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Abstract

Diffusion Weighted Imaging has become and will certainly continue to be an impor-

tant tool in medical research and diagnostics. Data obtained with Diffusion Weighted

Imaging are characterized by a high noise level. Thus, estimation of quantities like

anisotropy indices or the main diffusion direction may be significantly compromised

by noise in clinical or neuroscience applications.

Here, we present a new package dti for R, which provides functions for the analysis

of diffusion weighted data within the diffusion tensor model. This includes smooth-

ing by a recently proposed structural adaptive smoothing procedure based on the

Propagation-Separation approach in the context of the widely used Diffusion Tensor

Model. We extend the procedure and show, how a correction for Rician bias can be

incorporated. We use a heteroscedastic nonlinear regression model to estimate the

diffusion tensor. The smoothing procedure naturally adapts to different structures of

different size and thus avoids oversmoothing edges and fine structures.

We illustrate the usage and capabilities of the package through some examples.

1 Introduction

The basic principles of magnetic resonance Diffusion Weighted Imaging (DWI) were in-

troduced in the 1980’s [1, 2, 3], after nuclear magnetic resonance (NMR) had long been

known to be sensitive to diffusion of molecules in complex systems [4]. Since then, DWI has

evolved into a versatile tool for in-vivo examination of tissues in the human brain [5] and

spinal cord [6]. DWI probes microscopic structures well beyond typical image resolutions

through water molecule displacement, a fact attracting broad interest in this technique.

It can be used in particular to characterize the integrity of neuronal tissue in the central

nervous system.

NMR images are acquired from signals measured in k-space by fast Fourier transform. In

the case of single receiver coil systems and additive complex Gaussian noise in k-space

this results in image grey values that follow a Rician distribution Rice(θ, σ) [7]. This

distribution is characterized by two parameters: θ, corresponding to the signal of interest,

and σ related to the noise standard deviation in k-space.

Diffusion in neuronal tissue depends on the particular microscopic structure of the tissue
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and is usually not isotropic. Different diffusion directions ~b can be probed by applying

bipolar magnetic field diffusion gradients [8]. Let S~b
denote the acquired diffusion weighted

image with the ”b-value” b, which depends on the pulse sequence parameters. The non-

diffusion weighted image (b = 0) is denoted by S0. Due to the diffusion of water molecules

during the application of the magnetic field gradient, the signal S~b
is attenuated relative

to S0:

S~b
∼ Rice(θ0 exp(−bD(~b)), σ) , S0 ∼ Rice(θ0, σ) (1)

where D(~b) is the diffusion constant probed in direction ~b. Data are usually measured for

Ngrad > 16 different gradient directions, including b = 0.

Equation (1) imposes several problems for the data analysis. I. The model for the measured

data S is nonlinear in D. II. The measured data S suffers from noise typical for NMR

images. While for the non-diffusion weighted image S0 a Gaussian noise model seems to

be an appropriate approximation, the Rician distribution of the attenuated signal values

S~b
can be significantly different from a Gaussian. Ignoring this introduces a bias into

the estimation of the diffusion constant and hence all derived quantities. III. The lower

the noise level in the measured data is, the more accurately the diffusion constant can

be estimated. Thus, a noise reduction would be helpful to improve the accuracy of the

diagnostic measures derived from the data.

Typically, diffusion weighted images S~b
are measured for 15 to 100 diffusion gradient direc-

tions~b resulting in very high-dimensional data. It was the development of Diffusion Tensor

Imaging (DTI) [9, 10] which triggered a plethora of clinical and neuroscience applications

of DWI. There, the information in the diffusion weighted images is reduced to a three di-

mensional Gaussian distribution model for free anisotropic diffusion. Within this model,

diffusion is completely characterized by a rank-2 diffusion tensor D, a symmetric positive

definite 3 × 3 matrix with six independent components. This model describes diffusion

completely if the microscopic diffusion properties within a voxel are homogeneous and

non-restricted. In the presence of partial volume effects, like crossing fibers, this model is

only an approximation. For these cases, more sophisticated models exist, which rely on

the measurement of diffusion weighted images with high angular resolution [11, 12]. These

shall not be considered in this paper.

DTI suffers from significant noise which may render subsequent analysis or medical deci-

sions more difficult. In the presence of noise the estimation of anisotropy indices from the

diffusion tensor is known to be systematically biased [13, 14]. In addition to the common

random errors the order of the diffusion eigenvectors of the tensor which is essential for

fiber tracking is subject to a sorting bias especially at high noise levels. Noise reduction

is therefore essential.
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In [15] we proposed a new smoothing method for noise reduction in DTI based on the

Propagation-Separation (PS) approach [16]. The procedure has been shown to naturally

adapt to the structures of interest at different scales [15, 16]. Thus, it avoids loss of

information on size and shape of structures, which is typically observed when using non-

adaptive filters. This is especially important for DTI, where the structures of interest, the

white matter fibers, may be very small and anisotropic.

