
JSS Journal of Statistical Software
April 2007, Volume 19, Issue 1. http://www.jstatsoft.org/

Adaptive Smoothing of Digital Images: The R
Package adimpro

Jörg Polzehl
WIAS, Berlin

Karsten Tabelow
WIAS and MATHEON, Berlin

Abstract

Digital imaging has become omnipresent in the past years with a bulk of applications
ranging from medical imaging to photography. When pushing the limits of resolution
and sensitivity noise has ever been a major issue. However, commonly used non-adaptive
filters can do noise reduction at the cost of a reduced effective spatial resolution only.

Here we present a new package adimpro for R, which implements the propagation-
separation approach by (Polzehl and Spokoiny 2006) for smoothing digital images. This
method naturally adapts to different structures of different size in the image and thus
avoids oversmoothing edges and fine structures. We extend the method for imaging data
with spatial correlation. Furthermore we show how the estimation of the dependence
between variance and mean value can be included. We illustrate the use of the package
through some examples.

Keywords: adaptive weights, local structure, propagation, separation, image processing, smooth-
ing, R.

1. Introduction

Digital imaging has seen a huge progress over the last decade through the broad availability of
digital cameras. An image in its digital form can easily undergo image processing (Gonzalez
and Woods 2002) in order to improve its quality, to enhance certain details, or to simply
achieve some artistic effect. In the search for ever increased resolution and sensitivity denoising
has been a major issue since the sources of noise are inherently connected with the physical
properties of the technology. Many of the cameras therefore include smoothing algorithms
in their imaging process in order to achieve a maximum of image quality for any lightening
conditions.

However, denoising algorithms have to balance the trade-off between denoising and preserva-
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tion of structure. Non-adaptive Gaussian filters typically tend to oversmooth edges and thus
reduce noise at the cost of sharpness of the image. In order to overcome such a drawback there
has been a lot of work in the recent years on edge preserving algorithms. Standard algorithms
are based on non-linear diffusion (Weickert 1998), or wavelets (Mallat 1998; Whitcher 2006).
Recent developments include curvelets, contourlets, and bandelets (Candés and Donoho 1999;
Do and Vetterli 2005; Le Pennec and Mallat 2005; Candes, Demanet, Donoho, and Ying 2007;
Do 2003).

Here, we use a new spatially adaptive smoothing algorithm that has been proposed in a series
of papers (see e.g., Polzehl and Spokoiny 2000, 2006). In contrast to classical non-adaptive
filters the smoothing method based on the propagation-separation (PS) approach naturally
adapts to different structures of different size in the image. This is realized through local
adaptive weighting schemes which ensure two main properties of the algorithm from which
it draws its name. The propagation property means, that the smoothing algorithm behaves
like a non-adaptive filter in homogeneous regions. On the other hand the separation property
characterizes the restriction of the weighting scheme to homogeneous regions with respect to
a specified model for the image data. The procedure has been very successfully applied to
the analysis of functional magnetic resonance imaging (Polzehl and Spokoiny 2001; Tabelow,
Polzehl, Voss, and Spokoiny 2006). Furthermore it has been suggested to use this adaptive
smoothing method in the context of image denoising (Polzehl and Spokoiny 2000, 2007).

In this paper we present an implementation of an algorithm based on PS for denoising of
grayscale and color images. The R (R Development Core Team 2007) package adimpro is
available from the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.
org/.

Let i = (ih, iv) ∈ IR2, 1 ≤ ih ≤ nh, 1 ≤ iv ≤ nv denote the n = nh × nv pixel coordinates
of a 2D -image and Yi ∈ Y ⊆ IRq an observed gray value (q = 1) or a vector of color values
(q ∈ {3, 4}) at coordinates i . We assume that the distribution of each Yi is determined by
a parameter θi = θ(i) which may depend on the coordinates i .

Example 1.1 [Gray scale images] Every Yi follows a Gaussian distribution with mean θi

and unknown variance σ2 that may depend on θi .

