+ max{), 0} + [2] 1.7,

vl

Proof. (a) According to [21, Lemma 8.2], there exists a smooth function n : R¢ — [0, 1]
with ) = L on [0, L — 2!)* and supp(n) C [~21, L]* such that ||V} ga) < 1> and

Z n(x+kL)*>=1 forz € R
kezd

We set g, == n(-+(1,1,...,1)+ Lk) for k € Z¢. Observe that supp(n) C kL+[—1, L+1]%,
and,

Z n: =1on[0,nL]"

ke[-1,n+1]4nzd
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Therefore, the map

©:L2([0,nL)) - P LkL+[-LL+1Y,  u— (Me)rei—1r1inze-

ke[—1,n+1]dnzd

is an isometry and ® (" H{ ([0,nL]")) C ®pe(-1nt1jarzae” Hy (kL + [—1, L +1]7).
Observe that for v € H{ ([0, nL]?), for ¢ € C2°(R?) such that ¢ = 1 on a neighborhood
of [0,nL]<,

0,nL]?
Z[Z } (U7 U) = <¢Za ]]-[O,nL}d,U2> = Z <¢Zv I]-[O,nL]dnl?;U2>

ke[—1,n+1]4nzd

= Z ZZLH_I’LHW(%U, MkV)-
ke[—1,n+1]eNZe

Therefore, by Lemma 4.29,

0L (4 ) > Z {gkL+[—z,L+l]d(nku, nu) — g||nku||%2(kL+[Z’L+l]d)}.
ke[—1,n+1]dnZ4
and thus EIEIO/ZZLF - @ke[_l n-+1]4n2Z4 [5§f§[_l’L+l]d — 1523] (where J is as in Definition 4.26),
from which we conclude the estimates (use the discussion in Definition 4.26).
(b) As given in [24, Proposition 4.3], there exist smooth functions «; and a, on R? and
a K > 0 (only depending on d) such that

supp(en) C Uy, \ B(OUL, &), supp(az) € B(AUL, R),

2
o2 + a3 = 1 on a neighborhood of Uy, Z|Vaj|2 < KR

=1
Recall the definitions of UJ* and H, ,(U[*) from Definition 4.20. The map
O LU — L*(Uy) @ LA(UF), ur au® asu

is an isometry and ® (e H'(UL)) C eV Hy(UL) @ €V Hy, p(UFY).
Observe that ZUr (v, agv) = ZUZ (av, anw) as supp ap N UL, € UE. Therefore, by
Lemma 4.29

2
EVE(u,u) > EVE (aqu, aqu) + 5Uf(oz2u, aou) — Z KR_2||ozju||%z(UL).
j=1

*QHWHLOO(UL)

By applying Lemma 4.11 with 6 = £ 5 , we obtain

UR e Wl NE 2
EVL (anu, apu) > 5 UR|V(CY2U )|° = AHQQMHLQ(U{‘)’
L

where
e 2WllLoowy) .

1
A= g e M O [ 2],
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Therefore, ENVL > (EPVr — K R™27) 4 (E™RVL — (KR™2+ A)J), where E™RUE is the re-
striction of EYUL to He r(UE), and thus, by Lemma 4.25 (the additional factor ¢*I"lz><wp)
is explained similarly as in (27)),

NY¥(UL,\) < N°(Up, A+ KR™%) + NYUE, 2e*IWle=wo) (X + KR™2 + A)).
By Lemma 4.23 (a), for R > Ry,

NSI(UE,264HW||LOO(U>()\+KR72—|—A))
SU Rde_1{64||W||L°O(U>(1+maX{)\,O}+KR_2+A)}

d
2 .
It remains to apply Lemma A.15, more specifically (68): CL-[H*] <,y 1. O

5 The Anderson Hamiltonian with Dirichlet and Neumann boundary
conditions

Based on the results obtained in Section 3 and in Section 4, we can give the definition of the
Anderson Hamiltonian —A — ¢ with Dirichlet- and with Neumann boundary conditions, and
show that it is the limit of the operators —A — &, + ¢., where the constants c. are defined in
(89).

The construction of the Dirichlet Anderson Hamiltonian is given in Section 5.1.

For Neumann boundary conditions we have to deal with the additional boundary term
(see the beginning of Section 4). We impose another assumption (Assumption 5.7) in order
to deal with these boundary terms. More precisely, we are able to handle this by means of
Theorem 4.6 (b) by showing that the terms Y/EU (as mentioned in the beginning of Section 4)
converge. Let us indicate that the 3D white noise does not satisfy the conditions of Assump-
tion 5.7, though the 2D white noise does. The additional assumption and the convergence
of the terms Y.V are considered in Section 5.2.

The construction of the Neumann Anderson Hamiltonian is given in Section 5.3. Fi-
nally, in Section 5.4 we consider the integrated density of states associated to the Anderson
Hamiltonian.

Let us now introduce the random variable M with values in Ny such that the conditions
of the second part of Theorem 3.3 are satisfied. For that we first observe the following:

Lemma 5.1. Assume 3.10. Let U be a bounded domain, o € (0,00) and §_ € (0,0). Then
for L > 1andn € Ny

HVVVLHC‘L (Ur) SU,zS_,é,o LU27(67§_)nHXHC72+6,U(]Rd).

Consequently, almost surely lim,,_,o||[Wp||cs— 1y = 0.

Proof. This follows by Lemma A.5 and Corollary A.10, because W,, = G, * X. The
consequence follows because X € C~2+%7(R?) almost surely. O

5.1 The Dirichlet Anderson Hamiltonian

Assumptions for this section 5.2. In this section we assume 3.10.
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Definition 5.3. Let U be a bounded domain and let » € (1 — d,1). Using the notation of
Theorem 4.6, for N € N, we define the following symmetric forms on H(U):

Zy[U) = 2y, Z3[U):= Zy.. (31)
For 6_ € (0,6] and v € (0, 00), we set
MU, 6-;7) == f{N € N[ [|[Wpl[cs_ () <7 foralln > N}. (32)

Recalling the notation from Definition 4.9, for M = M (U, 6; 1) (which attains its values in
Ny by Lemma 5.1), we set

. U . DU e U . 4DU
H =1 =ty 2y He =M =My 20y
Recalling Proposition 4.13, we set
NW) = XU War, Z2uU]), A (U) = A (U Wiy, 25, [U)).
Theorem 5.4. Fore € (0,1),
HgD = _A_ge'f‘ca- (33)

Let (£,)5%, be a sequence in (0,1) such that €, — 0. Then, there exist a subsequence
(€, )50, and a subset Q0 C Q of P-probability 1 such that on ), the following holds: for
any bounded domain U, one has

HOY e MOV, (34)
and forall k € N
Tim AP (U) = X (U).

Proof. (33) follows by our choice of M (see (32)) and by Lemma 1.11 (see also Lemma 4.5)
and Theorem 3.3.

Let 0 € (0,1). By Theorem 3.3, there exist a subsequence (g, )% , and a subset
Q1 C Q of P-probability 1 such that on {2, for every N € N,

77%1_I>IC1>OH)(E"’" — XHCLS,U(Rd) = 0, ”ijfnm — YNHC71+5,U(R¢1).

lim
m—o0
Observe that by Lemma A.5 and Corollary A.10, like in the proof of Lemma 5.1, for all
e€(0,1),

IWir = Warlleswy Svse 1X5 — Xle-2+.0may,

~Y

and that by Theorem 4.6 (a), forr € (1 — 4, 1),

125 = 2ul ;) Sopv 1Yar — Yalle-1+6.0@a)-
Therefore, the claim follows from Theorem 4.17 and Lemma 4.15. O]

Remark 5.5. Let 9t be a random variable with values in Ny such that 9t > M (U, §;1).
Then, almost surely, H"(U) = Hyy,. 5, 17(U), because Hgvgﬂ,zgn[U}(U) =—-A—-¢& 4=
HP(U) and similarly as in Theorem 5.4, Ha/m, Zm[U] (U) is the limit (in the sense of (34)) of
H%&’Z&[U](U). We will apply this in Section 5.4 with 0t = M (U, 9;~) for v € (0, 1].
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As will be needed in Section 5.4, we give estimates on M (U, §_; ) and Z);.

Lemma 5.6. Let U be a bounded domain, 0 < 6_ < ¢ and o € (0,00). Then, there exists a
C=C(U,d_,0) € (0,00) such that for all L > 1 and ~y € (0, 00) one has

M(Up,6-;7) <1+ (8 —0-) " logy (Cy 'L X ||g-2+50ma ). (35)
Moreover, forr € (1 —9_,1), v € (0,00) and L > 1, one has for My s = M(UL,0_;7)

*(5*5—)‘15L(2+ﬁ(5*5—)‘1)0”X”(5*5—)‘15 a (36)

[Zvps_ ULl ) Svs- o0 ¢ rta (i) O

Proof. (35) is a direct consequence of Lemma 5.1.
(36) follows by Theorem 4.6 (a) (see (16)) since by definition of b and a (see (6)),

IYnll =145 gay < 2°Va, (37)

and by using (35). ]

5.2 Stochastic terms for the Neumann Anderson Hamiltonian

Assumption 5.7 (Assumption II). We assume 0 € (3,1) and that there exists a §' € (0,1
such that, for each p € (1, 0c), there exist a constant C € (0, 00) and a map &2 : (0,1)% x
R? — (0, o0) with the following properties.

(i) One has

sup 85(51,62;)\,1‘) < 00 (38)
51,82,)\6(0,1),:136Rd

and for each fixed A € (0,1) and z € R, one has lim,, ., 0 €2(e1,€2; A, 2) = 0.

(ii) For every e1,e2,A € (0,1), p € (1,00), bounded Lipschitz domain U, x € B(U, 1)
and ¢ € C?(R?) with ||¢[|c2gey < 1 and supp(¢) C B(0,1), one has (for ¢} see
Assumption 3.10)

E[l(&.,, Lugp)[P] < CAC2Hoeer (39)

E[|<€81 - 5827 ]1U¢;>v\>|p] < Eza)(gla €2; )\7 l,))\(—2+6+6')p. (40)

Furthermore, for every bounded domain U, we assume that, as € | 0, the distributions 1&.
converge to some limit that is independent of the mollifier p, in S’'(R%) in probability.

Remark 5.8. In the proof of the Lemma 5.9 we will use the following facts, which are
straightforward to check. For functions f, g, ¢ : R — R (for which the following expres-
sions make sense)

(f * &, 9) 2wy = (f, ) * 9) 2 (rd),
(f % (N, ) r2may = AN F(E) * 0, 9(3)) p2@ay, A >0,
(f*9)(-—w)=[f(- —w)]*xg=f*[g(- —w)], weR,
(f xo(-— w)>g>L2(Rd) = (f(- —w)* ¢79>L2(Rd) =(f*¢,9(+ w)>L2(Rd)a w e R

37



Lemma 5.9. Let £ be a centered Gaussian noise whose covariance is given by

E[(S: §0> <§a ¢>] = <7 *Q, ¢>L2(Rd)a 2 2:0 € Cgo(Rd)
Suppose one has a bound
V< f+g (41)
where g € L™ (R?) and f satisfies f(\x) = A\~ f(x) with o < 3 for every \ € (0, 00) and
x € R% Furthermore, suppose f is locally integrable. Then, ¢ satisfies Assumption 5.7.

Proof. As £ is Gaussian, so is for example (£.,, 1y¢))ga. As for Gaussian random vari-

ables Z one has E[|Z|F] = EHZF]gJEHX]”], for X a standard normal random variable, it is
sufficient to consider p = 2.

Let U be a bounded Lipschitz domain and ¢ be as in Assumption 5.7. Let z € R%
Observe that (similarly to the first equality in Remark 5.8, using that p is symmetric)

<€s1 - 5&2>w> = <£ * Pey — § *p€27w> = <£ * (psl - P82)7¢> = <€> (psl - pEz) * ¢>

Therefore,

E[<£€1 - 6827 1U¢:>c\>2] = <7 * (p61 - p€2) * (ILUQ%)? (p61 - paz) * (ILUQbi))LQ(Rd)'

We set

63(81782; )\,Q?) = )‘a‘<fy * (/)51 - psz) * (1U¢;)7 (;061 - pez) * (1U¢i>>L2(Rd)}

For fixed ), one has

Hm (7% pe, % (1u@)), pey * (L0 @))) 12may = (v * (Ludl), (1ué))) o),

€1,6240

and hence lim_, .,10€9(e1,€2; A, 2) = 0. To prove the bound (38) and (39), it suffices to
show

sup Xy % pe (L)), pe * (Lug))) L2 (aey| < oo
€€(0,1),Ae(0,1),zeR4

Let us write

UN=\"YU —2). (42)

T

By Remark 5.8 and (41),

SU@‘(’Y % pe x (1y@)), pe * (Lud))) 12(ra)]
S
= sup [(y(A) * (L2 @) * pesn, (Lpad) * peya)|

zcRd
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S AT # 1L Lpeyal, [0+ Lpegal) 4+ (g(A) # @] * | peyal, [0] * [peyal)-

Since, using Young’s inequality one can bound the second term by

Lo @) 10121 ey 11| 1 ey
gl ]| ol

it comes down to showing

sup (f * [¢] * ‘Pula |p| * ’puD < 0.
1e(0,00)

e Suppose i1 < 1. Let o > d. By the weighted Young’s inequality, Theorem A.2, one has

(f #1oul = |pul, 1ou]  [oul) So llwe Il @) [w-s @l 2@ lW-cpull L1 ga)-

As ¢ is a continuous function with compact support, we have ||w_,¢|| 12y < 0o. Since f
is locally integrable and satisfies the scaling property,

Jwnflin = [ (f@lds) [t T <o
8B(0,1) 0
Then, we observe, as 1 < 1,

Jw-epullin = [ @+ 2eP) ol do < [ (14105 ol(e) do < oo,
R R
e Now suppose 1 > 1. By change of variables, see Remark 5.8,

(f [0l [puls [0 [oul) = w=(f * @] % |pl, [dp1 | |p])-

Therefore, it reduces to the case 1 < 1.
As Lemma 5.12 below shows, the estimate (40) implies the convergence of 1&.. To see
the independence of the mollifier p, we note that the limit £V is a centered Gaussian and

E[¢V, 6)?] = / e = )ola)oly) dr . =

Remark 5.10. An example of a +y that satisfies the conditions of Lemma 5.9 is the following.
Letn € {1,...,d} and dy,...,d,, € Nbesuchthatd = d; +---+d,. Letay,...,a, €
(0, 00) are such that o; < d; forall j and oy + ... + «a,, < 3. Then, for z = (z1,...,2,) €
R% x ... x R, we set

() = [ |

For this example, f = v and g = 0.

