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Abstract

This paper discusses the problem of estimating a linear functional in a
linear inverse problem. We consider an adaptive procedure originated
from Lepski (1990) which selects in a data-driven way one estimate out
of a class of the given estimates ordered by their variability. The main
problem with using this and similar procedures is that the question of
selecting the involved tuning parameters was not carefully addressed. At
the same time, the numerical results indicate that a careful choice of
the parameters of the procedure is extremely important for getting the
reasonable quality of estimation. The main contribution of this paper
is the new approach for choosing the parameters of the procedure by
providing the prescribed behavior of the resulting estimate in the simple
parametric situation. We establish a non-asymptotical “oracle” bound
which shows that the estimation risk is, up to a logarithmic multiplier,
equal to the risk of the “oracle” estimate which is optimally selected for
the given family. A numerical study demonstrates the nice performance
of the resulting procedure in a number of simulated examples.

1. Introduction. This paper discusses the problem of statistical esti-
mation in a linear inverse problem. Such problems are usually considered
as more complex than the usual nonparametric regression estimation due
to the poor rate of estimation. Moreover, the difficulty which is usually as-
sociated with the attained estimation accuracy increases with the degree of
illposedness. The origin for the poor rate in inverse problem estimation is
mostly due to a bad quality of inversion of the underlying compact operator.

Similarly to the standard regression set-up, the overall error of estimation
in an inverse problem is obtained as a sum of the error of approximation
and the stochastic error. The approximation error is typically controlled by
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2 SPOKOINY, V. AND VIAL, C.

the so called “source condition” and this error decreases with the size (di-
mension) of the approximating model. On the contrary, the stochastic error
rapidly increases with the size of the approximating model and the optimal
accuracy is obtained by selecting the smoothness/regularization parameter
to balance these two errors. In this paper we focus on the statistical analysis.
This means that the method of approximation or regularization is selected
in advance and one only has to adjust the degree of regularization from the
data. The efficiency of any adaptive (data driven) method can be measured
by the ratio of the risk of the proposed method to the “oracle” risk which
corresponds to the optimal choice of the regularization parameter for the
model at hand. One message of this note is that this statistical part of the
linear inverse problem is actually not harder than in the classical nonpara-
metric inference. Moreover, in the inverse problem set-up it is typically easier
to do a statistical adaption because the likelihood profile is not so flat as in
the classical nonparametric regression.

Below we consider one method of adaptive nonparametric estimation in
the linear inverse problem which originates from Lepski (1990). Similar es-
timation procedures in context of linear inverse problem can be found in
Goldenshluger (1999), Goldenshluger and Pereversev (2000), Cavalier, Gol-
ubev, Picard and Tsybakov (2002), Tsybakov (2000), Cavalier and Tsybakov
(2001,2002), among other. A common drawback of all these proposals is that
they involve some other parameter(s) like a threshold whose choice in prac-
tical applications is not really addressed. In some sense, the original problem
of selecting one (regularization) parameter is simply transferred into another
problem of selecting the threshold. The theoretical results claiming the op-
timal minimax rate of estimation, however, have been established under the
condition that the threshold is sufficiently large and they tell nothing if this
condition is not fulfilled. At the same time, the experience in practical im-
plementations of the adaptive methods strongly support taking rather small
thresholds. Applying a large threshold typically leads to a conservative pro-
cedure and oversmoothing effects. In this sense, one can say that there is
some critical gap between the theory and practical applications.

Our paper aims at developing a “constructive” theory for this problem
which closes the gap between theory and practical implementation and ex-
plains in details how the procedure can be implemented in practical situa-
tions to deliver reasonable results without any further adjustment. We offer
a new approach for selecting the tuning parameters of the method based on
the so called “propagation” condition which postulates the desirable per-
formance of the method in the simple parametric situation, see Section 2.1
for a detailed explanation. The idea is similar to the problem of hypothesis
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ADAPTIVE ESTIMATION IN A LINEAR INVERSE PROBLEM 3

testing for which the critical value of a test is selected by bounding the first
kind error probability under the null hypothesis. Note that this approach
can be directly applied to many other procedures including local model se-
lection, stagewise aggregation, local change point analysis which are studied
in details in Spokoiny (2008) in a much more general set-up.

Golubev (2004) proposed another “risk envelope” approach to select the
threshold for a special sequence space model and a particular linear func-
tional. We consider this example in Section 1.3. The common point between
Golubev (2004) and our proposal is the selection of the parameters of the
method by a Monte Carlo simulation from the model with zero response.
However, the motivation and theoretical analysis for our study is quite differ-
ent from the one in Golubev (2004). Recently Cavalier and Golubev (2006)
extended developed a similar “risk hull” approach for the choice of the pe-
nalization for estimation of the whole parameter vector.

Theoretical properties of the proposed method are presented in Section 3.
The main result states the “oracle” property of the proposed estimate: the
risk of the adaptive estimate is within a log-multiple as small as the risk of
the “oracle” estimate for the given model. The results are established in the
precise nonasymptotic way under mild regularity conditions. Our simulation
study in Section 4 confirms a nice finite sample performance of the procedure
for a rather big class of different models and problems.

1.1. Model and problem. Consider a general set-up of a linear inverse
problem when the observed data Y from a Hilbert space HY are modelled
by a linear operator equation

Y = AX + ε(1.1)

where X is the unknown parameter vector from some Hilbert space HX ,
A : HX → HY is a linear operator, and ε is a random Gaussian noise in
HY with the known correlation structure given by the covariance operator
Σ . The goal is to estimate a linear functional θ = θ(X) which can be
represented in the form 〈ϑ, X〉 for some known element ϑ ∈ HX . Some
examples of this scheme are given in the next sections. A naive estimation
approach is based on the explicit least square solution of the problem (1.1):

θ̃ = 〈ϑ, (A∗A)−A∗Y 〉 = 〈A(A∗A)−ϑ, Y 〉 = 〈φ, Y 〉

where A∗ is the conjugate operator to A , C− means a pseudo-inverse
of C and φ = A(A∗A)−ϑ . However, this approach cannot be efficiently
applied if A is a compact operator because the inverse of A∗A does not
exists or is an unbounded operator. One can regularize the problem if some
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4 SPOKOINY, V. AND VIAL, C.

additional information about smoothness of the element X is available. This
allows to replace (A∗A)− by its regularization gα(A∗A) where gα means
some regularized inversion and α is the corresponding parameters. See, e.g.,
Goldenshluger and Pereversev (1999) for typical examples. The quality of
estimation heavily depends on the choice of the regularization parameter α
and its choice is a challenging problem. Usually one fixes a finite ordered set
of values α1 < α2 < . . . < αK and considers the corresponding estimates

θ̃k = 〈φk, Y 〉, φk = Agαk
(A∗A)ϑ.

Now the original problem can be reformulated as follows: given a set of es-
timates θ̃k for known vectors φk , build an estimate θ̂ of the functional
θ which performs nearly as good as the best in this family. We present
one practical example for the considered set-up and one special problem
considered in Golubev (2004). More examples include positron emission to-
mography problem, Cavalier (2001), functional data analysis, Cai and Hall
(2006), among many others.