Example 1.2 [Color images] In color images Yi denotes a vector of values in a 3 dimensional
color space at pixel coordinates i . A 4th component may code transparency information. The
observed vectors Yi can often be modeled as multivariate Gaussian, i.e. Yi ∼ Nq(θi, Σi) with
some unknown covariance Σ that again may depend on θi .

Depending on the image acquisition process noise in digital images may have another distri-
bution than a simple Gaussian (Gonzalez and Woods 2002). In all examples the situation
may be aggravated by spatial correlation due to physical reasons or preprocessing steps.

The paper is organized as follows. Color images require the definition of some appropriate
space to represent color. Section 2 therefore reviews the definition of some important color
spaces. Section 3 provides the smoothing algorithm based on the propagation-separation
approach. Spatial correlation and models for heteroscedasticity can be incorporated into the
approach. We provide estimates for both spatial correlation and heteroskedastic variances.
Examples are given in Section 4.

http://CRAN.R-project.org/
http://CRAN.R-project.org/
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2. Color spaces

The concept of color spaces is closely related to the perception of color by the human eye.
Sunlight when passing a glass prism does show up a whole spectrum of pure colors ranging
from red to violet which blend smoothly into one another. They can be characterized by a
single wavelength of the corresponding electromagnetic wave that ranges from approximately
400 to 700nm. The superposition of such chromatic light is perceived by humans as another
color rather than recognizing the individual wavelengths separately (Malacara 2002). Thus
the mixture of chromatic red and green light is seen as yellow. In the human eye the cones are
responsible for color vision. It has been experimentally found that they can be mostly divided
into three principal sensing categories, corresponding roughly to red, green, and blue. Other
colors can therefore be seen as combinations of these three primary colors. This naturally
leads to the definition of the RGB color space in which each color is characterized by the
amounts of the primary colors necessary to build it up.
Many displaying devices like computer monitors directly make use of this color space through
excitation of different amounts of red, green and blue areas on the screen. Digital cameras
usually filter the three primary colors from the incoming light in the image acquisition process
using a Bayer mask (Bayer 1976). Encoding color in the internet or in imaging software follows
this scheme too. It should be noted, that not all visible color can be created by such mix, but
it should be sufficient for most applications.
However, this does not match the way humans describe color. For example bright or pale
yellow are seen as two variants of the same color rather than different mixtures of the three
primary colors. Taking this into account we can characterize color in terms of brightness,
hue, and saturation. Hue is associated with the dominant wavelength and corresponds to the
notion of color as we perceive it. The amount of white light mixed with the hue is referred to
as saturation. Therefore the pure spectral colors are fully saturated. Other colors like pink
are mixtures of a pure color with white and thus less saturated. The combination of hue and
saturation is called chromaticity. The brightness corresponds to the intensity as known from
grayscale images. The three characteristics mentioned above form the HSI color space.
Other color spaces like YUV or YIQ are related to the way, signal transport for television is
performed. One of the components (Y) again reflects the brightness of the image while the
other two refer to the chromaticity. Therefore black and white TV sets can simply ignore the
color information in the signal and nevertheless produce a reasonable output.
A specific color can be transferred from one color space into another. For example the
conversion from RGB to YUV is a linear transformation and can thus be represented as
a matrix multiplication. This makes the conversion a very fast operation. Details on the
conversion between the color spaces can be found in the literature (see Gonzalez and Woods
2002).
In the package adimpro grayscale and color images are represented by objects of class "adimpro".
Image data is stored as two and three dimensional arrays, respectively. The third dimension
for color images is 3 and contains the color information in a specific color space as described
above. The color space is coded in the attribute type and taken from the following list: yuv,
yiq, hsi, xyz, rgb, greyscale. It is possible to get information on an adimpro-object via
the generic summary-function. The package contains several functions to transform images
from one colorspace to another like:
R> img.yuv <- rgb2yuv(img.rgb)
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R> img.rgb <- hsi2rgb(img.hsi)

