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Abstract

This paper offers a new technique for spatially adaptive estimation. The local likelihood is

exploited for nonparametric modeling of observations and estimated signals. The approach is based

on the assumption of a local homogeneity of the signal: for every point there exists a neighborhood

in which the signal can be well approximated by a constant. The fitted local likelihood statistics are

used for selection of an adaptive size and shape of this neighborhood. The algorithm is developed

for a quite general class of observations subject to the exponential distribution. The estimated signal

can be uni- and multivariable. We demonstrate a good performance of the new algorithm for image

denoising and compare the new method versus the intersection of confidence interval (ICI) technique

that also exploits a selection of an adaptive neighborhood for estimation.

Index Terms

Adaptive nonparametric regression, adaptive non-Gaussian image denoising, anisotropic

imaging, fitted local likelihood, non-Gaussian denoising, Poissonian denoising, varying thresh-

old parameters

EDICS: SSP-NPAR, SSP-FILT, ASP-ANAL

I. INTRODUCTION

The nonparametric regression originated in mathematical statistics offers an original approach

to signal processing problems (e.g. [1], [2]). It basically results in linear filtering with the linear

filters designed using some moving window local approximations. In many applications like speech

recognition or image denoising, nonlinear or locally adaptive methods have been shown to be more

efficient than the linear ones. The typical examples are given by non-linear wavelet thresholding, [3],

and pointwise adaptive kernel smoothing, [4], [5]. The first local pointwise (varying window size)
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adaptive nonparametric regression statistical procedure was suggested by Lepski [6], see also [7], [4]

and [5]. This approach has received further development as the “intersection of confidence interval”

(ICI) rule in application to various signal and image processing problems [8], [9], [10], [11], [12].

The estimates are calculated for a set of window sizes (scales) and compared. The adaptive window

size is defined as the largest of those in the grid which estimate does not differ significantly from

the estimators corresponding to the smaller window size.

In many applications the noise that corrupts the signal is non-Gaussian and signal dependent. There

are a lot of heuristics adaptive-neighborhood approaches to filtering signal and images corrupted by

signal-dependent noise. Instead of using fixed-size, fixed-shape neighborhoods, statistics of the noise

and the signal are computed within variable-size, variable-shape neighborhoods that are selected for

every point of estimation.

The Lepski approach allows a regular and theoretically well justified general methodology for design

of estimates with adaptive neighborhood. However, it is originated from the Gaussian observation

model and its modification to the signal dependent noise meets some principal difficulties. Another

problem with applications of the general Lepski method in practical situations is the choice of tuning

parameters, especially of the threshold used for comparing two estimates from different scales. The

theory only says that this threshold has to be large enough (logarithmic in the sample size) and

the theory only applies for such thresholds. At the same time, the numerical experiments indicate

that a logarithmic threshold recommended by the theory is much too high and leads to a significant

oversmoothing of the estimated function. Reasonable numerical results can be obtained by using

smaller values of the threshold which shows the gap between the existing statistical theory and the

practical applications.

The contribution of this paper is twofold: first, we propose a novel approach to design of the

pointwise adaptive estimates especially for non-Gaussian distributions. Secondly, we address in details

the question of selecting the parameters of the procedure and prove the theoretical results exactly for

the algorithm we apply in numerical finite sample study.

The procedure is given for observations subject to the class of exponential distributions which

includes the Poissonian model as an important special case. The fitted local likelihood is used as

statistics for selection of the adaptive estimation neighborhoods. The estimated signal can be uni-

and multivariable. The varying thresholds of the test-statistics is an important ingredient of approach.

Special methods are proposed for selection of these thresholds. The fitted local likelihood approach

is founded on theory justifying both the adaptive estimation procedure and the varying threshold

selection. The main theoretical result formulated in Theorem 6 shows the accuracy of the adaptive

estimate.

The proposed adaptive technique is applied for image denoising in a special form of anisotropic
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directional estimates using the size adaptive sectorial windows. The performance of the algorithm is

illustrated for data having Poissonian, Gaussian and Bernoulli distributions. Simulation experiments

demonstrate a quite good performance of the novel algorithm.

Further, the paper is organized as follows. The nonparametric observation modeling and local

likelihood estimates are discussed in Section II. The local scale adaptive algorithm and the threshold

selection are presented in Section III. The anisotropic implementation of the approach for imaging is

presented in Section IV. The simulation experiments are discussed in Section V. The theory of the

approach is a subject of Section VI.

II. OBSERVATIONS AND NONPARAMETRIC MODELING

This section describes our model and present some basic facts about nonparametric local maximum

likelihood estimation.

A. Stochastic observations

Suppose we have independent random observations {Zi}ni=1 of the form Zi = (Xi, Yi). Here

Xi denotes a vector of “features” or explanatory variables which determines the distribution of the

“observation ” Yi. The d-dimensional vector Xi ∈ Rd can be viewed as a location in time or space and

Yi as the “observation at Xi” . Our model assumes that the values Xi are given and a distribution of

each Yi is determined by a parameter θi which may depend on the location Xi, θi = θ(Xi). In many

cases the natural parametrization is chosen which provides the relation θi = E{Yi}. The estimation

problem is to reconstruct θ(x) from the data {Zi}i=1,...,n.

Let us illustrate this set-up by few special cases.

1) Gaussian regression. Let Zi = (Xi, Yi) with Xi ∈ Rd and Yi ∈ R obeying the regression

equation Yi = θ(Xi)+ εi with a regression function θ and i.i.d. Gaussian errors εi ∼ N(0, σ2).

This observation model is standard one for many problems in signal and image processing.

2) Poisson model. Suppose that the random Yi is a nonnegative integer subject to the Poisson

distribution with the parameter θ(Xi). The probability that Yi = k given Xi = x is defined by

the formula P (Yi = k|Xi = x) = θk(x) exp(−θ(x))/k!. This model occurs in digital camera

imaging, queueing theory, positron emission tomography, etc.

3) Bernoulli (binary response) model. Let Yi be independent Bernoulli random variables with

parameters θ that depends on the d-dimensional vector of “features”Xi ∈ Rd. This means that

P (Yi = 1|Xi = x) = θ(x). Such models arise in many econometric applications, and they are

widely used in classification and digital imaging.

Now we describe the general setup. Let P = (Pθ, θ ∈ Θ ⊆ R) be a parametric family of

distributions dominated by a measure P . By p(·, θ) we denote the corresponding density. We consider
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the regression-like model in which every “response” Yi is, conditionally on Xi = x, distributed with

the density p(·, θ(x)) for some unknown function θ(x) on X with values in Θ. The considered model

can be written as Yi ∼ Pθ(Xi). This means that the distribution of every “observation” Yi is described

by the density p(Yi, θ(Xi)). In the considered situations with the independent observations Yi, the

joint distribution of the samples Y1, . . . , Yn is given by the log-likelihood L =
Pn

i=1 log p(Yi, θ(Xi)).

In the literature similar regression-like models are also called varying coefficient or nonparametrically

driven models.

Suppose for a moment that given y, the maximum of the density function p(y, θ) is achieved at

θ = y. This is the case for the above examples. Then the unconstrained maximization of the log-

likelihood L w.r.t. the collection of parameter values θ = (θ1, . . . , θn)> obviously leads to the trivial

solution eθ = argmax{θi}Pn
i=1 log p(Yi, θi) = Y , where Y means the vector of observations. Thus,

there is no smoothing and noise removal in this trivial estimate. It can be introduced assuming the

correlation of the observations {Zi}ni=1 or by use some model of the underlying function θ(x). The

last idea is the most popular and it is exploited in a number of quite different forms.

B. Local constant likelihood modeling

In the simplest parametric setup, when the parameter θ does not depend on x, i.e., the distribution

of every “ observation” Yi is the same, the invariant θ can be estimated well by the parametric

maximum likelihood method eθ = argmaxθPn
i=1 log p(Yi, θ).

In the nonparametric framework with varying θ(x), one usually applies the local likelihood approach

which is based on the assumption that the parameter is nearly constant within some neighborhood of

every point x in the “feature” space. This leads to considering a local model concentrated in some

neighborhood of the point x.

