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Abstract

Diffusion weighted imaging has become and will certainly continue to be an important
tool in medical research and diagnostics. Data obtained with diffusion weighted imaging
are characterized by a high noise level. Thus, estimation of quantities like anisotropy
indices or the main diffusion direction may be significantly compromised by noise in clinical
or neuroscience applications.

Here, we present a new package dti for R, which provides functions for the analysis
of diffusion weighted data within the diffusion tensor model. This includes smoothing by
a recently proposed structural adaptive smoothing procedure based on the propagation-
separation approach in the context of the widely used diffusion tensor model. We extend
the procedure and show, how a correction for Rician bias can be incorporated. We use a
heteroscedastic nonlinear regression model to estimate the diffusion tensor. The smooth-
ing procedure naturally adapts to different structures of different size and thus avoids
oversmoothing edges and fine structures.

We illustrate the usage and capabilities of the package through some examples.

Keywords: structural adaptive smoothing, diffusion weighted imaging, diffusion tensor model,
Rician bias, R.

1. Introduction

The basic principles of magnetic resonance diffusion weighted imaging (DWI) were introduced
in the 1980’s (LeBihan and Breton 1985; Merboldt, Hanicke, and Frahm 1985; Taylor and
Bushell 1985), after nuclear magnetic resonance (NMR) had long been known to be sensitive
to diffusion of molecules in complex systems (Carr and Purcell 1954). Since then, DWI has
evolved into a versatile tool for in-vivo examination of tissues in the human brain (Le Bihan,
Mangin, Poupon, Clark, Pappata, Molko, and Chabriat 2001) and spinal cord (Clark, Barker,
and Tofts 1999). DWI probes microscopic structures well beyond typical image resolutions
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through water molecule displacement, a fact attracting broad interest in this technique. It
can be used in particular to characterize the integrity of neuronal tissue in the central nervous
system.

NMR images are acquired from signals measured in k-space by fast Fourier transform. In the
case of single receiver coil systems and additive complex Gaussian noise in k-space, referred
to as thermal noise below, this results in image grey values that follow a Rician distribution
Rice(θ, σ) (Rice 1945). This distribution is characterized by two parameters: θ, corresponding
to the signal of interest, and σ related to the noise standard deviation in k-space.

Diffusion in neuronal tissue depends on the particular microscopic structure of the tissue and
is usually not isotropic. Different diffusion directions ~b can be probed by applying bipolar
magnetic field diffusion gradients (Stejskal and Tanner 1965). Let S~b denote the acquired dif-
fusion weighted image with the ”b-value” b, which depends on the pulse sequence parameters.
The non-diffusion weighted image (b = 0) is denoted by S0. Due to the diffusion of water
molecules during the application of the magnetic field gradient, the signal S~b is attenuated
relative to S0:

S~b ∼ Rice(θ0 exp(−bD(~b)), σ) , S0 ∼ Rice(θ0, σ) (1)

where D(~b) is the diffusion constant probed in direction ~b.

Equation 1 imposes several problems for the data analysis. I. The model for the measured
data S is nonlinear in D. II. The measured data S suffers from noise typical for NMR
images. While for the non-diffusion weighted image S0 a Gaussian noise model seems to be
an appropriate approximation, the Rician distribution of the attenuated signal values S~b can
be significantly different from a Gaussian. Ignoring this introduces a bias into the estimation
of the diffusion constant and hence all derived quantities. III. The lower the noise level in the
measured data is, the more accurately the diffusion constant can be estimated. Thus, a noise
reduction would be helpful to improve the accuracy of the diagnostic measures derived from
the data.

Typically, diffusion weighted images S~b are measured for up to 100 (or more) diffusion gradient
directions ~b resulting in very high-dimensional data. It was the development of diffusion
tensor imaging (DTI, Basser, Mattiello, and LeBihan 1994a,b), see also Mori (2007) for an
introduction, which triggered a plethora of clinical and neuroscience applications of DWI.
There, the high-dimensional information in the diffusion weighted images is reduced to a
Gaussian distribution model for free anisotropic diffusion. Within this model, diffusion is
completely characterized by a rank-2 diffusion tensor D, a symmetric positive definite 3 × 3
matrix with six independent components. This model describes diffusion completely if the
microscopic diffusion properties within a voxel are homogeneous and non-restricted. In the
presence of partial volume effects, like crossing fibers, this model is only an approximation.
For these cases, more sophisticated models exist, which rely on the measurement of diffusion
weighted images with high angular resolution (Tuch, Weisskoff, Belliveau, and Wedeen 1999;
Frank 2001). These shall not be considered in this paper.

