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1 INTRODUCTION 1

Abstract

Main goal of this paper is to prove a Griffith formula and a J-integral to determine the
energy release rate for a quasistatic interface crack in a compound of materials of p-
Laplacian type. The first mentioned formula is given as a volume-integral, where only
quantities, which can be determined via FEM, occur in the integrands. The second
formula corresponds to a path integral derived from Griffith formula by application of
Gauss’ theorem, but due to the low regularity of the solution it is expressed by dual
pairings. In order to prove these formulae, the existence and uniqueness of minimizers as
well as their regularity are discussed.

Key words: energy release rate, Griffith formula, Griffith fracture criterion, interface-crack,
J-integral, p-Laplacian operator, p-structures, strain-hardening.

1 Introduction

In this paper, Griffith fracture criterion is applied on a quasistatic mode-III-interface crack in
a compound of geometrically linear but physically nonlinear elastic materials of p-Laplacian
type. This energetic fracture criterion was introduced by A. Griffith in 1921 and it reads
as follows: The crack is stationary under external loadings, if the total energy of the body in
the current configuration is minimal in comparison to the total energy referring to any other
possible configuration.

Due to a quasistatic crack growth one introduces the energy release rate, which states the
amount of energy that is released if the crack would extend in an infinitesimally small length:

E(Qsy5 wisg) — E(Qsg+85 Uisg 1) dE (2546, Uise+s))

ERR(Qs,) := lim : S 2 - (1)

Thereby E(-,-) denotes the potential energy referring to the reference configuration s, or to
a configuration (15,5 with a crack extended by the length §. The functions w,), s, are
the corresponding minimizers and it will be shown in section 3 that they are unique.
Griffith fracture criterion can be expressed as follows: The crack is stationary under external
loadings, if

D(Q
ERR(Q,) < % , (2)

6=0
where D(-) is the dissipative energy of a configuration, taking into account all the irreversible
processes that occur during cracking. In a simple model D(-) is assumed to be proportional
to the crack length. In engineering applications inequality (2) involving the energy release
rate is used to realize Griffith fracture criterion. The problem is now to derive formulae to
compute the energy release rate efficiently, since definition equation (1) is not applicable for
numerical computations. Thus, the main focus of this paper lies in the proof of a so called
Griffith formula for the compound of p-Laplacian type, which is carried out in section 4.
Griffith formula allows to calculate the energy release rate as a volume integral in dependence
of the given volume force density and of quantities that can be determined via FEM, like the
minimizer of the transmission bondary value problem, stresses, elastic strain energy density.
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So, Griffith formula for the considered compound reads as follows:

2
ERR(S2s,, ugs,)) = Z/DWelj (vu[50]j>aylu[5o]j -Vody

jzlgj 3
2 2 (3)
-3 / Wt (Vg )0y, 0 dy + / sy Oy (170) dy .
j:lﬂj jzlﬂj

where ,, is the derivative in crack extension direction (1,0) ", that has been chosen arbitrarily
but fixed in the following sections.

In section 4.2 some numerical examples are discussed, where Griffith formula is used in the
postprocessing of a FEM code in order to compute the energy release rate in dependence of
the crack length and of material parameters.

Finally, in section 5 the J-integral for compounds of p-Laplacian types is proved rigorously.
If the minimizer is regular enough, this is a path integral formula to determine the energy
release rate, that can be formally derived by applying Gauss’ theorem on Griffith formula.
Since our problem shows less regularity, the J-integral can only be expressed by dual pairings
in corresponding Sobolev spaces defined on the path.

2 Preliminaries

In this paper we consider a domain €25 consisting of two subdomains with a crack on the
interface. This setting is specified more precisely in the following:

Definition 2.1 (The considered domain)

Let Q5 be an open, bounded and connected 2D domain consisting of two nonlinear, hyperelas-
tic materials located in the subdomains ; and Qs, such that Q UQs = Qs. Both subdomains
have Lipschitz boundaries with piecewise continuous outer unit normal vectors ni, ns. The
interface between )1 and )y is assumed to contain a straight crack of the length §, which
may straightly expand along the interface, see fig. 1.

We furthermore introduce 2 = int Qs. Its boundary OS2 can be separated into a Dirichlet-
boundary I'p and a Neumann-boundary 'y, so that 025 = 02 U Rs, where Rs denotes the
crack of length 6. Thus the crack lips are defined by Rs; = Rs N €;. Analogously, we set
FDj =I'pnN 89]' and FN]- =I'nnN 89]' for j =1,2.

We claim that:

1. T'p is a set of non-zero Lebesgue-measure: L*(T'p) # 0.
2. TpNRs=0.

The elastic strain energy densities referring to the subdomains 21, {25 are supposed to be of
p-Laplacian type:

Definition 2.2 (Elastic strain energy density)
The elastic strain energy density We;;(-) : R? — R referring to the subdomain €2, j = 1,2,
has the form ' b
Waj(a) = %(“j +lal?) T, (4)
j
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where 11; € (0,00), p; € (1,00) are material constants and r; € [0,1] are parameters that
are introduced in order to avoid numerical instabilities and which can be chosen sufficiently
small.

Due to hyperelasticity the stresses DWe; (-) : R? — R? on (2 can be expressed by the
derivative of We;;(-) with respect to the argument:

pj—2

DWei; (a) = pj(rj +|a’) "= a (®)

In the case 1 < p; < 2 formula (5) can be interpreted as the approximation of the true
stress-strain curve for a strain-hardening material. Then p; [MPa] and p; describe material
parameters for a given metal or alloy depending on its thermomechanical history, e.g. degree
of mechanical working or heat treatment. (p; —1) is called strain-hardening exponent [18]. In
section 4, composites of the specimen shown in Table 1 (see [18] Table 6.3) are investigated

Alloy pj [MPa] | p;
Table 1: Copper Cu (annealed) 315 1.54

Brass, 70 Cu-30 Zn (annealed) 895 1.49

Stainless steel 14301 (annealed) 1275 1.45

numerically. The approximation of the true stress-strain curves for these three alloys have
the following appearance, fig. 2:

True stress [psi X 10°]

A ny 600

stainless steel (ann.)

70 Cu-30 Zn (ann.)

Cu (ann.)

0
0.0 0.05 0.1 0.15 0.2 0.25
+ True strain [xn/m]
n

Figure 1: Domain €25 and loadings Figure 2: True stress-strain curves

The case p; = 2 corresponds to a linear elastic material under anti-plane strain loadings
whereas the exponent p; > 2 is more important in fluid mechanics as in solid mechanics,
but it is covered with the analytical studies as well. Thus the definition of materials of p-
Laplacian type stands not only for strain-hardening and linear elastic materials but for a much
larger class of energy functionals. As it will be shown in section 2.2, the elastic strain energy
densities of p-Laplacian type are p-structures. For the analysis of transmission boundary value
problems this fact favors the application of variational approaches more than the application
of the theory on monotone operators.

Due to equation (5) the transmission boundary value problem for the configuration Qs can
be stated as follows (where 4, j € {1,2} in the sequel):
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Definition 2.3 (Transmission boundary value problem)
Find u : Q5 — R, with u|; = u; for given functions f : Qs — R with flo, = f;, h: I'n — R
with h|rynoq; = hj and g : T'p — R with g|r,na0, = g;, such that (compare fig. 1):

—divDWg; (Vuj) = f; inQy, (6)

up —us = 0 onlrpgs, (7)

DWeii (Vur) -ni2 + DWerp (Vug) *ng1 = 0 onl'rg, (8)
uj = gj onI'p; =TpnNosYy, (9)

DWelj (VUJ) ‘n; = h; on FNJ' :FNﬂan, (10)

DWe; (Vu;) -m; = 0 on Rs;. (11)

Thereby n; and nj; denote the piecewise continuous outer unit normal vectors of );.

Furthermore we introduce the following notation:
On the total Neumann boundary I 5 with I‘ﬁj =I'njURsj, j = 1,2, the Neumann condition
is given by:

= h; onlpy;,
DIV, (V) my =y = {j om0 (12)
v

Remark 2.1
For kj =0, and a = Vu;,j = 1,2, formula (6) leads to the p;-Laplacian equation on ;.

Remark 2.2

The configuration ()5 together with the given transmission boundary value problem can be
interpreted as a 2D cut-out of a 3D body subjected to mode-11I loadings, see fig. 1: ® stands
for a loading pointing orthogonally out of )1 and ® indicates a loading pointing orthogonally
into 29, which means that out-of-plane loadings are applied.

The energies referring to the configuration )5 are explained in the following.

Definition 2.4 (Energies)
The elastic strain energy referring to §)s is given by

2
el Qéa ZJelj Q],u] Z/Wel] vu] (13)
7j=1

Jlg

The work of the applied forces on §)s is defined by

2

W (SQs,u) =) <fa»ua 17Pj(9]->+<hjauj>wl;j,pj(rﬁ)) ; (14)
J

7=1
where (-, )y 1.0 Q) (-, are dual pairings in the Sobolev spaces introduced in
J

the definitions 3.1, 3.2.
The potential energy of ()5 has the form

E(Qs,u) = Ja(Qs5,u) — W (s, u)

2
- 15
—Z/Wel] VUJ Z ( f],'u] lpj(Qj) + <h]7uj>Wl_l}J,p](Fﬁ)> . ( )
= J

Jlg

1-tp;
WP )
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The dissipative energy is the amount of energy that refers to all irreversible processes that
occur during cracking, like the creation of a new crack surface or the braking of atomic bonds.
As a simplified model in the case of an interface crack it is considered in dependence of the
fracture toughness of the interface G. and of the crack length:

D(§25) = Gcd (16)
The total energy of the compound ()5 is given by:

(s, u) = E(Qs,u) + D()

2 2

= Z/Welj(wj)dy—z <<fj’uj>W1’pj(Qj) + <hjvuj>wl—;j,pj(r > +Ged .
1 75

1 —
J Q; J

3 Minimization of the potential energy

In this section we want to prove the existence and uniqueness of a minimizer u in a set of
functions M for the potential energy functional E({g, ) referring to a cracked domain Q5.