We use localization by weights as a general method to describe a local model. Let, for a fixed

x, nonnegative weights wi,h(x) be assigned to the observations Yi. The weights wi,h(x) determine

a local model corresponding to the point x in the sense that, when estimating the local parameter

θ(x), the observations Yi are used with these weights. This leads to the local likelihood likelihood

Lh(θ) =
Pn

i=1wi,h log p(Yi, θ) and the local maximum likelihood estimate (MLE) defined as

eθh(x) = argmax
θ

Lh(θ). (1)

The weight wi,h(x) in Lh(θ) usually depends on the distance between the point of estimation x and

the location Xi corresponding to the “observation” Yi. The index h means a scale (window size,

bandwidth) parameter which can be a vector, see Section IV for an example. Usually the weights

wi,h(x) are selected in the form wi,h(x) = w
¡
h−1(x−Xi)

¢
, where w(·) is a fixed window function

in Rd and h is the scale parameter. This window is often taken either in the product form w(x) =
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Qn
i=1wi(xi) or in radial form w(x) = w1(kxk). In general, we do not assume any special structure

for the window function except that w(0) = maxxw(x). It means that the maximum weight is given

to the observation with Xi = x.

C. The local MLE for the exponential family model

The examples of random observations considered in Section II-A are particular cases of the expo-

nential family of distributions defined in the form p(y, θ) = p(y) exp(yC(θ)−B(θ)), θ ∈ Θ, y ∈ R.

Here C(θ) and B(θ) are some given non-negative functions of θ (see Table I) and p(y) is some

non-negative function of y.

For this exponential family the local MLE admits a close form representation as the weighted

mean of the observed Yi. For a given set of weights {w1,h, . . . , wn,h} denote Nh =
Pn

i=1wi,h,

Sh =
Pn

i=1wi,hYi . Note that the both sums depend on the location x via the weights {wi,h}.

Theorem 1: The local likelihood estimate eθh can be represented in the form
eθh = Sh/Nh =

nX
i=1

wi,hYi

Á nX
i=1

wi,h . (2)

Moreover, for any θ the difference Lh(eθh, θ) := Lh(eθh)− Lh(θ) reads as

Lh(eθh, θ) = NhK(eθh, θ), (3)

where K(θ, θ0) := Eθ log
p(y,θ)
p(y,θ0) is the Kullback-Leibler divergence between two measures Pθ and

Pθ0 .

Proof: The definition of Lh(θ) implies the following representation for Lh(θ):

Lh(θ) = ShC(θ)−NhB(θ) +Rh (4)

where Rh =
Pn

i=1wi,h log p(Yi) Differentiating the normalizing condition
R
p(y) exp{yC(θ) −

B(θ)}dy = 1 w.r.t. θ together with the condition Eθ{y} = θ yields the identity θ∂θC(θ) =

∂θB(θ) for every θ. The estimate eθh maximizes ShC(θ) − NhB(θ) and hence fulfills the equation

Sh∂θC(θ)−Nh∂θB(θ) = 0. Substituting in this equation ∂θB(θ) = θ∂θC(θ) at θ = eθh leads to (2).
Simple algebra yields K(θ, θ0) = θ

©
C(θ) − C(θ0)

ª
− B(θ) + B(θ0) and (3) follows by direct

substitution of eθh in (4). See [13] for more details.
The value Lh(eθ, θ0) = maxθ L(θ, θ

0) is called the fitted log-likelihood and it plays an important

role in our adaptive procedure.

An important advantage of the maximum likelihood approach is that it allows to infer on the value

of the unknown parameter on the base of the fitted likelihood in the pure parametric situation with

θ(Xi) ≡ θ∗. The basic fact is given by the following rather tight deviation bound for Lh(eθh, θ).
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Theorem 2 (Polzehl and Spokoiny [13]): Let {wi,h} be a localizing scheme such that maxiwi,h ≤

1. If f(Xi) ≡ θ∗ for all Xi with wi,h > 0 then for any z > 0

P θ∗(Lh(eθh, θ∗) > z) = P θ∗

³
NhK(eθh, θ∗) > z´ ≤ 2e−z.

This bound is particularly useful for obtaining the risk bounds, testing the hypotheses and building

the confidence sets in the parametric case. It is worth noting that this result is non-asymptotic and

valid for an arbitrary local sample size Nh. This is especially important for our adaptive procedure

which starts with the very small vicinity of the point of interest x.

Theorem 3: Under the conditions of Theorem 2, if zα satisfies 2e−zα ≤ α, then

Eh(zα) = {θ : NhK
¡eθh, θ¢ ≤ zα} (5)

is an α-confidence set for the parameter θ∗.

Moreover, for any r > 0

Eθ∗
¯̄
Lh(eθh, θ∗)¯̄r ≡ Eθ∗

¯̄
NhK(eθh, θ∗)¯̄r ≤ rr

with rr = 2r
R
z≥0 z

r−1e−zdz = 2rΓ(r).

Proof: The first statement follows immediately from Theorem 2. Similarly

Eθ∗
¯̄
Lh(eθh, θ∗)¯̄r ≤ −Z

z≥0
zrdP θ∗(Lh(eθh, θ∗) > z)

≤ r

Z
z≥0
zr−1P θ∗(Lh(eθh, θ∗) > z)dz ≤ 2r Z

z≥0
zr−1e−zdz

and the second assertion follows.

Theorem 3 particularly claims that the estimation loss measured byK(eθh, θ) is with high probability
bounded by zα/Nh provided that zα is sufficiently large. In the regular situation, the Kullback-Leibler

divergence K fulfills

K(θ, θ∗) ≈ Iθ∗|θ − θ∗|2 (6)

for any point θ in a neighborhood of θ∗, where Iθ∗ is the Fisher information at θ∗, see e.g. [14] or

[15]. Therefore, the result of Theorem 2 guarantees that |eθh−θ∗| ≤ CN
−1/2
h with a high probability.

Table I provides K(θh, θ0) for special cases of the exponential distribution considered above.

TABLE I

THE KULBACK-LEIBLER DIVERGENCE FOR THE PARTICULAR CASES OF THE EXPONENTIAL FAMILY.

Model K(θ, θ0) C(θ) B(θ)

Gaussian (θ − θ0)2/(2σ2) θ/σ2 θ2/(2σ2)

Bernoulli θ log
θ

θ0
+ (1− θ) log

1− θ

1− θ0
log

θ

1− θ
log

1

1− θ

Poisson θ log
θ

θ0
− (θ − θ0) log θ θ
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III. LOCAL SCALE SELECTION ALGORITHM

Let H = {h1, . . . , hK} be a set of different scales ordered by the smoothing parameter h, and leteθh = Sh/Nh for h ∈ H be the corresponding set of estimates. For conciseness we use the notationeθk = eθhk , Sk = Shk and Nk = Nhk . We also write Lk(θ, θ
0) instead of Lhk(θ, θ

0) for the log-

likelihood ratio for the scale hk, k = 1, . . . ,K. We assume that the scale set H is ordered in the

sense that the local sample size Nk grows with k.

A. FLL scale selection procedure

The presented procedure aims at selecting one estimate eθk out of the given set in a data driven way
to provide the best possible quality of estimation. This explains the notion of local scale selection.

The fitted local likelihood (FLL) scale selection rule κ can be presented in the form [16]:

κ = max{k : Ll(eθl,eθm) ≤ zl, l < m ≤ k}, (7)

With this choice, the resulting adaptive estimate at the point x is bθ = eθκ and the adaptive scalebh = hκ . By (3), Lk(eθk, θ) = NkK(eθk, θ) for every θ. So the procedure can be rewritten as κ =

max{k : NlK(eθl,eθm) ≤ zl, l < m ≤ k}.
The procedure (7) can be interpreted as follows. The first estimate eθ1 is always accepted and (7)

starts from k = 2. The estimate eθ2 is checked whether it belongs to the confidence set Eh1(z1) of the
previous step estimate eθ1, see (5) in Theorem 3. If not, the estimate eθ2 is rejected and the procedure
terminates selecting eθ1. The estimate eθ2 belongs to the confidence set Eh1(z1) if the inequality T12 =
L1(eθ1,eθ2) ≤ z1 is fulfilled then eθ2 is accepted and the procedure considers the next step estimateeθ3. At every step k, the current estimate eθk is compared with all the previous estimates eθ1, . . . ,eθk−1
by checking according to (5) the inequalities Tlk = Ll(eθl,eθk) ≤ zl. We proceed this way until the
current estimates is rejected or the last estimate in the family for the largest scale is accepted. The

adaptive estimate is the latest accepted one.