Extending [15] we will in this paper discuss the estimation of the diffusion tensor from

the diffusion weighted data using heteroscedastic non-linear regression, propose a model

for heteroscedastic variances and provide a solution for Rician bias correction within the

structural adaptive smoothing procedure. We present a new package dti for R, which

implements this extended PS approach for reducing the noise by adaptive smoothing

of diffusion weighted data in the context of the diffusion tensor model. The package

provides methods for all steps in a common diffusion tensor analysis from data access to

visualization of estimated tensors and indices.

The paper is organized as follows: In section 2 we review the basic notation of DTI

and discuss linear as well as non-linear estimation methods for the diffusion tensor and

the estimation of heteroscedastic variances. Section 3 is dedicated to Rician bias and its

correction. We outline the extended structural adaptive smoothing procedure in section 4.

Finally, we describe the usage and capabilities of the R-package dti and provide several

examples in the last section 5.

2 Diffusion Tensor Imaging

2.1 The diffusion tensor model and its quantities

Using a Gaussian model of diffusion, the anisotropy can be described by a rank-2 diffusion

tensor D, which is represented by a symmetric positive definite 3× 3 matrix:

D =


Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 . (2)

The ”b-value” in Eq.(1) is replaced by a ”b-matrix”, [17, 18], leading to

S~b
∼ Rice(θ0 exp(−~b ~D), σ) (3)

where (bij)i,j=x,y,z denotes the matrix b = b ·~b ~b>, ~b = (bxx, byy, bzz, 2bxy, 2bxz, 2byz) and
~D = (Dxx, Dyy, Dzz, Dxy, Dxz, Dyz)>.
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The components of the diffusion tensor clearly depend on the orientation of the object in

the scanner frame xyz. Only rotationally invariant quantities derived from the diffusion

tensor circumvent this dependence and are usually used for further analysis, mainly based

on the eigenvalues µi (i = 1, 2, 3) of D with µi > 0 for positive definite tensors. The

eigenvector ~e1 corresponding to the principal eigenvalue µ1 determines the main diffusion

direction used for fiber tracking.

The simplest quantity based on the eigenvalues is the trace of the diffusion tensor

Tr(D) =
3∑

i=1

µi . (4)

which is related to the mean diffusivity 〈µ〉 = Tr(D)/3. The anisotropy of the diffusion

can be described using higher moments of the eigenvalues µi. The widely used fractional

anisotropy (FA) is defined as

FA =

√
3
2

√√√√ 3∑
i=1

(µi − 〈µ〉)2 /

3∑
i=1

µ2
i (5)

with 0 ≤ FA ≤ 1, where FA = 0 indicates equal eigenvalues and hence no diffusion

anisotropy.

The resulting FA-maps together with a color-coding scheme are helpful for medical diag-

nostics. The principal eigenvector ~e1 = (e1x, e1y, e1z) is used for assigning each voxel a

specific color, interpreting e1x, e1y, and e1z as red, green, and blue contribution weighted

with the value FA:

(R,G, B) = (|e1x|, |e1y|, |e1z|) · FA (6)

In contrast to the eigenvalues and the fractional anisotropy the principal eigenvector de-

pends on the orientation of the object in the scanner frame xyz. Thus, the color coding

depends on patient orientation.

The multiplication with the FA-value in Eq.(6) leads to darker areas with low fractional

anisotropy in contrast to bright white matter areas with large values for FA. However, the

intensity of a color image is approximately given by R+G+B = (|e1x|+ |e1y|+ |e1z|) ·FA

which depends on the orientation of the object. Additionally, a grey value reproduction

of such a color-coded FA-map may show similar grey values for different FA-values and

vice versa. One could therefore use a slightly different color encoding

(R,G, B) = (e2
1x, e2

1y, e
2
1z) · FA ,

since due to eigenvector normalization we have R + G + B = (e2
1x + e2

1y + e2
1z) ·FA = FA.

Also note, that the direction corresponding to a specific color is not unique since the
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signs of the eigenvector components are lost. This problem can be circumvented when the

diffusion tensor ellipsoid is shown in 3D using the color scheme.

As an alternative to the fractional anisotropy the geodesic anisotropy (GA)

GA =

√√√√ 3∑
i=1

(log(µi)− log(µ))2, log(µ) =
1
3

3∑
i=1

log(µi) (7)

has been proposed [19, 20] to take the metric structure of the tensor space into account.