Due to recording the image volumes sequentially in time the data acquisition process is prone
to artifacts caused e.g., by head motion, respiration and heartbeat. Image registration is
usually applied to reduce these effects. We refer to Brammer (2001); Lazar (2008) or Mori
(2007) for an overview and to Eddy, Fitzgerald, and Noll (1996) or Cox and Jesmanowicz
(1999) for more specific algorithms. For a comparison of software packages for registration
see Oakes, Johnstone, Walsh, Greischar, Alexander, Fox, and Davidson (2005).
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DTI suffers from significant noise which may render subsequent analysis or medical decisions
more difficult. Noise here summarizes several effects (Lazar 2008), e.g., thermal noise caused
by thermal motion of electrons, physiological noise summarizing effects of the respiratory
and cardiological cycles and system noise created by fluctuations within the MR hardware.
Physiological noise can partly be controlled within the acquisition process (Hu, Le, Parrish,
and Erhard 1995; Glover, Li, and Ress 2000). In the presence of thermal noise the estimation
of anisotropy indices from the diffusion tensor is known to be systematically biased (Basser
and Pajevic 2000; Hahn, Prigarin, Heim, and Hasan 2006). In addition to the common
random errors the order of the diffusion eigenvectors of the tensor which is essential for fiber
tracking is subject to a sorting bias especially at high noise levels. Noise reduction is therefore
essential.
Smoothing in tensor space, using log-Euclidian or Riemannian metrics and anisotropic or
non-linear diffusion is e.g., proposed in Fletcher (2004); Pennec, Fillard, and Ayache (2006);
Arsigny, Fillard, Pennec, and Ayache (2006); Fillard, Arsigny, Pennec, and Ayache (2007a)
and Fletcher and Joshi (2007).
In Tabelow, Polzehl, Spokoiny, and Voss (2008) we proposed a new smoothing method for
noise reduction in DTI based on the propagation-separation (PS) approach (Polzehl and
Spokoiny 2006). The procedure has been shown to naturally adapt to the structures of
interest at different scales (Tabelow et al. 2008; Polzehl and Spokoiny 2006). Thus, it avoids
loss of information on size and shape of structures, which is typically observed when using
non-adaptive filters. This is especially important for DTI, where the structures of interest,
the white matter fibers, may be very small and anisotropic.
Extending Tabelow et al. (2008) we in this paper discuss the estimation of the diffusion
tensor from the diffusion weighted data using heteroscedastic non-linear regression, propose
a model for heteroscedastic variances and provide a solution for Rician bias correction within
the structural adaptive smoothing procedure. We present a new package dti (Tabelow and
Polzehl 2009b) for R (R Development Core Team 2009), which implements this extended
PS approach for reducing the noise by adaptive smoothing of diffusion weighted data in the
context of the diffusion tensor model. The package provides methods for all steps in a common
diffusion tensor analysis from data access to visualization of estimated tensors and indices.
The paper is organized as follows: In Section 2 we review the basic notation of DTI and discuss
linear as well as non-linear estimation methods for the diffusion tensor and the estimation of
heteroscedastic variances. Section 3 is dedicated to Rician bias and its correction. We outline
the extended structural adaptive smoothing procedure in Section 4. Finally, we describe the
usage and capabilities of the R package dti and provide several examples in the last Section 5.

2. Diffusion tensor imaging

2.1. The diffusion tensor model and its quantities

Using a Gaussian model of diffusion, the anisotropy can be described by a rank-2 diffusion
tensor D, which is represented by a symmetric positive definite 3× 3 matrix:

D =

 Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 . (2)
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The ”b-value” in Equation 1 is replaced by a ”b-matrix” (Mattiello, Basser, and LeBihan 1994,
1997), leading to

S~b ∼ Rice(θ0 exp(−~b ~D), σ) (3)

where (bij)i,j=x,y,z denotes the matrix b = b · ~b ~b>, ~b = (bxx, byy, bzz, 2bxy, 2bxz, 2byz) and
~D = (Dxx, Dyy, Dzz, Dxy, Dxz, Dyz)>.

The components of the diffusion tensor clearly depend on the orientation of the object in the
scanner frame xyz. Only rotationally invariant quantities derived from the diffusion tensor
circumvent this dependence and are usually used for further analysis, mainly based on the
eigenvalues µi (i = 1, 2, 3) of D with µi > 0 for positive definite tensors. The eigenvector ~e1
corresponding to the principal eigenvalue µ1 determines the main diffusion direction used for
fiber tracking.

The simplest quantity based on the eigenvalues is the trace of the diffusion tensor

Tr(D) =
3∑
i=1

µi . (4)

which is related to the mean diffusivity 〈µ〉 = Tr(D)/3. The anisotropy of the diffusion can be
described using higher moments of the eigenvalues µi. The widely used fractional anisotropy
(FA) is defined as

FA =

√
3
2

√√√√ 3∑
i=1

(µi − 〈µ〉)2 /
3∑
i=1

µ2
i (5)

with 0 ≤ FA ≤ 1, where FA = 0 indicates equal eigenvalues and hence no diffusion anisotropy.

The resulting FA maps together with a color-coding scheme are helpful for medical diagnostics.
The principal eigenvector ~e1 = (e1x, e1y, e1z) is used for assigning each voxel a specific color,
interpreting e1x, e1y, and e1z as red, green, and blue contribution weighted with the value
FA:

(R,G,B) = (|e1x|, |e1y|, |e1z|) · FA (6)

In contrast to the eigenvalues and the fractional anisotropy the principal eigenvector depends
on the orientation of the object in the scanner frame xyz. Thus, the color coding depends on
patient orientation.