The proposed method can also be viewed as a multiple testing procedure. The expressions Tlk =

Ll(eθl,eθk) is understood as test statistics for testing the hypothesis Hlk : E eθl = E eθk, and zl is the
corresponding critical value. At the step k the procedure tests the composite hypothesis E eθ1 = . . . =

E eθk. The choice of the zk’s is of special importance for the procedure and it is discussed in the next
section.

The random index κ means the largest accepted k. We also define the random moment κ(k)

meaning the largest index accepted after first k steps and the corresponding adaptive estimate:

κ(k) = min{κ, k}, bθk = eθκ(k) . (8)

In our simulation study, the proposed procedure is compared with the other proposal, namely, with

the intersection of confidence intervals (ICI) method from [5], where the ICI was shown to be quite
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competitive with many smoothing procedures, see also [12]. For the sake of completeness we present

here a brief description of the ICI method.

B. ICI algorithm

We define a sequence of the confidence intervals of the estimates

Ql = [eθl − z · σθl , eθl + z · σθl ], (9)

where σθl is standard deviation of the estimates
eθl and z is the threshold parameter of the confidence

interval.

For this sequence with some probability p we may conclude that if θ ∈ Ql holds for h = hl,

1 ≤ l ≤ k, all of the intervals Ql, 1 ≤ l ≤ k, have a point in common, namely θ.

Consider the intersection of the intervals Ql, 1 ≤ l ≤ k, with increasing k, and let κ be the largest

of those k for which the intervals Ql, 1 ≤ l ≤ k, have a point in common. This κ defines the adaptive

estimate and the adaptive scale as follows

bθ = eθκ , bh = hκ . (10)

The ICI rule can be presented in the sequential form (7) provided that the inequality Ll(eθl,eθk) ≤ zl
is replaced by |eθl − eθk| ≤ (σθl + σ

θk
)z, where σ

θl
and σ

θk
are standard deviations of the estimateseθl and eθk and z is a parameter similar to zl in (7).

The ICI algorithm differs from the novel FLL by the used statistics, Tlk = |eθl − eθk|/(σθl + σθk)

and the invariant threshold parameter z. In order to compare the estimates in the ICI algorithm one

has to know or to estimate their variances which in general, in particular for Poisson models, depend

on unknown estimated signal θ and as a result the algorithm requires recursive calculations (see

[11], [17], [12]). The proposed FLL procedure (7) does not need variance estimates and recursive

calculations.

C. Choice of the parameters zk for the FLL method

The critical values z1, . . . , zK−1 are selected by the reasoning similar to the standard approach of

hypothesis testing theory: to provide the prescribed performance of the procedure under the simplest

(null) hypothesis. In the considered set-up, the null hypothesis means θ(Xi) ≡ θ∗ for some fixed θ∗

and all i. In this case it is natural to expect that the estimate bθk coming out of the first k steps of
the procedure is close to the nonadaptive counterpart eθk. This particularly means that the probability
of rejecting one of the estimates eθ2, . . . ,eθk under the null hypothesis should be very small.
Now we give a precise description of the used technique. The risk of estimation for an estimate bθ

of θ∗ can be measured by E
¯̄
K(bθ, θ∗)¯̄r for some r > 0, see Theorem 3. Under the null hypothesis
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θ(Xi) ≡ θ∗, every k and every r > 0 it holds by this theorem that

Eθ∗
¯̄
Lk(eθk, θ∗)¯̄r = Eθ∗

¯̄
NkK(eθk, θ∗)¯̄r ≤ rr .

We require that the parameters z1, . . . , zK−1 of the procedure are selected in such a way that

Eθ∗
¯̄
Lk(eθk,bθk)¯̄r = Eθ∗

¯̄
NkK(eθk,bθk)¯̄r ≤ αrr , k = 2, . . . ,K. (11)

Here α is the preselected constant having the meaning of the confidence level of procedure. (11)

gives us K − 1 conditions to fix K − 1 critical values.

The condition (11) will be referred to as the propagation property. The meaning of “propagation”

is that in the homogeneous situation the procedure passes with a high probability at every step from

the current scale k− 1 with the corresponding parameter hk−1 to a larger scale k with the parameter

hk. This yields that the adaptive estimate bθk coincides with the nonadaptive counterpart eθk in the
typical situation. These two estimates can be different only in the case of a “false alarm” when one

of the test statistics Tlm exceeds the critical value zl for some l < m ≤ k. The loss associated with

such “false alarm” is naturally measured by
¯̄
Lk(eθk,bθk)¯̄r = ¯̄

NkK(eθk,bθk)¯̄r and it approaches the
probability of “false alarm” eθk 6= bθk as rto0. The condition (11) states an upper bound for the risk
associated with “false alarms”.

Our definition in (11) still involves two parameters α and r. It is important to mention that a

proper choice of the power r for the loss function as well as the “confidence level” α depends on the

particular application and on the additional subjective requirements to the procedure. This situation is

similar to the hypothesis testing problem where there is no any universal choice of the testing level.

Note that in view of (6), r = 1/2 corresponds to the absolute deviation losses while r = 1 leads to

quadratic type losses. Taking a large r and small α would result in an increase of the critical values

and therefore, improves the performance of the method in the parametric situation at cost of some

loss of sensitivity to deviations from the parametric situation.

(11) only gives K−1 conditions for choosing K−1 critical values but does not explain how these

values can be computed. Below we suggest two methods of evaluating the parameters zk which both

are based on Monte-Carlo simulations from the homogeneous model θ(·) ≡ θ∗.

1) Sequential choice of zk: First we only consider the first critical value z1 and set the others equal

to infinity: z2 = . . . = zK =∞. This effectively means that every new estimate eθk is only compared
with eθ1 by checking that eθk ∈ Eh1(z1). We denote by bθk(z1) the adaptive estimate which comes out
of the proposed procedure with such set of critical values after the first k steps. Now the value z1 is

defined as the minimal one which provides the condition

Eθ∗
¯̄
Lk(eθk,bθk(z1))¯̄r = Eθ∗

¯̄
NkK(eθk,bθk(z1))¯̄r ≤ αrr , k = 2, . . . ,K. (12)
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Now suppose that z1, . . . , zj−1 have been already fixed for some j > 1 and we want to select zj .

We proceed in a similar way by fixing already selected value z1, . . . , zj−1 and some zj and setting

zj+1 = . . . = zK−1 =∞. The adaptive estimate produced by the procedure with such parameter set

after k steps is denoted by bθk(z1, . . . , zj), k ≥ j. Now the value zj is defined as the minimal one

which provides the condition

Eθ∗
¯̄
Lk(eθk,bθk(z1, . . . , zj))¯̄r = Eθ∗

¯̄
NkK(eθk,bθk(z1, . . . , zj))¯̄r ≤ αrr , k = j + 1, . . . ,K. (13)

Continue this calculations for all zj , j = 1, ...,K−1. It is proved in [16] that such defined zj fulfill

(11). It is also obvious that the choice of the critical values zj is determined by the joint distribution

of the estimates eθk under the null hypothesis H0 : θ(X1) = . . . = θ(XK) = θ∗. The expectations in

(12)–(13) are calculated for the random events subject to the distribution with this fixed value θ∗ for

the estimated values.