Remark 5.11. The 2D white noise £2P does not satisfy the conditions of Lemma 5.9. How-
ever, one has

E[(&?P - g?;)’ 1U¢;>2] - )‘_QH(HUQQM * (p61/>\ - p62/>\)||L2(Rd)7

where Ui‘ is as in (42). Therefore, the 2D white noise satisfies Assumption 5.7 as well.
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Lemma 5.12. Assume 5.7(i). If the estimate (40) holds, then there exists a £V with values in
C~2H9(RY) such that the distributions 1€, converge as follows, for all p € (% +1,00),

IE%IH L& — || Lop.c-2+5(raY)-

If, furthermore, also the estimate (39) holds, then there exists r € (0, 00) such that for all
pE (& +1,00),
E[||§U||§-z+a(w)] Spe |BU, T)|CI?. (43)

Proof. Let 64 € (4,0 + 0’). We need the wavelet characterization of Besov spaces given in
Proposition C.30. Using the notation therein, we have

E[” ILUgm - 1U§€||;72+6+]
p,p

Spay ), 2PN [, — ey, 2P0 ]

neNg Gedn meZd

Since ®; and 1), are compactly supported, there exists an r € (0, c0) such that the sum with
respect to m is over Z¢ N 2" B(U, r). Therefore, by (40), as >_, conpp,y S 2" B(U, )],

]E[H:H‘Ug&l - ]lUfaHgsz_,_]
D,p

,Sp,(h. Z 2—n(5+6’_6+)2—nd Z 82(‘517 £ 2—n’ 2—max{n—1,0}m)‘ (44)
neNg me2nB(U,r)

Because ), 270002 NT s 1 S BT Y e, 27700, in view
of 5.7(i), the dominated convergence theorem yields that the right-hand side (and thus left-
hand side) of (44) converges to 0. Now the convergence of 1;&. follows by the Besov
embedding (61) of Lemma A.1 (we may choose and x > 0 small enough such that % +kr <
0 < §, — ). Due to 5.7 Using (39), one can similarly prove the estimate (43). O

Recall the notation Gy (N € Ny) from Definition 3.1.
Proposition 5.13. Assume 5.7. Let U be a bounded Lipschitz domain, o € (0,00) and
p € (dfo +2,00).

Let YQU be the distribution (see Definition 4.4 for the notation)

O > eV (Gy*&.) - dS.
U

Then there exists a YU in B, 2 (R?) such that YV — ?U||B;§+6(Rd) =0 in probability.
Furthermore, for every m € (0, 00), uniformly over L > 1 one has

B3 05 ) Soioriron L7 EIENE awso ] + L2

Proof. By the integration by parts formula (Lemma 4.3),

(Ve p) = /d eV(Go &) dS = [ Vo -VGox& —/ PAGy*&.  (45)
U,

UL UL
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We first consider the first term. Let ¢ be a smooth function on R¢ such that ¢ = 1 on a
neighborhood U. The map

SRY) =R, ¢ (1y, Vo, (L™ )V(Go +£)) (46)

is well-defined, is independent of ¢ and is an element of B, 2**(R?). Indeed, if ¢ € (1, o0)
issuchthatp™t 4+ ¢! =1, by the duality [58, Theorem 2.17],

(1, Vo, 6(L) V(G * )] < 110, Vel g s gy I(L ™)V (Go % ) o5 g

By Lemma A.6 and Lemma A.15 (see Definition A.11 for Cypy), as 1—6 < 5 < 1— % = %,

U _
||]1ULVSD||B;;15(]R¢1) Sao CMﬁlt[qu 6]||V90||B(};15(Rd) SasU ||90||B§;15(Rd)'

By Lemma A.1 (remember that we have po > d) and Lemma A .4,

[6(L)V (o * )l 1580y Spve LIV (Go % )lle-rrs0 s

By Lemma A.6 and Corollary A.10,

[V (Go * &) |lc-1+60 ey So.0 1€lle-2+50Ray-

Therefore, the distribution defined by (46) belongs to the dual space of Bg};‘s(Rd), which is
identified with B, >+°(R?), and its norm in B, >**(R?) is bounded by

Now it is easy to see that this distribution is the limit of the first term of the right-hand side
of (45) (as ||& — &||c-2+6.0(ray — 0).
Now we consider the second term of the right-hand side of (45). Note

/USOAGo*fe— /90& / A(Gy — G)] %E.

The second term converges to

Aw%@w%m*&

as [A(Gy — G)] = £ is a smooth function. The convergence and an estimate of the first term
is provided by Lemma 5.12. [l
5.3 The Neumann Anderson Hamiltonian

As described in the beginning of Section 4 (below Lemma 4.5), the boundary term will be
dealt with by the decomposition into symmetric forms Z and Z. Let us first consider the
ingredients for the latter symmetric form.

Definition 5.14. Let U be a bounded Lipschitz domain. For N € N we define

?N :GN*(X—§>+(GN—G0)*§,
Vi =Gyx(X°—&)+ (Gy — Go)x&, € (0,1).
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Lemma 5.15. Let U be a bounded Lipschitz domain. Then for é € (3,1) and N € Ny
1Ynllerrso Sus |X — Elle-2+280may + 2V ||l c-2+60 ey

Yn — Y5 ||c1+6.0 converges in probability to 0.

In particular,

Proof. The estimate and a similar one for ||Yy — Y5||¢i+s- from which the convergence
follows by Theorem 3.3, follow from Corollary A.10. ]

Definition 5.16. Assume 3.10 and 5.7, let U be a bounded Lipschitz domain. Let r € (1 —
J,1). Using the notation of Theorem 4.6 and of Proposition 5.13, we define the following
symmetric forms on H"(U), for N € Ny

ZN|U] = szU7esz, Z3[U] = ZNiU'EU,eQva’

Zy[U] = QgNﬁsz, Z5 U] = 25@762%.

We furthermore make abuse of notation (compared to the symmetric forms on Hj(U) as in
(31)) and define the following symmetric forms on H"(U),

Zy[U) = 2y, Z3[U) = Zy;. (47)
Then we define
Zy[U) = Zn[U] + ZNN[U] + ZAN[UL
ZNU) = 25U+ 25U+ Z5[U), =€ (0,).

Recalling the notations from Definition 4.9 and Proposition 4.13, for M = M (U, ;1) (see
(32)) we set

AN YN U M (U) == MU Wiy, Z3,[U]),

W, 23, U]
He = /H?U = Hgvgf,zgf[w le;s(U) = N (U Wiy, 257 [U)).

Theorem 5.17. Assume 3.10 and 5.7. Let U be a bounded Lipschitz domain. For ¢ € (0, 1),

HY=-A—-& +c. (48)

Then, one has (see Definition 1.4 for “&)”)

HIY &aw HNY in probability,
Ae(U) = Ay (U) in probability, ke N.
Proof. (48) follows by Theorem 3.3 and Lemma 4.5.

The rest of the proof is similar to that of Theorem 5.4 and uses Proposition 5.13 and
Lemma 5.15. [

Lemma 5.18. Assume 3.10. Let U be a bounded Lipschitz domain and

1
§<6_<5.

Letr € (1 —0_,1). Forvy € (0,00), we define My, s = MU, 6_;7).
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(a) Then, for every o € (0,00), L > 1 and~ € (0,00),

—(6-6-)"1b [ (2+b(5-6-)~ I)UHXH(S 5_)~1b

[Zmy s UL o) Svs-s0 Y 2450 (R

(b) Additionally, assume 5.7. Suppose that r € (% —0_,1),e € (0,0_ — %) p € (2,00)
and q € (1,2) are such that i + % = 1 and (18) holds for s = r. Then, for every
€ (0,00), L > 1 and~ € (0,1],

12805 U]l

VTN s ) 1p)o (6—6
(0=0) e [+ 0=0) 70| x| O30 0 (@ + [|€ le-ram (zy)

+ L2EHYUL HB;ngfs(Rd) + LUHX - €|‘072+25,0(Rd).

SU,zS_ boe Y

Proof. (a) follows as in the proof of Lemma 5.6 by (37) and (35).
For (b) we use (a) and estimate ZML [Ur] and ZMM [UL]. By Theorem 4.6 (b) and (c)
we have

Z;MM UL) Ssepv L)€ Men sy 1Y Vx| By 2+ (Re))

~Y,

Z\ML,W U] Ssowr L€ V20 sy H?ML,"/ e+ (R)-

~

As forany z,y € R,
le” —e¥| = €®|1 — e " < Ce”ly — 2| < Ce™¥|y — a,

by definition of M ., we have |¢*"" "z lesoy S 27e* < 262,

Therefore, we obtain the desired inequality by the estimate of ||§7MM||C1+5,J(R¢) from
Lemma 5.15 and (35). O

Without Assumption 5.7, we can still construct an artificial Neumann Anderson Hamil-
tonian, which will be used in Section 5.4 as a technical tool.

Definition 5.19. Assume 3.10 and let U be a bounded Lipschitz domain and r € (1 — 4, 1).
For M = M(U,0;1), we set

N

H =y M (U) = X (U: Wi, Zu[U)).

Remark 5.20. Similar to Remark 5.5, for ) being a random variable with values in Ny

such that 9t > M (U, 6, 1), one has, almost surely, ﬂN’U = ﬂi}i Zon[U] and, under Assump-

N U N,U
tion 5.7, H™ HWM Zm (U]

Remark 5.21. To construct the natural Neumann Anderson Hamiltonian without Assump-
tion 5.7, we conjecture that “boundary renormalisation” is necessary. For instance, if £ is the
3D white noise, the recent work [30] suggests that the operators associated to the symmetric
forms

(u,v)r—>/Vu-Vv—(fg—ce)uv+c'€/ uvdS
U

oU
converge, where the constants ¢. diverge logarithmically.
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5.4 Integrated density of states

The aim of this section is to construct the integrated density of states associated to the
Anderson Hamiltonian with potential £. For this sake, we need the following assumption.

Assumption 5.22 (Assumption III). Recall that our probability space 2 is the space S’(R¢)
of tempered distributions. Then, we have maps 7, : Q@ — Q (z € R?) of translations
w — w(- —x). We assume the probability measure P to be ergodic with respect to (7}.) ,cpa-

Lemma 5.23 ([56, Proposition 6.1]). Let & be a centered Gaussian field such that

lim E[¢(0)¢(x)] = 0.

T—00

Then, Assumption 5.22 holds.

Assumption 5.24. (Assumptions for this section) Throughout this section, we assume 3.10
and 5.22. We fix 6_,6,r € (0,1) and p € (2,00) such that 6_ < ¢ and (18) is satisfied for
q € (1,2) such that % + % =landsome e € (0,0 — 3). We also fix o € (0, 1) satisfying

24+ —0)"0(0))do <1 —r. (49)
We set

N == 1+ ([ Xlc-2to0@ay + @+ [|[ X = &llg-2+200 ey,
a€ = a6(57 O') = Sup 2_bNHYA€/HC—1+6,a(Rd) - LP(P)7
NeN

el == 1+ (| XZ||c-246.0(may + @ + [| X — & ||c-2420.0(Ra), e > 0.

Whenever we assume 5.7, we implicitly also assume J_ > %; and for any bounded Lipshitz
domain U, we set (with YV asin Proposition 5.13)

[ e N
li€llow = sup L Yl pars ey éllov =supL Y gy € > 0.

Remark 5.25. By Theorem 3.3, ||&|| € L9(P) for every ¢ € [1,00) and under Assump-
tion 5.7, by Proposition 5.13, (P) for every ¢ € [1,00). By Lemma 5.6,
Lemma 5.18 and the condition on o, (49), there exists an m € N such that for all bounded
Lipschitz domains U, for all L > 1 and vy € (0, 1], for My, , = M(Ug,0_,7),

1230, (ULl ) So v~ L7 g™, (50)
—(=d-)te g (|||£|||m—|— I€lor)  under Assumption 5.7. (51)

(20, Uil @) Sv v

(For (51) observe that ¢ < IT;" and that we may choose € > 0 as in Lemma 5.18 (b) such
that 2¢ < 1;7" .) In (50) one may replace “Z” and “£” by “Z°” and “£_” and in (51) one may
replace “2N”, “5” and “5” by “2N,577’ “EE” al’ld “Sa”.

Definition 5.26. Recall the notation from Definition 4.20. For a bounded domain U, A € R
and € > 0, we set N := Na/M z,, and N? := Ny 2 ,ie,
) V1 M~ M

A) = Z Low@)<ays NZ(U,N) Z Lo @)<ap-

keN keN
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. . . . N . AN N . AN .
If U is a bounded Lipshitz domain, we set N := Ny, > and N_ 1= Ny s, ie.,

—N
M=) Inmap N U= g o

keN keN

and under Assumption 5.7 we set N := Ny, -« and N} := N, ie.,
=M

e N,e o
W52

)= Tporaan  NEUN) =) Tpw @<

keN keN

Remark 5.27. In most of the following we restrict our statements to N, N and NV,

However, by ‘adding some €’s’ the statements are also valid by replacing the occurrences of
3 _N 3 3 _N
[3 ND”, ‘4N 2 ‘4NN?7’ 6‘5’7 and 13 é’”, and by 4ND”’ 4‘N€ 2 6‘N§’7’ ‘658,, and G‘é’s”.

Lemma 5.28. Let U be a bounded Lipschitz domain. Then, for any 6 € (0,1), there exist
Mg, Cugr € (0,00) and an integer | € N such that for every A > Ao/

NO(UA) > (1 e)‘f( T D1+ 6.4 Cll€l. (52)

N < (1+9)w\U\{A+9+CUMHSH\ 5 (53)

In particular, B[N (U, \)™] < oo for every m € (0,00) and A € R.
If we furthermore assume 5.7, then

1B(0, 1)
(27m)4

Proof. The proof of (52) and (54) are similar to (53), hence we only give the proof of
the latter. Remember that N and IN§ are the eigenvalue counting functions of —A with
Dirichlet and Neumann boundary conditions, respectively. By Lemma 4.23 (b), there exists
a A\yg > 0 such that for A > Ay » we have

d
2

NYU,N) < (1+6) ‘|U|{>‘+9+CU07~(”|E|”+|||§|”8U)} : (54)

NY(U, N < (1+9)5%]UM5.

4.23 (b)

Let¢' € (0,00),7 € (0,1]. By Lemma4.22, and Remark 5.20, with A3, := A (W, Zar,)
where M., is the random variable M (U, d; y) (see (32)), one has

NY(UN < (1 +9)é%w|m;9,)§.

55
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Recalling the definition of A} ,,, one observes that there exists a constant Ctrgr.» such that

1

Ay < (L+0)e®T =040+ g [0, )-

Therefore, if v := (24 %) 'log(1 + ¢’) and ¢’ := (1 + 0)2a 2a. — 1 € (0,6), and Cuor =
C’{,’H,’TW%_Q (see (49)), using (50), one has

Ay < (A+0)I(A+0+ Cup, €N,

which yields (53). [l

As a direct consequence of Lemma 4.31, we obtain the following asymptotics. These
asymptotics agree with the asymptotics of the eigenvalue counting function for the Lapla-
cian operator, as proven by Weyl (also called Weyl’s law) and later generalised for a class
of Schrodinger operators by Kirsch and Martinelli [41, Proposition 2.3] (observe that our
results agree with the work of Mouzard on two dimensional manifolds, see [3]).