1.2. Example: Option pricing. Let St be a stock process for which the
market of the corresponding vanilla (call) type options is liquid (heavily
traded). The problem of pricing an option with another pay-off function
c(y, T ) can be naturally treated as a linear inverse problem. Indeed, if pT (·)
means the state price density as a function of the strike price K and the
time to maturity T , then the (discounted) option price can be computed as
the linear functional

∫
c(y, T )p(y, T )dy , see e.g. Ait-Sahalia and Lo (1998)

and references therein. The same is applied to the vanilla option where the
pay-off function is c(K, T ) = (ST − K)+ . Therefore, the observed vanilla
option prices C1, . . . , Cn for the strikes K1, . . . ,Kn and the fixed time to
maturity T can be described by the model

Ci =
∫

(y −Ki)+ p(y, T )dy + εi

with the individual error εi .
Here X means the state price density p(·, T ) while A maps it into

the finite dimensional space IRn : AX is the vector of integrals
∫
y(y −

Ki)+ p(y, T )dy . The objective functional is
∫

c(y, T ) p(y, T )dy . This prob-
lem becomes ill-posed if the pay-off c(y, T ) is positive for y < 0 or for y
which belongs to the out-of-the-money regions where no or only very few
options are traded.
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ADAPTIVE ESTIMATION IN A LINEAR INVERSE PROBLEM 5

1.3. Example: “sequence space” model. We consider the statistical prob-
lem when the observations y1, . . . , yM follow the “sequence space” equation

yi = µi + σiεi , i = 1, . . . ,M,(1.2)

where εi are independent standard normal and the standard deviations σi

are known while the mean values µi are unknown. This “sequence space”
model is prototypical for many realistic models like regression or statistical
inverse problems, see e.g. Cavalier and Tsybakov (2001,2002) for examples
and details. The variances σ2

i are usually constant for the regression set-up
or grow with i for ill-posed inverse problems.

One particular problem in this set-up can be to estimate the sum

θ = µ1 + . . . + µM ,

where M can be equal to infinity. If µi are the Fourier coefficients of some
function f(·) and M = ∞ , then θ means the value f(0) .

The “naive” estimate θ̃ =
∑M

i=1 yi , even for a finite M , has a very large
variance

∑M
i=1 σ2

i and hence, can be highly inefficient. The “smoothing”
idea leads to the set of the “spectral cut-off” estimates

θ̃k = 〈φk, X〉 =
mk∑
i=1

yi ,

where φk = (1, . . . , 1, 0, . . . , 0) is the vector with the first mk entries equal
to one and the others equal to zero, while mk is a fixed decreasing sequence
of indices M ≥ m1 > m2 > . . . > mK ≥ 1 .

One can easily compute for k = 1, . . . ,K

θk
def= E θ̃k =

mk∑
i=1

µi , vk
def= Var θ̃k =

mk∑
i=1

σ2
i ,

The major difficulty in applying the “smoothing” approach is the proper
choice of the parameter k . Small values of k lead to a huge variance vk of
the estimate θ̃k while large k -values can result in a big bias bk = θ− θk =∑M

i=mk+1 µi . The “oracle” choice balances the approximation and stochastic
errors. However, this “ideal” choice assumes that the bias (the approxima-
tion error) is known. The problem we consider in this paper is to develop an
adaptive (data-driven) choice which mimics the “oracle” and achieves the
best possible performance among the set of estimates θ̃k .
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6 SPOKOINY, V. AND VIAL, C.

1.4. Some properties of the estimates θ̃k . The definition of the estimate
θ̃k = 〈φk, Y 〉 and the model equation (1.1) yield the decomposition

θ̃k = 〈φk, AX〉+ 〈φk, ε〉 = θk + ξk .

The next properties of θ̃k are direct corollaries of this decomposition.

Theorem 1.1. It holds for any k ≤ K

Eθ̃k = θk ,

Var θ̃k = φ>k Σφk .

Moreover, θ̃k − θk = 〈φk, ε〉 = ξk is a Gaussian zero mean r.v. with the
variance vk = Var θ̃k = φ>k Σφk satisfying for any r > 0 and any λ < 1/2

E
∣∣v−1

k

(
θ̃k − θk

)2∣∣r = cr ,

E exp
{
λv−1

k

(
θ̃k − θk

)2} = (1− 2λ)−1/2

where cr = E|ξ|2r and ξ is standard normal.

Due to this result, θ̃k is a good estimate of θ if the “bias”
∣∣θk − θ

∣∣
is sufficiently small. In particular, in the “no bias” situation θk = θ the
estimate θ̃k leads to the accuracy of order v

1/2
k and one can build confidence

intervals for the parameter θk in the form

Ek(z) =
{
u : v−1

k

(
θ̃k − u

)2 ≤ z
}
.(1.3)

If z is sufficiently large then the result of Theorem 1.1 ensures that Ek(z)
contains θk with a high probability.

2. Description of the method. This section presents the considered
adaptive estimation procedure. Our starting point is the given family of
estimates θ̃k for k = 1, . . . ,K ordered by their variability so that the
variance vk of θ̃k decreases with k . We aim to select a data-driven index
k̂ or equivalently the estimate θ̂ = θ̃

k̂
which minimizes the corresponding

estimation risk. The method we apply originates from Lepski (1990). We
however, consider a slightly different interpretation of the procedure which
is based on the multiple testing idea. Similar and more general ideas lead to
a general local model selection procedure which applies for a broad class of
nonparametric models and studied in details in Spokoiny (2008).

For a given sequence of estimates θ̃k = 〈φk, X〉 consider the sequence of
nested hypothesis Hk : θ1 = . . . = θk = θ . The procedure is sequential: we
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ADAPTIVE ESTIMATION IN A LINEAR INVERSE PROBLEM 7

start with k = 2 and at every step k the hypothesis Hk is tested against
H1, . . . ,Hk−1 . If Hk is not rejected then we continue with the next larger
k . The final estimate corresponds to the latest accepted hypothesis. For
testing Hk against Hl with l < k , we check that the new estimate θ̃k

belongs to the confidence intervals built on the base of θ̃l . More precisely,
we apply the test statistics:

Tlk =
(
θ̃l − θ̃k

)2
/vl , l < k,

where vl is the variance of θ̃l . Big values of Tlk indicate a significant
difference between the estimates θ̃l and θ̃k . Due to the definition (1.3), the
event Alk = {Tlk ≤ zl} means that θ̃k belongs to the confidence set El(zl)
based on θ̃l . The estimate θ̃k (or the hypothesis Hk ) is accepted if Hk−1

was accepted and Tlk ≤ zl for all l < k , that is, the new estimate θ̃k

belongs to the intersection of all the confidence intervals El(zl) built on the
previous steps of the procedure. The formal definition is given by

k̂ = max{k ≤ K : T ∗
lk ≤ zl l = 1, . . . , k − 1}, T ∗

lk = max
l<j≤k

Tlj .

Here the “critical values” z1, . . . , zK−1 are the parameters of the procedure.
Their choice is discussed in Section 2.1.

The random index k̂ means the largest accepted k . The adaptive esti-
mate θ̂ is θ̃

k̂
:

θ̂ = θ̃
k̂
.

We also define the adaptive estimate θ̂k as the latest accepted after the first
k steps:

θ̂k = θ̃
min{k̂,k} .

The described procedure involves K − 1 parameters and their automatic
choice is ultimately required for practical applications of the method. Our
next step is the procedure for an automatic selection of the critical values
zk .