Note, that 0 ≤ GA < ∞.

The diffusion tensor represents a diffusion ellipsoid with the three main axis given by µi.

To describe the shape of the diffusion tensor a decomposition into three basic shapes –

spherical, planar, and linear – can be used [21, 22]:

Cs =
µ3

〈µ〉

Cp =
2(µ2 − µ3)

3〈µ〉

Cl =
(µ1 − µ2)

3〈µ〉
, (8)

where the sum of the three contributions is Cs +Cp +Cl = 1. Again, we can interpret the

three shape values as red, green, and blue component of a color assigned to the voxel in

order to visualize the tensor shape.

2.2 Linear estimation of the diffusion tensor

To completely determine the diffusion tensor, one has to acquire diffusion weighted images

for at least Ngrad = 7 gradient directions ~b including the non-diffusion-weighted image S0.

However, since the estimation errors of the eigenvalues are not rotationally invariant, about

30 gradient directions are required for a robust quantitative measurement of eigenvalues

and tensor orientation [23, 24, 25].

In one of our previous publications [15] at each voxel i the diffusion tensor Di has been

estimated via multiple linear regression using the equation:

− ln
S~b,i

S0,i
= ~b ~Di + ε~b,i , (9)

and the assumption that the errors ε~b,i are i.i.d. Gaussian N (0, σi). The noise variance

σ2
i in voxel i has been estimated from the residuals in the linear model, while the variance

of the estimated tensor was assessed from this estimate and the “b-matrix”. There are

at least two weaknesses in this approach. First, due to the log-transform, error variances
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are highly heteroscedastic and therefore the ordinary least squares estimate is inefficient

and its variance estimate biased. Even more important, if the tensor model is inadequate

the residuals from (9) contain structure that is not explained by the model and hence,

the variance of the estimated tensor may be strongly over-estimated. This decreases the

statistical penalty in the adaptive smoothing procedure proposed in [15] and therefore

reduces the effectivity of adaptation.

2.3 Non-linear estimation of the diffusion tensor

The drawbacks connected with the use of the log-transform of the data in the linearized

model (9) can be avoided by using the heteroscedastic non-linear regression model

S~b,i
= θ0,i exp(−~b ~Di) + ε~b,i , Eε~b,i = 0 , Varε~b,i = σ2

~b,i
. (10)

for all~b including the non-diffusion weighted gradient (b = 0). In this model the parameter

θ0 reflects the expected intensity in non-diffusion weighted images. In order to enforce

positive definiteness of the tensor estimates it is possible to re-parametrize the model (10)

using the Choleski decomposition D = RTR with an upper triangular matrix R with

non-zero diagonal elements [26]. In [27] the efficiency of this approach in comparison

with an unconstrained nonlinear regression model (10) has been investigated. In our

implementation we estimate the parameters θ0,i and Di in each voxel i using the risk

function R defined by

R(S·,i, θ,D) =
∑
~b

(S~b,i
− θ exp(−~b ~D))2

σ2
~b,i

(11)

where the sum is over all diffusion gradient vectors ~b including the non-diffusion weighted

images (b = 0). In (
θ̂0,i

D̂i

)
= arg min

θ,D
R(S·,i, θ,D) (12)

we use an unconstrained minimization as long as the estimated diffusion tensor is positive

definite and the re-parametrization D = RTR [26], otherwise. Minimization is done using

a regularized Gauss-Newton algorithm [28]. The variability of the tensor estimates can be

assessed using profile likelihood.

2.4 Variance estimates

In order to estimate the diffusion tensor using (11) and (12) we need to model the het-

eroscedastic variances σ2
~b,i

. Empirical evidence from various DWI data sets with replicated
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non-diffusion weighted images suggests the existence of a wide range of image intensity

values where the standard deviation σ~b,i
can be well approximated by a linear function of

the observed image intensity, see Figure 1 for two examples.
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Figure 1: Local polynomial estimates of mean standard deviation as a function of mean

grey value (solid) and density of mean grey values (dotted) observed for two DWI data sets

with replicated non-diffusion weighted images S0. The red and blue curves correspond to

variance estimates obtained from replicates (red) and mean variance estimates obtained

from single images (blue), respectively, using the model (13) in both cases. The left

data set is not registered causing a positive bias in voxelwise variance estimates from

replications. The dashed curves in the left panel provide the corresponding estimates

using mean absolute deviation (mad) as an alternative to voxelwise standard deviation

(sd) to lower this effect.