R> img.grey <- rgb2grey(img.rgb)

One can view any image with:
R> show.image(img.yuv)

3. Smoothing using structural adaptation

Efficient image denoising requires a reduction of random noise without compromising the
content of the image. The propagation-separation approach implemented in the package
adimpro is designed to achieve this goal. Image denoising is ideally done on images that have
been exposed to little preprocessing, like images coded in RAW or 16-Bit TIFF format. Lossy
preprocessing like conversion to JPEG should be avoided ahead of adaptive image denoising
to improve the quality of adaptation of the algorithm. Image acquisition in digital cameras
is usually done by measuring the intensity of light for the three primary colors using a Bayer
mask (Bayer 1976). The process of reconstruction of the missing color components for the
full resolution is called demosaicing but will be considered elsewhere (Polzehl and Tabelow
2007).
Let the distribution of Yi be specified up to a parameter θi that may depend on the coor-
dinates i of a pixel and some additional parameters ν , such as possibly heterogeneous error
variances. Let us also assume for a moment that we know how estimates of these parameters
can be obtained.
We presume that for each pixel i the function θ(.) can be well approximated by a constant
within a local vicinity Ui containing pixel i . This serves as our structural assumption.
Our estimation problem can now be viewed as consisting of two parts. In order to efficiently
estimate the function θ(.) at pixel coordinates i we need to describe a local model, i.e. to
assign weights Wi = {wi1, . . . , win} . If we knew the neighborhood Ui by an oracle we would
define local weights as wij = wj(i) = Ij∈Ui and use these weights to estimate θi as

θ̂i =
∑

j

wijYj . (1)

Since θ and therefore Ui are unknown the assignments will have to depend on the information
on θ that we can extract from the observed data. If we have good estimates θ̂j of θj we can
use this information to infer on the set Ui by testing the hypothesis

H : θj = θi. (2)

A weight wij can be assigned based on the value of a test statistic Tij , assigning zero
weights if θ̂j and θ̂i are significantly different. This provides us with a set of weights Wi =
{wi1, . . . , win} that determines a local model in i .
Given the local model we can then estimate our function θ(.) in each pixel i by (1).
We utilize both steps in an iterative procedure. We start with a very local model in each
point i given by weights

w
(0)
ij = Kloc(l

(0)
ij ) (3)

with l
(0)
ij = |i− j|/h(0) and |i− j|2 = (ih − jh)2 + (iv − jv)2 . The initial bandwidth h(0) is

chosen very small. Kloc is a kernel function supported on [−1, 1] , i.e. weights vanish outside
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a ball U (0)
i of radius h(0) centered in i . We then iterate two steps, estimation of θ(x) and

refining the local models. In the k th iteration new weights are generated as

w
(k)
ij = Kloc(l

(k)
ij )Kst(s

(k)
ij ) with (4)

l
(k)
ij = |i− j|/h(k) and s

(k)
ij = T

(k)
ij /λ. (5)

The bandwidth h is increased by a constant factor with each iteration k . The test statistic
for (2)

T
(k)
ij = N

(k−1)
i D(θ̂(k−1)

i , θ̂
(k−1)
j ; ν̂i) (6)

with N
(k−1)
i =

∑
j w

(k−1)
ij is used to specify the penalty s

(k)
ij . This term effectively measures

the statistical difference of the current estimates in i and j . In (6) the term D(θ, θ′; ν)
denotes a distance between the probability measures Pθ,ν and Pθ′,ν .

3.1. Adaptive weights smoothing

We now formally describe the resulting algorithm. For clarity of presentation we, for a
moment, defer the problem of estimating νi and modifications due to spatial correlation in
the image.