2.1. Choice of the critical values zk using a “propagation condition”.
The critical values z1, . . . , zK−1 are selected by the reasoning similar to the
standard approach of hypothesis testing theory: to provide the prescribed
performance of the procedure under the simplest (null) hypothesis. In the
considered set-up, the null means X ≡ 0 . In this case it is natural to expect
that the estimate θ̂k coming out of the first steps of the procedure until the
index k is close to the nonadaptive counterpart θ̃k . This particularly means
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8 SPOKOINY, V. AND VIAL, C.

that the probability of rejecting one of the estimates θ̃2, . . . , θ̃k under the
null hypothesis should be very small.

To give a precise definition we need to specify a loss function. Suppose
that the risk of estimation for an estimate θ̂ of θ is measured by E

∣∣θ̂−θ
∣∣2r

for some r > 0 . Under the null hypothesis X ≡ 0 , every estimate θ̃k fulfills
θ̃k = 〈φk, ε〉 and hence, it is a zero mean normal variable with the variance
vk . Therefore,

E0

∣∣v−1
k

(
θ̃k − θ

)2∣∣r = cr

where cr = E|ξ|2r and ξ is standard normal. We require that the parame-
ters z1, . . . , zK−1 of the procedure are selected in such a way that

E0

∣∣v−1
k

(
θ̂k − θ̃k

)2∣∣r ≤ αcr , k = 2, . . . ,K.(2.1)

Here α is the preselected constant which is similar to the confidence level of
a testing procedure. This gives us K−1 conditions to fix K−1 parameters.
As in the testing problem, we are interested to select the critical values as
small as possible under the constraint (2.1). Note that the choice of the
indicator loss function 1

(
θ̂k 6= θ̃k

)
would lead to the usual error of the

first kind for the multiple testing procedure. We select another stronger loss
function because it is better assigned for the purpose of statistical estimation
problem.

Our definition still involves two parameters α and r . It is important to
mention that their choice is subjective and there is no way for an automatic
selection. A proper choice of the power r for the loss function as well as
the “confidence level” α depends on the particular application and on the
additional subjective requirements to the procedure. Taking a large r and
small α would result in an increase of the critical values and therefore,
improves the performance of the method in the parametric situation at cost
of some loss of sensitivity to deviations from the parametric situation. This
behaviour is analogous to the hypothesis testing problem where a small α
reduces the first kind error at costs of the test power. Theorem 3.1 presents
some upper bounds for the critical values zk as functions of α and r in
the form a0 + a1 log α−1 + a2r(K − k) with some coefficients a0 , a1 and
a2 . We see that these bounds linearly depend on r and on log α−1 . For our
examples, we apply a relatively small value r = 1/2 . We also apply α = 1
although the other values in the range [0.5, 1] lead to very similar results.
It is worth mentioning that both the procedure and the theoretical study
apply and lead to reasonable results whatever r and α are. This makes
a striking difference with many other proposals, see the references in the
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introduction, for selecting the tuning parameter(s). Typically one requires
that the critical value (threshold) z is sufficiently large and the theory is
only valid under this constraint.

The set of conditions (2.1) do not directly define the critical values zk .
We present below one sequential method for fixing zk one after another
starting from z1 . The idea is to provide that the relative impact of each zk

in the total risk in (2.1) is the same for every k ≤ K − 1 . We start with
z1 and set z2 = . . . = zK−1 = ∞ . This effectively means that every new
estimate θ̃k is only compared with θ̃1 . We run the procedure with such
critical values. The resulting adaptive estimate after step k is denoted by
θ̂k(z1) . We select z1 as the minimal value providing that

E0

∣∣v−1
k

{
θ̂k(z1)− θ̃k

}2∣∣r ≤ αcr/(K − 1), k = 2, . . . ,K.(2.2)

Such a value exists because the choice z1 = ∞ leads to θ̂k = θ̃k for all k .
Similarly, we specify z2 by considering the situation with the previously

fixed z1 , some finite z2 and all the remaining critical values equal to infinity,
and so on. For the formal definition, suppose that z1, . . . , zj−1 have been
already fixed for some j > 1 and define for any zj the adaptive estimates
θ̂k(z1, . . . , zj) for k > j which come out of the procedure with the critical
value z1, . . . , zj ,∞, . . . ,∞ . We select zj as the minimal value providing that

E0

∣∣v−1
k

{
θ̂k(z1, . . . , zj)− θ̃k

}2∣∣r ≤ jαcr/(K − 1), k = j + 1, . . . ,K.(2.3)

Such a value exists because the choice zj = ∞ leads to θ̂k(z1, . . . , zj) =
θ̂k(z1, . . . , zj−1) and even a stronger condition has been already checked at
the previous step.

The condition (2.2) describes the impact of the first critical value in the
risk (2.1) while (2.3) describes the accumulated impact of the first j critical
values. The factor j/(K − 1) in the right hand side of (2.3) is chosen to
ensure that every zk has the same impact.

3. Theoretical study. This section presents some properties of the
adaptive estimate θ̂ . We suppose that the parameters zk of the procedure
are selected in such a way that the condition (2.1) is fulfilled. The main
result is the “oracle” property of the adaptive estimate θ̂ which claims that
the risk of adaptive estimation is up to a logarithmic multiplier as good as
the risk of the ideal (“oracle”) estimate. In the proof we distinguish between
3 cases: parametric, local parametric and nonparametric. The parametric
case means that θk

def= Eθ̃k ≡ θ for all k ≤ K . This case easily reduces
to the null hypothesis θ1 = . . . = θK = 0 and the “oracle” property of
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10 SPOKOINY, V. AND VIAL, C.

the adaptive estimate θ̂ is granted by the construction, more precisely, by
the “propagation condition” (2.1). The local parametric case means that
for some k < K holds θ1 = . . . = θk = θ . In this case, the construction
ensures the “oracle” property for the adaptive estimate θ̂k obtained after
the first k steps of the procedure. Then we show that a similar “oracle”
property of the estimate θ̂ can be obtained in the nonparametric situation
under the so called “small modeling bias” condition. This condition is used
to give a formal definition of the “oracle” choice. The final “oracle” result
for the adaptive estimate θ̂ is obtained by combining the previously estab-
lished “propagation” result under the small modeling bias condition with
the “stability” property which is granted by the adaptive procedure itself.

First we present some bounds on zk that ensure (2.1). Next we study the
properties of θ̂ in the parametric and local parametric situation. Then we
extend this result to the nonparametric situation using the so called “small
modeling bias” condition. Finally we present the “stability” property and
state the “oracle” result.

3.1. Bounds for the critical values. This section presents some upper and
lower bounds for the critical values zk . The results are established under
the following condition on the variances vk .

(MD) for some constants u0, u with 1 < u0 ≤ u , the variances vk satisfy

vk−1 ≤ uvk, u0vk ≤ vk−1, 2 ≤ k ≤ K.

Our first result presents some upper bound for the parameters zk under
condition (MD) . The proof is given in the Appendix.

Theorem 3.1. Assume (MD) . Let θk = θ for all k ≥ 1 . Then there
are three constants a0, a1 and a2 depending on r and u0 , u only such that
the choice

zk = a0 + a1 log α−1 + a2r log(vk/vK)

ensures (2.1) for all k ≤ K . Particularly, E0

∣∣v−1
K

(
θ̃K − θ̂

)2∣∣r ≤ αcr.