The multiplication with the FA-value in Equation 6 leads to darker areas with low fractional
anisotropy in contrast to bright white matter areas with large values for FA. However, the
intensity of a color image is approximately given by R +G+ B = (|e1x|+ |e1y|+ |e1z|) · FA
which depends on the orientation of the object. Additionally, a grey value reproduction of
such a color-coded FA-map may show similar grey values for different FA-values and vice
versa. One could therefore use a slightly different color encoding

(R,G,B) = (e21x, e
2
1y, e

2
1z) · FA ,

since due to eigenvector normalization we have R + G + B = (e21x + e21y + e21z) · FA = FA.
Also note, that the direction corresponding to a specific color is not unique since the signs of
the eigenvector components are lost. This problem can be circumvented when the diffusion
tensor ellipsoid is shown in 3D using the color scheme.
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As an alternative to the fractional anisotropy the geodesic anisotropy (GA)

GA =

√√√√ 3∑
i=1

(log(µi)− log(µ))2, log(µ) =
1
3

3∑
i=1

log(µi) (7)

has been proposed (Fletcher 2004; Corouge, Fletcher, Joshi, Gouttard, and Gerig 2006) to
take the metric structure of the tensor space into account. Note, that 0 ≤ GA <∞.

The diffusion tensor represents a diffusion ellipsoid with the three main axis given by µi. To
describe the shape of the diffusion tensor a decomposition into three basic shapes – spherical,
planar, and linear – can be used (Westin, Maier, Khidhir, Everett, Jolesz, and Kikinis 1999;
Alexander, Hasan, Kindlmann, Parker, and Tsuruda 2000):

Cs =
µ3

〈µ〉

Cp =
2(µ2 − µ3)

3〈µ〉

Cl =
(µ1 − µ2)

3〈µ〉
, (8)

where the sum of the three contributions is Cs + Cp + Cl = 1. Again, we can interpret the
three shape values as red, green, and blue component of a color assigned to the voxel in order
to visualize the tensor shape.

2.2. Linear estimation of the diffusion tensor

To completely determine the diffusion tensor, one has to acquire diffusion weighted images
for at least Ngrad = 7 gradient directions ~b including the non-diffusion-weighted image S0.
However, since the estimation errors of the eigenvalues are not rotationally invariant, about
30 gradient directions are required for a robust quantitative measurement of eigenvalues and
tensor orientation (Jones 2003, 2004; Kinglsey 2006).

In one of our previous publications (Tabelow et al. 2008) at each voxel i the diffusion tensor
Di has been estimated via multiple linear regression using the equation:

− ln
S~b,i
S0,i

= ~b ~Di + ε~b,i , (9)

and the assumption that the errors ε~b,i are i.i.d. Gaussian N (0, σi). The noise variance σ2
i

in voxel i has been estimated from the residuals in the linear model, while the variance of
the estimated tensor was assessed from this estimate and the “b-matrix”. There are at least
two weaknesses in this approach. First, due to the log-transform, error variances are highly
heteroscedastic and therefore the ordinary least squares estimate is inefficient and its variance
estimate biased. Even more important, if the tensor model is inadequate the residuals from (9)
contain structure that is not explained by the model and hence, the variance of the estimated
tensor may be strongly over-estimated. This decreases the statistical penalty in the adaptive
smoothing procedure proposed in Tabelow et al. (2008) and therefore reduces the effectivity of
adaptation. This drawback is avoided with non-linear tensor estimation by use of a modified
statistical penalty, see Section 4.
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2.3. Non-linear estimation of the diffusion tensor

The drawbacks connected with the use of the log-transform of the data in the linearized
model (9) can be avoided by using the heteroscedastic non-linear regression model

S~b,i = θ0,i exp(−~b ~Di) + ε~b,i , Eε~b,i = 0 , Varε~b,i = σ2
~b,i
. (10)

for all ~b including the non-diffusion weighted gradient (b = 0). In this model the parameter θ0
reflects the expected intensity in non-diffusion weighted images. In order to enforce positive
definiteness of the tensor estimates it is possible to re-parameterize the model (10) using
the Choleski decomposition D = R>R with an upper triangular matrix R with non-zero
diagonal elements (Koay, Carew, Alexander, Basser, and Meyerand 2006). In Koay, Chang,
Pierpaoli, and Basser (2007) the efficiency of this projection method in comparison with
an unconstrained nonlinear regression model (10) has been investigated. For alternative
regularization techniques see e.g., Arsigny et al. (2006); Fillard et al. (2007a) or Pennec et al.
(2006). In our implementation we estimate the parameters θ0,i and Di in each voxel i using
the risk function R defined by

R(S·,i, θ,D) =
∑
~b

(S~b,i − θ exp(−~b ~D))2

σ2
~b,i

(11)

where the sum is over all diffusion gradient vectors ~b including the non-diffusion weighted
images (b = 0). In (

θ̂0,i

D̂i

)
= arg min

θ,D
R(S·,i, θ,D) (12)

we use an unconstrained minimization as long as the estimated diffusion tensor is positive
definite and the re-parameterization D = R>R (Koay et al. 2006), otherwise. Minimization is
done using a regularized Gauss-Newton algorithm (Schwetlick 1979, Algorithm 10.2.8). The
variability of the tensor estimates can be assessed using profile likelihood.

2.4. Variance estimates

In order to estimate the diffusion tensor using (11) and (12) we need to model the het-
eroscedastic variances σ2

~b,i
. Empirical evidence from various DWI data sets with replicated

non-diffusion weighted images suggests the existence of a wide range of image intensity values
where the standard deviation σ~b,i can be well approximated by a linear function of the ob-
served image intensity. Figure 1 illustrates the situation for two data sets with replicated S0

images. The linear dependence between noise variance and image intensity seems to reflect
properties of physiological noise.