We therefore use the following model for the error standard deviations

σ~b,i
=


σ0 + σ1A0 θ~b,i < A0

σ0 + σ1θb,i A0 ≤ θ~b,i < Al

σ0 + σ1A1 A1 ≤ θ~b,i

(13)

Here A0 is set to the minimum, over voxel within the head, intensity in non-diffusion

weighted images. For A1 we use the 0.99 quantile of S0 intensities within the head. The

choice of A0 and A1 coincides with the range where we observe approximative linearity

between the standard deviation and the mean.

The parameters σ0 and σ1 are estimated by linear regression between estimated voxelwise

7



standard deviations and mean grey values in the case of a replicated non-diffusion weighted

image or from a single non-diffusion weighted image using adaptive smoothing with explicit

specification of the dependency between mean and standard deviation, see [29]. In both

cases the estimates will be restricted to use voxel with intensity within the range (A0, A1).

The linear dependence between noise variance and image intensity seems to reflect prop-

erties of physiological noise.

3 Handling Rician bias in diffusion weighted images

3.1 Rician bias

Termal noise in DWI can be modeled as additive Gaussian noise in both the real and

imaginary part of the signal in k-space. After fast Fourier transform into image space

the resulting observed signal follows a Rician distribution [7] with parameters ζ and σ.

ζ is the signal of interest while σ corresponds to the standard deviation of the errors in

k-space. The density of Rician distribution is given by

p(x) =
x

σ2
exp(−x2 + ζ2

2σ2
)I0(

xζ

σ2
), (14)

where I0 is the modified zeroth-order Bessel function of the first kind. Mean and variance

of the Rician distribution are given by

EX = σ
√

π/2L1/2(−ζ2/2σ2) (15)

DX = 2σ2 + ζ2 − πσ2

2
L2

1/2(−ζ2/2σ2) (16)

with

L1/2(x) = ex/2[(1− x)I0(−x/2)− xI1(−x/2)]. (17)

For large ζ/σ we get EX ≈ ζ, while for small ζ/σ the expected value of the observed signal

is significantly larger than the parameter of interest ζ. This effect is called Rician bias

and is more pronounced in the diffusion weighted images where the signal is attenuated,

see Eq.(1). The Rician bias in the diffusion weighted images may lead to a bias in the

estimated tensors as well as in quantities derived from the tensor, see [30]. We therefore

include a correction for Rician bias in our implementation.

3.2 Correction for Rician bias

In order to avoid the Rician bias we need to estimate the parameters ζ and σ of the

underlying Rician distribution from the measured signals S. Let us assume we have
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samples Sn = {S1,k, . . . , Sn,k}
Ngrad

k=1 drawn from a Rician distribution Rice(ζk, σ). This

resembles the situation within DWI data assuming that the noise variance in k-space does

not depend on the gradient direction. For identifiability of the distribution parameters

we need n > 1, which can be achieved by locating voxel with similar parameters within a

local vicinity, see section 4. Let now W = {w1, . . . , wn} define a set of weights. We can

then define a weighted log-likelihood function as

l(Sn; ζ, σ,W ) =
Ngrad∑
k=1

n∑
j=1

wj

(
log

Sj,k

σ2
−

S2
j,k + ζ2

k

2σ2
+ log I0

(
Sj,kζk

σ2

))
. (18)

Differentiating with respect to the parameters ζ and σ2 yields conditions for the likelihood

estimate of ζ = (ζ1, . . . , ζNgrad
) and σ2

d

dζk
l(Sn; ζ, σ,W ) =

n∑
j=1

wj

I1

(
Sj,kζk

σ2

)
I0

(
Sj,kζk

σ2

)Sj,k − ζk

n∑
j=1

wj = 0 (19)

d

dσ2
l(Sn; ζ, σ,W ) =

Ngrad∑
k=1

n∑
j=1

wj

− 1
σ2

+
S2

j,k + ζ2
k

2σ4
−

I1

(
Sj,kζk

σ2

)
I0

(
Sj,kζk

σ2

) Sj,kζk

σ4

 = 0.

The estimates ζ̂k and σ̂2 can thus be obtained as fixpoints of

ζ̂k =
1∑n

j=1 wj

n∑
j=1

wj

I1

(
Sj,k

bζkcσ2

)
I0

(
Sj,k

bζkcσ2

)Sj,k (20)

σ̂2 =
1

Ngrad
∑n

j=1 wj

Ngrad∑
k=1

n∑
j=1

wj

S2
j,k + ζ̂2

k

2
−

I1

(
Sj,k

bζkcσ2

)
I0

(
Sj,k

bζkcσ2

)Sj,kζ̂k


through iteration. As initial estimate we use the corresponding likelihood estimates for a

Gaussian distribution

ζ̂
(0)
k =

1∑n
j=1 wj

n∑
j=1

wjSj,k (21)

σ̂2
(0)

=
(
∑n

j=1 wj)2

(
∑n

j=1 wj)2 −
∑n

j=1 w2
j

1
Ngrad

∑n
j=1 wj

Ngrad∑
k=1

n∑
j=1

wj(Sj,k − ζ̂k)2.