Remark 3.2. The result of Theorem 3.1 presents some upper bounds
for the critical values. These upper bounds will be used for our theoretical
study, however, they do not appear in the proposed adaptive procedure. An
interesting observation is that these upper bounds linearly decrease with
k . The reason for a decrease is relatively clear. Under the null hypothesis
the procedure should not terminate at intermediate steps and the “oracle”
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ADAPTIVE ESTIMATION IN A LINEAR INVERSE PROBLEM 11

estimate is θ̃K . An early stop (“false alarm”) k̂ = k for k < K results
in selecting the estimate θ̃k which has much larger variability than θ̃K .
The smaller k is, the larger is the associated loss in the estimation quality.
Therefore, the test at the early stage of the procedure should be rather
conservative while a “false alarm” at the final steps of the procedure is not
so critical and we are more interested to improve sensitivity by applying
non-conservative critical values.

Our next result shows that the linear growth of the critical values zk with
K−k is not only sufficient but also necessary for providing (2.1). To highlight
the contribution of every particular value zk , we consider the situation when
all the previous parameters are equal to infinity: z1 = . . . = zk−1 . This
effectively means that the procedure cannot terminate at the first k − 1
steps due to a possibly wrong choice of the corresponding critical values.

Theorem 3.3. Assume (MD) . Let, for a fixed k , it holds z1 = . . . =
zk−1 = ∞ , and

E0θ̃kθ̃k+1 ≤ ρ
√

vkvk+1(3.1)

for some ρ < 1 . Then the condition (2.1)implies that

zk ≥ c∗r log(vk/vK)

for some positive constant c∗ depending on ρ and the constants u and u0

from condition (MD) only.

The proof is again moved to the Appendix.

Remark 3.4. The condition (3.1) means that the correlation between
estimates θ̃k and θ̃k+1 is bounded away from 1 . Note that for the example
of “sequence space model” this condition is fulfilled with ρ = u .

3.2. Behavior in the local parametric situation. The parametric situation
can be understood as the case when θ1 = θ2 = . . . = θK . In this case
the estimate θ̃K is unbiased and has the smallest variance and hence, the
smallest risk described by the formula E

∣∣v−1
K

(
θ̃K − θ

)2∣∣r = cr . A natural
requirement to any adaptive procedure is to provide a similar accuracy of
the adaptive estimate under the parametric hypothesis. Similarly, the local
parametric situation corresponds to the case when θ1 = . . . = θk = θ for
some k ≤ K . In this case it is natural to require that the adaptive estimate
θ̂k after k steps is close to its non-adaptive counterpart θ̃k . This property
is actually provided by the construction of the critical values.
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Theorem 3.5. Let θ1 = θ2 = . . . = θK = θ . Then it holds

E
∣∣v−1

K

(
θ̂ − θ̃K

)2∣∣r ≤ αcr .

Moreover, if θ1 = θ2 = . . . = θk = θ for some k ≤ K , then

E
∣∣v−1

k

(
θ̂k − θ̃k

)2∣∣r ≤ αcr .

Proof. Only the differences θ̃l − θ̃k appear in the definition of the test
statistics Tlk . In view of the decomposition θ̃k = θ + ξk , see Theorem 1.1,
the value θ cancels there. Similarly, the adaptive estimate θ̂k coincides with
one of θ̃1, . . . , θ̃k and the value θ cancels in the difference θ̂k − θ̃k as well.
Hence, we can assume θ = 0 and θ̃k = ξk . Then the results follow from the
constraints (2.1) on the critical values zk .

3.3. “Small modeling bias” condition and “propagation” property. Theo-
rem 3.5 describes the performance of the estimate θ̃k under the parametric
or local parametric assumption. Now we aim to extend this result to the
general nonparametric situation when the identities θ1 = θ2 = . . . = θk = θ
are only approximately fulfilled and the deviation from the null hypothesis
Hk is not significant.

As mentioned in Section 2.1, the choice of critical values zk is deter-
mined by the joint distribution of the test statistics Tlk = v−1

l

(
θ̃l − θ̃k

)2

under the parametric hypothesis X ≡ 0 . An extension of this result to the
nonparametric situation leads to considering the similar distribution in the
general case. Let P k mean the joint distribution of θ̃(k) = (θ̃1, . . . , θ̃k)>

for k ≥ 1 . By Theorem 1.1 this is a Gaussian vector. Hence, its distribu-
tion is described by the mean and the variance. By Theorem 1.1 E θ̃(k) =
θ(k) = (θ1, . . . , θk)> . Let also Bk means the covariance matrix of the vec-
tor θ̃(k) . Then P k is the normal distribution with the mean θ(k) and the
covariance matrix Bk , P k = N (θ(k), Bk) . Similarly, if P θ,k is the distri-
bution of θ̃(k) under the local parametric situation θ1 = . . . = θk = θ , then
Pθ,k = N (θ0(k), Bk) , where θ0(k) = (θ, . . . , θ)> .

Lemma 3.6. For k ≥ 1 , define b(k) = (b1, . . . , bk)> with bk = θk − θ
and

∆k
def= b>(k)B−1

k b(k).

Then the Kullback-Leibler divergence K
(
P k,P θ,k

)
between P k and P θ,k

fulfills

K
(
P k,P θ,k

) def= Ek log
( dP k

dP θ,k

)
= ∆k/2
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ADAPTIVE ESTIMATION IN A LINEAR INVERSE PROBLEM 13

and the values ∆k grow with k . It also holds for any s > 1

1
s

log Eθ,k

( dP k

dP θ,k

)s
=

∆k(s− 1)
2

.

Moreover, if ζ is measurable function of θ̃1, . . . , θ̃k , then it holds with s′ =
s/(s− 1)

Eζ ≤
(
Eθ,kζ

s′)1/s′ exp
{
∆k(s− 1)/2

}
.

In particular, for s = 2 it holds Eζ ≤
(
e∆kEθ,kζ

2
)1/2 .

Proof. Define Zk = dP k/dP θ,k . Then log Zk = b>(k)B−1/2
k ξk+b>(k)B−1

k b(k)/2
with ξk ∼ N (0, 1) and Ek log(Zk) = ∆k/2 . This immediately implies that
∆k monotonously increase with k , that is, ∆k ≤ ∆k′ for k < k′ . Similarly,

Eθ,kZ
s
k = Eθ,k exp

{
sb>(k)B−1/2

k ξk − b>(k)B−1
k b(k)s/2

}
= exp

{
b>(k)B−1

k b(k)(s2 − s)/2
}
.

Next, let ζ be a measurable function of the vector θ̃(k) . It holds Eζ =
Eθ,kζZk. By the Hölder inequality

Eθ,kζZk ≤
(
Eθ,kζ

s′)1/s′(
Eθ,kZ

s
k

)1/s

and the assertion follows.

Due to Lemma 3.6, the value ∆k can be used to measure the distance
between the two models: one corresponds to the local parametric situation
with θ1 = θ2 = . . . = θk = θ and the other one describes the distribution
of the same vector θ̃(k) in the general nonparametric situation. We call
this value ∆k the “modeling bias” because it describes how much we have
to pay in the risk for using the “wrong” parametric model in place of the
underlying nonparametric one. The “small modeling bias” (SMB) condition
simply means that the value ∆k is sufficiently small.