Proposition 5.29. Let U be a bounded Lipschitz domain, then

_ B(0,1
lim A\"5 N°(U,\) = lim AN (U,A)=|éo—’d)|!U|7

A—00 A—00 ( 7T)

and under Assumption 5.7,

B(0,1
tim A2 N,y = BOD

A—00 (27’()

Proposition 5.30. There exist functions R — [0, c0), N and N ", such that forall A € R

and y € R?, P-almost surely and in L*(P), with Q =y + [—3, 3]%,

NP(A) = lim LLND(QL, A),

L—oo

N\ = lim EWN(QL, A)

LeQ,L—o0
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exist. Moreover,

sup —E[N"(Qr, A)] = N°(N)

r>o0 L7
N S R
<N (N) = inf ZE[N (Qr, V)] (55)
Under Assumption 5.7, one may simultaneously replace N by N~ and Ve by NN in the
above definition and inequality.

Proof. This follows by the ergodic theorem by Akcoglu and Krengel [1], see [41, Section 3]
for more details, for which applicability we use Assumption 5.22 and check the following.
By Lemma 4.27 and Remark 4.28 Q — N"(Q, \) is superadditive and Q — N (Q, \) is
subadditive. Furthermore, if Q C [—1,1]%, Lemma 4.21 implies

ND(Q> )‘) < ND([_1> 1]d> )‘) < WN([_L 1]da )‘)7
and N ([—1,1]%, A) is in L' (P) by Lemma 5.28. O

Remark 5.31. The cube () in Proposition 5.30 does not need to be centered at the origin.
This is important in the proof of Theorem 5.38.

Definition 5.32. We define

NP(\) := inf N°(X)and N () := inf N (N),

N>A A>A

respectively. Note that they are right-continuous functions that satisfy limy_,_., N#(\) =0
for # denoting either D or N.

Definition 5.33. A sequence (f,)nen Of increasing functions R — [0, 00), is said to con-
verge vaguely to some function f : R — [0,00) if f,(A\) — f(A) for all A € R that are
continuity points of f.

Remark 5.34. If )\ is a continuity point of N°()\), then N"()\) = N°()).

Remark 5.35. Observe that by Lemma 4.31 (b) and (50) for v = 1, for all x > 0 and
bounded Lipschitz domains U, there exists a C;,, > 0 such that

ND(ULa )\) S NN(UIA )\)

1 m

< N°(Up, A+ p1) + C, L2 [1 4 max{ A, 0} + €] 772,
and under Assumption 5.7,

N°(Ur,\) < N(Up, \)
< NP(Up, A+ 1) + Cuy L3 [1 + max{ X, 0} + (JI€]|™ + 1€ ]lov) =)

d
2 .

Proposition 5.36. N° = N and, under Assumption 5.7, N® = N™,
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Proof. Let \ be a continuity point of both N and N By Remark 5.35 applied to
U = [—% 11 by Proposition 5.30, because NP(A) = N(\) and N (\) = N ()),

272
see Remark 5.34, we have for all ; > 0,

N°(A) < N'(\) < N°(A+p),

so that the equality follows as both IN” and N _are right-continuous. Under Assumption 5.7
we can argue similarly with “N™ instead of “IN " O]

Alternative proof of Proposition 5.36. We could invoke Lemma 4.31 (b), but instead give a
more elementary proof. We follow the start of the proof of Lemma 4.31 (b).
Letl>0,neN,n>3.
U =[-(n—-10n-DI% U,=[-nlnl*\[-(n—2),(n-2)]"

Then, for L = nl, R = 2l and Q = [—1,1]¢ we have U; = Q \ (()QL )and(z =
QR c B(0UL, R). Because H] ,(U,) is embedded in H'(U,), we have gyt gt
(where £ = 511'\1-7\{,) and thus by the proof of Lemma 4.31 (b),

- , o K
N ([-nl,nl]*, \) < N°([—(n — ), (n — D)%, X+ %) + N (Uy, A+ 7\)

Since U, can be decomposed into {n? — (n — 2)¢} boxes of size [, the subadditivity of
N and the translation invariance yield

E[N" (U, \)] < (n® — (n = 2)HE[N ([0,1%, \)].

Therefore,
(”ll)"E{Nh([nL il ) < (nl/)dE{N”({(” — DI, (n— D)4 N+ ]{XH
v WE[N ([0 14, \ + ]]‘ﬂ

By letting n — oo, if A is a continuity point of N, one has
N\ <SN°(A+ K™Y < N°(A+2K17Y,  1>0.

. =N . . ~
Since N and IN" are right-continuous, we complete the proof. [

Definition 5.37. Thanks to Proposition 5.36, we may simply write
N :=N° =N (= N™ under Assumption 5.7).
We call N the integrated density of states for the Anderson Hamiltonian with potential &.

Theorem 5.38. Let U be a bounded domain. Then, almost surely,

1
lim — N°(Up,-) = N vaguely. (56)
L—o0 ‘UL‘
If U is a bounded Lipschitz domain, then
1

——N
Leﬁlllgn_m \UL\N (Up,-) = N vaguely. (57)

Under Assumption 5.7, one can replace N N by N™ in (57).
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Proof. Firstly, observe that we may assume U to be a bounded Lipschitz domain due to the
monotonicity of N”(U, \) as a function of U.

By Remark 5.35 it suffices to prove (56) (also

for N™ under Assumption 5.7).
Let A € R be a continuity point of IN. We set

I, ={keZ'|k+[0,1]C2"U}, J,:={kecZ|(k+][0,1]%)N(2"U) +# @}.
By Lemma 4.21 and Lemma 4.27,

> NP Lk +[0,1]%),0) < N°(Up,A) < Y N (27" Lk +[0,1]%), A).

keln k€Jn

Therefore, by Proposition 5.30 and Remark 5.34,

#1,,
2dn| |

H#HIn ==

NP”(\) < liminf L]\TD(ULM\) < limsup 7 = 24n|U| )

L—oo | L| L—00 | L|

(UL7 >\)

By Proposition 5.36, one has N = N" = N". Thus, the proof is complete by letting
n — o0. O]

Remark 5.39. Recall Remark 5.27. Let ¢ € (0,1). There exist functions N2, N " and

£

N such that analogues statements as in Proposition 5.30 hold. Then we define N2 ()\) :=
infy -, MP(X) and similarly N and NY. By analogous arguments as in Theorem 5.38 we
also have N” = N (= N under Assumption 5.7). In this case N, := N is called the
integrated density of states for the Anderson Hamiltonian with potential &, — c..

For the convergence of IN. to IN as in Theorem 5.41, we introduce the following auxil-
iary lemma.

Lemma 5.40. Let # denote either D or N. Forall L > 0, A € Rand pu > 0,

11“1%HfE[Nf(QL, N)] > E[N*(Qp, A — ).

Proof. First we observe that as )\,ﬁg (Qr) — A/ (Qy) in probability for all k (by Theorem 5.4
and Theorem 5.17), the following holds: For all (¢,,)nen in (0, 00) with €, | 0 as n — oo,
there exists a subsequence (€n,, )men and a Q; C Q) of P-probability 1, such that on €2y,
(QL) — A (Qy) for all k, and therefore for all ;1 > 0

ksn
limi %nf N#(Qp,\) > N*(Qp, \ — 1)
(indeed, if 1, < pom < --- and pg,,, — p in R as m — oo, for all £ € N, then
Hminf oo Doy Lipemsny = D opet Lun<p—ey for all € Roand € > 0).
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Therefore, for all (¢,,),en in (0,00) with €, | 0 as n — oo, there exists a subsequence
(€n,, )men such that by Fatou’s lemma

lim inf E[N? (Qr, \)] > Elliminf N#_ (Qr,\)] > E[N#(Qr, A — )]

m—00 m

From this the inequality follows. [
Theorem 5.41. N. — N vaguely.
Proof. Let Q := [—1/2,1/2]%, L € Nand pu € (0,1). Let A\ € R be a continuity point of
IN. By (55) (see also Remark 5.34)
| —
N(X) = N=(3) < EN (Q1, ) — N2(Qr, V).

By Lemma 5.40, forall L > 1 and p > 0,

A= Tmsup{N() ~ No()} < BN (@, \) ~ N, A — )]

el

Therefore, by (55), taking the infimum over L. > 1 in the above inequality, we obtain A <
N(A) — N(A — p) forall 4 > 0. As \ is a continuity point of IN, it follows that A < 0.
Similarly, 55

one can show 5.40

limy nf{N(\) = N.(3)} > 0. O

Theorem 5.42. One has the following tail estimates of the IDS.

(a) One has limy_, )\_%N()\) = %.

(b) For every bounded domain U and every o € (0,00), one has

limsup(—A)"*log N (A\) = limsup(—X)"*log P(\}(U) < \), (58)

A——00 A——00

l/'{m inf(=\)"*log N(\) = lim inf(—A)"*1log P(AT(U) < \). (59)
——0Q ——0Q

Proof. (a) Let Q := [0,1]%. By applying Fatou’s lemma, then (55), using the definition of
NP and using Lemma 5.28

E[liminf A"2 N®(Q, \)] < liArninfx%N(A) <limsup A2 N()) < [BO, LI
— 00

A—00 A—00 o (27T) d
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5.28

Since limy_, AEN P(Q,\) = ”(32(2’)?‘ by Proposition 5.29, (a) follows.

(b) Let A < 0. Thanks to the monotonicity of A} (see Proposition 4.13), we may and do
assume U = [0, L]? for some L € (0, 00). By (55) (see also Remark 5.34),

POR(U) < \) < EIN°(U,N)] < L'N(A),

Therefore, we establish that the left-hand sides are greater or equal to the right-hand sides
of (58) and (59). By Lemma 4.31 (a), for [ € (0, L/2) and n € N, one has

N°(U,, N < Y N (k+[-LL+0" N+ KI™?)
kezin[—1,n+1]4
and hence

(n+2)?
nd

E[NP([0, L + 20]%, A + K172)].

%E[ND(U,L, 2] <

Letting n — oo, for p, ¢ € (1,00) with p~! + ¢~! = 1, one obtains

N(A\) <E[NP([0, L + 20)*, X\ + KI?)]
= E{NDGO, L + 2l]d, /\ + KliQ)]l{/\lf([07L+21}d)§)\+Klf2}]
< E[NP([0, L + 2%, KI2)«P(\>([0, L + 21]%) < X\ + KI72)#.

where we applied Holder’s inequality in the second inequality. Note that

E[N"([0, L 4 21]*, K17%)7] < oo
by Lemma 4.22 and Lemma 4.23 (b). Therefore, for U = [0, L + 2I]¢, the left-hand sides
are less or equal to the right-hand sides of (58) and (59). As L and [ € (0, L/2) are can be
chosen arbitrarily, the equalities follow. ]

A Estimates related to function spaces

A.1 Estimates in Besov spaces

This subsection gives estimates in weighted Besov spaces (see Definition 2.2).
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Lemma A.1. Let p,q € [1,00], r € Rand 04,09 € [0,00). Then

HfHC”’l (R%) 51),7’701 HfHB;;%’GI(Rd)’ (60)
||f||cr,01 (Rd) 5[),(]17’75701 ||f||B;::%+n,al (Rd)’ K > 0 (61)

If poy > d, then
||f||B""’1+”2 (R?) Sp,q,r,ahcm ||f||(3“01 (R4)- (62)

Proof. By [66, Theorem 6.5], one has || f||5re®d) ~pgro [[wofl By re). Therefore (60)
and (61) follow by the (unweighted) Besov embedding, see [65, Section 2.7.1]. For (62),
the product estimate in the Besov space (see [47, Corollary 2.1.35], which follows also from
[54, Lemma 2.1]) yields

||f”3”1+"2 R4 Spqrm 02 ||w02|| \r|+2 Hf”C“’l(Rd
( ) Rd)
Now el e, S 101y 13y el Gy Lomma 26,
p
Since [0™ We, | Smyos Woy—|m|> WE have ||wg2||W]Lr\+1(Rd) < o0 if pog > d. O

Theorem A.2 (Weighted Young’s inequality). Let p,q,r € [1,00], 1 +1 = }D + % and
o € [0,00). Then

lwo (f * g)lr So llw—o fllzrllwogllLa-

Proof.

Using that w, (x) <, w,(x — y)w_,(y), one
can estimate w, (z)|f * g|(x) < [(|flw—s) * (|g|ws)](2), see also [52, Theorem 2.4]. The
rest follows by Young’s inequality, [4, Theorem 1.4]. ]

Theorem A.3. Let v € R and o € [0,00]. Let ¢ € S(RY) and [ = 1 and o.(z) =
e~4p(e7tx). Then, for alln € C™°(RY),§ > 0,

10
|lpe xm — n||cr76,o+6(Rd) =50.

Proof. In this proof we refrain from writing “(R%)”. Let § > 0 and p € (%,00). By

5
Lemma A.1, (62), 1 is an element of Br 70 As by Lemma A.1, (60),

e %0 = nllgr-sassar S lloe £ 0 = nllgrass = Y 27 ||wors(pe * A — Agn)l|z-

j=—1
It suffices to show for all 4 that ||w,45(pe * Ajn — Am)| e 2% 0and

[wor5(pe * g = Ag)lle S [lworsBmll e (63)

As ¢, * Ajn converges to A, almost everywhere (as it does at every Lebesgue point, see
[38, Proposition 2.3.8]), the converges follows from (63) by Lebesgue’s dominated con-
vergence theorem. By the weighted Young inequality, we have |w,is(v: * An)|lre So
W (o45)Pel| L1 |Woss Ajn|lr.  AS W_(5y6)(ex) < wW_(54s)(x) for ¢ € (0,1), we have
||w_(0+5)<,05||L1 < ||w_(s46)¢l| 1 Which is finite because ¢ € S(R?). This proves (63). [
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Lemma A4, Let p,q € [1,00], 7 € Rand o € [0,00). Let Z € By7(R?) and ¢ € S(R?).

Then, one has

1L ) Z | By, (rt) Spagsroe LN Z]

BT D Rd) L Z 1
Proof. By the product estimate in the Besov space [58, Theorem 4.37], we have

16(L™") 215y o) Spar 1L 00l i1 o 100 Z | 55, 0

Since [|weZ| By (re) Spare |2 575 (re) by [66, Theorem 6.5] and [|- .13 < |
|| 1+ by Lemma 2.6, it suffices to show
H¢<L71')wfcf”w(‘£|+1(ﬂgd) Sﬂ",cf@ L7
For this, it suffices to show
10™ [w-o & (L)l ooty Som L7
for every m € N. By the Leibniz rule,
L /m
om L Lfl' — Lf\mfl|al 7gamfl Lfl' .
- (L) Z(l) w091
Since [0'w_q(2)] Sou (1 + |2)2) = 2", we obtain
sup|8m[w ( | Zom Z ( )Lmll sup(l + |x’2)v—2\l\
zER? -0 zeR?

m) LMl sup (1 + |L3:]2)U_2“|
! r€ER

()]

Il
e

Smoe L7

(L)l

S

O

Lemma A.5. Let U be a bounded domain, r € Rand o € (0, 00). Then for for Z € C™° (R?)