Remark 3.1
Since D(§5) = II(Qs,v) — E(Qs,v) is independent of v it holds:

min I1(Qs, v) = I(Qs, u) = min E(Qs,v) + D(Qs) = E(Qs, u) + D(Qy) ,
veEM veEM

which means that the minimizers of I1(s, ) and E(s,-) coincide.

The first step towards this aim is to specify the set of functions M in an appropriate function
space corresponding to the above minimization problem.

3.1 Function spaces

Since the domain €25 consists of a compound of two materials with different growth properties,
we have to introduce special function spaces that reflect this constitution in a proper way:

Definition 3.1 (Function spaces)
For p'= (p1,p2) and pyin = min{pi,pe} we define

WHP(Qs) = {ue Whrein(Qs) : uj = ulo, € WHPI(Qy), j = 1,2} (18)

provided with the norm ||U||W1-ﬁ(95) = Hm\lwnm(gl) + HU2||W11172(92) ’ (19)
VE(©) = {ue W (@) rpu=g} (20)

LP(Qs) = {ue LPmn(Qy) : uj = ulg, € LPI(y), j = 1,2} (21)

provided with the norm ||u||L5(95) = Hu1||Lp1(Ql) + [Juz|| 1ps () - (22)

In this context yr, denotes the trace operator onto the Dirichlet boundary, which will be
explained more detailed below.
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These function spaces were introduced by W.B. Liu for the first time, see [15], and also [11]
for the properties stated in the next lemma.

Lemma 3.1
Let p'= (p1,p2) with p; € (

1
(Wl’p(%% w7 0y) ) (

Banach spaces.

,00) for j € {1,2}. Then the normed function spaces
)y

(), Il L) ) , from definition 3.1 are separable, reflexive

Recall that Q5 = Q\Rs = int(€2; Uy)\Rs. Because of the crack Ry, the domain j is no
Lipschitz domain and therefore traces of functions defined on €25 can’t be taken from the
domain onto the boundary 025 at it’s whole. But since the subdomains €21, {29 are claimed
to be Lipschitz domains with piecewise continous outer unit normal vectors, the trace theorem
holds for any W1Pi(Q;)-function on any part I'; of the boundary 99;, j = 1,2. Thus, for a
part of the boundary I' C 025 with I' = U?ZII‘]- and £ ((T1\I's) U (['2\I'1)) = 0 there exists a

. S N
linear, continuous trace operator qr : WHP(Qs) — W P Pmin (T"), where pmin = min{p;, p2}.
It can obviously be defined by the trace operators r;, that exist on Wl’pj(Qj) :

N onWl’pl(Ql)
= yr, on WhpP2(Qy) -

Definition 3.2 (Trace spaces)
Let p'= (p1,p2) and pmin = min{pi1,p2}. For a part of the boundary I' C 02 we define

1 = -
W' FP(D) = {u € LPmin(T) = Ja € WHH(Qy5), r,a = ulr,, 7w = u}

provided with the norm  ||ul| = inf sew150y [[llwrrqy)

yria=u

»7()

With regard to traces of W1P(Qy)-functions onto the total Neumann-boundary T' ~» Where
I‘ﬁ. =I5 N0%Yy, j=1,2, we refer to the well known spaces

Wli "p’(I‘ ) ={ue LPi(l'; ) Ja € Whpi (), T _11 =u}

provided with the norm  ||ul| 1 = inf and

1—p—j,p](F~ acw Pi(@;) HUHWl Pi(Q;)

Nj 7~ t=u
FN]

Wl ‘7p]( ) _ {ue W p.vp] (F]‘\?]) . 3&6 Wl Pj Pj (893) W]th ﬁ|rﬁ f— u, ﬂ‘ag\r—~ = 0}

=inf__ 1 5 qy) (2] es i) -
I~ a=u
Nj

provided with the norm  |lu|| _,_1 =|al| -1,
W~ Pj Pj (Fﬁj) Pj pPj (Fﬁ])
Remark 3.2 /

For the function h; € (W oy (r =W e (U'y;) the Neumann condition (12) on

N])
the total Neumann boundary has to be understood in the following sense:

7 l_i.ﬂp' .

<hj,vj>W1_; o )—0 for anyv; € W i ](I‘ﬁj) withv; = 0 on I'y; and

7 1_%717]' . o
<hj,wj>W1_; i ) <hj,wj>W1_; i ) for any w; € W 7i (Fﬁj) with w; = 0 on Ry; .

Transmission condition (8) has to be treated analogously.
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With the aid of traces the following property of the space V(Ig)(Q(;) can be shown:

Lemma 3.2 -
The function space (V(%) (Qs5), H'||W1’ﬁ(95)> from definition 3.1 is a separable, reflexive Banach
space.

Proof: B

At first it shown that (V)

Let {fn}nen be a Cauchy sequence in (V(%)(Q(;), H.||W1,ﬁ(95)>. Since V(g)(Q(;) c WP (Qy)

there exists a limit f € W'P(Qs). Now r, f = 0 has to be shown.
It holds

0< lhp Sl o

(5), H'||W1,ﬁ(95)> is a Banach space.

-

= H'YFDf - 'YFDanWk ’ﬁ(FD) = H'YFD(f - fn)lef ,

1 -
7" (Tp)
= inf lollwss < IF = anWl,ﬁ(Qé) — 0 forn —oo.
vewbLP(Qg)
“/FDU=’YFD(f—fn)
This yields yr,f = 0 and f € Y/(g)(Q(;). Therefore V(g)(Q(s) is a closed subspace of the
separable, reflexive Banach space W1?(Qs) with respect to the W1HP(Qs)-norm.

Separability und reflexivity of V(%) (Qs) follow from the properties of W1P(Qs) [1] p.7, Th.1.21.
n

Now we are able to specify the set of functions M:

Definition 3.3 (The set of functions M)
For a minimization problem corresponding to the transmission boundary value problem (6)-
(11) the set of functions is given by:

M= 1/(7;((25) , (23)

where g is the right hand side of the Dirichlet condition (9).
The next lemma gives an important property of M:

Lemma 3.3 (weak sequentially closedness of M)
For any sequence {ujtreny C M = V(Z)(Q(g) with up — u in WP(Qs) as k — oo it holds
ue M.

Proof:
Since V(%) (Qs) is a Banach space, it is a closed and convex subset of W1P(Qs). Thus it is weak
sequentially closed, see [20] theorem III.3.8. ]

At last, we point out that Poincaré-Friedrichs inequality is valid for the space V(Ig)(Q(;). This
is due to the fact, that Poincaré-Friedrichs inequality [16, 17] holds on the subdomain, where
the Dirichlet boundary is located. Thus, for a function v satisfying Vv = 0 £? — a.e. it holds
v =0 L2 — a.e.. This property is passed onto the other subdomain by transmission condition
(7). Therefore the following norm equivalence holds on V(%)(Qg):

Theorem 3.1 (Norm equivalence)
For every u € V(%)(Q(;) holds:

IVullzss) < lullwisy) < enllVullzsg,) -
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3.2 The p-structural properties of the elastic strain energy density

In this subsection we show that the elastic strain energy density of the considered problem is
a p-structure on each subdomain. This means that the elastic strain energy densities Wey;(-)
satisfy the properties mentioned in the theorem below:

Theorem 3.2
The elastic strain energy densities fulfill the properties of p-structures, i.e. for j € {1,2} the
following items hold:

(HO) Wey,(-) € CHR?) N C?*(R?).
(H1) There exist constants c1;, c2; € RT such that for every a € R?:

cijlal’’ < Wej(a) < c;(1 + [al?) .

(H2) There exists a constant c; € R such that for every a € R*:

[DWeij (a)] < ¢;(1+ |al’™") .

(H3) There exists a constant k; € RT such that for every a € R*\{0}:
ID(DWei; ()] < kj(1 + |a[”~2) .
(H4) We;(-) is convex with respect to a, i.e. there exist constants l; € RT and ki € {0,1}
such that for all a,b € R? the following inequality holds:

bj

(Da{DW.t, (a). b).b) > 1; (; + |al)” " b (24)

Wherel%jzoifpj22andl~€j:11'f1<pj<2.

Proof:
Concerning (HO): The first and second Fréchet derivatives of We;;(-) can be easily calculated:

Pj—2

(DW.; (a).b) = pij (s + a®) = a-b (25)

({(DaDWey; (a),b),c) = (26)
15(p; —2) (k5 + [a) ™™ (a-b) (@~ ¢) + s (1 + |al®) ™= (a - b)

Concerning (H1): Since x; € [0,1] it is obvious that

. . . Ps (105) p;i—2 .
Blapi < B +1a?)? = W) <E+1aP)? < 272 Byap).
Dpj Dj Dj g

L
2

Concerning (H2): If p; > 2 we get

pj—2 Pj—2

IDWeij (@)] = |u;(s; + lal*) "2~ al < p;(1 + |al*) "2~ (1 + |al) < (1 + |al) ™!

(105) ) .
< P21+ fa ).
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In the case 1 < p; < 2 it holds

1jlal
2—p]-

0+ |af2) >

A
IDWe; (a)] = e <

Pj
(rj + lal*) 2

= (1 +al").