The result of Lemma 3.6 implies that the bound for the risk of estimation
E0

{
v−1
k

(
θ̃k − θ

)2}r under the parametric hypothesis translates under the

SMB condition into the bound for the risk E
{
v−1
k

(
θ̃k − θ

)2}r/s′ . Similarly

one can bound E
{
v−1
k

(
θ̂k − θ̃k

)2}r/s′ .
In what follows we apply the result of Lemma 3.6 with s = s′ = 2 which

nicely simplifies the notation. Note, however, that any s > 1 can be used.
For instance, taking a large s leads to the value of s′ close to one.
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14 SPOKOINY, V. AND VIAL, C.

Theorem 3.7. For any r > 0 , it holds for every k ≤ K

E
{
v−1
k

(
θ̃k − θ

)2}r/2 ≤
√

e∆kcr.

E
{
v−1
k

(
θ̃k − θ̂k

)2}r/2 ≤
√

e∆kαcr.

Proof. The bound follows directly from Lemma 3.6 and Theorem 3.5.

We call this result the “propagation” property because it ensures that
with a high probability the procedure does not terminate as long as the
“small modeling bias” condition is fulfilled. Note that a similar property
has been proved for the original procedure in Lepski (1990), see also Lepski
(1991, 1992) however, under the additional condition that the critical values
zk are sufficiently large. We instead use the “propagation condition” (2.1).

3.4. “Stability after propagation” and “oracle” results. Due to the “prop-
agation” result of Theorem 3.7, the procedure performs well as long as the
SMB condition is fulfilled which means that the value ∆k remains bounded
by some (small) constant. We formalize this condition in the form ∆k ≤ ∆ .
Here ∆ is an arbitrary number which will determine the “oracle” choice.
We will show in Section 3.5 that in typical situations this value ∆ is similar
to the ratio of the squared bias to the variance variance of θ̃ . Note however,
that the value ∆ only appears in our theoretical study, it does not affect the
procedure and we do not need to fix this value. The result apply whatever
∆ > 0 .

To establish the accuracy result for the final estimate θ̂ , we have to
check that the adaptive estimate θ̂k does not vary much at the steps “after
propagation” when the “modeling bias” ∆k becomes large.

Theorem 3.8. It holds for every k < K

v−1
k

(
θ̃k − θ̂

)21
(
k̂ > k

)
≤ zk .(3.2)

Proof. The result follows by the definition of θ̂ = θ̃
k̂

and θ̂k = θ̃
min{k̂,k}

because k̂ is accepted and min{k̂, k} ≤ k̂ .

Remark 3.9. An interesting feature of this “stability” result is that it
is fulfilled not only with a high probability, it always applies. This property
follows directly from the construction of the procedure.
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ADAPTIVE ESTIMATION IN A LINEAR INVERSE PROBLEM 15

Combination of the “propagation” and “stability” statements implies the
main result concerning the properties of the adaptive estimate θ̂ . In the
formulation of this and the further results we assume some constant ∆ > 0
to be fixed.

Theorem 3.10. Let k∗ be the maximal value k such that ∆k ≤ ∆ .
Then

E
∣∣v−1

k∗
(
θ̃k∗ − θ̂

)2∣∣r/2 ≤
√

αcre∆ + z
r/2
k∗ .

Proof. The events 1
(
k̂ > k∗

)
and 1

(
k̂ ≤ k∗

)
do not overlap and θ̂ =

θ̂k∗ for k̂ ≤ k∗ . This yields the representation

E
∣∣v−1

k∗
(
θ̃k∗ − θ̂

)2∣∣r/2 = E
∣∣v−1

k∗
(
θ̃k∗ − θ̂

)2∣∣r/21
(
k̂ > k∗

)
+ E

∣∣v−1
k∗

(
θ̃k∗ − θ̂k∗

)2∣∣r/2
.

Now the result follows from Theorems 3.7 and 3.8.

We briefly comment on the meaning of the “oracle” result. Theorem 3.7
ensures that the estimation loss v−1

k

(
θ̃k − θ

)2 is bounded with a high prob-
ability provided that the “modeling bias” ∆k is not too big. The “oracle”
choice k∗ is the largest one for which the “small modeling bias” condition
∆k ≤ ∆ holds leading to the accuracy |θ̃k∗ − θ| of order v

1/2
k∗ . We aim to

build an adaptive estimate which delivers the same quality as the “oracle”
one. Theorem 3.10 claims that the difference θ̂ − θ̃k∗ between the adaptive
estimate θ̂ and “oracle” is indeed of order v

1/2
k∗ up to the factor

√
zk∗ which

can be viewed as the “price” for adaptation. Another “price” we pay is that
the “oracle” result is stated for the polynomial loss of power r while the
“oracle” is trained under the parametric model for the loss of power 2r .

We also present a corollary of the “oracle” result concerning the risk of
the adaptive estimate θ̂ for the special case with r = 1 . The other values of
r can be considered as well, one only has to update the constants depending
on r . We also assume that α ≤ 1 .

Corollary 3.11. Let k∗ be the the largest k with ∆k ≤ ∆ . Then

v
−1/2
k∗ E

∣∣θ̂ − θ
∣∣ ≤ 2

√
e∆ +

√
zk∗ .

Proof. Just observe that∣∣θ̂ − θ
∣∣ ≤ ∣∣θ̃k∗ − θ

∣∣ +
∣∣θ̃k∗ − θ̂

∣∣
and the result follows from Theorem 3.10 in view of c1 = 1 .
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16 SPOKOINY, V. AND VIAL, C.

Remark 3.12. Recall that in the parametric situation, the risk E
∣∣v−1

k∗
(
θ̃k∗−

θ
)2∣∣ of θ̃k∗ is bounded by c1 = 1 , cf. Theorem 1.1. In the nonparametric

situation, the result is only slightly worse. It bounds the absolute loss
∣∣θ̂−θ

∣∣
instead of squared loss and there is an additional factor

√
e∆ which takes

into account the modeling bias. There is also an additional term proportional
to
√

zk∗ which can be considered as the payment for adaptation. Due to The-
orem 3.1, zk∗ is bounded from above by a0 + a1 log α−1 + a2 log(vk∗/vK) .

Remark 3.13. The “oracle” results are especially popular in (global)
model selection, see e.g. Birgé, L.; Massart, P. (1993, 1998), Birgé, L. (2006),
Juditsky, Rigollet, Tsybakov (2006) and references therein. The correspond-
ing result compare the risk of adaptive estimate with the risk of the “oracle”
which is the risk minimizer over the considered family of estimates. Our re-
sults are stated for the local model selection in the sense that we estimate
a linear functional rather than the whole model. This makes a significant
difference between two problems. In the local model selection the estimates
have to be ordered by their variability, the definition of the “oracle” relies
to this ordering, and the results are stated about the difference between
the adaptive and “oracle” estimates. Consider, for instance, an example for
a sequence space model in which that the sequence θk =

∑mk
i=1 Yi is very

irregular but by chance θK = θ . Then the best linear estimate is θ̃K but it
is not the “oracle” one because the modeling bias ∆K is big. More concise
relations between these two problems have to be elaborated elsewhere.