1Zller @y Sve LN Zllere@ay, L= 1.

Proof. Let ¢ € C°(R?) be 1 on aneighborhood of U. Then || Z||cr(v,) = |¢(L+) Z||crry <

(L) Z||crway- By Lemma 2.6,
|o(L) Z|ormay S |@(Le) Z|er (may-
Therefore, we obtain the desired estimate by an application of Lemma A.4.

Lemma A.6. Let p,q € [1,00], 7 € R, 0 € [0,00), m € N¢ and a € R.
@ One has 9™ 101 g Spasoon Il 5z,

(b) Let X be a smooth function on R such that X = 0 in a neighborhood of 0 and all
the derivatives are bounded. Then, one has || F (|27 [**XF f]|| gr-20.0 ga) Sparoa

1/ 1555 ma)-
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Proof. We only prove (a), as the proof of (b) is similar. We use the notations from Defi-
nition 2.2. Let v be a compactly supported smooth function on R? such that ¢) = 1 on a
neighborhood of supp(x) and set ¢; := 1)(277-). Because A;0™ f = F 1 [x (277 )1, * A; f
for 7 € Ny, by Theorem A.2 we have

lwe (A;0™ )l oeay < llw-oF (=270 )" 5] | 2 ety | wo A £ || £ - (64)
It remains to observe that for all j € N
2wy F (=2 )™ gy = oM (=277 i (277 )] s
— 127 [0 (279 [F (= 20) ™| (27:) 2 e
< Nlw—o[FH(=2mi) "] 11 (ra),

as w_,(277-) < w_,. For j = —1 a similar estimate as (64) holds for a Y € C®(RY) with
& = Ton supp(). 2
Definition A.7. For J € Ny or J = —1 we write

J o)
Acsf = Df Dssf =) Ajf
j=J

=1

Remark A.8. Observe that by definition of x and x (Definition 2.2), for N € N
-0 ) =Y x@72),  zeR
j=N

and therefore
Bonf =FHA1=0C@FF), danf = F (2@ ™) FF).

Lemma A.9. Let p,q € [1,00], r,s € Rwithr < s, 0 € [0,00) and N € Ny. Then, one
has (observe the difference of the positions of r and s )

[A>N fll B @y Ss—ro 27
HASNf‘ Bpg (RY) szr,a 2(3 " NHfHB;;g(Rd)'

Proof. We first observe by Remark A.8 that AsyA;f = [2V4F~1(1 — x)(2":) = f. Thus,
by [52, Theorem 2.4 and Lemma 2.6], one has

|we(AjASNf) HLP(Rd) S HwU(Ajf)HLP(Rd)

7 (R%)s

Therefore,
o0 1
HAszHB;;g(Rd) = ( Z ZJqTH/LUO-(AjAZNf)||%p(Rd)) !
j=N-1
o0 1
S 2_(N—1)(S—T)< Z QJquwo(A]Asz)||qu(Rd)> q
j—N 1
1
Ss—ra ( Z 2qu |w0 A f)HLP Rd))
j=N-1
NG| ) BSC (RY)-
The second inequality can be proven similarly. O]
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Recall the definition of an admissible kernel and of G, see Definition 3.4 and Defini-
tion 3.1.

Corollary A.10. Let p,q € [1,00], r,s € Rwithr < s, 0 € [0,00) and N € Ny. Let K be
an admissible kernel. Set Hy := G — K. Then, one has

|G f]
[ Hy * f]
(Gn = Go) * f]

N 27N £l

B;:ZZLT (Rd) ~DP,q,T:8,0

Bpq (RY)>

Byh?% (Rd) 51’7‘17728,0 2s= T)NHfHBTU(Rd

By (Re) Sparso 267N £l e (ray-

Proof. Suppose 1 € C>°(R?) is 0 in a neighborhood of 0 and is equal to 1 on supp(1—x). If
we set g := F |27 "2 F f], then Gy * f = Asng. Therefore, the first claimed inequality
follows from Lemma A.6 (b) and Lemma A.9.

To prove the second claimed inequality, recall that one has Hy = (Gy—Go)+(Go—K).
By Lemma C.4 below, Gy — K belongs to S(R?). Therefore,

||(G0 — K) * f| BSH2O (Rd) Sp,q,nsp ||f|

On the other hand, one has (Gy — Go) * f = (Asny — Aso)g = (A<ny-—1 — A_1)g. Hence,
by Lemma A.6 (b) and by Lemma A.9, the third inequality and thus the second follow. [

Bpg(R)-

A.2 Estimates of constants of functional inequalities on bounded domains

In Definition 4.10 we have introduced the smallest constant that appears in interpolation
inequalities. In this section we introduce also other constants that appear in functional in-
equalities and study their behaviour (also under scaling of the underlying domain).

Definition A.11. Let U be a bounded domain and p,p1,ps € [1,00], 1,72,5 € [0, 00),
€ (0,00) and 6 € (0,7). We set

1wz
O]gmbed[Wzrll - W;;:I = sup o
FewL(U)\{0} ||f||W’"1
||f HW’““S(U)
Chroa[Ws, = W, 7%= sup  —pf——r
fFewWs,(U)\{0} Hf”w2
Similarly, we set C{ .a[W,! o — W2, ... by replacing the function spaces “W¥;”" to those

with zero boundary conditions “W ;. If U is a bounded Lipschitz domain, for a universal
extension operator ¢ from U to Rd as in Lemma 2. 7, we set

ngt[W,:fan] = inf{||L||W;11( U)— Wyl (RY) + Il ||W’“2 U)—W,2 (RY)
|¢ is an universal extension operator},
O (W™ := inf{||R 1 R is aright inverse of 7 1
ROV =R [ Risarie o
_ ”fQ”WHs U
C(F'rod“/vr W; 6] = sup —)7

FEWS, (OUN{0} Hf”w2 (8U)
U W] m 110 fllwy rey
Mult P
rewzongoy - I llwg )

and CExt[Wg] : C’Ext [ng W;]
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Lemma A.12. Let U be a domain.
(a) Let py,ps € (1,00) withpy < pyandry,ry € [0,00) withry = r; — d(pi1 — —) Then,
one has Cgp.a[W,! W;j o) Spipers L. If U is a bounded Lipschitz domain, one

has Cgmbed [Wm - WT ] ~oP1,P2,7'1 CEUxt [ngl]

(b) Let s € (0,1). Then, one has C5,[HS] <s 1. If U is a bounded Lipschitz domain, one
has Cip[H®] S5 Ciy[L?, H.

Proof. We only prove the claim for a bounded Lipschitz domain U'.
(a) Let ¢ be a universal extension operator from U to RY. Then, by using the Sobolev
embedding in R? [11, Theorem 8.12.6] for the second inequality,

HfHW’”Q(U < H ( )HW;QZ(Rd) 5?171’277‘1 ||L(f)HW,§“11(Rd < H ||W’“1(U)—>WT11(Rd)HfHW;"f(Uy

and thus HfHW’“Z(U) ~P1,p2,T1 CExtend[ ;f]HfHW;} )
(b) We can prove the claim similarly by using the inequality [4, Proposition 2.22]

1l e cmey S 11 1 s =
Lemma A.13. Ler U be a bounded domain, p € [1,00), r € (0,1) and € € (0,r). Then we
have

C1grod [ng,o - W;g,as] SP»E 1?
and if U is a bounded Lipschitz domain

CProd[ WT E] ~P,€ 17

dy %
o g, = Wi 1su(/—).
Prod[ 2p ]NPE +$€a% ou ‘.’Iﬁ—y‘dil*%g

Proof. We only prove the first inequality. Since

—1 d
w1 =) 4S50

one has

£ = WP

|z — y|dtp(r—e)

12wty S 182 otmy + [

lz—y|<1

Observe that || f2[|oza) < || f][7 2 ) Furthermore, observe that

(@) = fW)*P _ (\f(9€)+f(y)\>p<\f(x) fy )!>p7

|z — y|dtet—2)

o — y| 5 o — y|3t

so that, by Holder’s inequality

T 2 _ 2|p . 2 %
/ - S f(y_> " dvdy < Hfl\w;pmd)(/ fe) + 1) dxdy) .

’ZC - y’d+p(r 2 lz—y|<1 ’ZC - y’d—2p€
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Now the latter integral can be estimated by || f|| .2» times the following integral over the unit
ball that can be estimated as follows

/ da </1 ar 1 -
o [P o e 2pe

Lemma A.14 ([63, Proposition 5.3]). Let p € (1,00), r € (0, %) and let U be a bounded
Lipschitz domain. Then, the map

T d I d
Bp,p<R ) — Bp,p<R )7 f = fILU
is a bounded linear operator.

Lemma A.15. Let U be a bounded Lipschitz domain. Then, we have

ili};l) CEUit[W;11> Wg:;] <00, p1,Pp2E€ [17 OO]7T177'2 € [Oa 00)7 (65)
ilgl)HTWg(UL)H <00, pc (17 OO),?" S (;%7 1+ i)a (66)
sup G (W] < o0, p € (1,00),7 € (0,1), (67)
. . p1,p2 € (1,00),71,72 € [0,00),
sup C’g&bed[Wpf — W2] < oo, ! <2 ( B ) i;i [_ 1 ) (68)
L>1 D1 =P2,72=T1 (pl p2)a
sup CHF[H®] < 0o s € (0,1), (69)
L>1
sLliI; Cﬁfﬂt[Wg] <00, pé€E(l,00),re€(0, i), (70)
sup Cpl 4 [Ws, = Wy ™) <oo pe[l,00),r € (0,1),e € (0,7), (71)
L>1
sup LCpUL[Wa, — W] < oo, p € [1,00),7 € (0,1),£ € (0,7). (72)

L>1

If U is a bounded domain (that is not necessarily Lipschitz), then (68) and (71) hold by
replacing the occurrences of the form “W;” by “Wy,".

Proof. Let ¢ be a universal extension operator from U to R? (Definition 2.8). For L > 1,
we define a universal extension operator ¢;, from Uy, to RY by ¢,(f) == «(f(L-))(L71).
By change of variables, and using that 0“¢(f) = ¢(0“f) it is straightforward to check that
lerllwy@w,)—wy@e) < ||ellwy@)—wr@a)- This implies (65). The two (66) and (67) estimates
can be proven similarly.

(68) and (69) follow by Lemma A.12 and by (65).

(70) First observe r € (0,1). Set F' := 11 (f) for f € W} (Ug). Then, 1y, f =
Ly, F and thus || 1y, f|lwy@ey < [|Fllzr + [Lv, Flw;y@a)- By change of variables, one has

@
[9(L™ )wsway = L7 °[glws(re) and thus
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d_p
[]]_ULF]W;(RGI) =Lr []]-UF(L)]W;(]Rd)

By Lemma A.14 and Lemma 2.6, one has

(Lo F(L)lwyray < Lo F (L) lwyway Svpe 1F(L)|o@ay + [F(L)]wy we)
_d _d,
= L77|[F|[pey + L7 7" [Flywy ma).-

The claim follows because || F ey < oz lwzwn) |/ lwes) < lellwy @l e -

B

(71) and (72) follow from Lemma A.13. O

A regularity structure for the gPAM

In this appendix, we consider a regularity structure for the generalized Parabolic Anderson
model

d d
o = Au + Z gij(w)0udju + Z hi(w)Oyu + k(u) + f(u)é,

ij=1 i=1

based on the abstract theory by Bruned, Hairer and Zambotti [13]. See [6] as well.

B.1

Terminologies

Here we review some terminologies from [13].

Definition B.1. We fix a rype set £ := {Z,.#}. The symbol = represents the noise £ and
the symbol .# represents an abstract integration operator.

Definition B.2. We define the following notions regarding graphs.

(a)

(b)

(c)

(d)

A rooted tree is a finite connected simple graph without cycles, with a distinguished
vertex called the root. We do not allow for an empty tree but we allow for a trivial
tree ® which consists of only one vertex. Vertices will be called nodes. Given a rooted
tree T', the set of nodes and that of edges are denoted by N = Np and by E = Ep
respectively. We denote by pr the root of T'. Nodes of a rooted tree are endowed with
a partial order < by their distances from the root. We orient edges (z,y) € E so that
z < y.

A forest is a finite simple graph without cycles. We say a forest is rooted if every
component of the forest is a rooted tree. We allow for an empty rooted forest. Given
a rooted forest F', the set of nodes and that of edges are denoted by N = Ny and by
E = Ep respectively.

A tree or a forest is called fyped if it is endowed with amap t : £ — £ where £ is the
set of edges.

We say A is a subforest of a forest I, and write A C F,if Ny C Npand F4 C Er and
if (z,y) € E, implies {z,y} C N4. We note that a subtree of a rooted tree is again a
rooted tree whose root is the unique vertex which is closest to the root of the original
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rooted tree. Therefore, a subforest of a rooted forest is again a rooted forest. If a forest
is typed, a subforest inherits types by restriction. If A and B are (rooted, typed) forests,
we denote by A LI B the disjoint union of A and B with types naturally inherited.

Definition B.3. In this paper, a typed forest F' is often equipped with a colouring F and
decorations N, 0, ¢ as follows.

(a) A pair (F, F) is called a colourful forest if the following hold:

e F'=(Er, Np, 1) is a typed rooted forest.
» One has F': Er U Np — {0, 1,2} such that if F'((z,y)) =i > 0 for (z,y) € Ep
then F(z) = F(y) = i.
(b) If (F, F') is a colourful forest and
e N: Np — Ng,
« 0: Ny — Z & Z[£] with supp(0) C U;soF (i),
* ¢: Ep — N?and supp(e) C Ep \ supp(F),
then the 5-tuple (F, F.n,o, ¢), also written (F), F )2, is called a decorated forest. We
denote by § the set of decorated forests.
(c) Forx,y € Np, we write x ~ y if they are connected in UZ->0F*1(Z').

(d) Given a decoreted forest (F), F ,N,0,¢), we view a subforest A C F' as a decorated
forest by restricting the associated maps (F',N, o0, ¢).

(e) We write ™ for the decorated tree (e,2,m,0,0).
Many examples of colourful forests can be found in [13].

Definition B.4. Two notions of product for forests are defined as follows.
(a) For decorated forests 7; = (Fj, Fi N;, 05, ¢;) (i = 1,2), we define the forest product by

T1 T i= (Fl UF27F1 +ﬁ2,N1 + No, 01 + 09, ¢ +€2)

where, for i # 7, (15,-, N;, 0;,¢;) are set to 0 on F.

