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The paper is concerned with the problem of variance estimation for a high-
dimensional regression model. The results show that the accuracy n~1/2 of
variance estimation can be achieved only under some restrictions on smooth-
ness properties of the regression function and on the dimensionality of the
model. In particular, for a two times differentiable regression function, the
rate n~'/2 is achievable only for dimensionality smaller or equal to 8. For
higher dimensional model, the optimal accuracy is n~%4 which is worse than
n~1/2. The rate optimal estimating procedure is presented.
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1. INTRODUCTION

In this paper, we consider the problem of estimating the error variance
for the regression model

Y= f(Xi) +ei (1)
where X1,..., X, are design points in the Euclidean space R? , f: R¢ —
R is an unknown regression function and €1, ... ,&, are individual random

errors which are supposed independent and satisfying the conditions Fe; =
0, Ee? = 0% and Ecf < Cs < oo for all i < n. The design Xi,...,X,
is assumed deterministic. Note however that the case of a random design
can be considered as well, supposing X;,...,X, ii.d. random points in
R? with a design density p(x). Then all the result should be understood
conditionally on the design.
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The aim is to estimate the unknown error variance o2 .

Wahba (1983) and Silverman (1985) proposed to use for estimating o?
usual nonparametric residuals obtained by removing the estimated smooth
regression curve from the observations. Difference-based procedures were
thoroughly discussed in Gasser et al. (1986), Siefert et al. (1993) among
other. Hall et al (1990) found asymptotically optimal differences. Choosing
the curve estimation with respect to extracting residual variance has been
studied by Buckley et al (1988) and Hall and Marron (1990). We refer
to Seifert et al (1993) for more detailed descriptions and comparison of
different procedures for variance estimation. Neumann (1994) discussed
fully data-driven estimate. Hall and Carroll (1989), Hérdle and Tsybakov
(1997), Ruppert et al (1997), Fan and Yao (1988) studied the problem of
estimating the heteroscedastic conditional variance.

The majority of the mentioned results focus on the mean squared error
of the variance estimation in the univariate regression model and claim
the possibility to estimate o2 at the rate n~'/2. Some extensions to the
two-dimensional case are discussed in Hall et al. (1991) and Seifert et al.
(1993). The main message of the present paper is that variance estimation
with root-n rate is possible in the multivariate case as well, but only if the
dimension d is not too high, more precisely, if d < 8.

It is worth noting that the variance estimation is relatively rarely the
target of statistical analysis. Typically it is used as a building block for
further procedure like adaptive estimation (Rice, 1984; Gasser et al, 1991)
of hypothesis testing (Hart, 1997), Spokoiny (1999), where some pilot vari-
ance estimation is required. This enforces to study not only the risk of
estimation but also some deviation probabilities which are presented in our
results.

2. THE ESTIMATE

Our approach is a multidimensional analog of the proposal from Hart
(1997, p.123) which gives an unbiased estimate of the variance for a linear
regression function. The idea is to construct for every design point X; a

-~

local linear fit f(X;) of the unknown regression function f and then to
use the pseudo-residuals €; = Y; — f(XZ) for variance estimation.

The main problem comes from design sparseness and non regularity in
the multidimensional situation. This makes difficult the choice of the local
neighborhood for constructing the local linear fit. We propose below two
approaches how this choice can be done. One utilizes a uniform bandwidth

and another one allows the bandwidth to vary from point to point.

2.1. The local linear fit
First we describe the local linear fit we apply. Let Up(x) denote the ball
with the center z and the radius h and Np(z) stand for the number of
different design points in Up(z): Np(x) = #{X; € Up(z)}.
Let K be the uniform kernel function K(u) = 1(|u| < 1). Introduce
linear functions v¢o(xz) =1, ¢e(z) = x4, £=1,...,d and define for every
i the vector ah(Xi) € R¥*! via the local linear fit

n

p 2
On(X;) = arginfz (Y] - ZG@W(XJ-)) K (#)
=0

PERITT 5

see Katkovnik (1985), Tsybakov (1986), Fan and Gijbels (1996). This is

Y

a quadratic optimization problem with respect to the vector of coefficients
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6 = (6¢)¢=0,...a which can be solved explicitly. If the (d+ 1)x(d + 1)
matrix ¥;j of the form

. X; - X;
Win = ZW(XJ‘)W(X;')K <]T> L k=0,....d
j=1

is non singular, then the solution exists and is unique and it is a linear
combination of the observations Y; with the deterministic coefficients de-

pending on the design Xj,..., X, only. In particular, the first coefficient
can be represented in the form 6y ,(X;) = Z?Zl ai;,nY; with some coeffi-
cients ajjp, j =1,...,n. It is well known (and it is easy to check) that

the such defined coefficients a;;; obey the following conditions.

