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Abstract

We develop a new test of a parametric model of a condtional mean function against a
nonparametric aternative. The test adapts to the unknown smocthness of the aternative
model and is uniformly consistent against aternatives whose distance from the parametric
model converges to zero at the fastest possible rate. This rate is dower than n’2  Some
existing tests have nontrivial power against restricted classes of alternatives whose distance
from the parametric model deaeases at the rate n2. There ae, however, sequences of
dternatives against which these tests are inconsistent and aurs is consistent. As a
consequence, there are alternative models for which the finite-sample power of our test
gredly excedls that of existing tests. This conclusion is illustrated by the results of some
Monte Carlo experiments.
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1. INTRODUCTION

This paper is concerned with testing a parametric model of a cnditional mean
function againgt a nonparametric aternative. We develop a test that is consistent against
aternative models whaose distance from the parametric model converges to zero as rapidly as
possible & the sample size, n, increases. The test does not require a priori knowledge of the
smoothnessof the alternative model, and it has desirable power properties that are not shared
by existing tests.

We mnsider the model
1) Y=f(X)+g; i=123..,
where Y, is a scaar randam variable; {X} O 0%is a sequence of distinct, non-stochastic,
design points; f is an unknown function; and { &} is a sequence of undoserved, independent,
randam variables with means of zero. We test the null hypathesis, Ho, that f belongs to the
parametric family [J={F([,B),0 0 G}, where F is a known function and © is a subset of a

finite-dimensiona space More precisely, the null hypothesisisthat thereisa 6 0 © such that
f(X) = F(X, 6) for dl i. The aternative hypothesis, Hy, is that there isno 8 [0 © such that
f(X) = F(X;, ) forall it

There is a large literature on testing a parametric model of a cnditional mean
function against a nonparametric alternative. Many tests compare anorparametric estimator
of f(0] with a parametric estimator, F([] 6,), where 8, is an estimator of 6 that is consistent
under Hy (e.g., a least-squares estimator). See, for example, Ait-Sahalia, et al. (199),
Eubank and Spiegelman (1990), Fan and Li (1996), Gozdo (1993, Hardle and Mammen
(199%), Hart (1997), Hong and White (1995, Li and Wang (1998), Whang and Andrews
(199%), Wooldridge (1992), Yatchew (199), and Zheng (1996. Other tests do ot require
nongarametric estimation o f. Bierens (1982, 199), Bierens and Ploberger (1997), and De
Jong (1996 test orthogonality conditions that are implied by (1.1). Andrews (1997) develops
a onditional Kolmogorov test.”

The asymptotic power of atest of Hy is often investigated by deriving the asymptotic
probability that the test rgects Ho against a sequence of locd alternative models. This
approach iswell known hut, as is explained in the next paragraph, restricts attentionto a dass
of alternative modelsthat istoo small. The form of the loca alternative modelsis

(1.9 (¥ =F(x.61) + pr9(x)

for some function g, where 6, 0 @ and { p,} is a sequence of real numbers that convergesto 0
asn - o. See for example, Andrews (1997), Bierens and Ploberger (1997), Eubank and
Spiegelman (1990), Hong and White (199%), and Zheng (1996. Many tests that compare a

nonparametric estimator of f with a parametric estimator have nontrivia power (that is,



power exceeding the probability that a aorrect Hy is rejected) only against sequences of locd
aternatives for which p, — O at arate that is sower than nY2, Thetests of Ait-Sahalia, et al.
(199), Eubank and Spiegelman (1990, Fan and Li (1996), Gozalo (1993), Hardle and
Mammen (1993, Hong and White (1995), Whang and Andrews (1993), Wooldridge (1992),
Zheng (1996, and Y atchew (1992) have norttrivial power only if p, converges more slowly
than n2,

Andrews (1997), Bierens (1982), Bierens and Ploberger (1997), and Hart (1997)
describe tests that have nonttrivial power against local aternatives for which p, O n*2. Thus,
at least in terms of asymptotic local power, these tests appear to daminate tests that require
slower convergence of p,. It turns out, however, that if p, O n2, then notest can have non-
trivial power uniformly over reasonable classes of functions g in (1.2) (e.g., functions that
have derivatives of order s for some integer s). See Burnashev (1979, Ibragimov and
Khasminskii (1977), and Ingster (1982). In ather words, the power of any test of Ho against
the sequence of loca aternatives f,(x) = F(x,0;)+ n'”zgn(x) equals the probability that
the test rejects a correct Hy for some sequence {g,} of (say) twice differentiable functions.
The pradica consequence of this result is that any test of Ho for which p, O n? has low
finite-sample power against certain classes of smocoth aternatives. Section 4.2 presents
numerica examples of this phenomenon. Hong and White (1995) and Fan and Li (1999) also
present examples. Becaise the class (1.2) excludes models of the form
f,(X) = F(X,01) + p,9n(X), it cannot be used to develop tests that have good paver against
all smoath alternatives. Thisisthe sense in which the dass (1.2) istoo small.