2) Simplified choice of zk: Here we present a simplified procedure which is rather simple for

implementation. It is based on following Theorem 4 (Section VI) where it is shown that provided

some assumptions there are three constants a0, a1 and a2 depending on r and α such that the choice

zk = a0 + a1 logα
−1 + a2r log(NK/Nk) ensures (11) for all k ≤ K − 1. It suggests to select zk

linearly decreasing with k in the form

zk = z1 + s(K − k). (14)

Then we only need to fix two parameters, e.g. the first value z1 and the slop s. We first identify the

first value z1 using the condition (12). The other values zk are found in the form zk = z1 − s(k− 1)

to provide (11).

3) Details of implementation: To run the procedure, one has to first fix the set of local weighting

schemes (wi,h) for every scale parameter h1, . . . , hK . The proposed algorithm applies to any such

sequence which satisfies the growth condition (MD) from Section VI. A recommended choice is

a geometric progression with the starting value h1 and the growing factor a > 1. This means that

hk = h1a
k−1 for k = 2, . . . ,K. The starting bandwidth h1 is usually the smallest possible value

such that the first neighborhood only contains the reference point x. Our numerical results indicate

that the procedure is quite stable w.r.t. to the growing factor a, and values in the range [1.1, 1.5] lead

to very reasonable estimation quality. The choice of critical values involves two more parameters α

and r. Their meaning and impact has been already discussed before.

The FLL algorithm is implemented in the following two steps:

1) The estimates eθh = eθh(x) are calculated for all h ∈ H by (2) and all x;

2) The adaptive scales κ from (7) and the corresponding adaptive estimates bθ = eθκ are calculated
for all x.

The varying thresholds zk are calculated by the external procedure defined by (13) or (14).
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Fig. 1. A neighborhood of the estimation point x: a) the best estimation set U∗, b) the unit ball segmentation, c) sectorial

approximation of U∗.

IV. APPLICATION TO HIGH-RESOLUTION IMAGE DENOISING

In many cases the image intensity is a typical anisotropic function demonstrating essentially

different nonsymmetric behavior in different directions at each pixel. It follows that a good local

approximation can be achieved only in a non-symmetric neighborhood. To deal with these features

oriented/directional estimators are used in many vision and image processing tasks, such as edge

detection, texture and motion analysis, etc. To mention a few of this sort of techniques we refer to

classical steerable filters [18] and recent new ridgelet and curvelet transforms [19].

In this paper in terms of the considered nonparametric regression approach we exploit starshaped

size/shape adaptive neighborhoods built for each estimation point. Figure 1 illustrates this concept. A

hypothetical ideal neighborhood U∗ (figure a) is a largest starshaped neighborhood of the estimation

point x where the constant fits well to the data. A sectorial segmentation of the unit ball with the

center at the point x shown in figure b is used for approximation of U∗. This approximation (figure

c) is achieved by using varying lengths hγ of the sectors, where γ is a direction of the sector, and a

finite set Γ of different directions γ. Varying size sectors of the length hγ enable one to get a good

approximation for any neighborhood of the point x provided that it is a starshaped body.

This starshaped approximation defines both the size and the shape of the estimation neighborhood

but requires |Γ| parameters hγ to be defined. Introduce η = (hγ)γ∈Γ as the |Γ|-dimensional “window-

size” meaning the set of window (sector) sizes hγ . Also define Iγ(x) as the support of the infinite

sector for the direction γ. Note that any two different sectors overlap only in the central point x. For

each η we define the estimate eθη of the form
eθη =X

γ

X
i∈Iγ

wi,hγYi

ÁX
γ

X
i∈Iγ

wi,hγ = Sη/Nη . (15)

As the sectors Iγ overlap at Xi = x, this point gets more weights than the others.

The problem of adaptive estimation can be formulated as the choice of the vector η for a given

point x. By Theorem 3, the accuracy of the estimate eθη is measures by the quantity Nη. A natural

generalization of the proposal (7) to the vector scale is to select the “largest” (in values of Nη) estimate
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eθη which is consistent with all estimates eθη0 with “smaller” scales. This approach to adaptation is
possible but it is a difficult task encountering some algorithmic and principal problems.

To be practical we use a procedure with independent data-driven selection of the hγ’s for each

directions γ using the FLL technique of Section III.

For each direction γ, according to (2), the corresponding directional estimate eθh,γ = eθh,γ(x) is
calculated as eθh,γ =X

i∈Iγ
wi,hYi

.X
i∈Iγ

wi,h. (16)

With a given set H of the scales h1, . . . , hK we calculate the corresponding set of the estimates

{eθh,γ(x), h ∈ H} and come back to the problem of selecting for every direction γ one of these

estimates in a data driven way. The FLL adaptive procedure from Section III leads to the adaptive

scale bhγ(x) which describes the set of homogeneity in direction γ with the center at x. In total we
have |Γ| such sets for different directions γ.

Define bη = (bhγ)γ∈Γ and the final adaptive estimate bθ = eθη due to (15):
bθ =X

γ

X
i∈Iγ

wi,hγ
Yi

ÁX
γ

X
i∈Iγ

wi,hγ
. (17)

Selecting a scale bhγ for every direction γ can be viewed by itself as a multiple testing procedure.

Now we perform independently |Γ| such procedures which requires an additional correction of the

parameters (critical values) zk to account for the direction choice. In the spirit of the proposal (11),

we select the critical values zk to provide that

Eθ∗
¯̄
NηkK

¡eθηk ,eθηk¢¯̄r ≤ αrr , k = 2, . . . ,K. (18)

Here for every k the restricted set of bandwidths {h1, . . . , hk} is considered and ηk is the nonadaptive

“oracle” vector scale with the components hγ ≡ hk for all γ, while bηk = (hκγ(k))γ∈Γ is obtained

by the adaptive choice for every direction γ of the index κγ(k) after the first k steps of the scale

selection algorithm using the critical values z1, . . . , zk−1, see (8).

The sequential or simplified choice of zk can be used exactly as in the case of the scalar scale case.

The step of computing the values zk has to be done only once. With the computed parameters zk,

the total complexity of this procedure is linearly proportional to the number |Γ| of different sectors.

The FLL algorithm is implemented in the following three steps procedure:

1) The directional estimates eθh,γ (16) are calculated for all h ∈ H and all γ ∈ Γ;

2) The adaptive scales bhγ are calculated using (7) for all directions γ ∈ Γ.
3) The final estimate bθ is calculated according to the formula (17).
These steps are performed for all x. The varying thresholds zk are calculated by the external

procedure to fulfill (18).
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V. EXPERIMENTAL STUDY

A. Preliminary

The described adaptive starshaped neighborhood estimates are originated in the works [11], [20],

where it is successfully exploited with the ICI adaptive scale selection for different image processing

problems.

Multiple studies show that the narrow line-wise window functions w are preferable for high-

resolution image denoising. It is demonstrated in [12] (Chapter 8) that the ICI algorithm is very

sensitive with respect to singularities or rapid image intensity variations and combined with the narrow

windows gives the estimates which are able to preserve tiny images details while the algorithms with

wider sectorial supports usually result in oversmoothed estimates.

The estimates (16) and (17) depends on the product wi,hIγ of the window function wi,h and the

sector indicator Iγ . Denote these products by wi,h,γ = wi,hIγ . Then

eθh,γ =X
i

wi,h,γYi

.X
i

wi,h,γ , (19)

bθ =X
γ

X
i

wi,hγ ,γ
Yi

ÁX
γ

X
i

wi,hγ ,γ
. (20)

In what follows wi,h,γ is a binary function with values 0, 1. The scale (window size) parameter h

takes integer values in the set H = {b1.5kc, k = 1, ..., 7} = {1, 2, 3, 5, 7, 11, 17}. The length of the

window wi,h,γ is equal to h. For the horizontal direction, γ = 0, and 1 ≤ h ≤ 5 the window weights

wi,h,0 = 1 along the horizontal axis only. For h > 5 the area where wi,h,0 = 1 becomes wider as it is

illustrated in Figure 2. For all h the windows wi,h,γ are quite narrow. The rotation of these horizontal

windows defines the directional windows for eight directions γi = (i− 1)π/4, i = 1, ..., 8.