LEMMA 2.1. Let the matriz U; ) be non singular. Then the above de-
fined coefficients ai;p fulfill a;j, =0 if | X; — Xi| > h and

n X. — X,
Zaij,hK<%) = 1,

=1

- X, - X;
Zaij,h¢e(Xj - X)) K <]T> = 0, =1,....,d.
j=1

A necessary and usually sufficient condition for non singularity of the
matrix ¥;j is that the ball Uy (X;) contains at least d+ 1 design points.

2.2. Procedure with a variable bandwidth
For every i, define the bandwidth h; by the condition

h; = inf {h : ¥, is non singular}

where ;5 is the (d+ 1)x(d + 1) matrix introduced before Lemma 2.1.
Next define the local linear estimate

~

FX0) = Fn(X3) =D aijn,Y;
Jj=1
and pseudo residuals €;
N n
€= f(X;)-Y; = Zcijyj
j=1
with ¢;; = a5, for j #4 and ¢;; = ayp, — 1. Finally we set

n

2 _ 2 s

s; = E Cij 1=1,...,n,
j=1

= Iyl 2)
g = — .
n & s?

2.3. Procedure with a global bandwidth
Define the subset X} of the set Xq,...,X, by

Xy = {X; : ¥, is non singular}
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and let M} stand for the number of design points in X} : My = #A4}, .
Then, with a given a > 1/2, we define the bandwidth A as the minimal
value which satisfies the condition

My, > na,

that is, there are at least na points X;, for which ¥, ; is non singular.

-~ -~

Next we define the local linear estimate f(X;) by f(X;) = Z?:l aijnY;
and the pseudo residuals €; by

n
€= f(X;)-Y; = Zcijyj
=

with ¢;;j = a;5,, for j # i and ¢;; = a;,, — 1. Finally the variance
estimate o2 is defined by

n
2 _ § 2
=1

Q)
Y
|
‘ —
SelR

3. PROPERTIES

In this section we state some useful properties of the estimate > from
(2). The estimate 02 can be studied similarly. First we present the result
for the case of Gaussian errors ¢; and then we discuss the general case.

The estimate 5% assumes some smoothness of the regression function f
in a small neighborhood of each design point X;. When formulating the
result, this local smoothness will be characterized by the value

L; =0.5 sup sup 3
ucRd :tEUhi(Xi) |'U/‘

where f” denotes the dxd Hessian matrix of second derivatives of f.

THEOREM 3.1. Let the observations Yi,...,Y, follow the regression
model (1) with i.i.d. Gaussian errors €; ~ N(0,0%) and a two times
differentiable regression function f. Introduce n X n-matrix B with en-
tries

1 n
Bii = =2, =1
Z]_E S CkiCkj, L) =4...,N.
k=1

Define the values A, S* and Cp by

1 n

A? = EZL?h?5¢2 Z\Cij\ :

i=1 j#i

n n

S =2rB*=2) > B},

i=1 j=1
n|| B2,
2tr B2
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where ||Bll = sup,cpn~ |Bu|/|u|. Then for every nonnegative v, the
variance estimate o2 fulfills

P (i(82 —0%) > A? 4 0 AV/2[ Bl + 70—25)
< 2714 4 1V/(6CB), (3)

Remark 3. 1. The norm of the matrix B can be very roughly estimated
as follows: ||B||%, < tr B?, which particularly implies Cg < \/n/2.

3.1. The rate of estimation

Here we discuss some corollaries of Theorem 3.1 concerning the rate
of estimation. To this end we have to bound the quantities A and S.
This can be easily done under some additional assumptions on the design
X1,...,X, and the underlying regression function f. Concerning the
design, we consider here two different model assumptions widely used in
applications.

RD (Random design) The design points Xi,... , X, arei.i.d. random
variables from a distribution with a density p(z) which is supported on a
compact set X and it is continuous and positive on X.