Concerning (H3): Under consideration of (26) we immediately obtain
2 o2t o 9\ 2i2
ID"Werj(a)l|blle] = pjlp; = 2[(x; + |al”) 72" |a[7|bl[c] + pj(r; + |a?) =" |bl|c|

b2
< pj(pj +3)(1 +lal®) "= [b]|e|
(109 byt __2
< pi(py +3)277 (1 + |af”77)[bl[c]
4
Concerning (H4): For p; > 2 we have p;(p; —2)(k; + |a\2)p]T(a -b)? > 0 and since k; > 0
it turns out that
2\ 229 p—2(p 2
Da(DWeij (@) - b) - b > pj(rk; + [b]7) 72 [b]” = pylal’~=b]" .
If 1 <p<2itis (pj —2) <0 and the following estimate holds

a-b)? b|?
1 (pj —2) ( )4_,,]. + 1 15
(rj +lal?) 2

al?|b|? b|2
'>“j(pj‘2)‘|a\4‘p‘f i |‘ L)Hj
+ |lal®) "2
> 1j(p; — Dlal’ 2Bl + (1 + |al P52 |b]?

> pj(p; — (L +|a])[b]” .

—p;

2
(rj + lal?) 2

Inequality (24) of property (H4) provides another convexity inequality involving the elastic
strain energy densities:

Lemma 3.4 ~
From the convexity inequality (24) follows that there exist constants d; € R*, k; € {0,1}
such that for all a,b € R? holds:

Weij(@) — Wei;(b) = DWey; (b) - (@ — b) + dj(k; + |a| + [b])2|a — b]*. (27)
and furthermore it holds for all a,b € R?:
(DW,; (@) — DWe; (b),a — b) > d;(k; + |a| + |b])P" %|a — b|?. (28)
Estimate (28) directly follows from estimate (27), which is proved in [11] p. 149.

Remark 3.3
From inequality (27) directly follows that W;;(-) is even strictly convex, i.e. for alla # b € R?
holds:

Welj(a') - Welj(b) > DWelj (b) : (a - b) ) (29)

which states the uniqueness of a minimizer, provided it exists.
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3.2.1 Existence and uniqueness of the minimizer

In the following we want to state the existence and the uniqueness for a solution of the
following minimization problem for the configuration 2s:

Definition 3.4 (Minimization problem) o
Findue M = V(Z)(Qg) for given functions f € W=44(Qs), by e W 4™ (Ux;), 4 =1,2, and
g€ Wlf%’ﬁ(lﬂp), such that

E(Qs,u) = min E(Qs,v) (30)

veM

where the potential energy functional is defined by

E(Qs,u) = Jo(Qs,u) — W(Qs, u)
2

2
7 31
2 L] (RRETURY RS N
Nj

— —
J Q J

Existence and uniqueness of a minimizer can be analyzed following the ideas of [22] p.229ff.
The necessary and sufficient conditions for the existence of a unique minimizer are summarized
in the following theorem:

Theorem 3.3 (Existence and uniqueness of a minimizer, compare [22] p. 232)
The elastic strain energy Je;(s,-) : M = V(Z)(Qg) C WHP(Qs) — R satisfies the following
assumpions:

(i) WYP(Qs) is a real reflexive Banach space due to lemma 3.1.

(i) Je(S2s,-) is weak sequentially lower semicontinuous, since We;(+) is bounded from below
by 0 and strictly convex due to lemma 3.4.

(iii) M = V(IZ)(Q(;) is weak sequentially closed due to lemma 3.3.

(iv) For each sequence {un}tnen C M with |[un|[y1.5q, ) — 00 as n — oo we have
é

2

Tt oo [ Jet(Qs,un) = Y (bjytng)ypin o) | = +00
j=1

due to the growth condition (H1) for W;;(-) in theorem 3.2.

Thereby <bj,unj>W1,p]- @) = <fj + nyjhj,unj>W1,pj @y where
J

% 1 i_,p- )
Ay, V(g — (W (9,))
1

().

1—
denotes the adjoint operator of the trace operator Mgyt WP Q) =W Nj

Then the minimization problem (30) possesses a unique solution u € M for any given data
. - ~7L7 . . 7% —
feWwb(Qs), hje W 4% (Tg,):j=1,2, and g € W' #7(T'p).
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4 Griffith Formula for p-Laplacian compounds

Main goal of this section is to prove a Griffith formula for the compound of p-Laplacian type
in the reference domain (25,, see subsection 4.1.. This notation is introduced in order to
indicate that this reference domain contains the straight crack of length gy, and to make it
distinguishable from the current domains {1s,1s with the crack enlarged by any sufficiently
small § > 0.

Theorem 4.1 (Griffith formula for the compound)
Let Q5, be a 2D domain, as in definition 2.1, containing the crack Rs, C {x € Q5, : x2 = 0}

with the crack propagation direction along the vector field (1,0)" and the crack tip Ss,- Let
0 € C3°(Q) such that @ = 1 in BY and 0 = 0 in Q\BY. Thereby BY for k € {1,2} denotes a

connected Lipschitz domain around Ss, such that E(j - Bg C int 550 = ). Then the Griffith
formula for the cracked compound with a volume force density f € Lgyl (Qs,), where

Lf, () = 1S € LUQs,). 8, f € LT(Q5,)},

surface force density h € Lq(I‘ ~) and the minimizer w, € V( )((250) reads as follows:

ERR(Qs,, us,)) Z / By, sy, DWer, (Vu[5013> Vo dy

Jj= 1Q
(32)
_Z/Wel] vU[(so]J 8y19d3’+2/ 50 yl fJ
J= 1Q J= 19

Figure 3: Support of the functions 6 € C§°(£2)

This formula allows to calculate the energy release rate as a sum of volume integrals only
involving known quantities and such quantities that can be determined by FEM, like the
minimizer, stresses, elastic strain energy density.

In subsection 4.2. a numerical result for the behavior of the energy release rate obtained with
Griffith formula and FEM is presented.

4.1 Proof of Griffith Formula

The proof of theorem 4.1 is quite long and technical. Firstly, we point out the main ideas.
The particular steps are carried out in the succeeding subsections.

Sketch of the proof:
For § € [0, al, see definition 4.1 for the definition of a, a diffeomorphism T5 : Q5,15 — Qs, is
introduced, which maps the current configuration (25,45 onto the reference configuration €2, .
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Thereby the potential energy of the current configuration E(€2s5,4s,u5,+5) can be mapped
onto the reference configuration so that the limit

lim E(Q507u[50]) - E(Q50+5> u[50+6])

lim 3 (33)

can be taken there. The proof is divided into several steps:

Section 4.1.1: The mapping Ty

1. Definition of Ty and its properties.
2. Properties of the transformed functions.

Section 4.1.2: Boundedness and convergence of the transformed minimizers as § — 0

e Uniform boundedness of the minimizers w4 in W1P(Qg,15) and of the transformed
minimizers ul%0+% in W1P(Qs ) respectively.

e Convergence of the minimizers in W17(Q;,) as § — 0.

Section 4.1.3: Derivation of the Griffith formula by consideration of minimization problems

e Taking the limit in formula (33) on the reference configuration considering the unique-
ness of the minimizers.

This approach is based on the work of A.M. Khludnev and J. Sokolowski, who verified a
Griffith formula for the Laplacian [9] and for linear elasticity [10]. Analogously a Griffith
formula for Ramberg/Osgood materials was shown by D. Knees [11, 12].

4.1.1 The mapping T;

Definition of T and its properties

Definition 4.1
Let 6 € C3°(Q) as in theorem 4.1 with =1 in BY and 6 = 0 in Q\BY. Let § € [0, a], where

a is given by the requirement P, := Ss5, + a(1,0)T € B_f. Then the mapping Ty is defined by

0
T52950+5—>9507XH.V=T5(X)=X-5< (S()> : (34)
The Jacobian of this mapping is given by
O Y1 Oy yl) <1 —60,0(x) —00, 9("))
J — x] 2 — 1 2 35
() = (g o ; : (39

and the Jacobian determinant reads as follows

detJry(x) =1 —60,,6(x) . (36)
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Figure 4: Definition of the mapping T}y

In order to guarantee that Ts maps properly, a has to be chosen sufficiently small so that
firstly no point of the dark patterned area is mapped out of the domain €). Secondly, the
Jacobian determinant det.J7;(x) has to be greater than 0 so that T5 is a diffeomorphism.

Lemma 4.1
Ty is a diffeomorphism.

Proof:

It holds Ty € (COO(Q(;O+5))2. If a is chosen sufficiently small, then detJ%S > 0 for every
0 € [0, a]. From this follows that T is a diffeomorphism, see [21] p. 53. ]
Remark 4.1

Note that for every y € Qs,45 and 0 € [0,a] holds:
T3 (y) =yl = Ix = T5(x)| = |x = x +6(6(x),0) "| < 6|6]|oo - (37)

Therefore we know that Ty '(y) € B(y,0]|0]l«) = {z € R%|z — y| < 0||0||o} for every
y € Qg :=QNsuppb and § € [0,al.

4.1.2 Properties of the transformed functions

Definition 4.2
Let x € Q5,45 and y € Qs,. For vjs,1s) : Q5945 — R we define

V0l (y) = Vlso+9] (Téil(Y)) = Usy+1(X)  fory € Qs . (38)
The derivative of such a transformed function can be calculated from the following relation:
~ T
V! H(y) = Vavisy1(T5 (9)) = (Vyo ) y))  Viy

= (Vyo*(y)) " Jry = Yyt (y) — 50,00 (y) VRO(Ty () (39)
= Vyol0™l(y) — 60y, v+ (y) Vb ((y)) -

Now we state some properties of the transformed functions.
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Lemma 4.2

Let U[50+5 € ‘/(g)

current configuration. Then for every ¢ € [0,a] holds:

(Q5,+5) be the minimizer of the potential energy E(§s,+s,) referring to the

So+8] __ -1 2
U[ 0t = U[50+5] (¢) T5 S ‘/(g) (ng) .