The directional adaptive estimates bθγ = eθhγ ,γ are calculated independently for all γ ∈ Γ. As a result
we obtain a number of different estimates of the same signal. Combining these multiple estimates in

the final unique estimate is known as a fusing problem. In terms of this problem the formula (20) for

the final adaptive estimate has an interesting interpretation at least for the binary zero-one weights

wi,h,γ . Indeed, by Theorem 3 the variability of the estimate eθh,γ is inverse proportional to the sum
of weights Nh,γ =

P
iwi,h,γ . Moreover, in the case of binary weights wi,h,γ and the homogeneous

noise, the variance of eθh,γ is also inverse proportional to Nh,γ . Therefore, a natural way to combine

(fuse) the multiple directional estimates eθhγ ,γ into the unique final one is the weighted mean using
inverse variance multipliers Nhγ ,γ

as weights ([12], Chapter 6):

bθ =X
γ

eθhγ ,γNhγ ,γ

ÁX
γ

Nhγ ,γ
. (21)

It is a simple exercise to verify that the estimates (20) and (21) are identical. Thus, instead of

calculation of (20) we can work in (21) with the directional estimates only. The FLL is used for
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h = 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

h = 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

h = 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

h = 5 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

h = 7 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0

h = 11 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

h = 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Fig. 2. The binary (0,1) windows of the horizontal directional estimates. The length of the window is equal to h. The

width becomes larger than 1 starting from h = 7.

calculation of the directional adaptive scales and the adaptive directional estimates. Then the final

estimate (20) can be calculated as the weighted mean (21) of these adaptive directional estimates.

This fact highlights the meaning of the estimate (20) as well as of the more general proposal (15).

An alternative way of fusing of the adaptive directional estimates bθγ is to define bθ as the mean
over the region bU obtained by union of the adaptively selected directional sectors bUγ of length bhγ :

bθ = X
Xi∈U

Yi

Á bN (22)

where bN means the number of points in bU . The only difference with the estimate (21) is that the
central point x is taken with the weight one as all the other points while (21) put much more weight to

the point x. The experimental results indicate that for imaging applications, in particular, for texture

images, the estimate (21) is visually and numerically preferable. In what follows we show the results

obtained by (21).

We mention one more fact used in the algorithm implementation. A pointwise nature of the

procedure leads to certain variability of the selected parameter (window size) as a function of the

location x, especially for a large noise level, see e.g. [21]. In order to reduce the stochastic variability
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of the estimates the FLL algorithm is completed with a special smoothing of the adaptively selectedbhγ(x) as functions of x. For this prefiltering we apply weighted median filters. The obtained filtered
scales bη(x) = {bhγ(x)}γ∈Γ are used for building the adaptive estimates.
We demonstrate the performance of the developed algorithm for Poissonian, Gaussian and binary

Bernoulli image observations. The image θ(x) and the observations are defined on the finite discrete

rectangular grid of the size n1×n2. It is assumed that the observations for each pixel are statistically

independent. The problem is to reconstruct the image θ(x) from the observations Y (x), x ∈ X.

For the imaging quality evaluation we use the peak-signal-to-noise-ratio (PSNR) calculated in dB as

PSNR = 20 log10(maxx |θ(x)|/RMSE), where the signal peak is maxx |θ(x)| and the root mean

squared error (RMSE), RMSE =
©¡
n1n2

¢−1P
x[θ(x) − bθ(x)]2ª1/2, is used for calculation of the

noise level in the image reconstruction.

In our experiments we use the MATLAB texture test-images (8 bit gray-scale): Boats (512× 512),

Lena (512× 512), Cameraman (256× 256), Peppers (512× 512) and the binary test-images: Cheese

(128× 128). For all images we use the eight sectorial estimators with the window functions shown

in Figure 2.

A special study has been produced for testing the procedures presented for zk selection. The

expectations in the corresponding formulas are calculated by the Monte-Carlo method. In these

calculations the work of the adaptive FLL algorithm is imitated including the prefiltering of the

adaptive scales mentioned above. Selection of zk depends on the parameters r and α. As already

noticed larger α and smaller r result in smaller critical values zk. Smaller zk means decreasing of

smoothing properties of the adaptive FLL algorithm.

Our default choice is r = 1 and α = 1. This recommendation works surprisingly well giving the

sets of zk universally good for different images and different distributions. In what follows we use

the sets zk obtained by the simplified threshold parameter choice (Section III-C).

The MATLAB codes of the algorithms used in the following experiments can be found on the

website www.cs.tut.fi/˜lasip.

B. Poissonian observations

To achieve different level of randomness (different signal-to-noise ratio (SNR)) in the Poissonian

observations we multiply the true signal θ by a scaling factor with the observations defined according

to the formula ez ∼ P(θ·χ), where χ > 0 is a scaling factor. Further, we assume the observations in the

form z = ez/χ in order to have the results comparable for different χ as E{z} = E{ez}/χ = θ for all

χ > 0. The scaling by χ allows to get the random data z with a different level the random noise and

to preserve the mean value : var{z} = var{ez}/χ2 = θ/χ. SNR is calculated as E{z}/
p
var{z} =

√
θχ. Thus, for larger and smaller χ we have respectively larger and smaller SNR.
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This scaled modeling of Poisson data is exploited in a number of publications [22], [23], [24],

[25] where the advanced performance of the wavelet based denoising algorithms is demonstrated. It

is shown in [17] that the ICI based adaptive algorithm gives quite competitive results and at least

numerically demonstrates a better performance then the algorithms in the cited papers. We consider

this ICI adaptive algorithm as a main competitor to the proposed FLL technique .

In the scale selection the FLL technique is applied to the Poissonian variables, i.e. to ez with the
adaptive directional estimates denoted as ezγ . Then the directional FLL estimates of θ are calculated
as bθγ = ezγ/χ. The threshold set, calculated according to the simplified choice (14) with r = 1 and

α = 1, is as follows z = {1.6 1.40 1.14 0.91 0.68 0.45} .

TABLE II

”LENA” IMAGE: CRITERIA VALUES FOR THE EIGHT DIRECTIONAL AND TWO FINAL ESTIMATES.

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 Final (21) Final (22)
PSNR 22.54 22.73 23.67 22.3 22.45 22.62 23.66 22.36 28.34 28.10

For Lena image Table II illustrates numerically the effects of fusing of the directional estimates in

the final one. The criterion values for the final estimates compared with the eight directional sectorial

ones show a strong improvement in the final estimate. In particular, we have for PSNR the values

about 22.5 dB for the sectorial estimates while for the fused estimate (21) PSNR ' 28.34.

Even a more impressive difference between the directional and final estimates can be seen in Table

III given for Cheese image. In Tables II and III we show the final results obtained by both fusing

formulas (21) and (22). The fusing by (21) shows better results. This fact is observed in nearly all

our experiments. In what follows we show the results obtained by using the formula (21).

TABLE III

”CHEESE” IMAGE: CRITERIA VALUES FOR THE EIGHT DIRECTIONAL AND FINAL ESTIMATES.

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 Final (21) Final (22)
PSNR 26.25 25.09 26.08 25.26 26.04 24.81 26.16 25.18 34.3 34.2

Some results for Lena image are demonstrated in Figure 3. The central panel shows the true image

and the eight surrounding panels show the FLL adaptive scales bhγj(x) for the corresponding eight
directions γj = (j − 1)π/4, j = 1, ..., 8. We can see the adaptive scales for directional estimates

looking at the horizontal and vertical directions, i.e. to East, North, West, and South, as well as to

four diagonal directions North-East, North-West , South-West, South-East.
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Fig. 3. FLL adaptive directional window sizes hγj (x), γj = (j−1)π/4, j = 1, ..., 8, for the Lena image. The true image
is shown in the central panel.

White and black correspond to large and small scale values, respectively. The adaptive scales

delineate the image intensity very well as it could be done provided that the intensity function is

known in advance. This delineation is obviously directional as the contours of the image are shadowed

from the corresponding directions. The eight narrowed windows allow to build the estimates highly

sensitive with respect to image details and essentially improve the quality of denoising.