(b) For a a decorated forest 7 = (F, F,N, 0, ¢), we denote by _# () the decorated tree

(7 (F), [F],[N], [o], ¢),
where ¢ (F') is the tree obtained by gluing all the roots of F,

A A ~

Fllp ) = max By, [Fl() = F(@) forz # p s

y is aroot of F'

and [N] and [o] are defined at the new root by summing the values at the roots of F', and
are equal to N and o elsewhere, respectively. The tree product is defined by

T2 = /(71 '72)-
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Definition B.5 ([13, Section 4.3]). For a decorated tree 7 = (7, T )N and k € NI, we write
(1) for a decorated tree o = (.5, S)?“ obtained by connecting the old root p, to a new
root p, with a new edge e = (po, p,) and by defining S, N, 6 and ¢ as an extension of 7', N,
o and ¢ such that

~

S(po) =N(ps) =8(ps) =0, t(e) =7, S(e)=0, &)=k,

Fori € {1,...,d}, we write () := #,,(7), where e; is the ith standard basis of R

i

Definition B.6 ([13, Definition 5.3]). Let ¢’ be the constant appearing in Assumption 3.10
and we fix a small k € (0,¢’) such that 6 + & is irrational. We assign the degree || to the
types by?

2| =—-240+k, |[F]:=2. (73)

We extend the degree to (k,v) € Z @ Z[£] by

d
(k)| ==Y ki + alZ[ + b7

=1

where v = a= + b.#. For a decorated tree 7 = (F, F, N, 0,¢), we set

A

E,:=F ') NEp, E:=FUE, N;:=F"'4)NNg

and we define two notions of degrees |-|_ and |-|; by
Tl =Y (Je)l —e(e) + Y N(x)
EEEF\E rENp
rle= D0 (el —ele) + D N@)+ Y o).
eEEF\EQ z€Np $€NF\N2

Remark B.7. Since Schauder’s estimate does not hold for integer exponents, we assume
that 0 + « is irrational.

B.2 Hopf algebras on forests and trees

In this section, we introduce Hopf algebra structures on some spaces of forests and those of
trees. For this purpose, we begin with introducing contraction operators.

Definition B.8 ([13, Definition 3.18]). We set
H(F, )Y = (A F, )R,
where

» I is the quotient forest '/ ~, where the equivalent relation ~ is in the sense of
Definition B.3-(¢c);

* F and [e] are natural “restrictions”;

* one has [N|(z) :==>_ _ N(y);

%In Section 3, we set |Z| := —2 + 4, but the new definition (73) is more convenient in Section C.6.
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¢ one has

)(x) =) o)+ D te), E(x)={(y.2) € Ely~z~a}.

y~x e€E(x)

For a decorated forest 7 and ¢ € N, one has a unique decomposition 7 = f - v such
that on v the map Fis equal to ¢ and on each component of y the map F'is not equal to 7
everywhere.

Definition B.9. Then, we set

ki(v) = {('7i7 > wen, N(2),0,0) if D7y N(z) >0

%] otherwise

and

Hi(7) = H () - k).

In addition, we denote by J;(7) the decorated forest that is obtained from .%;(7) by setting
oto0on F1(q).

Remark B.10. v is allowed to be an empty forest & and k;(2&) = .

With these operators, one can write Hopf algebras associated to regularity structures and
renormalization structures.

Definition B.11. We define vector spaces H;, H, as follows.
(a) We denote by H; the free vector space generated by

B(H) = {(F,F){° | F <1, H(F) = F}.
(b) We denote by H, the free vector space generated by B(H,), where 7 € *B(H,) if and
only if
e risatree and F < 1; « K (1) =
Definition B.12 ([13, Definition 3.3]). Given a decorated forest 7 = (F, F)lj"’, we denote

by £l (7) the set of all subforests of F' which contains F~1(1) and subforests of F that are
disjoint from F'~1(2). We set

N D DD M BE 1 () [ERAVRORE S PR
A€ty (1) NANASN ¢ (74)
® (F, FUlA N — NA,0+NA+7T( —ely), eﬂEF\EA+€A)
where

e &l runs over all maps Er — N¢ supported on the (outgoing) boundary

A, F):={(es,e-) € Er \ Eal|ey € Na};
e fore : Ep — N¢ one defines e : Np — Z¢ by

me(x) = Z e(x);

e€ebp
e=(z,y) for some y
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« F'U; A is the map defined by
. _ 1 ifreA
' F(z) otherwise.
Some of the main results from [13] are the following.

Proposition B.13 ([13, Proposition 4.11]). The vector space Hy is a Hopf algebra with
multiplication

M(11 @ 12) = (71 - T2),
with unit &, with coproduct (%, @ 1), and with counit
1}{1<<F7 ]3’)1:70) = ]l{@}((F7 F)I:’OL
The Hopf algebra H, is graded with respect to |-|_.

Proposition B.14 ([13, Proposition 4.14]). The vector space H, is a left comodule over the
Hopf algebra H, with coaction

(%®%>A12H0—>H1®Ho.

B.3 Rule

We set R R
T ={(F,F,N,0,¢) €§ | Fisatree, =0, 0 =0}.

The set T is a monoid with the tree product and with the trivial tree as unit. We simply write
T for (T,0,N,0,¢) € T.

Definition B.15. Given a decorated tree 7' € ¥, we associate to each x € N a node type
JVT(l’) = 1/’/(‘%) = ((t(€1)> 6(61)), ceey (t<€n)> e(en)))a

where (eq,...,e,) are the edges leaving the node z, namely, for each j one can find a
y; € Npsuch thate; = (z,y;).
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Definition B.16. Let (£ x Ny)"/ ~,, be the set of unordered n-tuples valued in £ x Ny and
let PN be the power set of U,en, (£ X Ng)"/ ~,,. We define the rule R : £ — PN by

R(=) = {0},
R(I) = {([Z]n), (I, 20), ((Fns Fi, F5), ([F]n, Z)in € Noy 1,5 € {1, .., d} ],

where we write [.#],, for the n-tuple of (.#,0) and write .7, for (., e;), where e; is the ith
unit vector in RY.

It is not difficult to show that the rule R is subcritical in the sense of [13, Definition 5.14]
and complete in the sense of [13, Definition 5.20].

13

C2

C2

13
B.3

Definition B.17 ([13, Definition 5.8]). Let 7 = T" € ¥.
(a) We say T conforms to the rule R at the node z if the following hold:

e if 2 is the root, then A (x) € R(Z) or A (z) € R(.¥);
* otherwise, one has ./ (z) € R(t(e)), where e is the edge such that e = (y, x) for
some node y.
(b) We say 7 conforms to the rule R if T comforms to R at every node, except possibly the

root.

(c) We say 1 strongly conforms to the rule R if T comforms to R at every node.

Definition B.18 ([13, Definition 5.13]). We define sets T, (¢ € {o, 1, —}) as follows.
(a) We denote by T, C ¥ the set of trees which strongly conform to R.

(b) We denote by T; C § the smallest submonoid under the forest product which contains
%o

(c) We denote by T_ C T, the set of trees 7" with the following properties:
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e one has || < 0 and N(pr) = 0;

* if there exists only one edge containing pr, then

[

T = I . Npr) =e(e) =0, t(e) =
pr

(75)

One can describe T _ more concretely in the following recursive way. Let
TV .= {r €T |Vec E,, p, €e;.N(p;) € R(F)},
W= {rexW||7| <0}

Note ‘I(,l) consists of two elements, both of which are of the form (75). Then, recursively,
we set

n 1 l n—
%l )= {/I; (7—1) o /I:;(Tl) | ((tj‘/kj))jzl € R('ﬂ)aTj S I( 1)}7
T =g g

Now one has

T =, = =Jz"

neN neN

Lemma. Regarding ™ and ‘I(,n), one has the following claims.

(a) One has
min{|7| |7 € T\ TV} = —2 4 ng.

In particular, g = ‘Z(,n_l)for large n.

(b) If T = Z (1) 7, (m) € T then T; € TV for every j such that t; =7 In
particular, if y is a leaf of T, namely if A (y) = {()}, then for the edge e = (x,y) one
has t(e) = Z.

Proof. The claims will be proved by induction. Indeed, for n = 1, the claims are true.
Suppose that the claims are verified for n — 1. We will check the claim (ii). Let

T= g0 Fi(n) e WA\ g,
* Suppose ((t;, k;))j=1 = ([-#]:). Then,

l

=2 (Il +2) + 3 () 2 18>0,

jzl SL‘ENT
contradiction.
+ Suppose ((t;, k;))y = (S, [#]1-1). Then,

l

rl=lml+1+ > (Il +2) + > N@),

j:2 IENT

which can be less than O only if 7,..., 73 € S =),
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« Suppose (4. k;))\_y = (Fp, F,[#]i2). Then,

l

Il =Inl+ml+2+4 ) (Il +2) + > N@),

which can be less than O only if 7,..., 73 € S =),
* Suppose ((t;,k;))i—; = (,[-#]i—1). Then, 7 is the trivial tree and
!
rl==2+0+> (Inl+2)+ Y Na),
]:2 €N,
which can be less than O only if 7»,...,7; € S =),

To see the claim (i), it suffices to check |7| in the above four cases, by knowing that at least
one of 7;’s satisfies |7;| > —2 4 (n — 1)¢. O

The notion of completeness is more technical.

Definition. Let N = ((t;, k1), ..., (t,, kn)) € (€ x N§)"/ ~,.
(a) Given m € N¢, we denote by 9™ N the set of n-tuples

((tl, ki4+mqy), ..., (4, ky + mn)), ij =m.
j=1

(b) We define a substitution operation as follows. Suppose we are given M C N and
M € PN, where PN is the power set of U, (£ x N¢)"/ ~,,. Suppose M is finite and
write N = M LI N. Then, we set

RMN =NUM U---UM, M={M,..., M)

Definition. Given atree TN € T,(R), we associate .47(e) = .4 (e) toeache = (z,y) € Er
in the following recursive way. Suppose v is a leaf, namely .4 (y) = {()}. Then, we set

N (e) := R(t(e)).
Otherwise, if ey, . . . , ¢; are all the edges of the form e; = (y, v) for some node v, we set
N (e) = {,%%(y)]\f | A (y) € N € R(t(e)), M ={M,,...,M}, M;<c.N(e)}.

Let us compute .4 for the following decorated tree:

xrg To9 Z10 T11




One first sees

N (w4, 28)) = A ((25,79)) = A ((T6,710)) = A ((27,211)) = {(}-
Next, one observes
N ((22,74) = {20} ([0, Z) | n € No} = {([#]2) | m € No}.
Similarly,

N (2, 75)) = A (w3, 26)) = A ((23,26)) = {([-#]n) | 7 € No}.

Finally, one observes

j((wlafﬁz‘))
= (2N g, (9, B (7, 59,
|k,l,n € Ng,j € {1,...,d}}
= {([71), ([]n, ) | n € No,j € {1,...,d}}

and
N ((x1,33)) = {B VI (), 74, 2) |kl € No,j € {1, d}}
= {([-#].) | n € No}.

Lemma. Suppose F € T strongly conforms to the rule R and G is a subtree of F' contain-
ing the root of F'. Write ey, . .., e for all the edges in G containing the root pc = pr and
write p ., for the root of the contracted tree

HoF = t%/(F’, 1q,N,0, 2).

Then, one finds (M, ..., M) € Ng(e1) x -+ x Ag(e)) and NG(pe) € N € R(F) such
that

M., M
Noteor (Pragr) = %}GlpG .

Proof. We denote by d(+, -) the graph distance on the nodes. Set
n =max{d(pa,vy) |y € G}.

The proof is based on the induction on n. When n = 1, the proof of the claim is obvious.
Suppose n > 2 and write e; = (pg,y;) for j = 1,...,l. We denote by GG; and by F; the
subtree of G and F’ respectively such that

* the root of GG; and Fj is y; and

* one has N¢ = U'_ Ng, U {pg} and Eg = Ui_ Eg, U {ey, ..., e} and similarly for
F

je

Gy G

1 . Yi

€1 €]

PG
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By the hypothesis of the induction, for each j € {1,...,1}, writing "), .. (3 ) for all the
edges in G containing pg, = y;, there exist

(M7 M) € M) x - x Aa(ef”)

and A (y;) € NU) € R(#) such that

(MDY
M; - JV%G 5 () :%/Gj(yj) 7NV
Therefore, one has M; € .45(e;) and
My, M,
Notar (par) = B N (pr). O

If 7)Y strongly conforms to the rule R, it does not necessarily hold true that a contracted
tree
H (F,1g,N,0,¢), for G C F containg the root pp

conforms to the rule R at its new root. However, the following lemma shows that it holds
true in a certain interesting situation and it will be a key ingredient for Lemma B.24.

Lemma. The subcritical rule R is complete in the sense of [13, Definition 5.20]. That is, if
T €% and N (p;) C N € R(F), then writing ey, . . ., e, for the edges containing the root
pr one has
m g {Mi,....M,
oL MIN € R(7)

forevery (M, ..., M) € N (e]) x -+ x A (&) and for every m € N with |m| + |7| < 0.

Proof. The proof is based on induction. Let

T= g ) Shm) e TN T,
* Suppose ((t;,k;))i—; = (Z,[#]i—1). Then 7y is the trivial tree. By LemmaB.3, 75, ..., 7 €
g, By the hypothesis of the induction, one has

{([7]n) In € No} 7] < —1

A les) € {R(f) 7| > —1.

Since

l
rl==240+> (Im+2) +N(p,) <0,
j=2

there is at most one 7; such that |7;| > —1.

- If |7j| < —1 for every j, then
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Therefore, in this case, 7 satisfies the claim.

e Suppose ((t;,k;)):_; = (F, F,,[#]i_2). Then, by Lemma B.3, one has 71,...,7; €

A j=1
(n—1
g ). One has

l
Tl =20 = 1)+ ) |7| + N(ps) <0
j=1

and therefore there is at most one j such that |7;| > —1. Then, one can prove the claim as
in the first case. The case ((t;, k;))'—; = (#p, [#]i—1) can be handled similarly. ]

/‘/)5

B.4 Definition of the regularity structure

The content of this section is parallel to [13, Section 5.5]. Our goal here is to construct
subspaces of H,, (¢ € {1, 0}) which provide a correct framework for the theory of regularity
structures. Since we desire that elements of those spaces conform to the rule R, one might
want to consider a subspace spanned by T,. However, T, is not closed under the coproduct
of H,. Therefore, we introduce the following definition.

Definition B.19. Recall the notation introduced in Definition B.12. For ¢ € {1,0}, we
denote by B(HS) C B(H.,) the set consisting of

HG(F, F Uy AN — N, Ny +7(ef — ela), elpia + ) (76)

for 7 = (F, F)¥ € T,, A € $4;(7), N4 < N with supp(N4) C Ny and f : Ep — N¢ with
supp(ef) € 9(A, F). We denote by HY the free vector space generated by B(HY).

Remark B.20. By choosing A = @ one observes T, C B(HS) for o € {1,0}. In fact, as
Lemma B.21 below shows, ch is the smallest subbialgebra of H, both containing T, and
closed under the coactions.