We therefore use the following model for the error standard deviations

σ~b,i =


σ0 + σ1A0 θ~b,i < A0

σ0 + σ1θb,i A0 ≤ θ~b,i < A1

σ0 + σ1A1 A1 ≤ θ~b,i
(13)

Here A0 is set to the minimum, over voxel within the head, intensity in non-diffusion weighted
images. For A1 we use the 0.99 quantile of S0 intensities within the head. The choice of A0 and
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(A) Variance modeling: data set 1
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(B) Variance modeling: data set 2

Figure 1: Local polynomial estimates of mean standard deviation as a function of mean grey
value (solid) and density of mean grey values (dotted) observed for two DWI data sets with
replicated non-diffusion weighted images S0. The red and blue curves correspond to variance
estimates obtained from replicates (red) and mean variance estimates obtained from single
images (blue), respectively, using the model (13) in both cases. Data set 1 is not registered
causing a positive bias in voxelwise variance estimates from replications. The dashed curves
in the left panel provide the corresponding estimates using mean absolute deviation (mad) as
an alternative to voxelwise standard deviation (sd) to lower this effect. For a description of
the two data sets see Section 5.5.

A1 coincides with the range where we observe approximative linearity between the standard
deviation and the mean.

The parameters σ0 and σ1 are estimated by linear regression between estimated voxelwise
standard deviations and mean grey values in the case of a replicated non-diffusion weighted
image or from a single non-diffusion weighted image using adaptive smoothing with explicit
specification of the dependency between mean and standard deviation, see Polzehl and Tabe-
low (2007). In both cases the estimates will be restricted to use voxel with intensity within
the range (A0, A1).

3. Handling Rician bias in diffusion weighted images

3.1. Rician bias

Thermal noise in DWI can be modeled as additive Gaussian noise in both the real and
imaginary part of the signal in k-space. After fast Fourier transform into image space the
resulting observed signal follows a Rician distribution (Rice 1945) with parameters ζ and σ. ζ
is the signal of interest while σ corresponds to the standard deviation of the errors in k-space.
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The density of Rician distribution is given by

p(x) =
x

σ2
exp(−x

2 + ζ2

2σ2
)I0(

xζ

σ2
), (14)

where I0 is the modified zeroth-order Bessel function of the first kind. Mean and variance of
the Rician distribution are given by

EX = σ
√
π/2L1/2(−ζ2/2σ2) (15)

DX = 2σ2 + ζ2 − πσ2

2
L2

1/2(−ζ2/2σ2) (16)

with

L1/2(x) = ex/2[(1− x)I0(−x/2)− xI1(−x/2)]. (17)

For large ζ/σ we get EX ≈ ζ, while for small ζ/σ the expected value of the observed signal
is significantly larger than the parameter of interest ζ. This effect is called Rician bias and
is more pronounced in the diffusion weighted images where the signal is attenuated, see
Equation 1. The Rician bias in the diffusion weighted images may lead to a bias in the
estimated tensors as well as in quantities derived from the tensor, see Basu, Fletcher, and
Whitaker (2006). We therefore include a correction for Rician bias in our implementation.

3.2. Correction for Rician bias

In order to avoid the Rician bias we need to estimate the parameters ζ and σ of the un-
derlying Rician distribution from the measured signals S. Let us assume we have samples
Sn = {S1,k, . . . , Sn,k}

Ngrad

k=1 drawn from a Rician distribution Rice(ζk, σ). This resembles the
situation within DWI data assuming that the noise variance in k-space does not depend on
the gradient direction. For identifiability of the distribution parameters we need n > 1, which
can be achieved by locating voxel with similar parameters within a local vicinity, see Sec-
tion 4. Let now W = {w1, . . . , wn} define a set of weights. We can then define a weighted
log-likelihood function as

l(Sn; ζ, σ,W ) =
Ngrad∑
k=1

n∑
j=1

wj

(
log

Sj,k
σ2
−
S2
j,k + ζ2

k

2σ2
+ log I0

(
Sj,kζk
σ2

))
. (18)

Differentiating with respect to the parameters ζ and σ2 yields conditions for the likelihood
estimate of ζ = (ζ1, . . . , ζNgrad

) and σ2

d

dζk
l(Sn; ζ, σ,W ) =

n∑
j=1

wj
I1

(
Sj,kζk
σ2

)
I0

(
Sj,kζk
σ2

)Sj,k − ζk n∑
j=1

wj = 0 (19)

d

dσ2
l(Sn; ζ, σ,W ) =

Ngrad∑
k=1

n∑
j=1

wj

− 1
σ2

+
S2
j,k + ζ2

k

2σ4
−
I1

(
Sj,kζk
σ2

)
I0

(
Sj,kζk
σ2

) Sj,kζk
σ4

 = 0.
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The estimates ζ̂k and σ̂2 can thus be obtained as fixpoints of

ζ̂k =
1∑n

j=1wj

n∑
j=1

wj
I1

(
Sj,k ζ̂k

σ̂2

)
I0

(
Sj,k ζ̂k

σ̂2

)Sj,k (20)

σ̂2 =
1

Ngrad
∑n

j=1wj

Ngrad∑
k=1

n∑
j=1

wj

S2
j,k + ζ̂2

k

2
−
I1

(
Sj,k ζ̂k

σ̂2

)
I0

(
Sj,k ζ̂k

σ̂2

)Sj,kζ̂k


through iteration. As initial estimate we use the corresponding likelihood estimates for a
Gaussian distribution

ζ̂
(0)
k =

1∑n
j=1wj

n∑
j=1

wjSj,k (21)

σ̂2
(0)

=
(
∑n

j=1wj)
2

(
∑n

j=1wj)2 −
∑n

j=1w
2
j

1
Ngrad

∑n
j=1wj

Ngrad∑
k=1

n∑
j=1

wj(Sj,k − ζ̂k)2.

