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Practical Setup

The problem is to find some sort of similarity measure between shapes that is:

1. accurate enough, in that it distinguishes different types of motion (clustering), and

2. easy (and fast) to compute.

Our main application is to computer motion capture.

For each motion, we get a set of curves in SO(3), representing the

rotation of joints relative to a fixed origin (root).

Given two motions, we want to compute some kind of distance between

them.
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Shape Analysis(cont.)

We use data from the Carnegie Melon University MoCap Database

http://mocap.cs.cmu.edu.
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02_02.mpg
Media File (video/mpeg)


02_02.avi
Media File (video/avi)

http://mocap.cs.cmu.edu


Shape Analysis: Technical Setup

Shapes are viewed as unparametrized curves taking values, in our case, on a finite-dimensional Lie

group G whose Lie algebra is denoted by g.

We identify curves modulo reparametrization.

For technical reasons, we restrict to the space of immersions

Imm B {c : [0, 1] → G | c ′ , 0}

The group D+ of orientation-preserving diffeomorphisms of [0, 1] acts on Imm by composition

c .ϕ B c ◦ϕ.

We denote S B Imm/D+.
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Shape Analysis: Technical Setup

Similarity between shapes is then measured by some distance

dS([c], [c
′]) B inf

ϕ
dP(c, c

′.ϕ).

The (pseudo)distance dP on parametrized curves must be reparametrization invariant.

The standard choice is obtained through a Riemannian metric on Imm. In the end one gets

dP(c, c
′) =

√∫ 1

0
‖q (t ) − q ′(t )‖2 dt

where

q (t ) B
(R−1
c(t )
)∗( Ûc(t ))√
| Ûc(t )|

is called the Square root velocity transform (SRVT) of the curve c.
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Shape Analysis: Technical Setup

Some observations about dP :

1. it is only a pseudometric.

2. it corresponds to the geodesic distance of a weak Riemannian metric on Imm, obtained as the

pullback of the usual L2 metric on curves in g under the SRVT.

3. it is reparametrization invariant.

Hence, the similarity measure for shapes is

dS([c], [c
′]) = inf

ϕ∈D+

(∫ 1

0




q − (q ′.ϕ)√ Ûϕ


2)1/2.
This optimization problem is often solved using dynamic programming.
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Signatures on Lie groups

Let G be a d -dimensional Lie group with Lie algebra g.

Definition

The Maurer–Cartan form of G is the g-valued 1-form

ωg (v ) B (R
−1
g )∗(v ), g ∈ G ,v ∈ TgG .

This means that ω is a bundle morphismTG → (G × g), i.e. for each g ∈ G we have a linear map

ωg : TgG → g.

In particular, if X1, . . . ,Xd is a basis for g then we may write

ωg (v ) = ω
1
g (v )X1 + · · · + ω

d
g (v )Xd .
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Signatures on Lie groups: Definition

Consider a curve α ∈ C∞([0, 1],G ).

Definition (Chen (1954))

The signature on G is the map α 7→ SG (α) defined recursively by 〈1, SGs,t (α)〉 = 1 and

〈e i1 · · ·in , S
G
s,t (α)〉 B

∫ t

s
〈e i1 · · ·in−1, S

G
s,u (α)〉ω

in
α(u)
( Ûα(u)) du

The Maurer–Cartan form can be computed explicitly in some situations, specially for matrix Lie

groups where it takes the simple form

ωg = dg g−1.
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Signatures on Lie groups: An example

An easy example is the Heisenberg group

H3 B


©­­«
1 x z

0 1 y

0 0 1

ª®®¬ : x , y , z ∈ Ò

.
Then, we obtain

ωg =
©­­«
0 dx −y dx + dz

0 0 dy

0 0 0

ª®®¬.
Therefore

SH3
s,t (α) = 1 +

∫ t

s

Ûαx (u) du e1 +

∫ t

s

Ûα y (u) du e2 +

∫ t

s
( Ûα z (u) − α y (u) Ûαx (u)) du e3 + · · ·
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Signatures on Lie groups: The case of SO(3)

For SO(3) the computation is more difficult.

However, we can do something clever: we do “geodesic interpolation”.

Given A,B ∈ SO(3), let α : [0, 1] → SO(3) be given by

α(t ) B exp(t log(BAᵀ))A,

so that α(0) = A and α(1) = B .

Since SO(3) is a “nice” group, it has a unique bi-invariant Riemannian metric. For this metric,

geodesics and one-parameter subgroups coincide, that is, geodesics correspond to flows of

left-invariant vector fields.

For this choice,

ωα(t )( Ûα(t )) = log(BAᵀ).
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Clustering: Comparing signatures

We need a way of comparing signatures. There are several choices:

1. using the metric inherited fromT ((Òd )), i.e.

d (g , h) B ‖h − g ‖T ((Òd )),

2. using the homogeneous norm on truncated characters, i.e.

ρn (g , h) B ‖h−1 ⊗ g ‖G (n),

3. compare log-signatures.

We also compare with currently used methods based on the SRVT, i.e. dynamic programming.
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Clustering
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Clustering
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Clustering: a computation

Let a ∈ Ò2 and consider x : [0, 1] → Ò2 given by x (t ) B at .

Then:

S (x ) = exp⊗(a) = 1 + a + 1
2a ⊗ a +

1
6a ⊗ a ⊗ a + · · ·

For small ε > 0 define xε(t ) B (a + εv )t .

Then:

S (xε) = exp⊗(a + εv )

By Baker–Campbell–Hausdorff:

gε B S (x )−1 ⊗ S (xε) = exp⊗(εv + BCH(−a, a + εv )).
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Clustering: a computation (cont.)

Truncating at n = 2,

gε = exp⊗

(
εv −

1

2
[a, a + εv ]

)
= 1 + εv −

ε

2
[a,v ] +

1

2
ε2v ⊗ v ,

hence

ρ(S (xε), S (x )) = ‖gε ‖G (2) = max

{
|ε |,

√
|ε |

2

(
4ε2 + 1

2 (a1v2 − v1a2)
2
)1/4}

= O
(√
ε
)
.

In general

‖gε ‖G (n) = O (ε
1/n ).
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Clustering: a concrete example

Now, let ca and cb correspond to “walking” and “jogging” animations.

We generate a geodesic interpolation c̄ between the curves, i.e. c(0, ·) = ca , c(1, ·) = cb and for

s ∈ (0, 1) the animation c(s, ·) is a mixture of both.

In practice, this is generated using the SRVT so in fact we are doing linear interpolation at the level

of the Lie algebra.

Signatures were computed using the iisignature Python package by J. Reizenstein and B.

Graham.

We can then look at the behaviour of the different similarity measures when s varies.

Remark

Since the distance dS coincides with the geodesic distance, we will see a straight line for this metric.
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Clustering: a concrete example (cont.)
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Clustering: a concrete example (cont.)
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Clustering: a concrete example (cont.)
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Questions:

1. Pullback metric from signatures to curves.

2. How much does geometrical information help.

3. Better understanding of the various metrics.

4. Purely discrete approach.
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Thanks!
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