Let u;,) € V(IZ )((250) be the minimizer of the potential energy E({s,,-) referring to the refer-
ence configuration. Then for every § € [0, a] holds:

oTy € V(g)(ng_Hg) .

O
Proof:
We have w44 € WLP(Qs,15) and for every y € Qg, it holds Té_l(y) € Qsy45. Since T is a
diffeomorphism and u®0*9(y) = w4 (T5 (y)) it follows ulbo+?l € W1P(Qy)). Furthermore
we have supp 6 N 9Q = ) and especially suppd NT'p = (). Therefore Ts(y) =y = Té_l(y) for
every y € I'p. Because s, 14 € V(IZ)(Q%M) and vl (y) = u15(y) = g(y) for y € T'p we

have ul®0+? ¢ Vg)(Q(;O)

Analogously s, o Ts € 1/(9)(950+5) can be shown. [

Properties of the applied force densities and boundary displacements

Theorem 4.2 (Convergence of the volume force densities)
For f; € L9(8;), ¢; € (1,00), j = 1,2, it holds

waoH fg‘ —0 asd—0. (40)

q
L% (2))

To prove this theorem it is necessary to introduce the Lebesgue-Besicovitch differentiation
theorem, compare [4] p.43:

Theorem 4.3 (Lebesgue-Besicovitch differentiation theorem)
Let £* be the Lebesgue measure on R? and f € L}, .(R? £?). Then

}iir(l) f(y)dy = f(x) for L%-a.e.x € R?. (41)
B(x,r)
Here ?Eﬁf(y)dy = ﬁ}gf(y)dy denotes the average of f over the set F with respect to the
measure L2, provided L?(E) < oo.
Additionally, the following corollary holds, see [4] p.44:
Corollary 4.1
If f € L} (R?, L?) for some 1 < p < oo, then

lim )|Pdy =0 forﬁ—aex 42
Jim }][\ x)PPdy (12)

where the limit is taken over all closed balls B containing x as diamB — 0.

With these two auxilliary means theorem 4.2 can be proved:
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Proof:

15

We define Qg := Q; Nsuppf. The norm in line (40) is rewritten with the aid of theorem 4.3

and estimated from above by Holder’s inequality:

aj

: [6o+d] _ ¢,
fim |5 = 1

L9 (95,

= lim / FT ) — £(y)|vdy
0o

r—0

B(Ty; ' (y),r)

. / lim ][ £5(2) — f;(y)dz| dy

41 . . j
= glfé/“lm ][ fi(z)dz — f;(y)|¥ dy
0o

d—0 r—0
o BT Y (y).r)
q;

< 1 [ Im f Fi(2) — f¥)ldz | dy

Qf B(Ty ' (y).r)

1\ ’

< . . R N j
< wmfim(on) | [ B@-swrell [

Qo (T (y)or) (T5 ' (y).r)

— i [ lim / 1£5(2) — £3()|% dady

6—0 r—0 (27“)2
Q4 B(Ty ' (y).r)

Since theorem 4.3 holds for r — 0 in any arbitrary order, the variable r in line (43) c
be chosen in the following way: Taking into account remark 4.1 we know that T *(y) €

4

Pj

1Pidz dy

(43)

an

B(y,6]|f]|s0). Therefore we chose r in dependence of § such that B(T; '(y),r) C B(y,d), see

fig. 5:

ro= y AT y) —y) T =y~ T () — oy — Ty

= (1=0)ly —T; ' (y) = (1 = 9)|T5(x) — x| = (1 = §)|x — 6(8(x),

(1 —6)8[|0]]
(2
A

Figure 5: choice of r in dependence of §

IN

)|
0)" —x|
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Choosing 7 = (1 — 6)0||0||cc We have:

1
W : A7) — £ (v
(43) = lm | I o =5 / ite) = Jiy)P dady
Qo B(T; (y),(1-6)3]|6]| )
) 1 . ; (42)
. _ f. q —
lim (1_5)2/(&% 7Z fi(z) = fi(y)|¥dzdy =0
Qo B(y,d]16llo0)
]
Remark 4.2

The volume force density defined on €5, is always denoted with f. In our context the volume
force density related to €55 has the property fis, s = f|g50+5.

Lemma 4.3 (Norms of the applied force densities)
The norms of the applied force densities , f,h, are independent of the crack length, i.e.:

Hf[50+5]HL‘T(Q50+5) = ||f||LtT(950) .

Proof:
Recall that the reference configuration {25, and a current configuration (25,45 only differ in
the crack length:

Q6,\Q6+6 = (L5, \['15945) C 9y for;j € {1,2}.

Therefore it is easy to see that

2
|’f[60+6}|’];c7(960+5) = z; 1£51l i Q) — ||fHLtz"(Q(;O)
]:

Since supph C 92, the norm of the surface force density [|h 7, is independent of the
crack length. Furthermore h is not affected by the transformation Ty for any § € [0, al. [

Lemma 4.4 (Exterllsjon of the applied boundary displacements) B
For a given g € W' %P(T'p) and every 6§ € [0, a] there exists an extension (5045 € V(Z;)(Q(;OJF(;)
with the property:

Hg[50+5}HW1,ﬁ(950+5) - Hg[ﬁoluwl,ﬁ(g%) : (44)

Proof:

By definition of the trace spaces for every function g € Wlf%’ﬁ (T'p) there exists an extension
Tso0) € WLP(Qs,4s). Multiplication with a function € C*°(Q) leads to

(5o a1) € WHP(Q545), where supp(grs, , 51) = SUDPDJfs, | 5 N SUPPI)-

Let B, = {x, |x — Ss,| < a}. Choose 7 in such a way that B, Nsuppn = 0,7 =1 on I'p, then
g= (gﬁso n 5}77) is an admissible extension for every 0 € [0, a]. See fig. 6. Therefore assumption
(44) holds. [
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I'p

=

Figure 6: Choice of the function 7

4.1.3 Boundedness and convergence of the transformed minimizers as § — 0

We begin with the verification of the uniform boundedness of the minimizers wu s in
WLP(Qs,15) and of the transformed minimizers u%0*% in W1P(Qs, ) respectively.

Lemma 4.5 (Uniform boundedness of th? minimizers)

Let f € LY(Qs,45),h € LI(Ty) and g € W 7”’p(FD) Then the solution w5 of the mini-
mization problem referring to the current configuration §s,4s is bounded for all § € [0,a] by
a constant ¢ > 0:

Hu[50+5]HW175(Q50+5) <¢ (45)
For the minimizers transformed to the reference configuration respectively holds:
[80+3]
[[ul® HWLﬁ(Q&O) <c (46)

Proof:
Let g € WP(Qs,,5) be an extension of the boundary displacement g as in lemma 4.4. Then

it holds u; ore) = (Usyrs) — G) € V( )(Q50+5). In the following we define for arbitrary ¢ € [0, a:

0_,0 _ 0 o —
Uj = Usots); = Upsgraley A0 U = Uiy s = Uy el -

Because [Ju;l| 1, 2 (6 we now want to show the uniform boun-

- H H 1=Pj(Qj)+‘|gj||Wl’pj(Qj)
dedness of HUE)H Loy (0)° Since u = w5, 45 is the minimizer of the potential energy E(£25,4s, )
it holds

<DE(Q(;O+5,U),UO>V£) (@5ye5) =0

and therefore

<DJ€Z(Q50+5,u),u0> (O) Q50+5 /fgu dx + / hjug-)ds. (47)

Iy,

See theorem B.1 for the Fréchet derivatives of Jg;(€2s,-) and E(Qs,-).
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In the following we make the left hand side of equation (47) smaller using estimate (27) with
a =Vgj,b=Vu; and (H1):

(D500 5 S [ Was(Fu) — Wy (V9;)
(0) j= 1(2
+/ dj(kj + |Vuj| + [V g7 2 |Vg; — Vuy|* dx
Q;

(H
2 ZCUHV%Hw / W, (V35 dx

7j=1
Q;

H1) 2 _
> D ellVuglih o ) — 2 L3() — eVl Th ) (48)

The right hand side of equation (47) can be enlarged using Holder’s inequality (103)

Z / fiuf dx + / hju dS<Z\|fJHLm [ 1) ) + Il o oy s L2 oy - (49)

I'ny

0

, < Hu - H . and according to definition 3.2 holds
LP3 (9) Tllwtri(q,)

where [u]

ey < W8t = o I8t < [lhina,
e

Under consideration of the norm equivalence in theorem 3.1 this leads to

2
(49) < Z Hfj||an'(Qj)HugHwLpa‘(Qj) + HhJHLqﬂ‘(FNj)H“(J)'HWI”’J‘(Q]-) (50)
j=1
< [ llyrsy) (IFlzaqg) + Il i) (51)
< CN(HfHLcT(QQJOH) + ||hHLc7(FN))HVUOHL;?(Q&OM) . (52)

Notify, that the constant ¢y = max;—;2{cy,} is independent of 4, since the crack is situated
on 08}, j =1,2.
Putting together estimates (48) and (52) we get:

en (1f i, o)+ WPllLeen VS | ry, . + Do 2l (%) + el Va1
j=1
2 2
chjnvujnijpj(ﬂj) > Clmz ‘HVUE)HLPJ(Q]) - HVQJHLPJ(Q
. <

pj : (53)

where ci,, = min;{ci;}. Because of the absolute value in line (53) we have to distinguish
between two cases:
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If HVU?HW @ VGl s @) < 0 we immediately see