3.5. “Small modeling bias” condition versus “bias-variance trade-off” .
The standard approach for selecting the optimal index k is based on balanc-
ing an upper bound bk for the bias bk = |θk − θ| and the standard deviation
v

1/2
k of the estimate θ̃k , see e.g. Goldenshluger (1998) and Goldenshluger

and Pereversev (1999). This section shows that under some additional tech-
nical assumptions this approach is nearly equivalent to the “small modeling
bias” condition advocated in this paper.

In addition to (MD) we suppose the following properties of the covariance
matrices Bk . Let Bk,diag be the diagonal matrix with the same diagonal
entries as for Bk . Define also Dk = B

1/2
k and Dk,diag = B

1/2
k,diag . The

required conditions reads as follows:

(Dk) It holds for some constant s and all k ≤ K

D−1
k � sD−1

k,diag .

Here the notation A � B for two matrices A,B means that |Av| ≤ |Bv|
for any vector v . If B is symmetric and invertible, this is equivalent to
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ADAPTIVE ESTIMATION IN A LINEAR INVERSE PROBLEM 17

the condition that the maximal eigenvalue of the matrix B−1A>AB−1 is
bounded by s2 .

Condition (Dk) allows to rewrite the “small modeling bias” condition∣∣D−1
k b(k)

∣∣2 ≤ ∆ in the following form:∣∣D−1
k,diagb(k)

∣∣2 ≤ ∆/s2

or, equivalently,

k∑
l=1

b2
l /vl ≤ ∆/s2.(3.3)

Let now bk be a monotonously increasing upper bound for bk , that is,
bl = maxk≤l bk . The “balance” relation (bias-variance trade-off) is usually
written in the form

bk∗ ≤ Cbv
1/2
k∗(3.4)

for some fixed constant Cb . The next result shows that this relation implies
the “small modeling bias” condition (3.3).

Theorem 3.14. Suppose (MD) and (Dk) . Then for the index k∗

defined by the balance relation (3.4), the “small modeling bias” condition is
also fulfilled with ∆ = s2Cu0C

2
b .

Proof. It suffices to note that under the conditions of the theorem,

k∑
l=1

b2
l /vl ≤ b

2
k

k∑
l=1

v−1
l ≤ Cu0b

2
kv
−1
k

Cu0 = (1− u−1
0 )−1 . Now condition (Dk) provides∣∣D−1

k b(k)
∣∣2 ≤ s2

∣∣D−1
k,diagb(k)

∣∣2 ≤ s2Cu0b
2
kv
−1
k ≤ s2Cu0C

2
b

thus yielding (3.3).

Combination of the results of Theorem 3.14 and Corollary 3.11 yields the
following

Corollary 3.15. Suppose (MD) and (Dk) and let the index k∗ be
defined by the balance relation (3.4). Then for ∆ = s2Cu0C

2
b and any r > 0

E
∣∣v−1

k∗
(
θ̂ − θ̃k∗

)2∣∣r/2 ≤
√

e∆αcr + z
r/2
k∗ ,

v
−1/2
k∗ E

∣∣θ̂ − θ
∣∣ ≤ 2

√
e∆ +

√
zk∗ .
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18 SPOKOINY, V. AND VIAL, C.

We conclude this section by a small discussion about between of the “or-
acle” result and minimax rate of convergence. Most of theoretical results in
the modern statistical literature are stated about the asymptotic minimax
rate of estimation on the functional classes, see e.g. Goldenshluger (1999),
Goldenshluger and Pereversev (2000), Cavalier, Golubev, Picard and Tsy-
bakov (2002), Cavalier and Tsybakov (2001, 2002). The rate optimal pro-
cedures can be constructed as linear spectral cut-off estimates satisfying
the “bias-variance” relation which balances the variance of the stochastic
component of the estimate with the upper bound for the squared bias on
the considered functional classes. An immediate corollary of Theorem 3.14
is that the proposed adaptive estimate which selects one out of the family
of the spectral cut-off estimates θ̃k is rate optimal (up to a logarithmic
multiplier) for all such set-ups, because it also provides the accuracy corre-
sponding to the “balance” relation. A precise formulation of this result lies
beyond the focus of this paper.

3.6. Application to the “sequence space” model. This section specifies the
general results to the “sequence space” example considered in Section 1.3.
In this case,

θ̃k = y1 + . . . + ymk
, vk = σ2

1 + . . . + σ2
mk

(3.5)

with m1 > m2 > . . . > mK ≥ 1 . We additionally assume that σ2
i are

monotonous in i . The condition (MD) means in this situation that the
indices mk properly decrease to provide an exponential decrease of the
sums vk in k . The next result shows that this condition ensures (Dk) .

Lemma 3.16. For the model (3.5), the condition (MD) implies (Dk)
with the constant s = (1− 1/u0)−3/2 .

Proof. It suffices to show that the minimal eigenvalue of the matrix
Mk = D−1

k,diagBkD
−1
k,diag is bounded away from zero, or, equivalently, the

largest eigenvalue of M−1
k is bounded from above: ‖M−1

k ‖∞ ≤ (1−1/u0)−3 .
Clearly E0θ̃j θ̃l = E0θ̃

2
l = vl for j ≤ l , and Mk is the symmetric matrix

composed by the elements of the form ρjl = v
−1/2
j v

−1/2
l E0θ̃j θ̃l = (vj/vl)1/2

for j ≤ l . In other words, Mk is the covariance matrix for the set of random
variables ηl = θ̃l/v

1/2
l for l = 1, . . . , k .

Define ξl = v
−1/2
l (θ̃l − θ̃l+1) for l < k and ξk = v

−1/2
k ηk . The random

variables ξl are independent zero mean normal with the variance sl
def=

Eξ2
l = v−1

l (vl − vl+1) for l < k and sk = 1 . The condition (MD) implies
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for all l ≤ k that (1− 1/u0) ≤ sl ≤ (1− 1/u) . Define ξ(k) = (ξ1, . . . , ξk)>

and η(k) = (η1, . . . , ηk)> . The identities ξl = ηl−ηl+1(vl+1/vl)1/2 for l < k
can be written as ξ(k) = Akη

(k) where where line l of the matrix Ak

only contains only two nonzero entries: al,l = 1 and al,l+1 = −v
1/2
l+1/v

1/2
l for

l = 1, . . . , k−1 . Again, the condition (MD) implies that ‖I−Ak‖∞ ≤ 1/u0

and ‖A−1
k ‖∞ = ‖{I− (I−Ak)}−1‖ ≤ (1−1/u0)−1 . Similar bound holds for

A>
k . Obviously E0ξ

(k)
(
ξ(k)

)> = Σk
def= diag(s1, . . . , sk) . This yields

Σk = EAkη
(k)(η(k))>A>

k = AkMkA
>
k .

This easily yields

‖M−1
k ‖∞ ≤ ‖A−1

k ‖2
∞ · ‖Σ−1

k ‖∞ ≤ (1− 1/u0)−3

and the result follows.

The estimate θ̃k has the bias bk = θk − θ = −
∑M

i=mk+1 µi . The bias-
variance relation (3.4) balances the non-decreasing envelope bk = maxl≤k

∣∣bl

∣∣
with the variance v2

k leading to the oracle choice k∗ . Corollary 3.15 ensures
for the adaptive estimate θ̂ the accuracy of order v

−1/2
k∗ up to the multi-

plicative factor
√

zk∗ .