ED (Equispaced design) The design points Xi,..., X, form the reg-
ular grid in the unit cube [0,1]? with the step &, such that §,! is an
integer number and 6% =n.

The quantity S? is defined through the design only and in what follows
we present some bound on S under ED or RD. The value A also depends
on the smoothness properties of the underlying regression function f. For
exposition simplicity we restrict ourselves to the class F(2, L) of functions
with the bounded second derivative:

F(2.L) = {f: 05| fllo < L}.

For every f € F(2,L), the values L; defined before Theorem 3.1 are
bounded by L,ie. L; <L.

LEMMA 3.1. Let f € F(2,L). Under ED, it holds

A2
52

< 2dL*n~*4,
< 2N*n 1,
where N* depends on d only.

Next we consider the situation with a random design. In that case, the
both quantities A and S which are defined via the design X;,...,X,,
are random and the result of Theorem 3.1 is stated conditionally on the
design. The bounds we formulate below should be also understood in the
conditional sense: they hold for a majority of design realizations (i.e. on a
set of a high probability w.r.t. the design distribution).

LEMMA 3.2. Let f € F(2,L) and let RD hold. For every u > 0, there
are two constants k and N* depending on d and the design density p
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only such that it holds for n large enough on the set of probability at least
I1—p
AQ
52

K221
IN*n~L

ININ

The inequalities A < Lkn~2/% and S? < 2N*n~! yield in view of (3)
and Remark 3.1 the following accuracy of estimation: with a probability
at least 1 —e~7"/4 — e=7V2/6 it holds

+ (02 — 02) < A4 7Aa(252)1/4 +vSo?
< KLY 4 AR LAN*) Y Aon=/ 4= 4 o2 /2N*n =12,

We observe that for d < 8, the first two summands in this bound are
smaller in rate than the last one which is O(n~'/?). If d = 8§, then all
three summands are of order n~/? and for d > 8, the first term (which
is of order n=%/®) starts to dominate. Given a loss function w , define the
risk of estimation

R(?) Ew (n'/?072(5% — 0?)), d<§,
0°) =
Ew (n*/4672(5% — 0%)), otherwise.

The above considerations lead to the following

THEOREM 3.2. Let 62 be the variance estimate from (2). Let the quan-
tities A, ||Blloc and S defined in Theorem 3.1 and depending on n,
the design X1,...,X, and on the smoothness properties of the regression
function f, satisfy the conditions

A < Do?*n %1,
S? < 2N*n~!

with some fixed constants B,N*. Then for every continuously differ-
entiable loss function w which obeys the conditions w(0) = 0, w(x) =
w(—z), w'(z) >0 for £ >0 and [w'(z)e”** dz < oo for every a >0,
the corresponding risk R(G%) remains bounded by some constant C =
C(B,N*,w) depending on D,N* and the function w only:

R(6%) < C(D,N*,w).

3.2. Non-Gaussian case

Here we discard the assumption that the errors ¢; are normally dis-
tributed. Instead we assume that that they are independent identically
distributed with 6 finite moments.

THEOREM 3.3. Let the errors e; from (1) be i.i.d. random variables
with Ee; =0, Ee? = 0%, E(e? —0?)? < C}o* and E|e? — o?|® < Cgo®
for all i. Let also value C4 be such that

n Apax Z B n_max B%
<Oy, i=1,...,n

é ; 82

< Cyx

n

-
\ |
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where the coefficients B;; are defined in Theorem 3.1. Then there exists an
absolute constant C such that for every v > 0 and every § with 0 < § <1

P (:l:(&2 —02) > A2 £ 2A8Y %5 4 (v + 6)Sa® + 75"02)

< 20/ 4 o WAIBCA) | o 1/25-8

where A and S are defined in Theorem 3.1, |S"|?> = 5. 8% and the
i=1
constant C' depends on Cy,Cs and Cy only.

This result clearly implies an analog of Theorem 3.2 for non-Gaussian
errors under the conditions of Theorem 3.3.

3.3. Rate optimality
Here we show that the critical dimension d = 8 appears not only for our
particular estimator. Actually, no estimator achieves the rate n~'/2 for
d > 8 uniformly over any class of smooth functions with the smoothness

degree 2.
To simplify the construction, we suppose hereafter that n'/? is an integer
number, and Xi,...,X, form the regular grid in the unit cube [0,1]¢.