We use a prespecified number of iteration steps depending on the ratio ζ̂
(0)
k /σ̂

(0)
k , i.e. no

iteration if the ratio is larger than 10 and up to 6 iterations if the ratio is small.
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4 Structural Adaptive Smoothing of DWI data within the

diffusion tensor model

We recently proposed a new structural adaptive smoothing algorithm for diffusion weighted

data in the context of the diffusion tensor model [15]. The approach reduces the error

of the estimated tensor directions and tensor characteristics like fractional anisotropy by

smoothing the observed DWI data. The application of a standard Gaussian filter would be

highly inefficient in the DTI applications in view of the anisotropic nature of the diffusion

tensor and sharp boundaries between region with different tensor characteristics. Indeed,

the tensor direction remains constant mainly along the fiber directions. Averaging over

a large symmetric neighborhood of every voxel would thus lead to a loss of directional

information.

In order to avoid such a loss our smoothing procedure sequentially determines at increasing

scales local weighting schemes with positive weights for voxel that show similar charac-

teristics. To achieve this we employ the structural assumption that for every voxel there

exists a vicinity in which the diffusion tensor is nearly constant. This assumption re-

flects the fact that the structures of interest are regions with a homogeneous fractional

anisotropy, a homogeneous diffusivity, and a locally constant direction field. The shape

of this neighborhood can be quite different for different voxel and cannot be described by

few simple characteristics like bandwidth or principal directions.

The algorithm for the case of linear tensor estimates using model (9) has been described in

detail in [15]. Here, we shortly present a modified algorithm that is based on the nonlinear

regression model (10) for the diffusion tensor and incorporates the Rician bias correction

developed in the previous section:

• Initialization: Set k = 1, initialize the bandwidth h(1) = ch. For each voxel i

initialize ζ̂
(0)
~b,i

= S~b,i
with the data, and D̂(0)

i and θ̂
(0)
0,i by equation (12), set N

(0)
i = 1.

Estimate the parameters σ0 and σ1 of the variance model (13).

• Adaptation: For each voxel pair i, j, we compute the penalty

s
(k)
ij =

N
(k−1)
i

λCi(g, h(k−1))

[
R
(
ζ̂
(k−1)
·,i , θ̂

(k−1)
0,j , D̂(k−1)

j

)
−R

(
ζ̂
(k−1)
·,i , θ̂

(k−1)
0,i , D̂(k−1)

i

)]
with the risk R based on the previous estimates ζ̂

(k−1)
·,i at voxel i. s

(k)
ij measures

the statistical difference between the estimates θ̂
(k−1)
0 and D̂(k−1) at voxel i and j.

Weights are computed as

w
(k)
ij = Kloc

(
∆(i, j, D̃(k−1)

i )/h(k)
)

Kst

(
s
(k)
ij

)
,

10



with appropriate kernel functions Kloc and Kst, an anisotropic distance function ∆,

and a regularized tensor estimate D̃(k−1)
i , see [15] for details.

• Rice bias correction and estimation of diffusion weighted images: Compute

ζ̂
(k)
.,i = (ζ̂(k)

1,i , . . . ζ̂
(k)
Ngrad,i) by maximizing the log-likelihood (18)

ζ̂
(k)
.,i = argζ max

ζ,σ
l(Sn; ζ, σ,W

(k)
i )

using the weighting scheme W
(k)
i = (w(k)

i1 , . . . , w
(k)
in ) and evaluating equations (21,20).

• Parameter estimation: Compute new estimates of the expected non-diffusion

weighted images θ0,i and diffusion tensors Di as θ̂
(k)
0,i

D̂(k)
i

 = arg min
θ,D

R(ζ̂(k)
.,i , θ,D),

see (12). Set N
(k)
i =

∑n
j=1 w

(k)
ij .

• Stopping: Stop if k = k∗ for a preselected number of iteration steps, otherwise set

h(k+1) = chh(k), increase k by 1 and continue with the adaptation step.

The term Ci(g, h(k−1)) provides an adjustment under the assumption that spatial smooth-

ness of the errors can be modeled by a convolution of independent errors with a Gaussian

kernel of bandwidth g, see e.g. [15] or [31] for details. The Rician bias correction can be

omitted using S.,i instead of ζ̂
(k)
.,i in all steps. λ is the main parameter of the procedure

and can be determined by simulations, see [16, 15] for details.