We use a prespecified number of iteration steps depending on the ratio ζ̂
(0)
k /σ̂

(0)
k , i.e., no

iteration if the ratio is larger than 10 and up to 6 iterations if the ratio is small.

If an estimate of σ can be obtained from the background it can be used in (20) alternatively,
see e.g., Fillard et al. (2007a).

4. Structural adaptive smoothing

We recently proposed a new structural adaptive smoothing algorithm for diffusion weighted
data in the context of the diffusion tensor model (Tabelow et al. 2008). The approach reduces
the error of the estimated tensor directions and tensor characteristics like fractional anisotropy
by smoothing the observed DWI data. The application of a standard Gaussian filter would
be highly inefficient in the DTI applications in view of the anisotropic nature of the diffusion
tensor and sharp boundaries between region with different tensor characteristics. Indeed, the
tensor direction remains constant mainly along the fiber directions. Averaging over a large
symmetric neighborhood of every voxel would thus lead to a loss of directional information.

In order to avoid such a loss our smoothing procedure sequentially determines at increasing
scales local weighting schemes with positive weights for voxel that show similar characteristics.
To achieve this we employ the structural assumption that for every voxel there exists a vicinity
in which the diffusion tensor is nearly constant. This assumption reflects the fact that the
structures of interest are regions with a homogeneous fractional anisotropy, a homogeneous
diffusivity, and a locally constant direction field. The shape of this neighborhood can be
quite different for different voxel and cannot be described by few simple characteristics like
bandwidth or principal directions.

The algorithm for the case of linear tensor estimates using model (9) has been described in
detail in Tabelow et al. (2008). Here, we shortly present a modified algorithm that is based
on the nonlinear regression model (10) for the diffusion tensor and incorporates the Rician
bias correction developed in the previous section:
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Algorithm:

� Initialization: Set k = 1, initialize the bandwidth h(1) = ch. For each voxel i initialize
ζ̂
(0)
~b,i

= S~b,i with the data, and D̂(0)
i and θ̂(0)

0,i by Equation 12, set N (0)
i = 1. Estimate the

parameters σ0 and σ1 of the variance model (13).

� Adaptation: For each voxel pair i, j, we compute the penalty

s
(k)
ij =

N
(k−1)
i

λCi(g, h(k−1))

[
R
(
ζ̂
(k−1)
·,i , θ̂

(k−1)
0,j , D̂(k−1)

j

)
−R

(
ζ̂
(k−1)
·,i , θ̂

(k−1)
0,i , D̂(k−1)

i

)]
with the risk R based on the previous estimates ζ̂(k−1)

·,i at voxel i. s
(k)
ij measures the

statistical difference between the estimates θ̂(k−1)
0 and D̂(k−1) at voxel i and j. Weights

are computed as

w
(k)
ij = Kloc

(
∆(i, j, D̃(k−1)

i )/h(k)
)
Kst

(
s
(k)
ij

)
,

with appropriate kernel functions Kloc and Kst, an anisotropic distance function ∆, and
a regularized tensor estimate D̃(k−1)

i , see Tabelow et al. (2008) for details.

� Rice bias correction and estimation of diffusion weighted images: Compute
ζ̂
(k)
.,i = (ζ̂(k)

1,i , . . . ζ̂
(k)
Ngrad,i

) by maximizing the log-likelihood (18)

ζ̂
(k)
.,i = argζ max

ζ,σ
l(Sn; ζ, σ,W (k)

i )

using the weighting scheme W (k)
i = (w(k)

i1 , . . . , w
(k)
in ) and evaluating Equations 21,20.

� Parameter estimation: Compute new estimates of the expected non-diffusion weighted
images θ0,i and diffusion tensors Di as θ̂

(k)
0,i

D̂(k)
i

 = arg min
θ,D

R(ζ̂(k)
.,i , θ,D),

see (12). Set N (k)
i =

∑n
j=1w

(k)
ij .

� Stopping: Stop if k = k∗ for a preselected number of iteration steps, otherwise set
h(k+1) = chh

(k), increase k by 1 and continue with the adaptation step.