Define the following Sobolev type class F,(2,L):

n

fn(z,L):{f;lz sup ||f”(a:)||2§L2}.

N =1 wila—Xi|<n=1/4

Let Py ,> denote the measure on the observation space which corresponds
to a regression function f and the variance o2 and let E; ;> denote the
expectation w.r.t. Py ;2.

THEOREM 3.4. Let X1,...,X, be the equispaced design in the unit cube
[0,1]? and the the observations Yi,... .Y, be generated from the regres-
sion model (1) with i.i.d. Gaussian errors ¢; ~ N'(0,0%). For d > 8,
sufficiently large L and for every continuous bounded loss function w,

lim inf sup sup Ej .o w (n4/d(5,2l - 02)) =r>0
n—o0 53 reF,(2,L) 02€X%,

where the infimum is taken over the set of all possible estimates of the
parameter o® and ¥, is the three points set of the form ¥, = {1,1+
n=44 1 4 2p=41} .

Due to this result, even if the unknown variance is valued in a three-
point set X, , a consistent variance estimation is impossible and the risk
of estimation is of order n—1/¢,

4. PROOFS
In this section we present the proofs of Theorem 3.1 through 3.4.

4.1. Proof of Theorem 3.1
Define

fhi (Xl) = Zaij,hif(Xj)
j=1



8 SPOKOINY

so that
e f(X5) = ain f(X5) — F(Xi) = fu, (Xs) = F(X5).
j=1 j=1

The model equation (1) implies for every i < n

n n n
Gi= ey = ciif (X)) + ) cije
j=1 j=1 j=1

which leads to the following representation for the estimate 2 :

2'61' =S i+ &) = b€
i=1

where
bi = n"'/%s 1{fh( i) — f(Xi)}

n
L= /2671 e =
& =n s; E Cij€j = E Q€
Jj=1 J=1

. —1/2 -1
with a;; =n=1/2s7'¢;;

The smoothness assumption on the function f implies for every j with
| Xj = Xil < hi
F(X;) = F(X3) = F1(Xa) (X — Xa)| < Lik3.
The properties >7_ ¢;j = 0 and Y7, ¢;5(X; — X;) = 0 provide
| fri (X3) — F(X3)]

= Zcijf(Xj) - f(Xy) Zcij - f1(Xy) Z%‘(Xj - Xi)

= Zcij{f(Xj) - f(X3) = X)X - Xi)}

J#i
Therefore
. 2
b2 = b7 < ZLZ Wsi 2 [ ) el | =A% (4)
i=1 j#i

We now apply the following general statement, see Lemma 4.3 below.
Let A be a n x n-matrix with entries a;;, Aa = [|[ATA||x~ and S? =
2tr(AT A)2. Then for every positive v > 0

P (ﬂ: (1b+ €% — [B]? — 02 tr(AT A)) > yo|b|(2A4) /2 + 7025)

S 26—72/4 + 6—75/(6>\A)_
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Since Z ", aj; = 1/n, then clearly

ATA Zﬁu—zza” =

i=1 j=1

This implies the required assertion in view of (4).

4.2. Proof of Lemmas 3.1 and 3.2

Recall that each bandwidth h; is defined as the smallest radius h pro-
viding a non degenerated linear fit in the ball Uy (X;). This implies that
the number Np(X;) of design points in the ball U, (X;) is at least d+ 1.
Define N = max; Np,(X;) —1. It is straightforward to see that under RD,
P (N d) =1, and under ED, it holds N = 2d.

3 n 1/4
Further, let h = <n_1 ) h;‘) . Under ED, one clearly has h; =
=1

n='/4 for all i, so that & =n~"/?. Under RD, the following result can be
proved:

LEMMA 4.1. Under RD, for every small positive number p, , there exists
a positive constant k > 1 depending on d and the design density p(x) only
such that

P (ﬁ > nn_l/d) < .

The idea of the proof is that a ball Up(X;) contains under RD in mean
about Cyh®p(X;) design points with a fixed constant Cy. Therefore, if
h > kn~'% with k%Cyp(X;) > 2d for all or almost all i < n, then the
majority of the balls U, (X;) contain at least d+1 design points. We omit
the details.