5 Using the package dti

This document refers to the version 0.6-0 of the dti-package which is available from CRAN

http://cran.r-project.org. The software is under constant development, see subsec-

tion 5.8 for details on the plans for the next future. Changes are documented in the

HISTORY file of the package.

For the analysis of diffusion weighted data, there is an overlap in functionality needed from

other packages. In order to fully use the package dti it is therefore required to install the

packages fmri for reading and writing medical imaging formats like ANALYZE, NIfTI,

or DICOM as well as adimpro and rgl for visualization. These packages can also be

downloaded from CRAN.
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For a typical analysis we assume the DWI data to reside in a directory, say ‘‘datadir’’,

and the gradient matrix in a file, say ‘‘gradient.txt‘‘. A script for the analysis could

then have the form

R> grad <- read.table(’’gradient.txt‘‘)

R> data <- readDWIdata(grad,’’datadir‘‘,dataformat,ngrad)

R> data <- sdpar(data)

R> tensor <- dtiTensor(data)

R> tensor <- dti.smooth(data,hmax=4)

R> dtind <- dtiIndices(tensor)

The steps of the analysis including visualization and some utility functions will be discussed

within the next subsections. Memory requirements and computation time will also be

illustrated.

For an overview over the package capabilities see help(dti) and run the dti art demo

R> demo(dti art)

It creates the artificial dti dataset used in [15].

5.1 Data processing

Diffusion weighted data can often be found collected in (one or several) DICOM folders

depending on the acquisition protocol of the scanner, as well as preprocessed compila-

tions of ANALYZE or NIfTI files or other formats. The package provides a function

readDWIdata() to read data in these formats from one or more directories that contain

solely the imaging files. e.g. DICOM files for all slices and gradient directions. There may

be cases, where the slice ordering differs from the alphabetic order of the files. In these

cases the order argument of the function can be used.

A region of interest can be specified by index vectors xind, yind, zind for the three

dimensions of the data cubes. Reading a region-of-interest (ROI) of DICOM data from

two directories is e.g. performed by

R> grad <- read.table(’’gradient.txt‘‘)

R> dwiobj <- readDWIdata(grad, c(”datadir/s0011/”, ”datadir/s0012/”),

”DICOM”,72,xind=129:196,yind=129:196,zind=25:30).

The two-dimensional array grad has rows corresponding to the gradient vectors including
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the non-diffusion weighted gradient (0, 0, 0) in the same order as the diffusion weighted

data.

As an alternative we provide a simple interface for the diffusion weighted data using a

binary file. Such a file can be created using the I/O-funtions from the packages fmri,

AnalyzeFMRI, DICOM or others. Diffusion weighted data is a set of Ngrad three

dimensional datasets (e.g. covering the brain) corresponding to Ngrad diffusion weighted

images including the non-diffusion weighted images. These datasets are written in the

corresponding order into a binary file of 2 byte integer values, denoted by S-all here:

R> con <- file(”S-all”,”wb”)

R> for (gg in 1:16) {

R> data <- read.ANALYZE(filename[gg])

R> writeBin(as.integer(extract.data(data)),con,2)

R> }

R> close(con)

where filename refers to the array of file names for the ANALYZE files containing the

diffusion weighted and non-diffusion weighted images in this example. The data from the

binary file ”S-all” can then be read into the R session using the function dtiData().

R> dwiobj <- dtiData(grad,”S-all”,ddim)

All three arguments are required. ddim denotes the dimension vector of length 3 of the

dataset, while the number Ngrad of diffusion weighted images is implicitely given by the

dimension of grad. help(dtiData) provides documentation of the function and more

arguments, e.g. the choice of a ROI etc. The result dwiobj is an object of class ”dtiData”,

see subsection 5.2 for details on the class definitions within the package.

R> dwiobj <- sdpar(dwiobj,interactive=TRUE)

is a function to interactively set a threshold that characterizes grey values in non-diffusion

weighted images of voxel within the head and to estimates the parameters of the variance

model (13). To assist the selection of a cut-off point densities of S0 intensities are provided

for the full data cube as well as three central subcubes of different size. The left mode

of the densities is expected to correspond to voxel outside the head, i.e. a cut off point

should be selected on the right of this first mode, see the vertical red line in Figure 2.

If not called explicitely this function will be used by dtiTensor() in its non-interactive

mode.

In the current version of the package diffusion weighted data is processed within the Dif-
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Figure 2: Selection of cut-off points for characterization of voxel within the head.

fusion Tensor Model. The method dtiTensor on any object of class ”dtiData” estimates

the diffusion tensor:

R> dtobj <- dtiTensor(dwiobj)

The standard method for the tensor estimation uses the non-linear model (10) described

in section 2.3. However, the linearized model (9) can be used by specifying the argument

method=‘‘linear’’. The resulting dtobj is an object of class dtiTensor, see subsection

5.2.