The term Ci(g, h(k−1)) provides an adjustment under the assumption that spatial smoothness
of the errors can be modeled by a convolution of independent errors with a Gaussian kernel of
bandwidth g, see e.g., Tabelow et al. (2008) or Tabelow, Polzehl, Voss, and Spokoiny (2006)
for details. The Rician bias correction can be omitted using S.,i instead of ζ̂(k)

.,i in all steps.
λ is the main parameter of the procedure and can be determined by simulations, see Polzehl
and Spokoiny (2006) or Tabelow et al. (2008) for details.
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5. Using the package dti

This document refers to the versions 0.6-0 or later of the dti package which is available from the
Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.org/package=dti.
The software is under constant development, see Section 5.8 for details on the plans for the
next future. Changes are documented in the HISTORY file of the package.
For the analysis of diffusion weighted data, there is an overlap in functionality needed from
other packages. In order to fully use the package dti it is therefore required to install the
packages fmri (Tabelow and Polzehl 2009c) for reading and writing medical imaging formats
like ANALYZE, NIfTI, or DICOM as well as adimpro (Tabelow and Polzehl 2009a) and
rgl (Adler and Murdoch 2009) for visualization. These packages can also be downloaded from
CRAN.
For a typical analysis we assume the DWI data to reside in a directory, say "datadir", and
the gradient matrix in a file, say "gradient.txt". A script for the analysis could then have
the form

R> library("dti")
R> grad <- read.table("gradient.txt")
R> data <- readDWIdata(grad, "datadir", dataformat, ngrad)
R> data <- sdpar(data)
R> tensor <- dtiTensor(data)
R> tensor <- dti.smooth(data, hmax = 4)
R> dtind <- dtiIndices(tensor)

The steps of the analysis including visualization and some utility functions will be discussed
within the next subsections. Memory requirements and computation time will also be illus-
trated.
For an overview over the package capabilities see help(dti) and run the dti_art demo

R> demo("dti_art")

It creates the artificial dti data set used in Tabelow et al. (2008).

5.1. Data processing

Diffusion weighted data can often be found collected in (one or several) DICOM folders
depending on the acquisition protocol of the scanner, as well as preprocessed compilations of
ANALYZE or NIfTI files or other formats. The package provides a function readDWIdata()
to read data in these formats from one or more directories that contain solely the imaging
files. e.g., DICOM files for all slices and gradient directions. There may be cases, where the
slice ordering differs from the alphabetic order of the files. In these cases the order argument
of the function can be used.
A region of interest can be specified by index vectors xind, yind, zind for the three dimensions
of the data cubes. Reading a region-of-interest (ROI) of DICOM data from two directories is
e.g., performed by

R> grad <- read.table("gradient.txt")
R> dwiobj <- readDWIdata(grad, c("datadir/s0011/","datadir/s0012/"),
+ "DICOM", 72, xind = 129:196, yind = 129:196, zind = 25:30)

http://CRAN.R-project.org/package=dti
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The two-dimensional array grad has rows corresponding to the gradient vectors including
the non-diffusion weighted gradient (0, 0, 0) in the same order as the diffusion weighted data.
Note, that in case of DICOM folders depending on the acquisition protocol the slice order
may differ from the alphabetic order of the file names. We therefore provide the argument
order to put the slices into the correct order. The reason for not providing this automatically
is the until now limited capability of the read.DICOM() function in the fmri package.

As an alternative we provide a simple interface for the diffusion weighted data using a bi-
nary file. Such a file can be created using the I/O functions from the packages fmri, Ana-
lyzeFMRI (Marchini and de Micheaux 2008), DICOM (Whitcher 2005) or others. Diffusion
weighted data is a set of Ngrad three dimensional data sets (e.g., covering the brain) cor-
responding to Ngrad diffusion weighted images including the non-diffusion weighted images.
These data sets are written in the corresponding order into a binary file of 2 byte integer
values, denoted by "S-all" here:

R> con <- file("S-all", "wb")
R> for (gg in 1:16) {
+ data <- read.ANALYZE(,<filename>[gg])
+ writeBin(as.integer(extract.data(data)), con, 2)
+ }
R> close(con)

where <filename> refers to the array of file names for the ANALYZE files containing the
diffusion weighted and non-diffusion weighted images in this example. The data from the
binary file "S-all" can then be read into the R session using the function dtiData().

R> dwiobj <- dtiData(grad, "S-all", ddim)

All three arguments are required. Argument ddim denotes the dimension vector of length 3
of the data set, while the number Ngrad of diffusion weighted images is implicitely given by
the dimension of grad. help(dtiData) provides documentation of the function and more
arguments, e.g., the choice of a ROI. The result dwiobj is an object of class "dtiData", see
Section 5.2 for details on the class definitions within the package.

R> dwiobj <- sdpar(dwiobj, interactive = TRUE)

is a function to interactively set a threshold that characterizes grey values in non-diffusion
weighted images of voxel within the head and to estimates the parameters of the variance
model (13). To assist the selection of a cut-off point densities of S0 intensities are provided
for the full data cube as well as three central subcubes of different size. The left mode of
the densities is expected to correspond to voxel outside the head, i.e., a cut off point should
be selected on the right of this first mode, see the vertical red line in Figure 2. If not called
explicitely this function will be used by dtiTensor() in its non-interactive mode.

In the current version of the package diffusion weighted data is processed within the diffusion
tensor model. The method dtiTensor() on any object of class "dtiData" estimates the
diffusion tensor:

R> dtobj <- dtiTensor(dwiobj)
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Figure 2: Selection of cut-off points for characterization of voxel within the head.

The standard method for the tensor estimation uses the non-linear model (10) described in
Section 2.3. However, the linearized model (9) can be used by specifying the argument method
= "linear". The resulting dtobj is an object of class "dtiTensor", see Section 5.2.