Figure 4 demonstrates the obtained estimates. The central panel shows the final estimate calculated

from the sectorial ones according to the formula (21). The surrounding panels show the sectorial
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Fig. 4. The central panel shows the aggregated final estimate for Lena image and the surrounding ones show the directional

FLL adaptive estimates θγj , γj = (j − 1)π/4 , j = 1, ..., 8.

directional adaptive scale estimates bθγj(x), j = 1, ..., 8, corresponding to the adaptive scales given in
Figure 3 for the relevant directions.

The noise effects are clearly seen in the adaptive scales bhγj(x) as spread black isolated points.
The black means that FLL erroneously takes smaller values of the scale. A directional nature of the

adaptive estimates bθγj(x) is obvious with the corresponding directions seen as a line-wise background
of this imaging. The fusing of multi-directional estimates allows to delete and smooth these directional

line effects and obtain a good quality final estimate. Overall, the multi-directional estimation allows
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to reveal and preserve a tiny detail of the image and in the same time efficiently suppress the noise.

TABLE IV

PSNR VALUES OBTAINED BY THE FOLLOWING ALGORITHMS: PROPOSED FLL, LPA-ICI RECURSIVE NON-GAUSSIAN

(RNG) AND NON-RECURSIVE LPA-ICI USING THE ANSCOMBE TRANSFORM (AT ). POISSONIAN DISTRIBUTION.

Images χ = 102 χ = 25.5 χ = 12.75 χ = 6.375

Cheese 38.00 35.66 39.85 34.30 29.71 33.0 30.70 25.58 28.64 27.58 19.34 24.46

C-man 30.77 29.45 30.2 26.84 26.17 26.3 25.00 24.42 24.0 23.13 21.46 21.0

Boats 29.87 29.44 29.6 26.67 26.62 26.1 25.10 24.98 24.0 23.59 21.46 21.7

Peppers 31.19 31.16 30.64 28.19 28.50 26.95 26.30 26.21 24.59 24.43 20.80 21.61

Lena 31.76 31.64 31.2 28.45 28.61 27.29 26.55 26.41 25.00 24.84 21.11 22.4

The FLL numerical results in Table IV are given for the final estimate (21) obtained from eight-

directional estimates. It shows PSNR values calculated for the test-images provided different values

of the parameter χ defining varying SNR for Poissonian observations. The largest χ = 255/2.5 = 102

corresponds to the smallest level of the noise while the smallest χ = 255/40 = 6.375 corresponds

to the highest noise level in our experiments. Recall that SNR is proportional to √χ.

In each cell (image-χ) of this table we show results given by three different algorithms, respectively:

the proposed FLL algorithm, the LPA-ICI recursive non-Gaussian (RNG) algorithm and the non-

recursive LPA-ICI algorithm using the Anscombe transform (AT).

The LPA-ICI is the algorithm using the local polynomial approximation (LPA) for estimation and

the ICI for scale adaptation. The zero and first order LPA are used in this algorithm with narrow

sectorial windows similar to discussed above. The basic LPA-ICI algorithm is developed for the

Gaussian observations. The LPA-ICI recursive algorithm is especially developed for non-Gaussian

data with the signal dependent variance.

The nonlinear Anscombe transform of observations Y has a form Z = 2
p
Y + 3/8. For Poissonian

Y this random Z has the variance approximately equal to 1. This stabilization of the variance

is exploited for denoising of Poissonian observations. In the non-recursive LPA-ICI algorithm we

calculate the Anscombe transform of the initial data, filter them using the basic non-recursive LPA-

ICI algorithm and inverse the Anscombe transform.

Details of the basic LPA-ICI and LPA-ICI recursive non-Gaussian (RNG) algorithms can be seen

in the [12] (Chapters 12).

For the considered test images the LPA-ICI recursive non-Gaussian algorithm mainly gives the

best result with about 7 iterations. The values shown in Table IV are obtained for this number of

iterations.

For nearly all cases PSNR in Table IV shows the best values for the FLL algorithm. For small

level of the noise (χ = 102) the AT algorithm demonstrates a better performance only for the binary

March 8, 2007 DRAFT



20

Cheese image.

For the middle level of the noise with χ = 25.5 the LPA-ICI recursive algorithm shows slightly

better results than the FLL algorithm for two texture images Peppers and Lena. However, this PSNR

advantage is in contradiction with visual evaluation. Figure 5 shows that the images obtained by

LPA-ICI recursive non-Gaussian (RNG) algorithm suffer from multiple spot-like artifacts while the

FLL images are free from this sort of degradation.

For the higher noise level with χ = 255/20 = 12.75 and χ = 6.375 the FLL algorithm demonstrates

the best PSNR values sometimes with a quite valuable improvement.

Note, that the binary "Cheese" image is modelled with θ = [0.2, 1.0]. We do not use the standard

binary (0, 1) values because θ = 0 mean not only zero value of the signal but also the zero value of

its variance. Thus, the observations corresponding to θ = 0 would be noiseless accurate.

Table V shows the processing time (in seconds, Intel Centrino Processor 1.5 Ghz) for images of

different size using the compared algorithms. The advantage of the FLL algorithm is clear.

TABLE V

PROCESSING TIME IN SECONDS FOR DIFFERENT SIZE IMAGES, POISSONIAN DISTRIBUTION.

Image size\ Algorithm FLL LPA-ICI, RNG Anscombe

128× 128 7 9 33

256× 256 16 30 40

512× 512 56 121 76

C. Gaussian observations

We assume that the additive zero-mean Gaussian noise has the standard deviation σ. For the scales

H the threshold set calculated according to the simplified choice with r = 1 and α = 1 is as follows

z = {3.0, 2.64, 2.28, 1.92, 1.56, 1.2}.

For comparison we use the results obtained by the basic non-recursive LPA-ICI denoising algorithm.

We select for comparison this algorithm as belonging to the same class of the algorithms mainly

different by the statistics used for the adaptive scale selection. Details concerning this algorithm can

be seen in [12]. Note that the referred basic LPA-ICI algorithm is a specially designed and optimized

for the Gaussian case while the FLL is demonstrated in the form universally tuned for the class of

exponential distributions.

In each cell (image-σ) of Table VI we show results given by two compared algorithms, respectively:

the proposed FLL and the basic LPA-ICI algorithms. The PSNR values are shown for small σ = 0.05,

middle σ = 0.1 and high σ = 0.2 levels of the noise.
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Fig. 5. Fragments of denoised Poissonian images: first line Lena, left image FLL with PSNR=28.34, right image LPA-ICI,

RNG with PSNR=28.61; second line Peppers, left image FLL with PSNR=28.06, right image LPA − ICI,RNG with

PSNR=28.5.

For small level of the noise the algorithms demonstrate more less equivalent performance for all

images but Cheese, where the LPA-ICI algorithm shows the significantly larger PSNR value. For the

higher noise the FLL algorithm shows better results than the LPA-ICI algorithm for all cases. This

advantage of the FLL algorithm is mainly caused by the varying thresholds zk while these thresholds

are the same for all scales in the LPA-ICI algorithm.

Table VII shows the processing time (in seconds, Intel Centrino Processor 1.5 Ghz) for images

of different size using FLL and ICI algorithms. Comparing with Table V we may note that for the

Gaussian case the FLL algorithm becomes faster. It happens because for the Poissonian distribution
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TABLE VI

PSNR VALUES OBTAINED BY THE PROPOSED FLL AND BASIC LPA-ICI ALGORITHMS. POISSONIAN DISTRIBUTION.

Images σ = 0.05 σ = 0.1 σ = 0.2

Cheese 37.74 40.97 35.80 35.5 31.73 29.07

Cameraman 31.46 31.54 28.08 27.87 24.98 23.95

Boats 31.34 31.25 28.03 27.88 24.89 24.56

Peppers 32.18 32.06 29.30 28.92 26.02 25.23

Lena 32.92 32.70 29.59 29.21 26.36 25.72

the Kullback statistics requires calculation of logarithm function versus the squared differences for

the Gaussian case. Comparing with the ICI algorithm we may conclude that the ICI algorithm is a

bit faster than the FLL algorithm.