From the diffusion tensor a number of measures based on the eigenvalue representation of

the tensor can be derived, like the trace, fractional anisotropy (FA), geodetic anisotropy

(GA), shape parameters or the principal eigenvector defining the main diffusion direction,

see section 2. The method dtiIndices on objects of class ”dtiTensor” returns an object

of class ”dtiIndices” containing all these quantities:

R> dtind <- dtiIndices(dtobj)

Visualization of the results can be done using the generic plot functions on all three

objects dwiobj, dtobj, and dtind, which show slices of the data, the tensor components,

and color coded directional maps, respectively. If appropriate the plot-function returns

an adimpro-image which can be further processed using functions from the adimpro-

package [29]. 3D visualization for diffusion tensors and indices is provided by generic

function show3D which makes use of the rgl package.
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5.2 Objects and methods

The package implements S4-classes and -methods. The main class is ’’dti’’ from which

no instances should be created. This class inherits to three subclasses ’’dtiData’’ for

diffusion weighted data, ’’dtiTensor’’ for the estimated diffusion tensor objects and

’’dtiIndices’’ for tensor indices like fractional anisotropy. The class constructors pro-

vide consistency checks for these objects. Although not recommended, it is possible to

access the slots directly. See class ? dti for documentation of the classes. For all

subclasses methods for the generic functions plot, print, and summary have been imple-

mented. Generic functions extract and ‘‘[<-’’ allow for extraction of information and

index operation, respectively. See methods ? <name> for documentation of the methods

and help(<name>) for information on the functions.

5.3 Data smoothing

Due to the high noise level in diffusion weighted data the package dti provides structural

adaptive smoothing of diffusion weighted data as one of its main features. The method

dti.smooth() implements the procedure described in the first sections of this paper. Since

the algorithm directly smooths the diffusion weighted images it is only implemented for

objects of class ”dtiData”.

dti.smooth() can be used with several parameter switches. One choice is between linear

and non-linear tensor estimation as described in the section 2 of this paper. The default

is set to non-linear estimation. Another choice is whether to include the correction for

Rician bias, which defaults to ”TRUE”.

R> dtobjsmooth <- dti.smooth(dwiobj, hmax = 3, method = ”linear”,

rician = TRUE )

R> dtindsmooth <- dtiIndices(dtobjsmooth)

R> plot(dtindsmooth, slice = 30)

The main smoothing parameter is the maximum bandwidth hmax used for the iteration.

It directly influences the amount of smoothness in the homogeneous regions of the data,

and the complexity of the calculations via the number of iteration steps k?. Typical values

are in the range of 2− 4 (voxel).

Other parameters are technical and include the degree of adaptation, the degree of regular-

ization of the tensor estimates for small bandwidths, some display parameters, and choices

about the variance model, in case of method=’’linear’’, to be used in the estimation
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of the variance of the tensor estimates (see help(dti.smooth)). They are intended for

expert use only.

5.4 Data visualization

For all subclasses of ”dti” we implemented the generic plot()-function to visualize the

objects in two dimensions. If appropriate the function returns an object of class adimpro

for further processing with the functions of the package adimpro. For ”dtiData” objects a

slice of the selected diffusion weighted image is shown. For ”dtiTensor” objects the tensor

components of the selected slice are shown. No image is returned. For ”dtiIndices”

objects a color coded directional map is shown and returned as adimpro object. See the

documention (methods ? plot) for details and left part of Figs. 4 and 5 for examples.

Based on the package rgl and OpenGL the package dti provides a 3D visualization with the

method show3d for classes ”dtiTensor” and ”dtiIndices”: For a tensor object ellipsoids

are shown, while for the tensor indices lines are drawn with length corresponding to the

FA-value, see Fig. 3.

1Figure 3: Artificial example from Ref.[15]: True tensor (left), voxelwise tensor estimates

suffering from noise (center) and smoothed tensor estimates (right). A threshold of 0.3

for FA-values is used.

5.5 Experimental Data Examples

For illustration we use a DWI data set [32] made available by the NIH/NCRR Center for

Integrative Biomedical Computing, P41-RR12553. These images are typical examples of

diffusion tensor imaging of the brain. They contain twelve diffusion weighted volumes and

one non-diffusion weighted (b = 0) reference volume. The data has a spatial resolution of

1.5 mm on each axis. The front of the head is at the top of the image. This scan goes from
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the top of the head down to about the middle of the brain, below the corpus callosum,

but above the eyes.

The DTI data was collected on a 3 Tesla MRI scanner in the W.M. Keck Laboratory

for Functional Brain Imaging and Behavior by Dr. Andrew Alexander, Departments of

Medical Physics and Psychiatry, University of Wisconsin, Madison, funding: NIH RO1

EB002012.