• Initialization: Set the initial bandwidth h(0) and compute, for every i the statistics

N
(0)
i =

∑
j

w
(0)
ij , and S

(0)
i =

∑
j

w
(0)
ij Yj (7)

and the estimates
θ̂
(0)
i = S

(0)
i /N

(0)
i (8)

using w
(0)
ij = Kloc(l

(0)
ij ) . Set k = 1 and h(1) = chh

(0) for some constant ch > 1 .

• Adaptation: For every pair i, j , compute the penalties

l
(k)
ij = |i− j|/h(k), (9)

s
(k)
ij = λ−1T

(k)
ij = λ−1N

(k−1)
i D(θ̂(k−1)

i , θ̂
(k−1)
j ; ν̂i). (10)

Now compute the weights w(k)
ij as

w
(k)
ij = Kloc

(
l
(k)
ij

)
Kst

(
s

(k)
ij

)
and specify the local model by W

(k)
i = {w(k)

i1 , . . . , w
(k)
in } .

• Local estimation: Now compute new local MLE estimates θ̂(k)
i of θ(xi) as

θ̂
(k)
i = S

(k)
i /N

(k)
i with N

(k)
i =

∑
j

w
(k)
ij , S

(k)
i =

∑
j

w
(k)
ij Yj .

• Stopping: Stop if h(k) ≥ hmax , otherwise set h(k) = chh
(k−1) , increase k by 1 and

continue with the adaptation step.
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Image type Stochastic penalty s
(k)
ij νi

Gray scale images 1.1 N
(k−1)
i

λbσ2
i

(θ̂(k−1)
i − θ̂

(k−1)
j )2 σ2

i

Color images 1.2 N
(k−1)
i
λ (θ̂(k−1)

i − θ̂
(k−1)
j )T Σ̂−1

i (θ̂(k−1)
i − θ̂

(k−1)
j ) Σi

Table 1: Stochastic penalties for examples in Section 1.

The algorithm can be adjusted to meet the properties of different types of images, that is
different types of distributions of Y , by an appropriate choice of the statistical penalty sij in
(9). For grayscale images 1.1 and color images 1.2 the appropriate penalty is given in Table 1.

3.2. Choice of parameters – Propagation condition

The proposed procedure involves several parameters. The most important one is the scale
parameter λ in the statistical penalty sij . The special case λ = ∞ simply leads to a kernel
estimate with bandwidth hmax . We propose to choose λ as the smallest value satisfying a
propagation condition. This condition requires that, if the local assumption is valid globally,
i.e. θ(x) ≡ θ does not depend on x , then with high probability the final estimate for
hmax = ∞ coincides in every point with the global estimate. More formally we request that
in this case for each iteration k

EI |θ̂(k)(I)− θ| < (1 + α)EI |θ̌(k)(I)− θ| (11)

for a specified constant α > 0 . Here

θ̌(k)(i) =
∑

j

Kloc(l
(k)
ij )Yj/

∑
j

Kloc(l
(k)
ij ) (12)

denotes the nonadaptive kernel estimate employing the bandwidth h(k) from step k . The
value α characterizes a maximal loss in efficiency of the adaptive estimate compared to its
non-adaptive counterpart, with α = 0.1 providing reasonable results.

The parameter λ provided by this condition is characteristic for the selected class of error
distributions, but does not depend on the unknown model parameter θ . A default value for
λ can therefore be selected by simulations using an artificial constant grayscale or color image
with independent Gaussian noise. The values of λ implemented in the package for grayscale
and color images are selected using α = 0.1 . Smaller values of λ may lead to random
segmentation, while a larger λ simply reduces the sensitivity of the procedure. In general
there is no need to adjust this parameter for any image if the noise is Gaussian. For the case of
heavy tailed or highly skewed error distributions we provide an additional argument ladjust
in function awsimage that can be used to increase the value of λ if random segmentation is
observed.

The second parameter of interest is the maximal bandwidth hmax which controls both numer-
ical complexity of the algorithm and smoothness within homogeneous regions. The maximal
bandwidth can be chosen by heuristic arguments. Such heuristics include the amount of
computing time, the maximal size of homogeneous regions within the image and the variance
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reduction aspired. The separation property of the procedure secures that, up to a constant
factor, the quality of reconstruction reached at any intermediate step will not be lost for larger
bandwidths (see Polzehl and Spokoiny 2006).