HVUOHLP](Q < IVl 1ri ) (54)
In the case HVu?Hij(Qj) > ||V§j\|ij(Qj) we get
) b ) v
‘HVUOHLJ"J(Q vaﬂ'HL”j(Q Co= (HVUOHLI’J(Q ||v9J'HLPj(Qj)> '
. 2
> (19l ooy ~ A+ IV3llma)
> HVUOHLPJ(Q -1+ HVQJ'HLPj(Qj))pj
(1
HVuOHLm — 227 = Vg g, (55)

Thus it holds

2
Z ‘VUOHLPJ(Q
j=1

1
QClm

2
Z CQJHVQJHLP](Q + CQJ"CQ(QJ') +cm (HfHLq“(Q[;OH) + HhHLfT(FN)) HVUOHLﬁ(Q%M)

<

U P
+2PJ_2 + 2(1 +2pj_1)‘|v9j| LPi (Q
= A(G, 0, Q) + B(f,h HVU

(€25)

0|’Lﬁ(950+5)
(56)

Estimate (56) can be used to show | y<c¢ for every ¢ € [0,a] by contradiction.

|UOHW1,ﬁ(Q50+5

Thus we assume that HUOHWLﬁ(Q ) is unbounded. Then there exists a sequence {ugn Inen

S0+

with 4, € [0, a],n € N, having the property

Hugnuwlvﬁ(950+5n) — 00 asn — oo

and due to the norm equivalence 3.1 HVug H Li(Qs,,) 00 8 T — 00, respectively. This
+

n)
implies that at least one of the norms HVU‘S"JHLP J@) ,J=1,2, tends to co as n — o0.
On the other hand we get from estimate (56)

1 agnay  2PUPmel[E ] )
> o P ‘ H T
ZJ:lHVU‘SM LP3(9) max;{]| Vs ij(ﬂj)}
_ A(g>91792) QB(fvh‘)
g2 o ||” , o [P
ZJ:IHVUCS"J' LPi () maXJ{Hvu‘;”J LPJ(Q)}

—0 asn — oo,
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which states the contradiction.
So it is proved that the norms ||u;s,s Hleﬁ(Q(; L) Are uniformly bounded for ¢ € [0, a]. Since
0

Ts is a diffeomorphism it holds Té_l(ng) = Q5,46 and because of ul0™ = ;5 0 T{l the
50+96 .
norms ||ul ]||W1»ﬁ(950) and Hu[50+5]HW175(Q50+5) are equivalent. Therefore the transformed

minimizers are uniformly bounded, too. |

Now, with the aid of lemma 4.5 the convergence in W1?(Qs,) of the transformed minimizers
ul’0*! for the current configurations 25,45 to the minimizer u;,; for the reference configuration
as 6 — 0 can be shown.

Theorem 4.4 (Convergence of the transformed minimizers in W7(Qs,))

Let ulot% ¢ WLP(Qs ) be the transformed solutions of the minimization problem for the cur-
rent configurations Qs 45 and wgs,; € WHP(Qy,) the minimizer for the reference configuration.
Then it holds:

[60+96]

—0 asd — 0. (57)

I — Uiso) me(szgo)

Proof:

We proceed as follows: The Fréchet derivatives of the potential energies of both the reference
and the current configuration are set up and their difference is estimated on the reference
configuration using the difference of the minimizers (u®0*% — v ;.)) € V(Z(’])(Q(;O) as special test
functions.

For the current configurations the Fréchet derivatives of the potential energies applied to a
test function v € 1/(%)(ng+5) read as follows, see theorem B.1:

<DE(ng+5,u[50+5]) >Vp (S550) Z/DWBU Vu[50+5) Vujdx— /f]v] dx— /h vjds=0.

I'n;

Transformation to the reference configuration and application to a test function v € V(g)(Q(;O)
leads to:

<DE[50+5] (9507 u[50+5]), U>

Vv, (©s))
Vo, v v; (58)
= DW, | —/ ool _J_ ¢ —/h-—]d =0,
Z/ el] detJ% Y fJ detJ% Y 71 S
I=10; s Q; s ',

where T2 (y) is according to (39) given by

Va1 (%) = (Vyulor(y)) | Vyy = (Vyulorl(y)) ' Jr,

(59)
= Vyulo™(y) — 50, ulo ™) (y) Vi’ (y) = T0(y) .

For the Fréchet derivative of the potential energy for the reference configuration applied to a
test function v € V(%)(ng) we get:

(DE(Qsy, usy) s v) VI (@) Z / DWe; (V) - Vs dy — / fiv;dy — / hjvjds =0 .
i=1g; Ty,

(60)
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Setting up the difference ((58) — (60)) and using w® = (ulo+? — y; ;) € V(Zg)(Q(;O) as special
test functions results in:

V!
I _DW,, (V Vuw? | d (61)
Z DWela " detgs elj ( Us ) i |4y
Jj= 19 Ts
f[50+5
0
— Cdy . 62
;ﬂ/ <detJ%5 J) Yy (62)
At first expression (62) will be estimated from above. Thereto the following identity is used:
A 0ZA
—-B=A-8B .
167 15z (63)

Applying this identity to expression (62) leads to:

2 2 160,60
= [ (=) upay+y [ 4 dogs 0 A
7j=1

i=1¢
J Q; Q;

Flj F2j

On the integrals in expression Fy; Holder’s inequality (103) is applied. Since 90 € C§(Q), we
have (9,,0°) € C§°(Q) and (1 — 9,,0°) € C*(R). Furthermore detJ%S > 0 for every ¢ € [0, a
and the supremum norm exists and is independent of §:

0y, 0° Oy, 0°
| = LU 2N N (64)
det Jz, o YEQs detJ7, (y)

Taking this supremum and applying Hoélder’s inequality (103) to expression Fy; leads to:

2
(62) < ‘Flj + F2j| < Z Hw?HWLPJ’(Qj) (Hfj['éﬁ(s] o fﬂ‘ L% (%) + 55Hf3['60+5] qu(Qj)>
j=1
2
[60++5] [60+]
= ; <Hujo+ wieia,) Hu[‘s‘)]j ‘Wlﬁpj(nj)> (Hfj - fj‘ iy T 55‘|fj‘|qu(Qj)>
S 2 (Hf[éom - fHLfT(Q(SO) + 55Hf||L«i(950)> ) (65)

where the uniform boundedness of the minimizers, see lemma 4.5, has been considered.

In the following, expression (61) is estimated from below using identity (63) once more:

(61) Z / (DWQU (52,) dZtI;Z — DWou; (Vg ) - Vo > dy

Jj= 1Q
50,00
0 & 0
_Z / DWel] uj — DW,; (vuwo]j)).ij dy + / dez}% DWW, (zuj).ij dy
Jj= 1Q 5

J

:ZIU + I, (66)
j=1
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where

I, = / (DWelj (zgj) ~ DWWy, (Vu[50]j) -ng) dy

Q;

60y, 0° 5 0
Iy; = /d tj]5 DWe; (Tuj) -Vw; dy .

and

J

At first, intergral I5; is made smaller taking into account Hélder’s inequality (103) and (H2):

60,,0°
Ij— /da}a DW,; (z ) V! dy >— 5/

Dy, 0°

detJg, DWe; (Zij) v

dy

J

(H2)
§ 0 § |p—1 0
> —55HDW61]» (zuj) o) V0S| s,y = 055 |[1 + [0, 17 ‘ qumj)HijHij(Qj)
2—55(;]”1 + \Zﬁ.\?’j—l‘ <Hv doall |y Hvu > . (67)
7 LY (Q LPi () LPi (Q)
Now the following estimate can be applied since ¢; = p]p = > 1

(105)
AP gy = [ 207 0 AP ay = 27 (2200 + 1A ,) - )

Q;
Under consideration of
‘:I(S — Hv [50+9] — 50 50+5]v 95‘
“ ey @) s 173 (9;)
< 1446 x05 ~ H [60+9]
SRR LT . (69)
we get an estimate of the form
Ij > (67) = —6C1; (pj, 8,¢) = —6C; (70)

since the norms of the minimizers are uniformly bounded by ¢ according to lemma 4.5.

In the following, integral I1;,j = 1,2, is estimated from below with the aid of estimate (28):

n;, = / (DWelj (‘Igj) — DWe; (VU[(sO]j)) V(P — g ) dy
&

= / (DWaj (T5,) = DWery (Vi) ) - (Vuloo* = 50, ul0* V0% = Vug ) dy

Q;
+ / (DWa; (T3, ) = DWety (Vi) ) - (08,00 ) 0" dy
Q;
(28) ~ ~ p]'—2 2
> / d; (kj + T8 |+ |Vu[50]j|) T~ Vg, | dy + I
Q;

= I3j + 1y, (71)
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where
~ [/~ 5 pj—2 5 2
I3j = | dj (kj + |Tuj‘ + |Vu[50]j\) (zuj - Vu[5o]j dy
Q;
and
L = / (DWelj (zgﬁj) — DWWy, (vu[%]])) - (80, ulo+ )V, 0 dy . (72)
Q;
For the estimation of I3; we have to distinguish between two cases:
) Py )
If 1 < pj <2 we can use Holder’s inequality (104) with p = %,q = - = pfiZ:
L
(104) .- 5 y 5 2
Is; > dekj + |‘Iu].| + |VU[5O]j| 17 (Qj)‘ ‘Iu]. — Vu[zso]j 175 ()
~ pj—2 2
> dj| Vg, 8 Vg, . 73
= j Usol 5 L7 (9,) u;j Usol 5 L7 (9,) ( )
In the case p; > 2 we can use the triangle inequality, such that
7 5 i—2(6 2 5 ||zo P
I3; > dj/ \‘Iuj — VU[501j|PJ \‘Iuj — Vu[(;o]j\ dy = dj‘ Ty — VU[ao]j i) (74)
Q .