The Figures 4 and 5 illustrate some of the properties of the structural adaptive smoothing

algorithm, namely the homogenization of the directional field within homogenous regions

and the preservation of borders.

5.6 Interface to MedINRIA

In the current version of the package dti no fiber tracking algorithms are implemented.

Therefore, we decided to provide an interface to MedINRIA [33] which runs on different

major platforms. The function tensor2medinria() writes a NIfTI file with the tensor

data in an appropriate format which can be read by MedINRIA.

R> tensor2medinria(dtobj, file= ...)

It is also possible to read a tensor object from MedINRIA given as NIfTI file for further

processing like structure adaptive smoothing with the package dti in R:

R> dtobj <- medinria2tensor(file= ...)

5.7 Computation time and memory requirements

A word of caution concerning the memory usage of the implementation is in place here:

DWI datasets are usually very large. A typical full brain dataset of matrix size 256× 256

and about 70 slices measured at 30 diffusion gradient directions in 2-byte integer represen-

tation needs 256× 256× 70× 30× 2 ≈ 262.5 MBytes. The structure adaptive smoothing

algorithm operates on all diffusion weighted images. In the current implementation these

data are therefore kept in memory and it is usually not possible to run a full dataset on

a Desktop computer. One has to restrict the analysis to a ROI if restricted memory is a

problem.

We provide information on memory usage and CPU-time for various steps of the analysis

and three DWI data sets in Table 1. Dataset 1 (first column) is small, with few gradient

directions and without replicated non-diffusion weighted images. Datasets 2 (center) and

3 (third column) are characterized by a large number of gradients and replicated non-
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Figure 4: Real DWI data example: The left column shows the estimated color-coded direc-

tional map weighted with FA for slices 22-24 of the CIBC-dataset [32]. White squares mark

the extend of the region used in the right column. There, the noisy (top) and smoothed

(bandwidth 4, bottom) tensors are visualized. Structural adaptive smoothing apparently

leads to a homogenization of the regions without blurring the structural borders.
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Figure 5: Results for a region within slices 28-30 of the CIBC-dataset [32]. See caption of

Figure 4 for interpretation of content.
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Table 1: Memory usage and computing time for three DWI data sets. The first column

corresponds to the CIBC-dataset [32], the second to a data set kindly made available by

A. Anwander, and a third data set kindly made available by H.U. Voss.
Dimensions 101× 146× 38 72× 100× 50 146× 193× 47

# gradient directions 13 201 150

Size of dtiData-object 27.8 MB 276.1 MB 757.8 MB

Size of dtiTensor-object 33.0 MB 20.8 MB 76.1 MB

Size of dtiTensor-object(smoothed) 41.6 MB 26.3 MB 96.3 MB

Size of dtiIndices-object 162 MB 24.7 MB 91 MB

Total memory (reported by gc()) 525 MB 2144 MB 6048 MB

# voxel in mask 211235 255257 863134

CPU-time for sdpar 41 s 27 s 126 s

CPU-time for dtiTensor 16 s 118 s 156 s

CPU-time for dti.smooth (hmax = 2) 220 s 667 s 893 s

CPU-time for dti.smooth (hmax = 4) 415 s 1256 s 2140 s

CPU-time for dtiIndices 3.1 s 3.7 s 11 s

Mean Ni (hmax = 2/4) 3.67/16.5 1.20/1.87 1.55/4.32

diffusion weighted images. All datasets have been reduced in size to a cube containing all

voxel within the head. Computations are restricted to voxel inside the head using a mask.

The first two datasets have been processed on a PC equipped with an Intel(R) Core(TM)2

Duo E 6850 3 GHz and 4 GByte of memory. For the third dataset we used an Intel(R)

Xeon(R) CPU 5160 3GHz and 24 GByte of memory. The operating system was OpenSuse

11.0 with R-version 2.7.1.

The values recorded for the mean sum of weights (mean of Ni) for the three data sets

reflect the very different variability of the tensor estimates due to the varying number of

gradients used.

5.8 Future plans

The diffusion tensor model does not appropriately describe diffusion weighted data, since

it does not account for complex intravoxel structure (fiber crossings) and partial volume

effects. We are therefore currently developing a structure adaptive algorithm for HARDI-

data, which combines smoothing the diffusion weighted images, estimation of the ODFs

or other angular distribution measures and fiber tracking in one algorithm.

We are open to suggestions for improving the package, as well as reports on bugs. We
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hope the package will provide an easy-to-use basis for analysis of diffusion weighted data

with R and will be useful for a broad audience.
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