4. Simulation. This section illustrates the performance of the pro-
posed procedure by means of two simulated examples. The first correspond
to a severely ill-posed inverse problem and the second to an ill-posed prob-
lem. We focus on two important features of our procedure: “propagation
property” and “adaptivity”. The “propagation” property means that the
selected models only in very few cases is larger than the “oracle” one, that
means, the “false alarm” situation when the procedure stops but the model-
ing bias is still small is very rare. The “adaptivity” means that the ratio of
the risk of the adaptive estimate to the risk of “oracle” is bounded by some
fixed constant.

For simplicity we consider “sequence space” models, i.e. the data Yi are
generated by the following model : Yi = µi + σiδεi , for i = 1, . . . , n for
n = 50 and we assume that εi are i.i.d. standard normal. In each example
the values (µi)i=1,...,n are generated randomly from a centered gaussian with
a decreasing variance i−3 and we consider ten different models of this type.
The error level δ is equal to 10−4, 10−5 or 10−6 . In every example, the
target is the sum of the parameters µi , that is, θ =

∑n
i=1 µi . This set-up is

friendly advised by F. Bauer, see e.g. Bauer (2007).
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20 SPOKOINY, V. AND VIAL, C.

We apply the proposed procedure to the family of “weak” estimates
θ̃k =

∑mk
i=1 Yi . The “metaparameters” are set as α = 1 and r = 1/2 .

Our numerical result (not reported here) confirm that the critical values
slightly increase with r and decrease with α , however, the final results are
very insensitive to the choice of these metaparameters.

In the first example we choose σi = ai for i = 1, . . . , n , where a = n2/n .
We consider the estimates θ̃k =

∑mk
i=1 Yi with mk = [n − 2 ∗ (k − 1)] , for

k = 1, . . . ,K and K = 20 , then mK = 12 .
The critical values zk are computed from 50000 Monte Carlo replications

from the null hypothesis (pure noise model) using the sequential procedure
from Section 2.1, see Table 1.

Table 1
Critical values computed under the null hypothesis from 50000 replications, when

K = 20 and (σi = ((n2/n)i)i=1,...,n using the sequential procedure.

r α z1 z2 z3 z4 z5 z6 z7 z8 z9 z10
0.50 1.0 15.5 13.0 12.8 12.2 11.5 11.3 10.9 9.8 9.2 8.6

z11 z12 z13 z14 z15 z16 z17 z18 z19
8.3 7.6 7.0 6.6 5.9 5.2 4.5 3.6 2.5

Figure 1 compares the results for our adaptive estimate with the “oracle”
one. The “oracle” value k∗ is defined as max{k : ∆k < 1} . The results
for other values of ∆ , e.g. ∆ = 0.5 or ∆ = 2 are very similar and we do
not report them here. Each row corresponds to a different level of the noise
δ . The panel (a) draws the ratio of the adaptive risk E

∣∣θ̂ − θ
∣∣ obtained

from 500 realizations to the corresponding “oracle” risk E
∣∣θ̃k∗ − θ

∣∣ for
the ten different models. In the panel (b) we show the box-plot of k̂ from
500 replications and the “oracles” values k∗ (triangles) for the ten different
models describes above. One can see that the adaptive risk is in the most
of cases not more than twice larger than the the oracle risk. The oracle
choice k∗ is usually smaller than the adaptively selected k̂ which illustrates
“propagation” property: procedure does not stop until k∗ . It is also worth
noticing that both the “oracle” choice k∗ and the adaptive values k̂ decrease
with the noise, i.e. the smaller is the noise the more coefficients yi are taken
for estimating the sum θ =

∑
i µi .

In the second example we consider a model with (σi = i2)i=1,...,n and ap-
ply the estimates θ̃k =

∑mk
i=1 Yi with mk = [n/(21/5)k−1] , for k = 1, . . . ,K

and K = 15 , leading to mK = 7 . The critical values zk are computed from
50000 Monte Carlo replications under the null hypothesis, see Table 2.

Figure 2 presents the results comparing the performance of the adaptive
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Table 2
Critical values computed under the null hypothesis from 50000 replications, when

K = 15 and (σi = i2)i=1,...,n using the sequential procedure.

r α z1 z2 z3 z4 z5 z6 z7
0.5 1.0 11.4 10.7 9.9 9.2 8.7 8.3 7.3

z8 z9 z10 z11 z12 z13 z14
6.6 6.1 5.7 4.9 3.7 2.9 2.0

and “oracle” estimates in the second example. The set-up is the same as in
the first example and the results are very similar.

Then we would like to see the behavior of our procedure when r = 1 ,
that is, when the risk is of the form E

∣∣θ̂ − θ
∣∣2 . We study the same two

examples and Tables 3 and 4 give the critical values zk . The adaptive index
k̂ similarly to the earlier results, is a little bit larger than the oracle value
k∗ .

Table 3
Critical values computed under the null hypothesis from 50000 replications, when

K = 20 and (σi = (n2/n)i)i=1,...,n using the sequential procedure.

r α z1 z2 z3 z4 z5 z6 z7 z8 z9 z10
1 1.0 22.5 19.0 16.4 17.2 16.2 15.6 16.8 14.4 13.4 13.2

z11 z12 z13 z14 z15 z16 z17 z18 z19
1 1.0 12.9 11.9 10.2 9.3 8.3 7.3 5.8 4.7 3.4

Table 4
Critical values computed under the null hypothesis from 50000 replications, when

K = 15 and (σi = i2)i=1,...,n using the sequential procedure.

r α z1 z2 z3 z4 z5 z6 z7
1 1.0 16.5 15.7 14.0 14.0 19.4 13.3 10.9

z8 z9 z10 z11 z12 z13 z14
1 1.0 9.4 8.9 8.6 7.0 5.0 4.0 2.9

We conclude from this simulation study that the performance of the
method is completely in agreement with the theoretical conclusions and the
procedure demonstrates quite reasonable performance in all the examples
including regular and severely ill-posed problems and for different configu-
rations of the signal and different noise levels.

imsart-aos ver. 2007/04/13 file: Spokoinyvial.tex date: November 1, 2007



22 SPOKOINY, V. AND VIAL, C.

5. Appendix: Proof of Theorems 3.1 and 3.3. Define for every
k ≤ K the random set

Ak =
k−1⋂
j=1

{
max
j<l≤k

v−1
j (θ̃j − θ̃l)2 ≤ zj

}
.(5.1)

Note first that θ̂k = θ̃k on Ak for all k ≤ K .
Therefore, it remains to bound the risk of θ̂k on the complement Ak of

Ak . Define Bk−1 = Ak−1\Ak . By definition k̂ = min{k̂, k} = k−1 on Bk−1

and Ak =
⋃

l<k Bl . First we bound the probability P 0
(
Bl

)
. Assumption

(MD) yields for every l < k

v−1
l (θ̃l − θ̃k)2 ≤ 2v−1

l

{
(θ̃l − θ)2 + (θ̃k − θ)2

}
≤ 2

{
v−1
l (θ̃l − θ)2 + v−1

k (θ̃k − θ)2
}
.

Therefore, by Theorem 1.1, for all λ < 1/2

P 0
(
Bl

)
≤

l−1∑
j=1

P 0
(
v−1
j (θ̃j − θ̃l)2 > zj

)
≤ 2(1− 2λ)−1/2

l−1∑
j=1

e−λzj/4 .