Additionally we specify a number of parameters and kernel functions that have less influence
on the resulting estimates. As a default the kernel functions are chosen as Kloc(x) = (1−x2)+
and Kst(x) = (1 − x2)+ . The initial bandwidth h(0) is chosen as 1. The bandwidth is
increased after each iteration by a default factor ch = 1.251/2 .

3.3. Correction for spatial correlation

In a CCD sensor, the common device within a consumer digital camera, a Bayer mask is used
to obtain color information. Within a square of four pixels one is red filtered, one blue and
two green, that is red and blue are recorded in every fourth pixel while green is obtained in
every second. To obtain a color image in full resolution the missing color values are filled in
by interpolation (demosaicing). This results in spatial correlation within the image. Other
sources of spatial resolution are noise reduction filters and preprocessing steps applied within
the camera.

The statistical penalty sij effectively measures the probability of observing the estimate θ̂i if
the correct parameter θi equals θ̂j . The penalty heavily depends on a correct assessment of
the variability of θ̂i . In case of (positive) spatial correlation the variance reduction achieved
will be reduced and therefore we need to adjust the statistical penalty.

As a rough model we assume the spatial correlation to be caused by convolution with a
Gaussian kernel with unknown bandwidths g = (gh, gv) in horizontal and vertical direction.

This leads to a multiplicative correction factor Ci(g, h) =
P

l

[ P
j K(

|i−j|
h

)K(
|j−l|

g
)
]2

Qh;i Qg;i
with Qh;i =∑

j K( |j−i|
h )2 in the statistical penalty.

3.4. Variance mean dependence

Error variances in the recorded images are usually unknown and need to be estimated. De-
pending on the imaging process error variances may be heteroscedastic. Special examples
consists of confocal microscopy or perfectly linear cameras where the signal can be viewed as
a linear combination of the number of recorded photons (Poisson counts) and termal noise
(approximately homoscedastic Gaussian). Such a situation is characterized by a linear depen-
dence between variance and the expected signal (Tian, Fowler, and Gamal 2001; Hirakawa and
Parks 2005). A linear behavior may also serve as an approximation in case of RAW-images.
In contrast images recorded in common formats like TIFF or JPEG are gamma corrected,
that is a nonlinear transformation has been applied to the measured intensities. Except for
low color values a constant variance may be a reasonable assumption for such images, see
Figure 1.

3.5. Estimation of variances and spatial correlation

Problems frequently encountered in image processing are unknown error variances, or even
variance inhomogeneity, spatial correlation and correlated errors between channels in color
images.
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Figure 1: Mean-variance dependence for a perfectly linear camera and for corresponding
gamma-corrected images γ = 2.4 .

We try, in each color channel, to estimate both the spatial correlation and the, possibly
heteroscedastic, error variances. These estimates are improved within the estimation process.

Let l specify the index of the color channel and r
(k)
il = Yil − θ̂

(k)
il denote the residuals with

respect to the reconstructed image θ̂
(k)
il . For small bandwidths h(k) < 2 , θ̂(k)

il is replaced by
a non-adaptive kernel estimated using bandwidth 2 .

We estimate the spatial correlation in color channel l by

µ
(k)
l = 1/n

n∑
i=1

r
(k)
il (13)

v
(k)
l = 1/n

n∑
i=1

(r(k)
il )2 − (µ(k)

l )2 (14)

ρ̃h = 1/n
nh−1∑
ih=1

nv∑
iv=1

(r(k)
(ih,iv)l − µ

(k)
l )(r(k)

(ih+1,iv)l − µ
(k)
l )/v(k)

l (15)

ρ̃v = 1/n
nh∑

ih=1

nv−1∑
iv=1

(r(k)
(ih,iv)l − µ

(k)
l )(r(k)

(ih,iv+1)l − µ
(k)
l )/v(k)

l (16)

These estimates are severely biased due to the spatial correlation of the original data. The
bias vanishes as h(k) increases. We apply an approximate bias correction using a polynomial
model for the correlation in ρ̃ , (h(k))−1/2 , and (h(k))−1 .