J

In both cases the norm ‘

|

‘Ii]. — Vg, ‘ij @) can be estimated in the following way:

J

J

) ZHVU?OM — Vs

60,00V 7

Q) ‘
o) _ 5Hvu[50+6]HLPj(Qj)HvXHCSHOO (75)

5ol 4 . ; .
ol || prs (Q; J LPi ()

[60+9]
ZHVU] 0 — VU[(SO]j

LP3 (
Integral Iy;, j = 1,2, is made smaller using Holder’s inequality (103) and (H2):

12 o, (2,) -9y (o) Bt
Q;

(1§3)_(S [60-+3]

w(sz-)” v1vi V56
J

173 (%)

Hvu[%“'(s]
L% (Q;) J

Hvu[f50+5]
L% () !

DW,,; (‘zgj) — DW,, (v%o]j)(

- o (51

s, 1+ |%0 [Pt + {114 | Vs, [P
= J u; L% (@) (b0l

S+ HDWGU (Vu[(;o]])‘

5
L9 (9 LP3 () IV67]lec

|V0°|oo-

L3 (%) |
(76)

Taking into account estimates (68), (69) and the uniform boundedness of the minimizers by
c we get the following estimate:

I4j > (76) > —(502 (pj,£2(Qj),96,C> = —502]' . (77)
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Putting together (65), (70), (73), (76) in the case 1 < p; < 2 results in:

v — v

"l e (o)

2—pj
Hvu[ao]j 1

LP3(Q;) 2
= d~j ] (H“[aO]HWLﬁ(QaO) (Hf[%m B fHLCT(QaO) +55”fHL57(960)) +0(Chy + CQj)) 2

BTy g 190

(78)

Evaluation of (65), (70), (74), (76) in the case p; > 2 leads to:

[60+9]
HVU] 0 — VU[(SO]

ileri@y)

1 o
< 7 (Huwo]HWLﬁ(Q%) (Hf[éow = Moy * 55||f||L‘T(050)> +0(Cy; + CQJ)) v @)
ST g 9P e

Estimates (78), (79) show that

Sg+6]

HU[ u[50]”w1,ﬁ(950) - O as (5 — O 5

considering || f10) — f] i@, ) — 0asd — 0due to theorem 4.2 and the uniform boundedness
0

of the minimizers. n

4.1.4 Derivation of Griffith formula by means of minimization problems

will be calculated. This is not done directly but with the

. E(Qs., —E(Q ,uldo+9]
Now, %Hn (64 :u(50]) 6( 50+6:U )

—0
following considerations: Since the minimizers u;,; € WHP(Qs,) and ulo+ € WhP(Qs 4 5)
referring to the configurations 25, and (25,45 are unique, we know that the transformed
minimizers ul® € W1P(Qs 1 5) and vl € WP(Qy ) are no solutions of the minimization
problems on 25,45 and €25, respectively, such that:

E(Qsy, wisy) < B (Lo, ult)  and  E(Qsot5: isgra) < B (Qsppss u®))

Therefore the following chain of inequalities holds:

1
g(E(QéoaU[éo]) — E(Qsy45, ul®) (80)
1

< g(E(ng,u[%]) — E(Qsy465 Ugsy 1)) (81)
1

< g(E(ng,u[‘sO*‘s]) — E(Qsy45, Uy +4]) » (82)

where

. 1
ERR(Qs9, wsq) = lim (81) = lim <(E(Qsy, wisg) — E(Qso-+6 Uiso-+5))
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is the expression we are looking for. Instead, the limes inferior of expression (80) and the
limes superior of expression (82) are calculated and both their boundedness and coincidence
has to be shown:

li_m E(Qéouu[éo]) - E(Qéo+57u[50]) :m E(Qéo7u[60+6]) - E(Q50+57u[50+5]) .
6—0 5 §—0 5 (83)
> —00 < o0

We start with the calculation of the limes superior.

Thereto the potential energy F(€25,5, us,+4) of the current configuration is transformed onto
the reference configuration {2s,:

[5o+5] u[50+5]

16 5 [60+93] _ 7
Esyva) (R, ulo*” Z/Wdﬂ u;) de tJ% v - /ffo de tJ% dy /h] 1 ds
i=1g; g Q; s 'y,

= E(Qsy+6, u[5o+5]) .

Expression (82) is now given by:

( (Q(SO ) u[60+6]) - E(Q50+57 u[60+5]))

( (Q5 U 60+6]) - E[5o+5 (Q5ovu[60+6]))

5 [60+3]
y [50+5 WEZ] (Tu]) dy f 60+6 f[50+(5 U ’ dy
Wi det.Jg, 7" 7 detJd,
Q;

J

u[f50+5] 1
/ < [50+5 —]T) ds :gzllj_l2]_07
7=1

c>.|n—~ %IH@;lH

Il Mw
{3\

where ( 5 )
Wep: (%2
L= | | Wey(Vulor) - —255 ) d
Y / ( (V) det.Jg, Y
Q;
and .
/ fiu [50+5 _ f[5o+5] ujo dy .
d " 7 detJd,
J

For the calculation of %Ilj, j = 1,2, identity (63) is used first:

60,,0°
L, = / (Welj(vu;fiwré]) — Wey, (Ti])> dy — / detj]é Wezj(fij) dy
Q; & "

= Igj — I4j . (84)

Thereby I3; denotes the difference of two elastic strain energy functionals defined on €.
Since Jei;(€24,-) is Fréchet differentiable with respect to the argument, see theorem B.1 in the
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appendix, the mean value theorem for Fréchet differentiable functionals, see theorem B.2 in
the appendix, gives us for a suitable ¢y € [0, 1]:

Iy <DJ (Va0 Gt00,, I 09), 60, ul0 IV 95>

5 5

_ / DW,,; (vug%*ﬂ — 5t vxeé) (D, w21V 6% dy
Q5

Taking into account (HO), (H2) and theorem 4.4 we know that
DWW, (vug%*‘“ — §tod,, vxaé) (9, u*V7,0%) — DW, (vu%]j) (D51, Vy0) in LH(Q),
as 0 — 0, and therefore
I;
= / DWet; (Vitsy; ) (9 s V3 0) dy  as 6 =0 (85)
Q]

Analogously, the application of (HO0), (H1) and theorem 4.4 shows that

Iy, Dy, 0° Oy, 0
% = / d(:tlja Welj(vug‘(so+5] - 5ay1u;§0+5]vxe5) dy — / yTIWelj(vu[éo]j) dy (86)
Ts
Qj Q;
as & — 0.

Now it remains the calculation of %Igj. Application of identity (63) leads to:

u[50+5]
Ly — / fulord — gl Za ) gy
I detJ,

&
6011607
_ /(ch [60+o] f][-50+5]ug§0+5]> dy—/ detJ% fj[50+5]u5§o+5] dy
& & ’
= I5j — I6j . (87)

Thereby it can be proved that

- [ Oty 0y (38)

Q;

using the fact that C*°(Q;, R?) is dense in ani ) (€25), see [13] for the proof that

50+96]
‘f‘) — £

o
Using theorem 4.2 and theorem 4.4 once more, we get that

I 60216° 0y, 0
% = / dei}é f [0+l 50+5] dy /yTlfju[5O]j dy as §—0. (89)
Q; Q;

—0 as 6—0.

08y1 f[5o]j

1% (0)
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In total this leads to:

— E(Qs,, b0 — B(Qgy 4, 1
lim, (5o, v ) 3 (P8, s ) =lim_ EZIU — Iy;
j=1
1L
= %1_1)1(1) gz Igj — I4j — I5j + Iﬁj
j=1

2
= Z /DWelj (VU[(;O]J-> (ay1U[50]ij9) dy _/8111 HWElj(vu[éo]j) dy +/ay1 (fjH)U[(;O]j dy
=1\, Q; Q;
(90)

For the proof of the Griffith formula it remains the computation of

E(Q%? u[50]) - E(Q50+57 u[%])

h—m5~>0 5

Transformation of F(Qs,+s,ul’’) onto the reference configuration yields:

E(Q&)vu[%]) - E(Q5o+5v U[JO]) = E(Q5O7u[5o]) - E[(SO](Q&)? u[5o])

2 6
We[ '(VU[5 15 — 58y Usy) Vx9 )
- Z/ (We” (Vi) = e dy
Ts

jzlgj
[69+3] .
fj u[%]j d h hju[50]j d
_ fju[50]j — W y — ju[éo]j - 1 S
Q; J I

2
= Lj—1Iy—0.
7=1

It is easy to understand that these integrals have the same limits as § — 0 as those for the
computation of the limes superior and therefore

E(Qéw U[ao]) - E(Q50+57 U[%]) —Tm E(an’u[éoﬁ]) - E(Q50+5, U[50+5])
5—0 5

= ERR(Q(SO,U[(;O]) .

h_m6—>0 5

= (90)

4.2 Numerical examples

In this section some numerical results for the behavior of the energy release rate obtained
with the Griffith formula (32) are presented. The behavior of the energy release rate is stud-
ied in dependence of the material parameters and the crack length both for strainhardening
compounds and for p-Laplacian compounds with arbitrary p € (1,00). The range of appli-
cation of the constitutive law with arbitrary p with respect to the displacement gradients is
investigated numerically.
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4.2.1 Energy release rate versus crack length for strain-hardening compounds

In the following, the energy release rate for different strain-hardening compounds is investi-
gated in dependence of the crack length. In this context, calculations are done on the domain
Q= (—5,5) x (—5,5) with a variable crack tip S, = (s1,0). Thereby the coordinate s; has
its values in the set {—5,—-4.5,-3,-2,-1.5,-1,0,1,2,3,4,4.5,4.7}.