Now we bound A under ED or RD. Since s? = jc?j, the Cauchy-
Schwarz inequality implies

2

D el | < (Nw (X)) = 1) el < (Ni (X3) = 1) 57

J#i J#i

and hence, if f € F(2,L), then L; < L for all i and
274 L*N & 4 27457 272, —4/d
E:Lh (N (Xi) —1) < == " ht = L*R'N < &2 L0/,
n 4

Under ED, this inequality applies with x = 1. Under RD &k from
Lemma 4.1 should be used and the bound holds with a probability at
least 1 — .

Next we consider S. Define

N; = #{Xj:|Xj—Xi‘<hi+hj}, 1=1,...,n,
* 1 =
N* = E;Ni.

i=

One can easily show that under ED the value N* is bounded by a constant
depending on d only. Under RD, a similar bound can be obtained outside
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a random set of a small probability us and the constant N* would also
depend on the design density, cf. Lemma 4.1.

We now intend to show that S? < 2N*n~!. Obviously ||Blle =
|ATAl|oo = [|[AAT||oc and S =tr(ATA)2 =tr(4AT)2.

The entries r;; = Zzzl airogy of the matrix AAT satisfy the conditions
Tii = Yop_y @3 =n~" and r;; < n~'. Moreover, if |X; — X;| > h; + hj,
then two local linear fits in X; and in X; are defined over non overlapping
neighborhoods and therefore r;; = 0. This implies for every i <n

n

2 2
E ri; < Nin
Jj=1

and hence,

2N*

SQ:QXH:Xn:B <2n_22N

i=1 j=1

4.3. Proof of Theorem 3.2

This result is an easy corollary of Theorem 3.1. Indeed, application of
this result and Remark 3.1 with d < 8 and varying ~ yields

P (n1/20_2(32 —0?) > A2 2pt/? 4 'yK) < 2= /4 4 e—e,

where K = /nAoc~1y/2X\4 ++/nS and ¢ = S/(6A4). The conditions of
the theorem yield for d < 8 in view of Remark 3.1

Al 2pt2 <D, K < (2D)Y2(AN*)Y* 4 2NH)YV2 > /2/6.
Therefore

R(6*) = Ew (Vno *(5* - 0%))

s—/ w(@) dP (Vio 25" - 0| > z)
< 2w(D +K/ (D + Kv)P (vVno?|5* — 0| > D + Kv) dy
< 2 +2K/ "(D + Kv) (6772/4 +e*”) dy

and the assertion follows. The case of d > 8 can be treated similarly.

4.4. Proof of Theorem 3.3

Let the matrix A with the entries a;; be defined in the proof of Theo-
rem 3.1 and B = AT A. The difference > — ¢ can be represented in the
form (see again the proof of Theorem 3.1)

62 -0 = |b?+20" Ade + e ' Be — o’ tr B

= |b\2+QbTAE+Zﬂu€ - o? +ZZBZJEEJ

i=1 j#i

b + Q2 + Q3 + Qu.

We now estimate separately each term in this expression. Note first that
|b]> < A% see the proof of Theorem 3.1.
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Let £1,...,&, be a sequence of i.i.d. random variables from the normal
law A(0,02). Define the sums Qo,QR3,Q4 similarly to Q2,Q3,Q4 with
€; s in place of €;’s. The idea is to show that the distribution of every Qp
only weakly depends on the particular distribution of ¢;’s and therefore,
the bounds for @y are valid for @ as well (in some asymptotic sense if
n is large enough), k= 2,3,4.