In case of color images estimates of the correlations between channels, that is ρ1,2, ρ1,3, ρ2,3 ,
can be obtained as

ρ̂l,m = 1/n
n∑

i=1

(r(k)
il − µ

(k)
l )(r(k)

im − µ(k)
m )/

√
v

(k)
l v

(k)
m . (17)
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Variances within channels can again be estimated from adjusted squared residuals

(r(k)
il )2 =

N
(k)
i

N
(k)
i − 1

(Yil − θ̂
(k)
il )2 (18)

as
σ̂2

l =
∑

i:N
(k)
i >1

(N (k)
i − 1)(r(k)

il )2/
∑

i:N
(k)
i >1

(N (k)
i − 1) (19)

in case of constant variances. The weights (N (k)
i − 1) reflect the varying information content

of the residuals while the factor N (k)
i /(N (k)

i −1) corrects for the bias of the squared residuals.

A linear variance model can be evaluated by solving

(r(k)
il )2 = al + blθ̂

(k)
il , i : N (k)

i > 1 (20)

by weighted least squares with weights (N (k)
i − 1) leading to variance estimates

σ̂2
il = âl + b̂lθ̂

(k)
il . (21)

For color images estimates of covariance matrices Σi are then obtained as

Σ̂i =

 σ̂2
i1 ρ̂12σ̂i1σ̂i2 ρ̂13σ̂i1σ̂i3

ρ̂12σ̂i1σ̂i2 σ̂2
i2 ρ̂23σ̂i2σ̂i3

ρ̂13σ̂i1σ̂i3 ρ̂23σ̂i2σ̂i3 σ̂2
i3

 (22)

assuming that correlations between channels do not depend on θi .

The proposed procedure, employing a local constant structural assumption, is implemented
in function awsimage.

3.6. Local polynomial propagation-separation approach

Until now we assume that the gray or color value is locally constant. This assumption is
essentially used in the form of the stochastic penalty sij . The effect can be viewed as a
regularization in the sense that in the limit for hmax →∞ the reconstructed image is forced
to a local constant gray value or color structure even if the true image is locally smooth.
Such effects can be avoided if a local polynomial structural assumption is employed. Due to
the increased flexibility of such models this comes at the price of a decreased sensitivity to
discontinuities.

The propagation-separation approach from (Polzehl and Spokoiny 2004) assumes that within
a homogeneous region containing pixel i , i.e. for j = (jh, jv) ∈ Ui , the gray value or color
Yj can be modelled as

Yj = θ>i Ψ(jh − ih, jv − iv) + εjh,jv , (23)

where the components of Ψ(δh, δv) contain values of basis functions

ψm1,m2(δh, δv) = (δh)m1(δv)m2 (24)
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for integers m1,m2 ≥ 0 , m1 + m2 ≤ p and some polynomial order p . For a given local
model Wi estimates of θi are obtained by local Least Squares as

θ̃i = B−1
i

∑
j

wijΨ(jh − ih, jv − iv)Yj , (25)

with
Bi =

∑
j

wijΨ(jh − ih, jv − iv)Ψ(jh − ih, jv − iv)>. (26)

The parameters θi are defined with respect to a system of basis functions centered in i . The
component of the estimate of θ in the local model Wj , corresponding to the basis function
ψm1,m2 centered at i can be obtained by a linear transformation as

θ̂
(k−1)
j(i),m =

∑
m′:|m′|≤p−|m|

(
m+m′

m

)
θ̂
(k−1)
j,m+m′ (i− j)m′

, |m| ≤ p. (27)

In iteration k a statistical penalty can now, for grayscale images, be defined as

s
(k)
ij =

1
λ2σ2

(
θ̂
(k−1)
i − θ̂

(k−1)
j(i)

)>
Bi

(
θ̂
(k−1)
i − θ̂

(k−1)
j(i) )

)
. (28)

In case of color images with independent errors between channels a natural generalization
occurs as a possibly weighted sum of the statistical penalties for the three color channels.