TABLE VII

PROCESSING TIME IN SECONDS FOR DIFFERENT SIZE IMAGES, GAUSSIAN DISTRIBUTION.

Image size\ Algorithm FLL LPA-ICI

128× 128 6.2 5.7

256× 256 12.3 9.2

512× 512 35.5 26.7

D. Bernoulli observations

Bernoulli imaging assumes that the observations take random binary values [0, 1] subject to the

Bernoulli distribution. The image intensity θ is the mean of this random variable to be reconstructed

as a function of the argument x. The sample mean estimate of θ is unbiased with the variance equal

to θ(1 − θ)/n and SNR =
p
nθ/(1− θ), where n is a number of the averaged observations. For

θ = 0 or θ = 1 the Bernoulli observations are noiseless and give the accurate pattern of the image

without any signal processing and averaging. However, for the values θ different from 0 and 1 the

observations can be very noisy and difficult for imaging. We illustrate the performance of the FLL

algorithm for the piece-wise invariant image intensity. In order to have noisy observations the values

of the intensity function should be different from 0 and 1. We control the level of the randomness

in the observations by the following transformation of the original eθ = 0, 1 using instead the image
θ = eθ · δ+0.5(1− δ), 0 < δ < 1. For this θ the Bernoulli random variable takes values 0 and 1 with

the probabilities θ0 = 0.5(1− δ) and θ1 = 0.5(1+ δ) respectively. The variance of these observations

grows rapidly when δ takes smaller values.
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TABLE VIII

PSNR VALUES FOR THE BINARY BERNOULLI IMAGING OBTAINED BY THE PROPOSED FLL ALGORITHM.

δ 0.70 0.75 0.80 0.85 0.90 0.95

PSNR 22.12 23.36 24.49 26.17 28.45 30.80

The threshold set calculated according to the simplified choice for r = 1/2 and α = 1 is as follows

z = {0.7, 0.69, 0.67, 0.66, 0.64, 0.63}. The modeling results are presented for the binary Cheese

image (eθ = 0, 1) and the varying parameter δ. Results are shown in Table VIII. The most noisy case
corresponds to δ = 0.7 with PSNR = 22.12 for these observations. The lowest level of the noise

corresponds to δ = 0.95 with PSNR = 30.80. Numerical criterion values in Table VIII confirms a

good performance of the algorithm. Noisy and denoised images as well as the error of denoising are

illustrated in Figure 6.

Fig. 6. Cheese image: binary Bernoulli observations z, estimate errors |θ − θ| · 10 and estimates θ for δ = 0.85.

The FLL adaptive scales for different eight directions are shown in Figure 7. The central panel

shows the noisy image and the eight surrounding panels show the FLL adaptive scales bhγj (x) for the
corresponding eight directions γj = (j − 1)π/4, j = 1, ..., 8.

White and black correspond to large and small scale values respectively. The adaptive scales

delineate the edges of the binary image quite well. This delineation is obviously directional as the

contours of the image are shadowed from the corresponding directions. The eight narrowed kernels

allow to build the estimates highly sensitive with respect to image details and essentially improve the

quality of denoising.

Figure 8 demonstrates the obtained estimates. The central panel shows the final fused estimate

calculated from the sectorial ones according to the formula (21). The surrounding panels show the

sectorial directional adaptive scale estimates bθγj(x), j = 1, ..., 8, corresponding to the adaptive scales
given in Figure 7 for the relevant directions.
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Fig. 7. FLL adaptive directional window sizes hγj (x), γj = (j − 1)π/4, j = 1, ..., 8, for the Cheese image, δ = 0.85.
The noisy image (binary Bernoulli distribution) is shown in the central panel.

The noise effects are clearly seen in the adaptive scales bhγj (x) as spread black isolated points. A
directional nature of the adaptive estimates bθγj(x) is obvious since the corresponding directions are
seen as a line-wise background of this imaging. The fusing of multi-directional estimates allows to

delete and smooth these directional line effects and obtain a good quality final estimate.

VI. THEORETICAL STUDY

This section presents some properties of the adaptive estimates with the scalar scale parameter as

they are defined in Section III. In particular, we state the “oracle” estimation quality of the sectorial

adaptive scale estimates. The final starshaped adaptive neighborhood estimate obtained from these

adaptive sectorial ones can be considered as a heuristic step of the algorithm design. A full extension

of the theory to imaging with starshaped adaptive neighborhoods is still an open question.

We suppose that the parameters zk of the procedure are selected in such a way that the condition

(11) is fulfilled. First we present some bounds on zk that ensure (11). Next we study the properties
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Fig. 8. The central panel shows the aggregated final estimate for Cheese image and the surrounding ones show the

directional FLL adaptive estimates θγj , γj = (j − 1)π/4 , j = 1, ..., 8, δ = 0.85.

of bθ in the parametric and local parametric situation. Finally we extend these results to the general
nonparametric situation and prove an “oracle” property of bθ.
A. Bounds for the critical values

This section presents some upper and lower bounds for the critical values zk. The results are

established under the following condition on the local sample sizes Nk.

(MD) for some constants u0, u with u0 ≤ u < 1, the values Nk satisfy for every 2 ≤ k ≤ K to

the following conditions Nk−1 ≤ uNk, u0Nk ≤ Nk−1.

In addition, we need the following regularity condition on the parametric set Θ.

(Θ) the set Θ is compact and the Fisher information Iθ is a continuous function of θ ∈ Θ.

Our first result claims that under conditions (MD) and (Θ), the parameters zk can be chosen in

the form zk = zK+s(K−k) to fulfill the “propagation” condition (11). The proof of this and similar

statements can be found in [16].
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Theorem 4 ([16]): Assume (MD) and (Θ). Then there are three constants a0, a1 and a2 depending

on r and u0, u only such that the choice zk = a0 + a1 logα
−1 + a2r log(NK/Nk) ensures (11) for

all k ≤ K − 1. Particularly, Eθ∗
¯̄
NKK

¡eθK ,bθ¢¯̄r ≤ αrr.

This result presents an upper bound for the critical values zk. In particular, it claims that these values

are at most logarithmic in the sample size. Another important observation is that this upper bound

decreases with the index k. The reason can be explained as follows. The choice of the critical values

relies only on the behavior of the procedure in the homogeneous situation. The critical values should

be large enough to prevent from “false alarms” (rejections of the homogeneity hypothesis). Note

however, that a “false alarm” at an early step of the procedure is more crucial than at the final steps

because it leads to the choice of a high variable estimate bθ = eθκ . The criterion (11) automatically
accounts for this and the procedure by construction is more conservative at the beginning of the

algorithm and less conservative at the end.

B. Risk of estimation in nonparametric situation. “Small modeling bias” condition

Theorem 3 states some results about the accuracy of the local MLE eθk in the local homogeneous
situation with θ(Xi) = θ for all positive weights wi,hk . In particular, the risk of estimation can be

bounded in the form Eθ

¯̄
NkK(eθk, θ)¯̄r ≤ rr for all k.

Here the bound of Theorem 3 is extended to the nonparametric model Yi ∼ Pθ(Xi) when the

function θ(·) is not any longer constant even in a vicinity of the reference point x but it can be well

approximated by a constant θ for all points Xi from a neighborhood U of x.

Define

∆U(θ) =
X
Xi∈U

K
¡
θ(Xi), θ

¢
.

This quantity ∆U (θ) called the modeling bias naturally measures the local distance between the

original model given by the regression function θ(Xi) and the parametric model with θ(·) ≡ θ on

the set U .

Similarly we define for every scale hk

∆k(θ) =
X

Xi:wi,hk>0

K
¡
θ(Xi), θ

¢
.

We now aim to extend this result to the nonparametric situation under the “small modeling bias”

(SMB) condition ∆k(θ) ≤ ∆ for some ∆ ≥ 0.