From the diffusion tensor a number of measures based on the eigenvalue representation of
the tensor can be derived, like the trace, fractional anisotropy (FA), geodetic anisotropy
(GA), shape parameters or the principal eigenvector defining the main diffusion direction, see
Section 2. The method dtiIndices() on objects of class "dtiTensor" returns an object of
class "dtiIndices" containing all these quantities:

R> dtind <- dtiIndices(dtobj)

Visualization of the results can be done using the generic plot() functions on all three objects
dwiobj, dtobj, and dtind, which show slices of the data, the tensor components, and color
coded directional maps, respectively. If appropriate the plot() function returns an adimpro-
image which can be further processed using functions from the adimpro package (Polzehl
and Tabelow 2007). 3D visualization for diffusion tensors and indices is provided by generic
function show3D() which makes use of the rgl package.

5.2. Objects and methods

The package implements S4 classes and methods. The main class is "dti" from which no
instances should be created. This class inherits to three subclasses "dtiData" for diffusion
weighted data, "dtiTensor" for the estimated diffusion tensor objects and "dtiIndices" for
tensor indices like fractional anisotropy. The class constructors provide consistency checks
for these objects. Although not recommended, it is possible to access the slots directly. See
class?dti for documentation of the classes. For all subclasses methods for the generic func-
tions plot(), print(), and summary() have been implemented. Generic functions extract()
and "[<-" allow for extraction of information and index operation, respectively. See
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methods?name for documentation of the methods and help(name) for information on the
functions.

5.3. Data smoothing

Due to the high noise level in diffusion weighted data the package dti provides structural
adaptive smoothing of diffusion weighted data as one of its main features. The method
dti.smooth() implements the procedure described in the first sections of this paper. Since
the algorithm directly smooths the diffusion weighted images it is only implemented for objects
of class "dtiData".
dti.smooth() can be used with several parameter switches. One choice is between linear and
non-linear tensor estimation as described in the Section 2 of this paper. The default is set
to non-linear estimation. Another choice is whether to include the correction for Rician bias,
which defaults to TRUE.

R> dtobjsmooth <- dti.smooth(dwiobj, hmax = 3, method = "linear",
+ rician = TRUE)
R> dtindsmooth <- dtiIndices(dtobjsmooth)
R> plot(dtindsmooth, slice = 30)

The main smoothing parameter is the maximum bandwidth hmax used for the iteration. It
directly influences the amount of smoothness in the homogeneous regions of the data, and the
complexity of the calculations via the number of iteration steps k?. Typical values are in the
range of 2–4 (voxel).
Other parameters are technical and include the degree of adaptation, the degree of regular-
ization of the tensor estimates for small bandwidths, some display parameters, and choices
about the variance model, in case of method = "linear", to be used in the estimation of the
variance of the tensor estimates (see help(dti.smooth)). They are intended for expert use
only.

5.4. Data visualization

For all subclasses of "dti" we implemented the generic plot() function to visualize the
objects in two dimensions. If appropriate the function returns an object of class "adimpro"
for further processing with the functions of the package adimpro. For "dtiData" objects a
slice of the selected diffusion weighted image is shown. For "dtiTensor" objects the tensor
components of the selected slice are shown. No image is returned. For "dtiIndices" objects
a color coded directional map is shown and returned as adimpro object. See the documention
(methods?plot) for details and left part of Figures 4 and 5 for examples.
Based on the package rgl and OpenGL the package dti provides a 3D visualization with the
method show3d() for classes "dtiTensor" and "dtiIndices": For a tensor object ellipsoids
are shown, while for the tensor indices lines are drawn with length corresponding to the
FA value, see Figure 3.

5.5. Experimental data examples

For the illustrations in this manuscript we used three different DWI data sets which we briefly
describe here.
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1Figure 3: Artificial example from Tabelow et al. (2008): True tensor (left), voxelwise tensor
estimates suffering from noise (center) and smoothed tensor estimates (right). A threshold of
0.3 for FA values is used.

Data set 1 This data set has been made available by H.U. Voss (Citigroup Biomedical
Imaging Center, Weill Medical College of Cornell University). The imaging parameters were
as follows: We utilized parallel imaging on an 8-channel brain coil (acceleration factor of 2),
on a 3.0 Tesla General Electric Excite MRI scanner. We used a single-shot spin-echo EPI
sequence with 10 image without diffusion weighting and 140 diffusion gradient directions,
which were approximately isotropically distributed over the sphere. Echo and repeat time
were TE = 58.8ms, TR = 12725ms, respectively, and 72 axial slices with a matrix size of
128 × 128 were acquired. Images were zero filled to a matrix size of 256 × 256, yielding a
resolution of 0.9×0.9×1.8mm3. The b-value in the diffusion weighted images was 800s/mm2.

Data set 2 This data set has been made available by A. Anwander (Max Planck Institute
for Human Cognitive and Brain Sciences Leipzig, Germany). The data cube consists of
128×128×72 voxel, with spatial resolution 1.71875×1.71875×1.7mm3. 60 diffusion encoding
gradients with an b-value of 1000s/mm2 have been applied with 7 zero weighted images at
the beginning and after each block of 10 diffusion weighted images. The whole sequence was
replicated three times yielding a total of 180 diffusion weighted and 21 zero weighted images.
The data cubes have been registered. Image intensities have been normalized to a relatively,
compared to data set 1, small range during image reconstruction, see x-axis in Figure 1.