Lemma B.21. The subspace H is a subbialgebra of H,. Furthermore, the statements of
Proposition B.14 and of Proposition B.13-(iii)  remain valid if one replaces (Hy, H,) by
(HY,HS).

Proof. This is essentially proven in [13, Lemma 5.25 and Lemma 5.28]. Here we give a self-
contained proof. We start to prove H¢ is a subbialgebra of H;. Recalling that T, is closed
under multiplication, it is easy to see HC is closed under multiplication as well. To prove
Hl( is closed under coproduct, one first notes that if 7 € ¥4, then the first components and
the second components appearing in the coproduct formula (74) of (7] ® #1)A7 belong
to (up to multiplication by a nonzero constant) T; and B(H) respectively. Now suppose
Ty = (Fy, Fz)i_;—"“z € B(HE) and write

To = }{/1 (1”‘] s 1:‘1 Uy f'l] , N1 — N-‘\l s N-41 + W(f[}l — Cﬂ,\l% k’]l/;l\\,\] + 5]}1) (CB)
as in (76) and set 7y := (F}, F} )yt To show H{ is closed under coproduct, it suffices to

show the first and the second components appearing in (%] ® #1)A 7, belong to B(HL).
This follows from the identity

(Idg, ®(H © H)A) (A @ ) AT = (@ S0 A @ 1dg, ) (S @ ) Arr. (C4)
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Indeed, suppose o appears in the first components of (7] @ #])A 7. Then, o is among the
second components appearing in

(Idp, ®( @ ) A) () @ 1) AT
and hence, in view of (C4), among the second components appearing in
((«){/] ® /“{/])A] X Id[[l)(% & Ji/[)A]Tl.

However, we know that the first components of (7] ® .#7)A;7; belongs to T; and that for
7' € T, the second components in (7] ® #;)A;7’ belong to B(H). This implies o €
B(HE). One can similarly argue that the second components appearing in (%] @ J#1) A7y
belong to B(HE).

We move to prove HS is a subbialgebra of H,. It suffices to show that both the first
components and the second components appearing in (;{2 ® g%A/Q)AQT for 7 € B(HY)
belong to B(HY'). Indeed, suppose 7 = 75 € B(HY) is represented as in (C3) and define
71 € ‘T in the same way. The claim is a consequence of the coaction identity

(I, @(Hs @ H) Do) (H @ H VAT = M PDDD BN AL @ A))(Idg, @) Aoy

In fact, the first components appearing in (}% @%)AQTQ are among the second components
of

AL @ Ay (Idp, @) Aoy,
which belong to B(HY') since the first components appearing in Ay7; belong to T, again.
One can similarly argue for the second components appearing in (%5 ® #5) AsTy, by noting
that the second components appearing in A,7; belong to T again.

Finally, we prove the claims in the lemma after “Furthermore”. As for Proposition B.13-
(i11), it suffices to show that the first and the second components appearing in (A QA VAT
for 7 € B(HY) belong to B(HE) and B(HS') respectively. This is a consequence of the
coproduct identity [13, Proposition 3.11]

(@ @ X )(dg @A) AT = (@ 0 @ X ) (A @ 1dg) Ay, 71 €Ty (CS)

Indeed, suppose o appears in the first components appearing in (%] ® £ )A;7 for some
7 € B(HY). Then, o is among the second components appearing in (C5) for some 7; € T.
Since the first components of A;7; belong to ¥, we conclude ¢ belongs to Hf One can
similarly argue for the second components appearing in (%] ® £ )A;7. The claims for
Proposition B.14 can be proved similarly. U

Definition B.22. For ¢ € {1, 0} we denote by HZ the free vector space generated by
B(HY) = {(F, F)Y° € B(HS) | (F, Flpy,)" € To}.
Definition B.23. We denote by 7] the free vector space generated by
B(7) = {r € B(H") | (F,0)™° € T_ for every connected component ( F, F')™° of 7}
and by .7, the free vector space generated by B(.% ), where 7 € B(.%) if and only if
Ko I (11) -+ I, (T0)0™]

forn € No, k1,...,k,,m € Ndand 71,...,7, € HI such that | Ik, (75)|+ > 0 for every
j =1,...,n. We denote by p{ : H® — .7, the natural projection. We note that .7; is an
algebra under the forest product and .% is an algebra under the tree product.
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Proposition B.24 ([13, Proposition 5.35]). The linear map
Api= (pf @ p7) (@ )AL T = D@ T

defines a coproduct over the algebra 7, (with the forest product as multiplication). With
this coproduct and the counit as in Proposition B.13, .7, is a Hopf algebra. Furthermore,
the vector space HY is a right comodule over 7, with coaction

A = (p¢ @ 1d)( @ H)A - HE = 7, @ HE.

Remark B.25. As shown in [13, Proposition 5.34], one can view .7% as a Hopf algebra with
grade |-|; and one can define a coaction A% : Hf — HE @ 95, of which we do not need
the precise definition here but will only use the recursive formula [13, Proposition 4.17].

Definition B.26. We set
y::HOR, g—&—::t%a T_ ::%7

Then, in the language of [6], the pair (.7, 7, ) is a concrete regularity structure and the pair
(7_,.7) is arenormalization structure for the generalized PAM. For ¢ € {—, +}, we denote

* by A, the coproduct of .7, * by 1, the counit of .7, and
* by 1, the unit of .7, * by o7, the antipode of 7.

Recall that the product .#_ of .7 _ is the forest product while the product .# of .7, is
the tree product. We write 1 € .7 for ¢°. For o € {—, +}, the Hopf algebra .7, is graded
with |-|,. The vector space .7 is graded both with |-|_ and with |-|;..

Definition B.27. As shown in [13, Proposition 5.39], if
A=A{|r]s |7 € B(T)},

and we denote by G the character group of .7, the triplet (A, 7, G) is a regularity structure
in the sense of [33, Definition 2.1]. We have the graded decomposition

T = 0,aT T, = span{r € B(T) | |rls =1}
We write p s for the natural projection from .7 to 7.3 := @, 3.7,.

Definition B.28. If 7,0 € B(.7) are such that 70 € B(.7), we write 7 x 0 := 70. We
extend the product * bilineary. Note that the product x is not defined for all pairs (7, o).

The following lemma essentially states that the product x is regular in the sense of [33,
Definition 4.6].

Lemma B.29 ([13, Proposition 3.11]). If 7,0 € B(.7) are such that To € B(T), then
A3 (7 %) = A3 (7)A% (o).

Definition B.30. Let V' be the subspace of .7 generated by
(1) I (Tn), Tl oy Tn € .

Fori € {1,...,d}, we define the linear map &, : V' — 7, called a derivative, by

d

ZI(n) - I () => ) [[ 2 ().

=1 k£
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B.23

Proposition B.31 ([13, Section 6.1]). Leti_ : 7 — H{ be the natural projection. Then,
there exists a unique algebra morphism </ : 7 — HFE such that

My (- @1d 5 ) (@ H) i =1 (g, on T,
where My, is the product in Hy.

Definition B.32. We call &7_ a negative twisted antipode.

As for o/, we only use the following property. As shown in [13, Proposition 6.6], one
has the following recursive formula:

AT =M, (A @ dgr)(AT —T® 1), (77)

where A_ == (p¢ ® ldyr) (S ® 1) A

List of symbols from Appendix B

<, antipode of the Hopf algebra .7, 53

o negative twisted antipode 53

B basis 49

£ contraction operator for decorated trees 49

|| degree or simply absolute value 48

#  abstract symbol for integration 47

# joining trees at their roots 48

p.s the natural projection from .7 to @37, 53
(7,7,) concrete regularity structure for the gPAM 52
(J_,7) renormalization structure for the gPAM 52
T setof trees (T, 0)™° 50

T_  set of trees which conform to R and have negative homogeneity 51
T, set of trees which strongly conform to R 51

t type map:E — £ 47

£ typeset {Z, .7} 47

1. counit of .7 53

%, free monoid generated by T, 51

1, unitof .7, 53

e the decorated tree (o,2,m,0,0) 48

Er edge set of F'47

(F,F) colourful forest 47

(F, F.n,o, ¢) decorated forest 48

H, vector space of trees invariant under % 49
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H, Hopf algebra of forests invariant under .#; 49
H f subspace of H, which contains ¥, and is closed under coproducts 52
HE  subspace of HS whoses basis belongs to T, 52
9; derivative in .7 53

Nr node set of F' 47

R rule 51

Ar(x) node type of T at z 51

A°  coaction I — . ® T 52

A, coproduct 7, — 7, ® 7,53

= abstract symbol for a noise 47

pr rootof atree T' 47

71 - 7o forest product of 7; and 7, 48

7175 tree product of 7, and 7, 48

C Proof of Theorem 3.3

Based on the framework discussed in Appendix B, here we provide the details to prove
Theorem 3.3.

C.1 Modelled distributions

An important concept in the theory of regularity structures is the modelled distribution ([33,
Definition 3.1]). We denote by DV (7, ) = D?(Z) the space of modelled distributions
with respect to the model 2 whose images are in I, = $,73. We set

DT, Z)={feD(T,Z)| fis Ba<p<y Ip-valued}.
We will use the norm |||« given by [33, (3.1)].
33

Definition C.1. Let 2 be a model over .7 and let 7,/ > 0. By [33, Theorem 3.10], there
exists a unique continuous linear operator R = R? : DV(.7, %) — CRin4(R?) with the

following property: there exists a C' = C(v,[,.7) > 0 such that for every compact set
RCR?

(RS = T f@)(EN)] < CX N2 s I Il where @ == A6(A~" (- — 2)),
(78)
uniformly over ¢ € C*(B(0,1)) with |[¢[|crgey < 1, A € (0,1), f € DV(T, Z) and z € R.
The operator R is called the reconstruction operator.
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Proposition C.2 ([33, Theorem 4.7]). Let Vi and V5 be subspaces of 7 closed under the
action of the structure group. Suppose the product T, x T, is well-defined for every T, € V;
and 5 € V,. Let 2 be a model for 7 and let f; € D) (V;, Z) fori = 1,2. Then, if we set
v = min{y + g, y2 +aq}, one has p(f1* f2) € D), 40,(T, Z). Moreover, there exists
a constant C' € (0, co) which depends only on 7 such that

o (i o)l < COANZ oy Wl follws~ for every compact set & € R

Definition C.3. Let F' € C°(R?) and let V be a subspace of {7 € 7 | p-o7 = 0} that is
closed under the product x and under the action of the structure group. We define the map
F*:V — Vby

. DFF(7 NP
F*(7) = Z k!< >(7' — 7). Fi=porT.
keNy
According to [33, Theorem 4.16], if ¥ > 0 and f € DV(V, &), then one has

FX(f)(2) = per P (f(2)) € DUV, 2).

Furthermore, there exist a constant C' € (0, 00) and an integer & € N, which depend only
on .7, I and ~, such that

Il F(Nlllis < OO+ N2 s + N1 1ll:)* - for every compact set & C R (79)

C.2 Operations with kernels

In the rest, we fix an adimissible kernel K as in Section 3.1.2. Recall the notation G from
Definition 3.1 and we set Hy = Gy — K.

Lemma C.4. For every N € Ny, the function Hy belongs to S(R?).

Proof. Since the Fourier transform of Gy — G has a compact support, we observe that
Hy = (Gy — G) + (G — K) is smooth. Thus, it comes down to showing that Hy decays
rapidly or equivalently, as K is supported on B(0, 1), to showing that G decays rapidly.
For m € N¢, one has

"Gy = F (1= )2 V) (27i)™
for some polynomial P,,. Then, forn = (nq,...,ng) € Ng,
2" "Gy = (2m)"F (1 = x)(27")0"(|-| *Pn)] + R,

where R € S(R?). Therefore, if ny, . .., ng are sufficiently large, 9"(|-|~2P,,) is integrable.
This means 2"0™ G y is bounded and hence Gy decays rapidly. [l

Remark C.5. Thanks to Lemma C.4, the convolution H * f is well-defined for f € S’ and
the distribution Hy * f represents a smooth function.

Definition C.6. For f € S'(R?), N € Ny, we set
[AGy = G * f = F @)= f.
By considering their Fourier transforms, one observes
(AGN) * f = —f +[A(Gy = Q)] = f (80)
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We recall operations of kernels on modelled distributions from [33, Section 5].

Definition C.7. Let 2 = (II, I") be a model realizing K in the sense of [33, Definition 5.9].
(a) We set

k
T (@)1 :=TJ% (2)1 = Z % [DkK * Hx7($)}, r e RY
|k|<|7|++2

for 7 € B(.7) and extend it linearly for 7 € 7.
(b) Lety € (0,00) \Nand f € D'(.7,Z). We set

Xk

Nf(@) =N fz) = Z ﬂDkK x (R f =, f(x))(x) (81)
kl<v+2
and
Kf(z) = K7 f(z) = (F + T* (2)) f(x) + N7 f(=). (82)

By [33, Theorem 5.12], K maps D?(7, %) to D"**(F, %) and one has RKf =
K xR f. More precisely, one has

IEF s Sz (14 NZ Mo 2:560) N - (83)

uniformly over 2 € .#(7,K), f € D(7, %) and compact sets & C R?. See [35,
Theorem 5.1].

(c) For a smooth function /" on R? and 3 € (0, o), we set

Xk
RsF () = Z ﬂDkF([L'), z € R%

|k|<B

Then [33, Lemma 2.12] implies RgF € D°(7, Z).

Definition C.8. Suppose that the model 2 realizes K. Fory € (0,00)\N, f € D'(7, %)
and N € Ny, we set

G f(z) =Gy, f(x) == K f(2) + Ryso[ Hy * Rf](2).

Note that one has RZ G¥ f = G * R? f. For the meaning of the parameter N, see Remark
C.15 below.

C.3 Definition of modelled distributions

Definition C.9. We define 7,7_ C .7 and B(T ), B(7_) C B(.7) as follows.
(a) For 7,7 € . we write “V.Z(11) - V. (72)” instead of “Z?zl SAGYBZIC
(b) We denote by 7 the smallest subset of .7 with the following properties:
e =€ T and
o ifry, € T,then VI (1) - VI (1n) € T.
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Furthermore, we associate ¢(7) € N to each 7 € T by setting ¢(Z) := 1 and by
inductively setting for 7,75 € T

2¢(m1)e(me) if 7y # 7o,
C(Tl)C(TQ> ile = T3.

(VI (n) - VI (1)) = {

(c) One defines B(7T) C B(.7) as the minimal subset with the following properties:
e Z€B(T) and
o if 7,5 € B(T)andi € {1,...,d}, then . (11).Z(m) € B(T).

(d) Weset T_:={r €T |||y <0}and B(T_) := {7 € B(T) | ||+ <0}

Definition C.10. Given a model 2 realizing K, we associate 7% = 7% € D" (7, %) to
each 7 € 7_ by setting Z* := = and by inductively setting

d
Vr = min{7ﬂ +1+ |7—2‘+’77'2 +1+ |7-1|+}7 TIC = Z gl[lCT{C] * @ZUCTQK]
i=1

for 7 = V.7 () - V.Z(72). The exponent ~y= is choosen so that v, > 2 forevery 7 € 7_.