Theorem 5: Let for some θ ∈ Θ, k∗ ≤ K, and some ∆ ≥ 0

max
k≤k∗

∆k(θ) ≤ ∆. (23)
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Then it holds for r > 0

E log
³
1 +

¯̄
Nk∗K(eθk∗ , θ)¯̄r/rr´ ≤ ∆+ 1,

E log
³
1 +

¯̄
Nk∗K(eθk∗ ,bθk∗)¯̄r/(αrr)´ ≤ ∆+ 1.

Proof: The proof is based on the following general result.

Lemma: Let P and P0 be two measures such that K(P,P0) ≤ ∆ < ∞. Then for any random

variable ζ with E0ζ <∞, E log
¡
1 + ζ

¢
≤ ∆+E0ζ.

Proof: By simple algebra one can check that for any fixed y the maximum of the function

θ(x) = xy− x log x+ x is attained at x = ey leading to the inequality xy ≤ x log x− x+ ey. Using

this inequality and the representation E log
¡
1 + ζ

¢
= E0

©
Z log

¡
1 + ζ

¢ª
with Z = dP /dP 0 we

obtain

E log
¡
1 + ζ

¢
= E0

©
Z log

¡
1 + ζ

¢ª
≤ E0

¡
Z logZ − Z

¢
+E0(1 + ζ) = E0

¡
Z logZ

¢
+E0ζ −E0Z + 1.

It remains to note that E0Z = 1 and E0
¡
Z logZ

¢
= E logZ = K(P ,P 0).

We now apply this lemma with ζ =
¯̄
Nk∗K(eθk∗ , θ)¯̄r/rr or ζ = ¯̄NkK(eθk∗ ,bθk∗)¯̄r/(αrr) and utilize

that Eθζ ≤ 1. Clearly in the both cases the estimates eθk and bθk only depend on the observations Yi
with wi,hk > 0. Denote by Pk the joint distribution of such observations for the given function θ(·)

and by Pk,θ the similar distribution in the homogeneous case θ(·) ≡ θ. Then with Zk,θ = dP k/dP k,θ

E logZk,θ = Eθ

¡
Zk,θ logZk,θ

¢
= E logZk,θ = E

X
Xi:wi,hk>0

log
p(Yi, θ(Xi))

p(Yi, θ)
= ∆k(θ) ≤ ∆

and the assertion of the lemma follows.

This result particularly means that under the SMB condition (23) with some fixed ∆, the losses¯̄
Nk∗K(eθk∗ , θ)¯̄r are stochastically bounded. Note that this result applies even if ∆ is large, however
the bound is only meaningful for small or moderate ∆ because it grows exponentially with ∆. It

also suggests the following definition of the “oracle” or “ideal” choice k∗ of the scale parameter k:

it is the largest value for which ∆k(θ) ≤ ∆ for all k ≤ k∗. Due to Theorems 3 and 5, the “oracle”

choice leads to the “oracle” accuracy 1/Nk∗ . The next section shows that the adaptive estimate can

guarantee essentially the same estimation accuracy.

Note that the given definition of the “oracle” k∗ depends upon the value ∆ which measures how

far the underlying true model and its the parametric approximation may deviate from each other. This

means that the given definition is subjective and there are many “oracle” choices depending on the

different ∆-value. However, the procedure does not rely on the “oracle” definition and the theoretical

results below apply to any of them.
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[13] has shown that the SMB condition is similar to the classical bias-variance trade-off condition,

and ∆ can be viewed as a constant that bounds the ratio of the squared bias of the estimate eθk and
of its variance. This yields that the “oracle” choice of the window is equivalent to the rate optimal

scale selection and it leads to the rate optimal estimation quality in the class of smooth functions.

C. “Stability after propagation” and “oracle” result

Our main result claims that the proposed method possesses the “oracle” property: the difference

between the “oracle” estimate eθk∗ and the adaptive estimate bθ measured by K¡eθk∗ ,bθ¢ is of order of
the “oracle” risk N−1

k∗ .

Theorem 6: Assume (MD) and (Θ). Let θ and k∗ be such that maxk≤k∗ ∆k(θ) ≤ ∆ for some

∆ ≥ 0. Then

E log
¡
1 +

¯̄
Nk∗K

¡eθk∗ ,bθ¢¯̄r/ zrk∗¢ ≤ ∆+ αrr/ z
r
k∗ + 1.

Proof: The “propagation” result of Theorem 5 applies as long as the SMB condition ∆k(θ) ≤ ∆

is fulfilled, that is, only to the adaptive estimates bθ1, . . . ,bθk∗ which come out of the algorithm after
the first k∗ step. The “oracle” could help us to stop exactly after k∗ step. However, our adaptive

procedure can continues to work after the step k∗ if all the criteria Tlk ≤ zl are satisfied. To establish

the accuracy result for the final estimate bθ, we have to check that the adaptive estimate bθk does not
vary much at the steps after k∗. The definition of the procedure ensures the following “stability”

property:

Nk∗K
¡eθk∗ ,bθ¢1¡κ ≥ k∗

¢
≤ zk∗ (24)

because the estimate bθ = eθκ is accepted.
The definition of the adaptive estimate bθ = eθκ and (24) imply¯̄
Nk∗K

¡eθk∗ ,bθ¢¯̄r = ¯̄Nk∗K
¡eθk∗ ,bθk∗¢¯̄r + ¯̄Nk∗K

¡eθk∗ ,bθ¢¯̄r1(κ > k∗) ≤
¯̄
Nk∗K

¡eθk∗ ,bθk∗¢¯̄r + zrk∗ .
By the “propagation” condition (11)

Eθ

¯̄
Nk∗K

¡eθk∗ ,bθk∗¢¯̄r ≤ αrr .

Now by Lemma

E log
¡
1 +

¯̄
Nk∗K

¡eθk∗ ,bθ¢¯̄r/ zrk∗¢ ≤ ∆+Eθ

¯̄
Nk∗K

¡eθk∗ ,bθ¢¯̄r/zrk∗ ≤ ∆+ αrr/ z
r
k∗ + 1

and the required assertion follows.

The presented result states a kind of “oracle” property for the proposed adaptive estimate bθ. Indeed,
due to this result, the normalized stochastic lossNk∗K

¡eθk∗ ,bθ¢±zk∗ is bounded in the sense of existence
of its log-moment. Theorem 5 states the similar bound for the loss Nk∗K

¡eθk∗ , θ¢ of the “oracle”
March 8, 2007 DRAFT



29

estimate. Therefore, the adaptive estimate provides the same accuracy as the “oracle” one up to a

factor zk∗ which comes from the stability result (24) and can be considered as a kind of “payment for

adaptation”. Due to Theorem 4, zk∗ is bounded from above by a0+a1 log(α
−1)+a2r log(NK/Nk∗).

Therefore, the risk of the aggregated estimate corresponds to the best possible risk among the family

{eθk} for the choice k = k∗ up to a logarithmic factor in the sample size.

[4] established a similar result in the regression setup for the pointwise adaptive Lepski procedure

and showed that this result yields the rate of adaptive estimation
¡
n−1 logn

¢1/(2+d) under Lipschitz
smoothness of the function θ(·) and the usual design regularity, see [13] for more details. [7] showed

that in the problem of pointwise adaptive estimation this rate is optimal and cannot be improved by

any estimation method.

VII. CONCLUSION

A novel technique is developed for spatially adaptive estimation. The fitted local likelihood statistics

are used for selecting an adaptive neighborhood. The algorithm is developed for a quite general class of

observations subject to the exponential distribution. The estimated signal can be uni- and multivariable.

The scale dependent thresholds of the developed statistical tests are an important ingredient of the

approach. The developed theory justifies both the adaptive estimation procedure and the varying

threshold selection. The main theoretical result formulated in Theorem 6 shows the accuracy of the

adaptive estimate.

For high-resolution imaging the developed approach is implemented in the form of anisotropic

directional estimation with fusing the scale adaptive sectorial estimates. The performance of the

algorithm is illustrated for image denoising with data having Poissonian, Gaussian and Bernoulli

(binary) random observations. Simulation experiments demonstrate a very good performance of the

new algorithm. A demo version of the developed adaptive FLL algorithm is available at the website

www.cs.tut.fi/˜lasip.
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