A detailed description and discussion of the resulting algorithm and corresponding theoretical
results can be found in (Polzehl and Spokoiny 2004).

Local linear and local quadratic models are implemented for both grayscale and color images
in function awspimage. The implementation allows for homogeneous spatial correlation and
unknown variances that are either constant or a linear function of the gray- or colorvalues.

4. Examples

The package adimpro can basically read and write the pgm and ppm image format. However
the package allows to read and write all image formats supported by ImageMagick (Im-
ageMagick Studio LLC 2006), if this is installed on the system. For reading camera RAW
formats the package adimpro uses dcraw (Coffin 2006). Both programs are available for many
operating systems. However, if you can not or don’t want to install them on your system you
must rely on some other software or R package to read the image data into the R session or
to transform the image data into portable pixmap format. Since image conversion is not the
target of the package and excellent software for this purpose exists we do not plan to extend
its capabilities in the future.

Reading an image file from disk is done by one of the following statements:

R> img <- read.image("image.tif")

R> img <- read.raw("image.raw")

Both statements create an object of class "adimpro". Such objects are lists containing the
gray- or color values as well as image metadata.
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red channel green channel blue channel
horizontal 0.66 0.42 0.63

vertical 0.62 0.40 0.61

Table 2: Estimated spatial correlation in horizontal and vertical direction in the three color
channels for the example image used in Figure 3.

red/green red/blue green/blue
-0.15 -0.0023 -0.58

Table 3: Estimated correlation between the color channels for the image used in Figure 3.

Alternatively an object of class "adimpro" can be generated from image data provided as
an array, with the first two dimensions corresponding to the image dimension and the third
being 1, or 3 for grayscale and color valued images, respectively. This is achieved by

R> img <- make.image(imgdata).

In the package adimpro we provide two functions which implement the propagation-separation
approach described in the preceeding sections. The function awsimage uses a local constant
model while awspimage considers local polynomial models up to a degree of 2.

The complexity of the algorithm is mainly determined by hmax which corresponds to the
maximum bandwidth used in the iteration process (see Section 3 for details).

R> img.smooth <- awsimage(img, hmax = 4)

The function awsimage returns again an object of class "adimpro".

In Figure 2 we show an example of image smoothing under controlled noise conditions. An
image of good quality and low noise has been taken using a CANON 300D with ISO 100.
Spatially correlated homogeneous noise has been added.

As we already mentioned before, the assumption of homogeneous noise may only be suitable
for gamma corrected images. However, if the camera provides RAW format, noise is charac-
terized by a linear dependence between its variance and the mean intensity of light at each
pixel, aside from saturation effects. Thus for images in RAW format, it is possible to specify
a model for the variance mean dependence, namely a linear model.

Figure 3 shows a test image with nine homogeneous colored regions taken by a Panasonic
Lumix LX2 under extreme lighting conditions. ISO 1600 has been used, therefore the image
has a relatively strong noise component. The result of adaptive smoothing is given on the
right side of the figure. We read and processed the RAW image, as obtained by dcraw (Coffin
2006) using bilinear interpolation for demosaicing. The estimates for the spatial correlation
and the correlation between the color channels are given in Table 2 and 3.