First we estimate the sum Q, = 2b" Ae. Note that EQ, = 0 and

EQ2 =0?|ATb> = 0?0 " AATD < ||AAT o [B]* < ||B|sc A2,

By the Cauchy-Schwarz inequality

EQ; _ ||IBllw
T 1/2 2
P(\b Ae| > AS a) < 2rer S g

and by the conditions of the theorem, n||B||?>/S? < C%, so that

P (\QQ\ > QASI/%) < 4Cn~1/2,

Next, it holds for Q3

n 2 n
PO - F (z (e — a2>> oty
i=1 =1

and the Berry-Essen inequality, see Petrov (1975), applied to Qs yields

with " =072\/EQ3

P (Qg > a:S”aQ) < P (653 > :1:5”02) + p6_3# Z FE ‘622(5? — 02)|3
i=1

P (Qs > (2 - )8"0%) + Capd *(8") D Bl

i=1

IA

The conditions of the theorem provide
n n 3
> 1Bl < ax Bii Y 1Biil> < C38" n™!/
i=1 i=1
and hence
P(Qs>z25"0%) < P (@3 > arS"aQ) + Cepd~2C%n~1/2,
In addition, the use of Lemma 4.3 yields for every =
P (@3 > 75"02) <e /g e V/(6Ch),
For estimating ()4, we apply the following general result from Spokoiny
(1999, Corollary 6.2). Let U = (u;5,¢,j = 1,...,n) be a nxn sym-

metric matrix with w;; = 0 for all . By U(ey,...,e,) we denote the
corresponding quadratic form of i.i.d. random variables €1, ..., , that is,

n n
U(El,... ,En) = Zzui]‘&‘ie’:‘j.

i=1 j#i
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Let also €1,...,&, be a sequence of independent Gaussian r.v.’s with
E:; =0 and E2? =0%, i =1,...,n. Define another quadratic form
n
U(gl, PN ,gn) = Z Zuijgigj.
i=1 j#i

Clearly EU(&1,...,6,) =0 and E|U(E1,...,2,)]> = E|U(e1,... ,en)|?.

PROPOSITION 4.1. Let Ee} < Cyot for some fized constant Cy > 3.
Let, for a symmetric matrix U with u;; =0 for i = 1,... ,n, and for a
normalizing constant G , the value Cy be defined by

n
Cy =  max nG*2a4E ufj
i=1,....n .
Jj=1

Then, for each § > 0 and every z

P (G_IU(sl,...  En) > x) < P(G_IU(&,... ,En) > z—é)
+p(c4CU)3/2n—1/26—3

with an absolute constant p .

We now apply this result to Q4 with u;; = 85, ¢ #j and

1/2

G=0"| 3. 5

i=1 j=1

Since

iiﬁfy =tr(4A")? = tr B? = §*

i=1 j=1
we derive
P(Qi>(7+0)0S) < P (@4 > w?s) + p(CaCa)3 20172678,
The bound from Lemma 4.3 applied to 654 provides for every -y
P (@4 > 70-25) < 6—72/4 + e—’Y\/ﬁ/(ﬁcA)_
Summing up everything, what we have got so far, leads to the bound
P (:I:(&2 —0?) > A2 £ 2A8 %5 4 (y + 6)So? + 75"02)
<P (\QQ\ > QASI/QO') + P (£Q5 > vS"0%) + P (£Q4 > (v + 8)S0o?)
< 2e /1 4 e VR/(6CA) 4 Oy m1/26-3

where C' depends on Cy,Cg and C4 only.

4.5. Proof of Theorem 3.4

The idea of the proof is as follows. We first change the minimax state-
ment for a Bayes one. For a prior measure 7 on the set F, define the
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corresponding marginal measure P, ,> by

/Pfa (df).

We intend to show that there exists a sequence of random functions f,
with prior distributions m, satisfying 7w, (F.(2,L)) — 1 and such that

E,Twm( 1/d(52 —02)) —r>0

for n large enough For the latter, it sufﬁces to show that the measures
P, .2 with 0§ =1 and Py 2 with o) = 0§ +n~ 4/d are not asymp-
totlcally separable.

The priors m, are selected on the base of the following consideration.
We define the values of random functions f, either identically zero or
i.i.d. normally distributed at each design point X;. If d is sufficiently
large and if the variance of this distribution is small enough, then this
random function will be with a large probability in the class F,(2,L).
Then clearly this random function f, introduce some additional noise in
the observations Y; and we cannot distinguish whether this noise comes
from the errors ¢; only (this would be the case when f, = 0) or there is
some contribution from the random regression function f,. More precisely,
let &1,...,&, beiid. standard Gaussian r.v.’s and §,, = n=2/¢. We will
show that there exist random functions g, with g¢,(X;) = §,§ and with
P (g, € Fr(2,L)) - 1 as n — oo for d > 8. The random functions
fn are constructed as follows. With probability 1/2, we set f, = 0
and with probability 1/2, the function f, coincides with g, . Then, for
0 = 0o the marginal distribution of the observations Y; = f(X;) + o¢; is
with probability 1/2 ii.d. from N(0,02) and with probability 1/2 i.i.d.
from N(0,02). Similarly, for ¢ = 0, , the marginal distribution of the
observations Y; corresponds with probability 1/2 an i.i.d. sample from
N(0,02) and with probability 1/2 an i.i.d. sample from A(0,02 +n=%/4).
Hence, with a positive probability, these two marginal distributions coincide
and therefore any estimate has a non-vanishing risk.