Remark C.11. Thanks to Proposition C.2 and [33, Theorem 5.12], indeed one has 7% ¢
D77 Furthermore, for 7 = V. (1) - V. (72) and a compact set K, one has

Jl7~2

K,.Z K.Z
s S7 (L4 12, 9+ 256@0)° 1707 M@ 17277 sy im2)-

Therefore, there exist a constant v, C' € (0, 00) and integers &, € N, which depend only on
7, such that
177 s < CQ+ N Z M) (84)

uniformly over 7 € T, & € .# (7, %) and compact sets & C R,

Definition C.12. Let ' € C°(R) be such that F'(z) = —e** if |z| < 2. Given N € N and
a model Z realizing K, we set

X =X7? = Z ()7
TET_

Wy = W3 = pGy,X”

d
Theo [F*(W%) x { Z Z c(m1)c(72) D [’CQ’T{C?] * 9; [ICQJTQCZ]
T1,m2E€T—, i=1
|71 |4+ 2|+ >—2

+23° BT X7 ) % Rol0{Hy * (RZX?))] H .
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Proposition C.13. Suppose that a model Z realizes K. Let N € N. Then, one has W}mf; €
DT, Z)and Y3 € D, 5(T,Z). More precisely, there exist constants v, C' € (0,00)
and integers k., € N such that the following estimates hold uniformly over N € N, %, % €
M (T, K) and convex compact sets & C RY:

I1X“lzie < OO+ N2 Mi50)"

W llzie < CLQ+ 12 ipesn)” + 1 Hy = (RT X 7)o}
1Y ¥l < CO+NZ Mipesn + 1Hn + (RTX)llea)",

and furthermore
X %5 X% Iz < COA 123l ZMn:0) 1125 25050,
W3 Willaw < CA+ N ZMmwn + 112 01:00) " 125 Z iz
Y35 ¥ Fllsw < € (1+ N2 Wininn + 1 Z e
g g GF , OF k
+ 1 H o+ (RZ X)) + [ Hy * (RZXZ) o)
X (12 Z o + [ Hy * (R* X7 = RZX?)||ozw))-

Proof. The estimate for X Z follows from (84). As for the estimate of Wf; , the Schauder
estimate (83) gives the estimate for KX ?. The estimate for Ry[Hy * (RZ X ?)] follows
from the estimate

IR [Hy % (RZ X ) llzie < D 0™ [Hy * (RT X )][|z=(s),

m:|lm|<2

where the convexity of £ is used. The estimate for Y7 follows from Proposition C.2, the
estimate (79) and the Schauder estimate (83).

For the estimates of the differences, let us just mention that for differences there exist
analogue estimates to those in Proposition C.2, the estimate (79) and (83), see [33, Proposi-
tion 4.10], [36, Proposition 3.11] and [33, Theorem 5.12] respectively. Using them, we can
prove the last three inequalities of the differences similarly. ]

Definition C.14. Given a model 2 realizing K and N € N, we set
X =X? =R*’X?, Wy =WZ =R*W%
and
Yy =YZ =RIYZ + F(Wﬁ’){w[HN « (X)) + [A(Gy — Q)] * XQ’}

Remark C.15. The parameter N will be used to ensure Wy is bounded on a given bounded
domain. Therefore, /N will be random and will depend on the domain. The idea of introduc-
ing such parameter is also used in [3]. As noted in Definition C.8, one has Wy = Gy * X.

Lemma C.16. Let ¢ € (0,1). To simplify notation, we write X" := X2 here for
instance. Then, one has the following idenitty:
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|VWX[3H 2 + AWX{an — _58
Y m)em) VK xRS V(K R

71,2 €T,
IT1]4+|72]+>—2

+2VIK # X - V[Hy # (X)) + [V[Hy # (X + [A(Gy — G)] = X

Proof. One has W™ = K * X" + Hy » X" and

[VWx|? = Z (1) e(m) VK * ROV V[ K % REB )
T1,T2ET—

+ 2V[K % X . V[Hy * X + |[VHy * X"|?
Furthermore,

AWy = = 3 e(ry R 1 [A(Gy — G)] % X,
TET-

Now it remains to observe

Z C(TI)C(TQ)V[K * RcanT{C,can] . V[K * RcanTéC,can] . Z C(T)RcanT’C’Can
2T TET_
= _Sa + Z C(Tl)c(Tz)V(K * Rcan,]_{c,can) . V(K * RcanTéC,can)‘ 0

T1,72€T-,
|71]4+|72] +>—2

C.4 BPHZ renormalization for X

ngPHZ,s

The goal of this section is to show X = X7 _ ¢, (Proposition C.24). To this end,
our first goal is to obtain the basis expansion for modelled distributions 7 € 7_, which
will be given in Lemma C.19.

Lemma C.17. For every 11,79 € T_ with |11+, |72+ < —landi,j € {1,...,d}, one has
ALlA(n)] = Zin) @ 1y, AL[A(n)S5(n)] = [Hi(n) F5(m)] ©@ 1.

In particular, the constant map v — J;(11).%5(72) belongs to D, .\ (7, Z) for any
model % = (II,T") and

R[Ii(11)I(72)] = [ Si(11)7;(2)],
where the right-hand side is independent of .

Proof. In view of the recursive formula [13, Proposition 4.17], one can prove the claim
by induction on |-|;. Indeed, suppose one is going to prove AS7T = 7 ® 1,, where 7 =
Si(11)F(12) and AS7, = 7, ® 1. By Lemma B.29, AS7T = A% [7(1)]AL[F(2)].
Therefore, it suffices to show A% [.7;(1)] = [#(71)] ® 1. By [13, Proposition 4.17], one
has
X* A
AL S(n) = (S @ld)An+ > @ Jeen().
kel |+ 1—|k[>0

It remains to observe that (.%; ® Id)Ar = [.Z;(71)] ® 1 by hypothesis of the induction and
that the set over which k ranges is empty. O]
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Definition C.18. We use some notations from Section B.1. Let 7 € B(7) and let e be an
edge of 7 with t(e) = .#. By removing the edge e, we obtain a decorated forest with two
connected components. We denote by

Remove(T;e)

the component containing the root of 7, with decoration inherited from 7. For instance,
Remove( ; | )= :

where O represents the noise (7). We set

Remove(B(T)) := {Remove(r;e) | 7 € B(T),e € E, with t(e) = .},
Remove"(B(T)) := {(T,0)™" | (T,0)*° € Remove(B(T))}.
Lemma C.19. Suppose 2 = (I1,T") is a model realizing K. Then, one has a claim for
T € T_ as follows.
(@) IfT=Zor7=VI(n) - VI(r) with |11|+, 7|+ < —1, then 7% = 1.

(b) If T =V I (1) VI (o) with |1y |+ > —1 and || < —1, then one has the expansion

™ () =T+ Z a?,;(x)o-a (85)

oeY(T)
with the following properties:

* (1) is a finite subset of Remove"(B(T)) that is independent of %,

e one has

n
_ [1yeeiln,01,50,0n ) IC,Z I
= > (PO # Tp~? ()] [ [0 K * a4 ()
je{1,...,d},n€Ng,peT_, k=1
1, ln€Ng,01,...,0n ERemove™ (B(T)),
ok |+ +2—13>0,—1<|p|+- <|7|+

- STl RYOK (R )T T () (0)

T,0,p,l
n€Ng,peT_,
Lty ln€NG,o1,....0n ERemove™ (B(T)),
ok |+ +2—1:>0,—1<p|+ <|7|4

x [ [0 K « ,04) (x),

k=1

where the sum is actually finite and the constants

Cll ..... ln,01 e, Un(P) and Cll ..... In,01,-me) an(R)

T7U7p7l

are independent of Z.
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Proof. To see the claim (a), if | 7|, < —1, thanks to Lemma C.17, the identity (82) becomes
Kr=Y974+(KxR7)(x)1

and hence Z,K7 = #;7. The claim (b) seems complicated but can be proven easily by
induction. Suppose that one has 7 = V. (1) - V.#(73) such that 7, has the expansions
of the form (85) and 7% = 7. Furthermore, one has —1 < ||, < 0 since |7|, < 0.
Therefore, one has
™ =n+ Z Uy0, TX =T (86)
o€Remove" (B(T))

where a, has the desired property. By the definition (82) of X, one has

DiKTr () = Sy + Z ao(z) I (o) + [0; K * I, ()1

o€Remove" (B(T))

e; Xl e; Xl
+ > o (2)[0% T K +11,0] (2) 5+ > z+lK*(RT{C—Hﬂ{C)}(m)T,
o€Remove™ (B(T)),leNG . [t <yry +1 ‘
|o|+1—11|>0

where 7, is chosen so that 7/ € D" (T, &), see Remark C.11. Since Z,K7y = 77, as
shown in the part (a), one has

I:(0).Ii(12), X' (1) € Remove™(B(T)).
Since |71|4+ < |7]4, we complete the induction. O

We recall an explicit formula of the BPHZ realization.

Definition C.20 ([13, Theorem 6.18]). Let .7_ be the free algebra generated by .7 under
the forest product. (In fact, recalling H 1R from Definition B.22, we have 7. = H 1R.) We

define the algebra homomorphism g_ : 7 — R characterized by
gc (io7) := E[II*™*7(0)],
where i, : 7 — 7. is the natural injection. Then, we have
TIBPHZe — (o= o @ TIA° ). (87)

In view of the identity (87) and Lemma C.19, we need to understand (g ./ @II<)A° 7
for 7 € 7_ and 7 € Remove"(B(7T)). As one can easily guess from the definition of ¢_, it
is necessary to estimate E[II°*"¢7(0)] for such 7. The following simple lemma is a conse-
quence of the symmetry of the noise .

Lemma C.21. For 7 € Remove(8(T)), one has E[I1°™¢7(0)] = 0.

Proof. Let 7 = (T,0)%° € Remove(B(T)). Let II™™ be the canonical realization for
&(—-). Since & 4 £(—-), one has TI™"so 4 T1eanes for every o € 7. If we set

n(T) = #{e € Er|tle) = 7},

by using the identity
O * [f(=)] = =[0:K = f](=),
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where the fact K = K(—-) is used, one has IT™"7 = (—1)""II®"¢7. However, since
7 € Remove(B(T)), n(T) is odd. Therefore, one has

Lo d S
HmlnusT — HCal’l,ET and HIIIIHUST — _HCaI’l,ET’

and concludes E[II®™7(0)] = 0. O

Lemma C.22. For 7 = (F, F)™ € B(T) U Remove™(B(T)) and = € R%, one has
AT =7®1+1_®7+ker(g; &/ @ II%) Nker(g o @ II*).

Proof. Recall from Definition B.2-(a) that edges are oriented. We call an edge e = (a, b)
a leaf if b is not followed by any edge. We call a node a of F' true if there exists an edge
e = (a,b) such that t(e) = .#. We denote by N"™° the set of all true nodes of F. For a
subforest G of F', we set

N :={a € Ng N N"™ | there exist exactly j outgoing edges in G’ at a}.

Recalling the coproduct formula (74), one has

AT =7TQRr, 1 +1_@71

+ Z Z ( ) G O>nc+7reG ®,%/(F 1G>n ng, W(EA—dlg)7

e]lEF\EGJrEG
GCFG#@ nG;éng

where Z#,, is defined in Definition 3.8. However, note that IT***%,1 = TI®™¢1. We fix
G # D,ng # nand £ and set

. ng+mek 0 L n—ng,m(ef —elg)
1 = (G, 0), @7 = (F, ILG)dEF\EGiEg
We will prove (97«7 ® I1%%)(1y @ 75) = 0 by considering various cases, which will
complete the proof. When a case is studied, we exclude all cases considered before.

1. Suppose that G # [ and that a connected component T of G satisfies N = @& and

Ni = N} N Ng. Then, the forest T, contains a leaf (a, pr) of edge type .# and hence
H(:;an,&',r2 — HC&H,ET2 f— O.

2. Suppose G contains a leaf of edge type .#. Then, in view of the recursive formula (77),
this is also the case for each forest appearing in 277 and hence g_ .71 = 0.

3. Suppose Ng # @. If the case 2 is excluded, then a connected component of 7 is of the
form ™Y and hence 7; = 0 (as an element of 7).

4. Suppose 71 contains a connected component 73 = (7,0)™" such that #N} > 2. Let
a € Ni.
e If a is the root of 7', then 73 = .#;(74) and hence 7; = 0 (as an element of 7).

o If a is not the root of T, one can merge two consecutive edges (a, a) and (a, as)
into a single edge (a1, as) to obtain a new tree 75 € ¥, with |73|_ = |75|_ + 1. Since
lo|_ > —2+ ¢ for every o € T, if #(N} \ {pr}) > 2, then |3/ > 0 and hence
71 = 0 (as an element of 7).
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5. Suppose that 7y contains a connected component 75 = (g, 0)7¢° such that Ny = Ny, =
@. Then, T} = Ts = F and 71 € B(7T). However, this implies n = ng = 0, which is
excluded.

6. Therefore, it remains to consider the case where every connnected component 7, =
(T7,0)2"" of 7y satisfies #Nj, = 1 and Ny = & and all leaves of 7; are of type Z,
namely 7; € Remove" (SB(’T)) If n7 # 0 on Ny, then |77[- > 0. Thus, we suppose
n; = 0. We will show g_ /7 = 0, which implies g_ o/ 71 = 0 since the character

g- 42%, is multiplicative. To apply the recursive formula (77), consider the expansion

A_7'7 —mm®1_=1 ®T7+ZC7—87'8®7'9.
78

Then, one has

gz A 7y = —E[II 77 (0)] = 3 cr x (97 4/-75) x E[II*"75(0)].

By the same reasoning as before, one can suppose that every component 739 = (79, 0)%°

of 73 belongs to Remove(*B(7)). However, since T3, has a strictly smaller number of

edges than 7% does, one can assume g_ .7 7g = 0 by induction. Therefore, it remains to
show E[IT®"¢7;(0)] = 0. But this was shown in Lemma C.21. O

Corollary C.23. If 7 € Remove(B(T)), then g7 /-7 = 0. If T € T_, then
gz 1 = —E[II®*7(0)].

Proof. The claim for 7 € Remove(B(7)) is proved in the proof of Lemma C.22, see the
case 6. If 7 € 7_, by Lemma C.22 one has

HBPHZ,sT — Hcan,sT 4 95_«52{7'

However, since |7|_ < 0, one has E[II®"H%<7(0)] = 0 by definition, which completes the
proof. [

Proposition C.24. For T € T_, one has

HQ{)BPHZ,sTK’QABPHZ,E (x) _ Hf{)can,sTK’g/)can,s (:E) _ E[Hcan’sfr(())]? T 6 ]1%[17 (88)

xT

RQQBPHZ’ET’C,EZ)BPHZ"? _ R@can,sTK’g’can,s N E[Hcan’ET(O)]_

In particular,
g‘BPHZ,E

gycan,e
X = X7 _ e

where

¢ = Y c(r)E[I™*r(0)]. (89)

TET_

yBPHZ,s

Proof. To simplify notation, we write RBPHZ .= R here, for instance. Since

R¥T# (1) = [ITF 7% (2)](x), # € {can, BPHZ},
it suffices to prove (88). By Lemma C.19, one has the expansion

ICBPHZ —T+§ : BPHZ
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BPHZ given in Lemma C.19, every p in the sum satisfies |p| | < |7],.