Data set 3 This data set (CIBC 2008) was made available by the NIH/NCRR Center
for Integrative Biomedical Computing, P41-RR12553. These images are typical examples of
diffusion tensor imaging of the brain. They contain twelve diffusion weighted volumes and
one non-diffusion weighted (b = 0) reference volume. The data has a spatial resolution of 1.5
mm on each axis. The front of the head is at the top of the image. This scan goes from the
top of the head down to about the middle of the brain, below the corpus callosum, but above
the eyes.

The DTI data was collected on a 3 Tesla MRI scanner in the W.M. Keck Laboratory for
Functional Brain Imaging and Behavior by Dr. Andrew Alexander, Departments of Medical
Physics and Psychiatry, University of Wisconsin, Madison, funding: NIH RO1 EB002012.

The Figures 4 and 5 illustrate some of the properties of the structural adaptive smoothing
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Figure 4: Real DWI data example: The left column shows the estimated color-coded direc-
tional map weighted with FA for slices 22-24 of the CIBC data set (CIBC 2008). White
squares mark the extend of the region used in the right column. There, the noisy (top)
and smoothed (bandwidth 4, bottom) tensors are visualized. Structural adaptive smoothing
apparently leads to a homogenization of the regions without blurring the structural borders.
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Figure 5: Results for a region within slices 28-30 of the CIBC data set (CIBC 2008). See
caption of Figure 4 for interpretation of content.
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algorithm, namely the homogenization of the directional field within homogenous regions and
the preservation of borders.

5.6. Interface to MedINRIA

In the current version of the package dti no fiber tracking algorithms are implemented. There-
fore, we decided to provide an interface to MedINRIA (Fillard, Souplet, and Toussaint 2007b)
which runs on different major platforms. The function tensor2medinria() writes a NIfTI
file with the tensor data in an appropriate format which can be read by MedINRIA.

R> tensor2medinria(dtobj, file = <filename>)

It is also possible to read a tensor object from MedINRIA given as NIfTI file for further
processing like structure adaptive smoothing with the package dti in R:

R> dtobj <- medinria2tensor(file = <filename>)

5.7. Computation time and memory requirements

A word of caution concerning the memory usage of the implementation is in place here: DWI
data sets are usually very large. A typical full brain data set of matrix size 256×256 and about
70 slices measured at 30 diffusion gradient directions in 2-byte integer representation needs
256×256×70×30×2 ≈ 262.5 MBytes. The structure adaptive smoothing algorithm operates
on all diffusion weighted images. In the current implementation these data are therefore kept
in memory and it is usually not possible to run a full data set on a Desktop computer. One
has to restrict the analysis to a ROI if restricted memory is a problem.

We provide information on memory usage and CPU-time for various steps of the analysis
and three DWI data sets in Table 1. Data set 3 (first column) is small, with few gradient
directions and without replicated non-diffusion weighted images. Data sets 2 (center) and 3
(third column) are characterized by a large number of gradients and replicated non-diffusion
weighted images. All data sets have been reduced in size to a cube containing all voxel within
the head. Computations are restricted to voxel inside the head using a mask. The first two
data sets have been processed on a PC equipped with an Intel Core 2 Duo E 6850 3 GHz
and 4 GByte of memory. For the third data set we used an Intel Xeon CPU 5160 3 GHz and
24 GByte of memory. The operating system was OpenSuse 11.0 with R version 2.7.1.

The values recorded for the mean sum of weights (mean of Ni) for the three data sets reflect
the very different variability of the tensor estimates due to the varying number of gradients
used.

5.8. Future plans

The diffusion tensor model does not appropriately describe diffusion weighted data, since it
does not account for complex intravoxel structure (fiber crossings) and partial volume effects.
We are therefore currently developing a structure adaptive algorithm for HARDI data, which
combines smoothing the diffusion weighted images, estimation of the ODF’s or other angular
distribution measures and fiber tracking in one algorithm.



Journal of Statistical Software 19

Dimensions 101× 146× 38 72× 100× 50 146× 193× 47
# gradient directions 13 201 150
Size of dtiData object 27.8 MB 276.1 MB 757.8 MB
Size of dtiTensor object 33.0 MB 20.8 MB 76.1 MB
Size of dtiTensor object(smoothed) 41.6 MB 26.3 MB 96.3 MB
Size of dtiIndices object 162 MB 24.7 MB 91 MB
Total memory (reported by gc()) 525 MB 2144 MB 6048 MB
# voxel in mask 211235 255257 863134
CPU-time for sdpar() 41 s 27 s 126 s
CPU-time for dtiTensor() 16 s 118 s 156 s
CPU-time for dti.smooth() (hmax = 2) 220 s 667 s 893 s
CPU-time for dti.smooth() (hmax = 4) 415 s 1256 s 2140 s
CPU-time for dtiIndices() 3.1 s 3.7 s 11 s
Mean Ni (hmax = 2/4) 3.67/16.5 1.20/1.87 1.55/4.32

Table 1: Memory usage and computing time for three DWI data sets. The first column
corresponds to the CIBC data set (CIBC 2008), the second to a data set kindly made available
by A. Anwander, and third column to data set 1 kindly made available by H.U. Voss, see
Section 5.5.

We are open to suggestions for improving the package, as well as reports on bugs. We hope
the package will provide an easy-to-use basis for analysis of diffusion weighted data with R
and will be useful for a broad audience.
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