Now we present a formal description. Let h = n~—1/4
grid point X; a function ¢; of the form

d
) =]]@ <L —th‘,t)
(=1

where () is a smooth symmetric nonnegative function supported on [—1,1].
Clearly all functions ¢; have non-overlapping supports and for every ¢

. Define for every

lgi(z)] < 1,

9¢i(z) Q"

832[ S h ’

& ¢i(x) max{[|Q"[*, |Q" ||}

8:17483216 h2

so that
C
I8 @) < 55 (5)

with Co = Vdmax{[|Q"l|>,[|Q"[|} -
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Let also {&, i =1,...,n} bea collection of independent standard Gaus-
sian random variables. Define the random function g, of the form

Finally, for an independent of ¢, Bernoulli random variable v, with
P(v, =0) = P(v, =1) =1/2, define

fn = Vngn.

The property (5) provides for every i < n

" 2 —4 2 2 2
sup g, ()| < Coh™?d max & <C &
m:‘x_xi‘SH_l/dll (@)l Qi o, max & <0 g

and hence, using Np,(X;) < 2d+1

1 ¢ C -
=Y s g@)P < —2ed+ 1)y

NS ele—Xi|<n—1/d i—1
so that, for L? > (2d + 1)Cq, by the law of large numbers,

1 n
P(‘E: sup Mﬂ@W>Lﬁ—+m n — oc.

n i—1 Tz —X;|<n—1/d

This means that the random functions g, belong to F,(2,L) with a
probability close to 1 if L? > (2d + 1)Cg and clearly the same holds for
the f,’s.

Let now P((T”) denote the product measure in R" corresponding to the
model Y; = oe; with i.i.d. standard normal errors &;. Then clearly

Py = (P2 +P) /2,
P 2= (PO +PD) )2

with s2 = 02 + n=%4 = 02 + 2n=%/¢. Next we show that all three
sequences of measures (Pg’g)), (P((TZ)) and (sz)) are pairwise asymptot-
ically singular, if d > 8. Then the required assertion follows from the next

general result.

LEMMA 4.2. Let three sequences Pj(") , 1 =0,1,2,, of probability mea-
sures be pairwise asymptotically singular, that is,

w _dpm Bv
,2;2 ’En)—>0, n — 00, k # j.
7 dP;

J

Then for any continuous bounded function u(zx), it holds

(n) (n)
1 P P 1
2 dp™ + dP," 2

(n) (n)
that is, the likelihood jPO +dB converges weakly to the Bernoulli dis-

Pl(n)+dP2(n)
tribution with parameter 1/2.
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Proof. One obviously has
) (n)

Z5") + 1 Z + 7
2H,, = / w2227 ap 4 / w202 52 ) gpf
Z +1 Z) +1

’ — u(1) + u(0)

as required. |

It remains to check (6) for the sequences PE,") with o € {00,0n,$n}-
We consider the derivative Z = 4P /dP ") | the other cases can be

treated similarly.
The definition 02 = 02 + §2 = 1+ 42 clearly yields

(n) ap)
LO,l = lg dP()

Y2 N Y2
= nlog(on/00) — Z 2;2 + Z 20’2

i=1 0 i=1

BN EY ST
- 2% ol P 20202

Under the measure PE,’:L) , it holds Y; = 0,,(; with i.i.d. standard normal
r.v.’s (;. Therefore

Ly = log (1+62) - ZE
_n o) 0 Vil 1§ o
= 2log(l—l-(sn)— 5 ~ 3 \/ﬁ;(gz_l)
_n 2 _@_\/ﬁéi
= 2log(1+6n) 5 5 n
né?2
= \/; (rn = 1)

where the random variables 7, = ﬁ S (¢ — 1) are asymptotically
standard normal and

rn = \({;log( 1+62) —y/n< \/_{62 5;}

—4/d —8/d

2 3

if d> 8. Since also /nd> = n'/?>=4/4 — oo, this implies L((fl) — —0
and hence Zé?l) = exp L((ffl) — 0 as required.
4.6. Large deviation probability for Gaussian quadratic forms