BPHZ — g by induction. By Lemma C.22 and Corollary

In the expression of a.
Therefore, one can assume a,
C.23,

A°TOBPHZ (1) — @141 ®T—|—Z an(1)1_ @ o + ker(go o7 @ 1%,

Furthermore, by [13, Theorem 6.16], one has
B (g7 @ TS A2

Therefore,
HEPHZTK’BPHZ< ) _ ga % T+ HcanT + Z acan Hcan
_E[Hcan ET(O)] H;anTIC can(x)7
where we applied Corollary C.23 to get the last equality. O]

C.5 BPHZ renormalization for Y

. . . gpcan,e BPHZ,e . . .
The goal of this section is to compare Y%~ and Y 3 " as we did for X in the previous
section. Again, we need to obtain the basis expansion for Y y.

Lemma C.25. Let 1,5 € T_,i € {1,...,d} and N € N. Let & be a model realizing K.
Assume | 11|y + |To|+ > —2. Then, for x € RY one has
Pes{ FWR)(2) x 2K |« )*@'UCTQK’?]( )}
D*F( W
= 3 PN (57 o) s i)« 2K ()}
keNg TET_

and
ps{ FIWR)(x) x Zi[K” X7 )(2) % Ro[0i{ Hy % (R” X 7))} ()}

ra S P (50 ) ik )

keNy TET_

Proof. By Lemma C.19, one has

Wii(z)= Y I+ W (2)1+ Wy (x),
TET-

where W 2" (2) € @4>1.7,. Recalling Definition C.3, one has

Fw = 3 ZEOTE) (5wt w) ™

keNy TET_

Since Lemma C.19 implies that
ilCr ) (@) * 2Ky ) (w)

is @a>_145-7a-valued, one can ignore the contribution from Wﬁﬂx) when the projection
ps 1s applied. This observation proves the claimed identities. O]
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Lemma C.26. Let N € N. Then, one has
BPHZ,e BPHZ,e BPHZ,e
R? Y5 = FWZ ™)
4 > () e(ra) V(K 5 R T2 ) (K 5 RE 2
71,12 €T, |71 [+ 4|2 |+ >—2
VK % X277 V][ Hy # XCW]}

BPHZ,e ._ 72 BPHZ.:e
11" 1= 112

Proof. To simplify notation, we write here, for instance. One has

RBPHZ,aY%PHZ,e(x) _ [HIBPHZ,eYipHZﬁ(w)](ZL‘).
In view of Lemma C.19, Proposition C.24 and Lemma C.25, it suffices to show
PP (1) - I (1) T = TG I (1) - I (1) Ty ()],

PP (1) -+ I (T0) Ii (1) i (Tasa)] = T[T (1) -+ I (1) Ii(Tag1) i (T2,
(90)

for 7, ..., Tn, The1 € T and 7,10 € Remove(*B(7T)). We only prove the second identity
of (90). We set

= (F,0)0" = (1) -+ I (1) Fi(Tn11) Ii(Tuya),  (Fy, 0000 =75
The proof of (90) follows the argument in the proof of Lemma C.22. We claim
ANr=1lor+ Y [Ar) [[7@)] © [Filmee) [T 7))

JC{1,..,n} jeJ jeJ
+ Y ) i) [[ )] @ [[ 2 () O
JC{1,...n} jeJ j¢J

Indeed, let 0 ® o’ be a basis appearing in the coproduct formula (74) for A° 7. If we set
(G,0)™ := ¢ and 0}, := (G N F;,0)™°, by repeating the argument in the proof of Lemma
C.22, the forest oy, is either &, 7, or Remove(py; ex) for some pjy, and ey.

* If o, = @, then o = 0in .7_ unless (pr, pr,,) ¢ E,.
* If 0y = 7, then ¢’ has a leaf of type .# unless (pr, pr,,) € E,.

* If 0, = Remove(py; ex), then |o| > 0 and hence 0 = 0 in I_.
Therefore, the claimed identity (91) is established. It remains to show
QQ«QZ [%(Tnﬂ) H j(Tj)} =0, 9;42/— [%(Tnﬂ)fi(Tmz) H j(Tj)} = 0. (92)
JEJ jeJ
Without loss of generality, we can suppose J = {1, ..., n}. The proof is based on induction.

We only consider the first identity of (92). As for the case n = 0, the first identity of (92) is
shown in Lemma C.21. Similarly to (91), one can show

Ar=1_er+ Y [Fn)][[Z@]e]]4m)
JC{1,...,n} jed Jj¢J
In view of the recursive formula (77) and the hypothesis of the induction, it remains to show
E[II**7(0)] = 0.
However, this can be proved as in Lemma C.21, since T has an odd number of edges e such

that t(e) = .7 and |e(e)| = 1. O
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Proposition C.27. Let U be a bounded domain.
Suppose that M and ¢ are random variables (depending on U) with values in No and

(0, 00), respectively, such that [WZ" | < 2on U and | W3 — Wit ey < 1 almost
everywhere.
Then,
BPHZ.e BPHZ,e _owZBPHZE 4 BPHZ,e
VIV |+ AWy +e N Yy =—&+c. onU,  (93)

where the constant c. is defined in (89).

Proof. By Proposition C.24, one has W ¥ pre W™, Therefore, by Lemma C.16 and
Lemma C.26, the left-hand side of (93) is equal to

_55 - [A(GN - G)] *Ce = _gs + Ce. [l

C.6 Stochatstic estimates and Besov regularity

Proposition C.13 gives pathwise estimates for the modelled distributions X, Wy and Y .
Here we give stochastic estimates for X and Yy in suitable Besov spaces. To this end, we
will need a wavelet characterization of weighted Besov spaces.

Theorem C.28 ([50], [66, Theorem 1.611). For any k € N, there exist 1;, 1y, € C*(R) with
the following properties.

 Forn € Ny, if we denote by V,, the subspace of L*(R) spanned by
{t4(2" - —m) |m € Z},

then the inclusions Vo CV; C -+ CV,, C V,u1 C -+ hold and L*(R) is the closure
OfUnENoVn‘

e The set
{¥i(- =m) [m € Z} U{¢n(- —m) | m € Z}

forms an orthonormal basis of V. Therefore, the set
{5(- —m) | m € Z} U{22¢)n(2" - —m) | n € Ny, m € Z}
forms an orthonormal basis of L*(R).
* One has [, #'ty(x)dz = 0 for everyl € {1,2,... k}.
One can build an orthonormal basis of L2(IRY) as follows.

Proposition C.29 ([66, Proposition 1.53]). Let k € N and let 1;, 1y € C*(R?) be as in
Theorem C.28. For n € Ny, we define the sets of d-tuples by

B = {(f77f)} ifn:(),
T (G, Gy € Fomy | Fj st Gy =m)} ifn > 1.

Forn € Ny, G € 8", m € Z% and x € R%, we set

d
n dmax{n—1,0} max{n—
U () = 2 [ [, 2y = my), &9

j=1

The set {UC | n € Ny, G € ", m € Z} forms an orthonormal basis of L*(R?).
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With the expansion by the basis {U™¢ | n € Ny, G € &",m € Z%}, one can give a
wavelet characterization of weighted Besov spaces.

Proposition C.30 ([66, Theorem 6.15]). Let p,q € [1,00], 7 € R and o € (0, 00). Suppose

2d d
k>max{7",—+——r}
P 2

and let {U™C | n € Ny, G € 8", m € Z} be as in Proposition C.29. Then, there exists a
constant C' € (0, 00) such that for every [ € By (R?) one has

CIf

By (RY)

<2n(r—d/p) ( Z wg(g—nm)p|2nd/2<f7 G |p) 1/p)

Ge®n mezd

<

n€ENg

< C|fllBrg e

17(No)

We fix k € N such that k > 3¢ 4 2, and we consider the orthonormal basis { "¢} given
by (94). We set ¥ := \1/8»(f ,,,,, N

Definition C.31. Let 2 = (II,T), 2 = (II,T) € .# (.7, K). Given a compact set & C R,
we set

[Z]s = sup sup  sup 2”|T‘+]<Hﬂ, Q”d\I/(Q”(~ —x)))gal,
r=(T,0)0°eB(T)NT<o "EN z€fN2- L4
[Z; ?]]R = sup sup  sup 2”|T‘+|<HIT — 1L, 7, 2"d\IJ(2”(- —x)))pal.

r=(T,0)>°eB(T)NT<o "EN z€fN2-"Zd

Lemma C.32. For each v € R, there exist a constant C € (0,00) and an integer k € N
such that the following estimates hold uniformly over &, % € # (7, K) and compact sets
RCR%:

120 < CA+[2]0)" 125 Zlllis < O+ [2]0) (125 Z]s + [25 Z]5)-

Proof. Using the recursive formula [13, Proposition 4.17], one can prove the claim as in
[44, Lemma 2.3]. O

Lemma C.33. Let L € [1,00) and set Qp, := [—L, L]%. Let p € 2N. Under Assumption
3.10, if p&’ > d + 1, one has
E[Hc@pBPHZHgL] S CI]?PHZLd, E[Ho@pBPHZ; c@pBPHZ,s]]p L] S 8;];3PHZ (€)Ld.

Proof. The proof is essentially the repetition of [44, Lemma 4.11]. Set
Bo(7) = {1 = (T,00:" € B(T) | |7]; < 0}.
If we write U2 := A\=4W(\71(. — x)), one has

E[[Z"M4])) | =E[ sup sup sup  2"7HP|(IL7, U2 " )pal]
T7€B(T) neEN zcQn2—"174d

< D0 DML TR (M, Ul
T7€B(T) neEN
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where the stationarity of the noise € and the estimate #(Q;,12~"Z) < "L are used. By
Assumption 3.10,
E[|(Tor, W2 " )gal?] Sy, CEPIZ2—m0(1++07),

p
Therefore,
E[[[QPBPHZHP L] 5 CEPHzLdPBO(ﬂ)\(Qp‘S —d __ 1)—1.
The estimate for the second claimed inequality is similar. O]

Lemma C.34. Let & C R? be a compact set and o € (0,00). Then, there exists a constant
C € (0,00) such that forall N € N

HHN * XHCQ(R) S CQBNHXHC—Q,U(Rd).
Proof. Let ¢ € C>°(RY) be such that ¢ = 1 on &. By Lemma A.4, one has

| Hy * X||02(ﬁ) S llo(Hy * X)||c2(Rd) So | Hn * X”CQ’U(Rd)-

It remains to apply Corollary A.10. ]
Recall from Definition B.6 that we have, for instance, |=|, = —2 + § + « for some
k€ (0,0).

Proposition C.35. Under Assumption 3.10, there exist a deterministic integer k = k(J_) €
N such that for all o € (0,00), p € 2N withp > (d+ 1)/ min{é’ — k,0} and N € N we
have the following:

BPHZ
72+5+~/2,U(Rd)] 55,5’7570717 Ckp )
p.p

BPHZ
B[l X 2"

BPHZ okpN

BPHZ
E[HYN |’];;11;+6+~/2,U(Rd)] 55,6/,n,a,p Ckp

and

BPHZ BPHZ,
E[HXQF - Xff ] ||po—12)+5+ﬁ/2,a(Rd)j| 56,6’,5,0,1) C]?pPHZ [€E;HZ (5) + 5;];3PHZ (5)]a

BPHZ srBPHZ,
BIYZ™™ = Y210 pvsrasso ) Sosmizon CEH2PVEBH2(c) 4 BPHE(e)

Proof. Set & := 2’BPHZ_n the proof, we drop superscripts for BPHZ. Natural numbers
k,l,~ depend only on .7 and they vary from line to line. We will not write down the
dependence on .7, §, 6_, p, 0. Recall the notation U= from (94).
Suppose we are given a modelled distribution f € D)(.7, %) with a« < 0 < 7. We
decompose
<Rf, Qnd/QqJ:’i{G’%Rd
= (Rf — Homnp f(27"m), 272U g + (Tlg-ny, £ (27"m), 272U Y g,

Using (78), the first term is bounded by a constant times

2_m”|f”|7;3(2’"m,l)|||'>@€|”7;B(2’"mﬁl)'

To estimate the second term, consider the basis expansion

f(z) = Z a,(z)o.

o
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One has |as(27"m)| < || flll;B2-7m,) and
[(My-npn0, 2" 00 | S 272 |2

Therefore,
(RS, 2" D) ga| S 27N flssenmp | 2 Mhsme-—nm- 95)

Applying the estimate (95) to X and Y y, by Proposition C.30, we get

-~

(R9)
D)2 0 ©a) D o [ 2 ——
nENp GeGn,meZd

HYNHI;Z;ZI;JréJrN/Z,U

(R4)
S 2@ N w27 m)P Y W oy I Z 1 oy
neNg GeGn,meZd

To estimate || X || j—2+51r/2.0 we use Lemma C.13 and stationarity to obtain
D,p

(R?)?
B0 s1aim/mga) S 22 27O 3T wo 27 mPE(+ 12 in00))
’ n€Np GeGnmeZd

Since

> walzmmp S [ (2 e) e = 2 [
meZa R

and by Lemma C.32 and by Lemma C.33
E[(1+ 12 llss500)"] S Cip™
for some k' € N, we conclude

E[IXIE_srssesne

The estimate of Yy is similar by using Lemma C.34. The estimates of the differences can
be proved similarly by using [33, (3.4)]. ]

Corollary C.36. Under Assumption 3.10, let 0 € (0,00), p € [1,00) and N € N. Then, as

£ 0, (X277 o) converges in LP(P) to X 277 in €245 (RY), and (Y™™ ).cio

Y;_QZ)BPHZ l.
N

| < CBPHZ
(Re)! ~ TRp

converges in LP(P) to n C~1%7(RY). Furtheremore, there exists a deterministic
k = k(9) € N, independent of o and N, such that

sup 27N V2" o0 (gay € LP(P). (96)
NeN

Proof. The claim on the convergence follows from Proposition C.35 and by applying Besov
embeddings. To show (96), let p € 2N be such that d/p < /2. By Proposition C.35 and
the Besov embedding, for some k' € N,

arBPHZ
Spso BIIYY I

BPHZ
[”YQF HC 1+, U(Rd)] ~P,0,0 B;}l}+5+d/p,U(Rd)] Sp,&/{,a

2pk’N

Therefore, if k > £/,

BPHZ
S 2 VB[V v ) < o0 0
NeN
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