Figure 7: Domain with varying crack length

The following boundary transmission problems are posed on 2: Find v : Q@ — R with
ulo; = uj, j = 1,2, such that:

bj

_2
—div <(1O_7 + \Vuj\2)TVuj> =0 inQy,

bj

-2
(1077 + V) "2~ Yy -n; =0 auf (T N0Q) U Ry,

—0.02x1 + 29+ 5.1 o =-5,11 € (—5, 5)
u(x) = 0 1 =25 onlp,
0.02¢1 + 29 — 5.1 @9 = 5,21 € (—5,5) (91)

with transmission conditions (7), (8) onI'r.

The material parameters for the metal Cu (ann.) an the alloys brass (ann.) and stainless
steel 14301 (ann.) are taken from table 1.

For all compounds fig. 8 shows the same characteristic curve progession with increasing crack
length: When the crack tip is situated in (—5,0), which corresponds to a domain without any
crack, then the energy release rate has the value 0. In this case the body is in an equilibrium
state and there is no danger of crack initiation. For short cracks the energy release rate
increases steeply because the crack tip is exposed to large stresses. This is due to the large
displacements for small gy, that act in opposite directions on opposite parts of the Dirichlet-
boundary. The potential energy stored in the body is large, too, for a small crack length.
The energy release rate reaches its maximum value for the crack tip situated in (—1.5,0).
The subsequent decrease can be explained by the increasing independence of the crack lips
for larger cracks. This has a lower potential energy as a result, since also the prescribed
displacements on the Dirichlet boundary decrease with larger y;.

The magnitude of the energy release rate depends on the toughness of the materials put
together: The tougher the components in the compound, the larger the energy release rate.
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Figure 8: Energy release rate versus crack length for different strain-hardening compounds

4.2.2 The influence of larger boundary displacements and higher values of p

For the following computations the domain 2 and the transmission boundary value problems
are chosen as in the previous section. Just the absolute value of the slope in the Dirichlet
condition (91) is increased from 0.02 to 2, such that this condition reads now:

=214+ x4+ 15 x9=-5,11 € (—5, 5)
u(x) = 0 r1 =5 onTp. (92)
2x1 + a0 — 15 To =Dd,x1 € (—5, 5)

This does not affect the shape of the curves for increasing crack length by itself (see fig. 9).
But the larger displacements on the boundary lead to larger displacement gradients in the
domain and therefore larger stresses and larger potential energies appear. This has the effect
that the magnitude of the energy release rate and even the relation between the curves for
different p is changed significantly in comparison to fig. 8: Larger values of p now lead to
larger values of the energy release rate. This opposite behaviour would imply that the consti-
tution of the materials changes for large displacements, which shows that a constitutive law
of p-Laplacian type combined with linearized strains is not applicable for praxis anymore in
case of large displacements.
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Figure 9: Energy release rate versus crack length for different p1, pa, p1, po



5 THE J-INTEGRAL FOR P-LAPLACIAN COMPOUNDS 31

5 The J-Integral for p-Laplacian compounds

Theorem 5.1 (J-Integral for the compound)

Let Q5, be a 2D domain, as in definition 2.1, containing the crack R, C {x € Q;, : 2 = 0}
with the crack propagation direction along the vector field (1,0)" and the cracktip Ss,. Let
fe ngn (Qs,), with Oy, fla = 0 a.e.. Then for any Lipschitz domain BY € Q with S5, € BY

and Bf j = Bf N Q_j, the J-integral for the cracked compound with a surface force density
h € LY(I'y) and the minimizer u, € V(ZZ )((250) is calculated in the following way:

ERR(Q507 u[5o])

mj 3

W (88 \BY))
(93)

2
= —Z<8y1 Use) ;D We (vu[50]j> 1+ (Wer; (Vs ;) — s fi)m 9}>
=1

Where1<mj<%5mwith0<(5<pijand

( )_{1 ifx € 9B N Q;
; :

1
0;(x 0 else

Furthermore, n; denotes the outer unit normal vector of@BfﬂQj and nj, is the y;-component.

=

_
\\ =
-

Figure 10: Support of the functions § € C§°(f2)

Proof:
Starting from the Griffith formula for the cracked compound

2
ERR(Qs,, ugsy)) = Z/DWelj (Vu[ao]j>3ylu[601j -Vody

T 94
) ) (94)
-3 / Wety (Vi )0, 0 dy + > / Wisy); 0 (130) dy
j:lﬂj jzlﬂj

where § € T := {n € C§*(Q), n = lin B andn = 0in Q\Bj }, see theorem 4.1, we introduce
the functions

1 1
F1j = 8y1u[50]jDWelj (VU[(;O]J-> — Welj(Vu[(;O]j) (O) + u[50]jfj <0> s (95)
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7 = 1,2, such that the energy release rate is given by:
2 2
ERR(Qs,, us,) = Z/Fj Vody => / F;-Vody forfeT. (96)
=14, =g
At this point we make use of a regularity result for the minimizer w,, compare [11] p. 147:

Lemma 5.1
In minimization problem (30) with f € L9(Qs,) and h € LY(T'y) the minimizer even satisfies

1+%_57Pj .

j Qe ifp; > 2

oy @) ifp; = for§>0, j=1,2 (97)
W2 7 (QF) ifl <pj <2

w

Ugsolj €

on the domain Q5 := Q;\{y, S5, — y| < €} with arbitrarily small € > 0.

Thus we obtain for i = 1,2

L_(gp.
WP ifp, > 2
4pj( i) Pi = for 60, j=1,2.

Oy Uis 1. €
vi [60]3 %_5’2+p' £ : .
w i(Q3) fl<p;j<2

Since § > 0 arbitrarily we can regard these spaces as Sobolev spaces W*P(Q) of fractional
order 0 < s < 1 and we apply the following imbedding property [1] p. 218, which also holds
for bounded domains (see [6] theorem 1.4.4.1): Let Q CR? s >0 and 1 < p < q < co. Let

2 2

X=8s——+-.

p q

If 0 < x € N, then
WP(Q) CWXI(Q) .

Thus, for m; > 1 it has to be satisfied that x = pi 0 — p%_ + —2_ > 0 in the case p; > 2 and

i Djmm;
X = % -0 %ﬁ”—i—ﬁ > 0 in the case 1 < p; < 2. Both conditions lead to
1
l<mj < ——— for0<d<—,
1+ 0p; pj

which implies

Lfé,pj e %7L_76,pjm]' 5 ims (e 1
Wi () CWri™i P (Q5) C LPi™i(Q3) for0 <d < —andp; >2 as well as
by
S ata ey ¢ a0 2 e P e ™ 1
W Q5 CW Pj Py (Q5) Cc L™ (Q]) for0<d<—andl<p; <2.

Dj
We show now that F; € L™i(§23), m; > 1, for Oy;ugsg); € Lrimi(Qs), i = 1,2.
For W;;(-) we get under consideration of (H1):

. . (105) - .
Wetj (Vs )™ < ea, (14 [V, [P)™ < e, 20 H1 A+ [Vugsy ; P77) (98)

lj

where 1 < m; < %(;pj for 0 <9 < pij. This shows that We;;(-) € L™ (£5).
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Now we have to check whether <8y1u[5o]jDWelj (Vu[(;o]j)> € L™mi(Q3)

/ |ay1u[5o]jDWBlj (vu[5o]j) |mj dy

&
1 i
Pj pjm; Pj
. ="
< /\8y1u[50]j‘133m3 dy /‘DWelj (Vu[%]]) Pj dy
Q; §2;
Thereby
nms (e o
‘DWelj (VU[(;O]J-) 7 S (C](l + ‘Vu[éo]j‘pj )) J
(105) =4 pilmimh7l o
S Cj] 2 Pj— (1 + |VU[5O]j|p] ]) (99)

If we choose f; € L%™i () C L%(€25), then

1
-and 0 <46 < —. (100)

2
F. e L™ Q% forl<m; < ———
J (]) J—1+5pj pj

Now, we show that
divF; =0 £* —a.e.in QF, (101)

which implies

Fye F(Q5) :={ve (me(Qj))2, diveo =0 L% —a.e. in Qt.

Use 01, 05 € T with Bfi = B(Ss5,€) = {y, |y — Ss,| < &, € > 0} to calculate the energy
release rate due to (96) and take the difference:

0=> /Fj (V6 — Vby)dy ,
Jj=1 Q;
which implies that
2 ~ ~

Z/F] -VOdy =0 for every 0 € C5°(2°) and every e > 0.

jzlgj
For j = 1,2, this leads especially to

F; - Védy = <F»,vé> - <divF-,§> =0 for every 0 € C5°(Q) € O(QF),
/ ’ 7 o) " g @) 5 () € G()
Qs
J

which proves relation (101)

divF; =0 L£? —a.e. in Q5 for every e > 0.
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The next step is to prove that M(Q5) := {¢ € (COO(Q_i))Q, divg = 0 L2 — a.e.} is dense in
F(Q):

Let F; € F(€5). Since (C’{)’<’(Q§))2 C (COO(Q_i))Q, we choose a function n € C§°(Q25) having
the properties

1. n(x)=0if |x| > 1,

2. [pen(x)dx =1,
3. Nu(x) :==n’n(nx) forn € N.

Thus we construct a mollifying sequence {¢y, }nen via a convolution:
(%) 1= (nn * Fj)(x) = /}R2 M(x —y)Fj(y)dy for F;=0in R2\Q_§.