LEMMA 4.3. Let A = (a;5,4,j =1,...,n) be a nxn-matriz. Define
the values S4 and A4 by:
S% = 2tr(ATA)? = 2tr(AAT)?,
A = [[ATAlloo = [[AAT ||
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If e1,... & are ii.d. normal N(0,0%) r.v.’s, and b= (by,... ,b,)" is
a deterministic vector in R then the quadratic form

2

Q = Z bz + Z Aij€j
i=1 j=1
fulfills for every z > 0 the condition

P (:I: (Q = [b]2 — 02 tr(AT 4)) > zo[b|(2X4)"/2 + 2025,4)

S 2672’2/4 + e—zSA/(G/\A)_

Proof. The standardization by o2 allows to reduce the general case to
the situation with o2 = 1, which is supposed in what follows. With vector
notation the studied expression can be represented as

Q—|b]> —tr(ATA) = (b+ Ae)" (b + Ae) —tr(AT A) — |b)?
= 20" Ae+e AT Ae —tr(AT A)

where ¢ denotes the vector (g1,...,6,)" . The latter expression can be
decomposed into linear and quadratic parts:

Q—tr(ATA) — b2 =20"TAc+eTATAe —tr(ATA) =Q1 + Q2 (7)
with

Q1 = 2b" Ae,
Qs = " AT Ae —tr(AT A).

The term (); is a linear combination of the r.v.’s ¢; and hence it is a
Gaussian r.v. with zero mean and the variance

EQ? =A4AEb  Ace "ATh=4b" AATH < 4Xa|b*.
(Here we have used that Eece' = 1,,.) Therefore,

222/\Ab|2} <

P (:I:Q1 > z(2/\,4)1/2|b\) <exp {_ SEQ’ (8)

Next we intend to show that
P (£Qy > 284) < e 7 /4 4 ¢ #54/(631),
The symmetric matrix AT A can be decomposed as
ATA=UTAU,
with an orthonormal matrix U (i.e. U'U = 1,), and a diagonal matrix
A, A =diag{Ai,... , \y}. Tt holds
n
trATA = trA =)\,
i=1

Sh = 2tr(ATA)P =200 A =2) N7,
i=1

Aa

max{ A1, ..., An]}-
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Therefore

Q=F"AZ—tr A=) N(E

i=1

where € = Ue is also a standard Gaussian vector in R”. We apply the
exponential Tschebyscheff-inequality: for every u >0

P (Qs > a) < e M EetQ2,

This yields

P(z) = (Z/\ ) > ZSA>

exp{—pzSa} Eexp {MZM@? - 1)}

i=1
exp{—quA — i Zx\i}EHexp{,u/\i%?}.
i=1 i=1

Since € are independent standard normal, we obtain

eXD{—quA —u ZA} [[Eexp{nrig?}
i=1

i=1

IA

P(z2)

IN

= exp {—quA - Z [uz\i + %log(l —2u /\Z)} } 9)

i=1

provided that 2u)\; < 1 for all 7.
Now we apply the following simple inequality:

—log(1 —u) < u+u?, Yu < 2/3.

This yields with any p <1/(3)\4) and all i:

1
—phi = 5 log(1 = 2p\) < 207\

and
n 1 n
242
—uzSy — ; <,U/\i + 5 log(1 — 2 /\i)> < —pzSs— ; 242\
= —pzSa+ p*S3. (10)
If z < % then we select p = 55—. With this choice the condition
A A
w<1/(3\4) is fulfilled and

—pzSa + p?S% = —2%/4.

For z > 25" we set p=1/(3X4), so that

SA 52 ZSA SA ZSA
S Sy = _PA L DA ERA( P4 ) o 294
HEoA o = o Y B~ 3 U3 S o
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It now follows from (9) and (10)

P(Z) < 6—22/4+e—zSA/(6>\A)

as desired. Similarly one can bound the probability

P'2)=P > NE —1)< 254
i=1

and the assertion follows in view of (7) and (8). 1

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.
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