Similarly for l < k

E0

∣∣v−1
k (θ̃l − θ̃k)2

∣∣r ≤ 2(r−1)+
{
E0

∣∣v−1
k (θ̃l − θ)2

∣∣r + E0

∣∣v−1
k (θ̃k − θ)2

∣∣r}
≤ 2(r−1)+

{vr
l

vr
k

E0

∣∣v−1
l (θ̃l − θ)2

∣∣r + E0

∣∣v−1
k (θ̃k − θ)2

∣∣r}
≤ 2r∨1crv

r
l /vr

k.

Now we employ the obvious representation

v−1
k

(
θ̃k − θ̂k

)2 =
k−1∑
l=1

v−1
k

(
θ̃k − θ̃l

)21(Bl).

Therefore, for every r and λ < 1/2 by the Cauchy-Schwartz inequality

E0

∣∣v−1
k

(
θ̃k − θ̂k

)2∣∣r =
k−1∑
l=1

E0

∣∣v−1
k

(
θ̃k − θ̃l

)2∣∣r1(
Bl

)
≤

k−1∑
l=1

E
1/2
0

∣∣v−1
k

(
θ̃k − θ̃l

)2∣∣2r
P

1/2
0

(
Bl

)
≤ 2r∨1c

1/2
2r (1− 2λ)−1/4

k−1∑
l=1

vr
l

vr
k

(l−1∑
j=1

e−λzj/4
)1/2

.
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It remains to check that the choice zj = a0 + a1 log α−1 + a2r log(vj/vK)
with properly selected a0, a1 and a2 provide under condition (MD) the
required bound E0

∣∣v−1
k

(
θ̃k − θ̂k

)2∣∣r ≤ αcr and Theorem 3.1 follows.

Now we turn to the proof of Theorem 3.3. We use again the decomposition

E0

∣∣v−1
K

(
θ̂ − θ̃K

)2∣∣r =
K−1∑
k=1

E0

∣∣v−1
K

(
θ̃k − θ̃K

)2∣∣r1(
k̂ = k

)
≥ E0

∣∣v−1
K

(
θ̃k − θ̃K

)2∣∣r1(
k̂ = k

)
for any k < K . The definition of k̂ implies that

1
(
k̂ = k

)
≥ 1

(
v−1
k

(
θ̃k+1 − θ̃k

)2
> zk

)
To simplify the presentation, we assume that θ̃K = 0 . The general case can
be reduced to this one.

Let Fk be the σ -field generated by θ̃k . The estimate θ̃k+1 − θ̃k can be
decomposed as θ̃k+1,k + ρθ̃k where ρ is the correlation coefficient between
θ̃k and θ̃k+1 − θ̃k :

ρ =
E0

{
θ̃k

(
θ̃k+1 − θ̃k

)}
{
vk Var(θ̃k+1 − θ̃k)

}1/2

and θ̃k+1,k = θ̃k+1 − θ̃k is independent of Fk . Note that |θ̃k+1 − θ̃k|2 =
|θ̃k+1,k|2 + ρ2|θ̃k|2 and hence,

1
(
v−1
k

∣∣θ̃k+1 − θ̃k

∣∣2 > zk

)
= 1

(
v−1
k |θ̃k+1,k|2 + v−1

k ρ2|θ̃k|2 > zk

)
≥ 1

(
v−1
k |θ̃k+1,k|2 > zk

)
.

The condition (MD) ensures that vk+1,k := Var
(
θ̃k+1,k

)
≥ vk/Cu with some

constant Cu > 0 depending on u only. This yields that

P 0
(
v−1
k |θ̃k+1,k|2 > zk

)
≥ P 0

(
v−1
k+1,k|θ̃k+1,k|2 > zkCu

)
= Q(zkCu)

with Q(z) = P (|ξ|2 > z) and standard normal ξ . Therefore,

E0

∣∣θ̃k

∣∣2r1
(
v−1
k |θ̃k+1 − θ̃k|2 > zk

)
≥ E0

∣∣θ̃k

∣∣2r1
(
v−1
k |θ̃k+1,k|2 > zk

)
= E0

[∣∣θ̃k

∣∣2r
E0

{
1
(∣∣θ̃k+1,k

∣∣2 > vkzk

)
| Fk

}]
≥ Q(zkCu)E0

∣∣θ̃k

∣∣2r
.
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Next we have E0

∣∣θ̃k

∣∣2r = crv
r
k . Then

αcr ≥ E0

∣∣v−1
K θ̂2

∣∣r ≥ cr Q(zkCu)(vkv
−1
K )r.

The inequality

Q(z) ≥ e−z/2

2π
(1/

√
z − 1/z3/2),

and the usual upper bounds for the logarithm yields for some constant C >
0 ,

log α−1 + r log
vk

vK
≤ C Cu z
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(a) (b)

Fig 1. The first line of 2 graphics are results in the case of the error level δ = 10−4 , the
second for δ = 10−5 and the third for δ = 10−6 . The left panel (a) draws the ratio of the

adaptive risk E
∣∣θ̂ − θ

∣∣ divided by the “oracle” risk E
∣∣θ̃k∗ − θ

∣∣ as function of the model.
The right panel (b) draws for each of the ten models model the box plot of the adaptive

estimate k̂ after 500 iterations and the triangle corresponding to the “oracle ” estimate
k∗ .

imsart-aos ver. 2007/04/13 file: Spokoinyvial.tex date: November 1, 2007



ADAPTIVE ESTIMATION IN A LINEAR INVERSE PROBLEM 27

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

models

ra
tio

 b
et

we
en

 a
da

pt
ive

 a
nd

 o
ra

cle
 ri

sk

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

k

models

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

models

ra
tio

 b
et

we
en

 a
da

pt
ive

 a
nd

 o
ra

cle
 ri

sk

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

k

models

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

models

ra
tio

 b
et

we
en

 a
da

pt
ive

 a
nd

 o
ra

cle
 ri

sk

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

k

models

(a) (b)

Fig 2. The first line of 2 graphics are results for an error level δ = 10−4 , the second for
δ = 10−5 and the third for δ = 10−6 . The left panel (a) draws the ratio of the adaptive

risk E
∣∣θ̂− θ

∣∣ devided by the “oracle” risk E
∣∣θ̃k∗ − θ

∣∣ as function of the model. The right

panel (b) draws for each model the boxplot of the adaptive estimate k̂ using 500 iterations
and the triangle corresponding to the “oracle ” value k∗ .
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Fig 3. The first line of 2 graphics are results for an error level δ = 10−4 , the second for
δ = 10−5 and the third for δ = 10−6 . The left panel (a) draws the ratio of the adaptive

risk E
∣∣θ̂ − θ

∣∣2 devided by the “oracle” risk E
∣∣θ̃k∗ − θ

∣∣2 as function of the model. The

right panel (b) draws for each model the boxplot of the adaptive estimate k̂ using 500
iterations and the triangle corresponding to the “oracle ” value k∗ .
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Fig 4. The first line of 2 graphics are results for an error level δ = 10−4 , the second for
δ = 10−5 and the third for δ = 10−6 . The left panel (a) draws the ratio of the adaptive

risk E
∣∣θ̂ − θ

∣∣2 devided by the “oracle” risk E
∣∣θ̃k∗ − θ

∣∣2 as function of the model. The

right panel (b) draws for each model the boxplot of the adaptive estimate k̂ using 500
iterations and the triangle corresponding to the “oracle ” value k∗ .
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