Furthermore we demonstrate the effects of the use of the linear variance model, which is
the correct one for RAW-images as described above. When smoothing an image using an
inadequate constant variance model we underestimate the variance where color values are
large. This leads to a segmentation of bright homogeneous regions through adaptation to
the noise component. A further negative bias in the estimated variance is introduced when
estimating the variance again from residuals in the iterative process. We demonstrate the
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Figure 2: Smoothing a noisy image with a local constant model as structural assumption.
Upper left: Noisy image. Uniform but spatially correlated noise has been added to an image
taken with a digital camera. Upper right: Result of the awsimage function with hmax = 10 .
Lower left: non-adaptive kernel smoothing using a bandwidth that minimizes MSE on the
whole image. Lower right: Image illustrating the amount of adaptation used in the iteration
procedure in awsimage. Dark areas correspond to stronger adaptation, while white areas
show non-adaptive behavior. The latter correspond to homogeneous regions with respect to
the specified model, while darks lines are caused by detected structure.
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Figure 3: Adaptive smoothing of a noisy test image using a local constant model for the color
values and a linear model for the variance mean dependence. hmax = 22.4 has been used.
Left: original image Right: smoothed image.

red channel green channel blue channel
black area 0.0229 0.0122 0.0121
white area 0.0507 0.0351 0.0329
blue area 0.0218 0.0157 0.0216
red area 0.0414 0.0145 0.0141

0.0234 0.0167 0.0151

Table 4: Estimated value for the variance in the three color channels in four areas of different
mean color for the example image used in Figure 3. We considered the four areas in the
upper right corner of the image. The first four rows of the table give the mean estimates
for a linear variance mean model, while the last row contains the corresponding values for a
constant variance mean dependence. The red values show cases, where in a constant model,
the variance is underestimated in contrast to the (true) linear model and thus the smoothing
procedure partly adapts to the noise. The effects are illustrated in Figure 4.

effect in Figure 4 and Tables 4 and 5, where the use of a linear and constant variance model
is compared.

Table 6 gives an impression of the computing time needed to perform the smoothing with
different maximum bandwidths.

As a last example we compare in Figure 5 the results of adaptively smoothing an image taken
by a CANON PowerShot S30 at 800 ISO with a local constant and a local quadratic model.

The image files and R scripts to produce the figures are published along with this paper.
Figures and tables have been produced using version 0.4.0 of the package adimpro.
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Figure 4: Denoising the image in Figure 3 using a constant (left) and a linear variance model
(right). Part of the image in Figure 3 is shown here. Again hmax = 22.7 has been used.
The left column corresponds to a constant variance model, while the right column shows
the corresponding results for a linear variance model. The upper images show the degree of
adaptation to structure through the sum of weights in the two cases as in Figure 2. The edges
between the colored regions can be clearly identified in both models. While there is only
little structure in the homogeneous region, which is mainly due to the heavy noise, the bright
square shows a lot of structure when smoothing with a constant variance model. Since noise
for RAW images consists of two additive components which are approximately proportional
to the mean (photon counts) and constant (termal noise) the linear variance model is correct,
a constant model underestimates the variance in the bright region. Thus smaller differences
of the color value are detected as significant with higher probability. The procedure therefore
partly adapts to the noise structure.
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red channel green channel blue channel
Estimated constant parameter 0.000378 0.0000824 0.0000775
Estimated linear parameter 0.00573 0.00404 0.00382

Table 5: Estimated parameters for the linear variance model in the three color channels for
the image used in Figure 3.

hmax 2 4 10 22.7
Grayscale 2.2s 5.1s 13.6s 37.2s
Color 4.9s 11.4s 29.7s 83.8s

Table 6: CPU time needed for smoothing a part of the image in figure 2 (color and grayscale)
of size 512x512 pixels on a Xeon 5160 (3.00GHz), SuSE Linux 10.1, R 2.3.1. using different
maximum bandwidths hmax.

Figure 5: Smoothing an image with different structural assumptions. Left: Original image.
Center: Result of smoothing with a local constant model and hmax = 11.6 . Right: Same for a
local quadratic model and hmax = 18.4 . This demonstrates that a local quadratic model leads
to smoother impression at homogeneous regions at the cost of a slightly decreased sensitivity
at edges.
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