See [1] p. 30 for {1, }nen C C”(Q_i) and ||, — F}'HLm]’(Q;) — 0 as n — oo.
It has to be proved, that

2
divtpn(x) = 3 / D, (x — ¥)F;,(y)dy = 0 L% — ace..
i—1 JR?
It is
2 2
0 = (nxdivE)(x) = /R (X =¥) D0y Fyy(y)dy = = 3 /R Oyn(x = y)Fj(y)dy
i=1 =1

2
= Z /2 Oz, (X — ¥) Fj,(y)dy = divyyn(x) .
i=1 7R
The last step is to apply Green’s formula [5] p. 219 to expression (96):

Theorem 5.2
For Fj € L™i () and 6 € C5°(Q) the following Green'’s formula holds:

/9 9 Fj-vedy+/9 OdivFydy = (Fj-1,0) 4 my . (102)
BY\BI, BY \BY, W (a(Bg \BY )

1

m; 0D

where Fj|8(33 \Bf ) € W™ (8(ng\ij)) on the boundary and n; denotes the outer unit
J J

normal vector of the domain ng\ij.

In order to simplify the righthand side of expression (102), we introduce the functions

)

1, 1 ifxeoB{NnQ; 2, J1 ifx e Rs N BI\BY
Hj(x)_{o else %) = 0 else

1 ifxeps NBI\BY
93(X):{0 e(i(;e A\ '
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Thus 0]o, = 9]1- + 932- + 9;3. Therefore

]

(Fj-nj,0) o my
j=1 W™ (9(Bg \BY )
2 2
= D (F-0;05) o m ) (Fj-1,6%) o my
s W By \BY,) i W T (9(BY,\BY,))

mj

+(F1-nig — Fy-mg,0%) 1
w5 (9(BY\BY,))

It is fi; = (0,(—=1)7)" on Rs,; and thus

F..ﬁ.792 4 my = <8 u[5].DWl-<Vu[5]-)'fl',92> 1™y )
< g Hj >ij””a+Jf(a(ng\ij)) y1 Uisgl 5 elj 0lj J ij’m—ir(a(ng\B?j))

which leads by simple calculation to

<F] ﬁ],92> o mjl = <DWelj (Vu[éo]]) ﬁ],92> L,Ll )
w5 (9(BY \BY,)) W™ T (9(BS\BY ;)

= 0

due to the homogeneous Neumann condition on the crack lips.
Since wus,); = sy, a-€. on the interface, we get

<F1'H12—F2'H21,93> m; =0.

1
Wi (9(BY \BY )

Thus
2 2
D AE 0y, 0) L my = D (F-aby) o m
j=1 Wi (8(ng\B?j)) j=1 Wi (8(ng\B?j))
2
= Z F n]> ] AL )
Jj=1 W (8(3 \B?]))
where ;
1 ifxedB!NQ;
1 = 1 J
HJ(X) {0 else

Appendix

A Inequalities

A.1 Holder’s inequality

Theorem A.1 (Ho6lder’s inequality, [1] S.23, ff)
Let Q be a subdomain of R™,n € N.
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1. Let 1 < p < oo and q = %. Ifu € LP(Q) and v € LY(Q), then (uwv) € L'(Q) and it

holds:
/ o] dx < [lull e 10l o
Q

(103)

2. Let 0 < p <1andq= ;5 <0. Forue LP(Q) and v € LI(Q) we have (uv) € L)

and it holds:
/ el dx > [l e 10l g
Q

A.2 Some inequalities in R", n =1,2

Lemma A.1 ([14], p. 25)
Forn eN, a; € R witha; > 0 and 1 <1i¢ <n it holds

(Zn: ai> < pot (z”: a?) if > 1 and
i=1

i=1
n &3 n
(Zai) > pol <Zaf‘) ifo<a<l.
i=1 i=1

Lemma A.2 ([19] formula (2.20))
For a,b € R? with |b| > |a| and t € [0, 1] it holds:

[b+i(a—b)[ > 2 (Ja]+[b]) .

=

Lemma A.3 ([8] p.39)
Let x and y be positive and unequal, then it holds:

m"r_l(x —y) >z —y" >?”yr_1(ar —v) forr <Qorr>1, and
ra” N —y) <2 —y" <ry" Ne—y)  for0O<r<1.

A.3 An estimate from above
Theorem A.2

Let a,b € R?.

For p > 2 it holds

We(a +b) = Wea(a) ~DWe (a) - b < c(L+ |a] + [b])"* bJ?
and for 1 < p < 2 we have
We(a +b) — Wa(a) = DWe (a) - b < cla]’"[b|* .
Proof:

It is

Wel(a+b)_Wel(a)_DWel (a)b = % - (ﬁ"’_ |a|2)%

hSHRS

((s+la+DbP)

(104)

(105)

(106)

(107)

(108)
(109)

(110)

(111)

~p(s+la) > a-b)

(112)
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Now theorem A.3 is applied with z = (k + |a+ b|?), y = (k + |a[?) and r = §.

For p > 2 it holds according to (108)

(112) <

W

el

(113)

; (Bts+1a+b?)" (la+b* — [a’) = p( + [a*) " a-b)

; (Bt +1a? +2(a-b) + )" (2(a - b) + [b) = plr + |af) 2 "a-b)  (113)

(B +al® +2(a-b) + [bf) =" b|?

=

4 (G4 al + 202 b) + B)E — (x4 JaP) ) a'b>

A
= L (e +1al+2(a-b) + b2) T |b + 4)

<

NTES

(14 |a] + [b)P b + gA

If 0 < 252 < 1, application of (109) leads to

A<plab) (L2004 P (2a-b)+ b))

IN

2

<
- 2

In the case

A

Therefore

P22 (4 )" (2a?bP + (a- b)[bP)

2)

p(p —

< plp—2)
2

£5= > 1 we have p —4 > 0 and (108) yields

<

IN

IN

IA

4
2

(5 +[a®)" 7 (2(x + [a?)[b> + (1 + |a| + [b])?[bJ?)

3p(p —2)
2

p=2 — _
(205 + Jal?) "= b2 + (1 + Jal + |}~ 2|b[?) < (1+[a] + bl 2|b[

2

p—2
2
Mp;2)u%ﬂap%wpw4@-bx%awﬁ+ﬂm%
p(p—2)
2
p(p2— 2) (1+ [a] +b))*~* (2(1 + |a| + |b])2b|* + (1 + |a] + [b])*|b|?)
3plp—2)
2

p(a-b) (5 + |a? +2(a - b) + [b])*T (2(a - b) + [b[?)

(1 +la + B[P~ (2(1 + [a] + [b])*[b]* + (a- b)[b[)

(1+ la] + [b)*2[b|* .

We(a+b) = Wa(a) = DW (a) - b < ¢ (1 + |a| + b))’ [b]?

with ¢ = £(3p — 5).
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In the case 1 < p < 2 application of (109) leads to

(112) < 2 (504 )T (lat b~ JaP) ~ pls + faf) = a - b)

IN

5(%m+w%%(<wbwww) pls+[a*) T b)
= Llnt1a) T b < KlalP bl

Herec:%. m

B Fréchet differentiability

Definition B.1 (Fréchet differentiability)

Let X,Y be normed vector spaces and L(X,Y) = {A: X — Y, A is linear and continuous}.
Let F : Z C X — Y be an operator defined on a subset Z C X. Then F is Fréchet
differentiable iff there exists a functional DF € L(X,Y"), such that:

F(a+h) = F(a) + (DF(a),h) + o(h) for every h € X with (a + h) € Z. (114)

thereby
o(h) = ||h|[xe(h) with }llii%s(h) =0inY. (115)

B.1 Fréchet differentiability of the elastic strain energy

Theorem B.1
For the elastic strain energy J;(€s,-) of the compound Qg the Fréchet derivative DJg (s, )
is given by

DJa(@s,7) : Vi) (©5) — (Vi (@ 0'

2
(DJa(Qs,0a),v) =Y (DJaj(Q5,a5), h Z / DWe; (Va;) - Vhjdx
7j=1 Jj= 19
for every a € V( )(Qg) and h € V(O)(Q(g).
Proof:

Let a € VP

7 () and h € V],

(0)(95). According to definition B.1 we have to show that

Jelj(Qjaaj + h]) - Jelj(ijaj) - <DJelj(Qj¢aj)>hj> = O(h‘j) ) (116)
then summation over j = 1,2 leads to the assertion. It is
| Jetj (s aj + hg) — Jer; (4, a7) — (DJer; (5, a7), hy)|

S / ‘Welj(V(aj + h])) - Welj(Vaj) - DWelj (Vaj) . th| dx . (117)
Q;
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Dj = 2:
Application of theorem A.2 leads to:

(117) < c/ (1 + [Vay| + [Vhy ) P2 [Vhy | dx (118)
Q;

Now Holder’s inequality (104) with p =% und ¢ = (pf ;2/)2_1 = pf 1 is applied and we get:

i—2
(118) < el L+ [Vag| + [V hsI755 0 ) 1V Rs 170 0,y < @, IV R5 1705 g, -
1<p;<2:

If 1 < pj <2, it holds according to theorem A.2

(117) < c/ |Va,;|Pi—2|Vh;|* dx . (119)
Q;

As before, Holder’s inequality (104) is applied:

i—2
(119) < C||Vaj|p] )th‘jH%pj(Qj) < anth‘jH%pj(Qj) :

LPi (9
2
. anHthHLPj (@) A ‘ h d d
Since N —0as ||V J'HLPJ'(QJ-) — 0 for every p; € (1,00) we have under conside-
j

ration of (115):

Jeij (5, a5 + hyj) — Jer; (R, a5) — (DJe; (5, a5),hj) = o(h;)  ashj — 0.

B.2 Mean value theorem for Fréchet differentiable functionals
Theorem B.2 (Mean value theorem, [11] p. 169)
Let X be a Banach space and I : X — R a functional which is Fréchet differentiable with
derivative DI € X'. For every u and h € X there exists a constant to = to(u, h) € [0, 1] such
that

I(u+h) — I(u) = (DI(u+toh), h) x: x)
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