Anather way to investigate the asymptotic power properties of tests of Hp is the
minimax approach of Ingster (1982, 109933, 1993b, 1093c). This approach, which is not
widely known in econametrics, permits the set of aternatives to consist of an entire
smoaothnessclass The minimax approach forms the basis of the test that is developed here.
In this approad, it is assumed that f belongs to a dass of one-or-more-times-diff erentiable
functions of 0% such as a Holder, Sobolev, or Besov ball, B B is sparated from the null -
hypothesis set [7 by some distance r, that converges to zero as n — o. The aim of the
minimax approac is to find the fastest rate at which r, can approach zero while permitting
consistent testing uniformly over B. Thisrate is called the optimal rate of testing. A test is
consistent uniformly over B if

1.3 Ilim ]jnf P(Hqisrgeded against f) =1.
0B

n- o

Thus, the optimal rate of testing is the fastest rate at which r, can approach zero while
maintaining (1.3). The optimal rate of testing for Holder, Sobdev, or Besov classes of
functions that have bourded derivatives of order s = d/4 is "2* * 9 (Ingster 1982, 19%Ba,



1993b, 193c; Guerre and Lavergne 1999). Thisrate assumesthat sisknown a priori. If sis

2s/(4s+d
unknown, then the optimal rate of testing is(n_lqlloglogn) (e ), which dffers from the

rate that is achievable with known s by the very slowly increasing factor (loglogn)¥*s*®)

(Spokoiny 1996. If s < d/4, then the optimal rate of testing is n* (see e.g., Guerre and
Lavergne 1999.

A test that achieves the optimal rate of testing has the alvantage of being sensitive to
aternatives uniformly over a Holder, Sobdev, or Besov class whose distance from the null
hypothesis [J converges to zero at the fastest possible rate. These dasses contain sequences
of aternative models against which the tests of Andrews (1997), Bierens (1982), Bierens and
Ploberger (1997), and Hart (1997) are inconsistent. In practice this means that there ae
smocth alternatives against which these tests have much lower finite-sample power than does
atest that achieves the optimal rate of testing. Section 4.2presents numericd illustrations.

In this paper, we construct a test of Hy that has the optimal rate of testing uniformly

over Holder classes and daes not require a priori knowledge of s, the order of differentiability
2s/(4s+d
of f. The test satisfies (1.3) with r, 0 (n""flogiogn) ™ when's= d/4. Thetestiscalled

adaptive and rate-optimal because it adapts to the unknown s and has the optimal rate of
testing for the case of an unknown s.

A test that achieves the optimal rate of testing uniformly over a smoathnessclassB is
necessarily oriented toward the alternatives in B that are most extreme and herdest to detect.
These functions have narrow peéks or vall eys whose widths decrease with increasing n. See
Sedion 41 for an example. A test that is oriented toward such alternatives may have low
power against functions that are less extreme. To provide some protection against this
possibility, we investigate the consistency of our test against alternatives of the form (1.2).
These dternatives canna have the extreme behavior just described because g in (1.2) is a

fixed function. We show that our test is consistent against aternatives of the form (1.2)
whenever p, = cn™Y2 floglogn for somefinite C > 0. Thetests of Andrews (1997), Bierens

(198), Bierens and Ploberger (1997), and Hart (1997 are cnsistent against aternatives of
the form (1.2) whenever p, — 0 more slowly than N2, Thus, our adaptive, rate-optimal test
and the other tests (which are not rate-optimal) are nsistent against virtualy the same
aternatives of the form (1.2). In terms of consistency against alternatives of the form (1.2),
thereis essentially no penalty paid for the adaptiveness and rate optimality of our test.’
Throughou this paper, our concern is with the rate at which the distance between the
null and aternative hypotheses can decreese to zero while permitting consistent testing by

some procedure. We do na investigate other properties of the power functions of tests, and



we do nd derive the asymptotic local power function d our test. Nor do we atempt analytic
comparisons of the powers of our test and others apart from noting conditions under which
our test is consistent and athers are not. More extensive power comparisons are | eft for future
research. The contribution of this paper is to provide atest that (1) adapts to the unknown
smoothness of the aternative model, (2) is consistent at the optimal rate uniformly over
Holder classes of alternatives, and (3) is consistent against alternatives of the form (1.2) when
P has nearly an™ rate of convergence. The first two properties of our test guarantee that
there are aternatives against which our test has high pover and tests such as those of
Andrews (1997), Bierens (1982), Bierens and Ploberger (1997), and Hart (1997) have low
power. The third property provides some protection against the occurrence of the opposite
situation.

The test statistic is described in Section 2 of this paper. Theorems giving properties
of thetest under Hp and various forms of H; are presented in Section 3. Section 4 gresents the
results of some Mornte Carlo experiments that illustrate the numerical performance of the test.

Concluding comments are presented in Section 5. The proofs of theorems are in the

Appendix.

2. THE TEST STATISTIC

This section describes our test statistic and presents a bootstrap method for abtaining
critical values of the test. The test is closely related to that of Hardle and Mammen (1993.
Like Hardle and Mammen, we base the test on the distance between a kernel norparametric
estimator of f and a kernel-smoothed parametric estimator. The main difference between our
test and that of Hardle and Mammen is that we compute the distance with many different
values of the bandwidth parameter of the kernel smocther. We regect Hp if the distance
obtained with any of the bandwidthsistoolarge. The rate-optimal and adaptive properties of
our test arise from its use of many diff erent bandwidths.

The remainder of this sction is divided into five parts. Section 21 describes the
parametric estimator of f. Section 2.2 describes the kernel smoothing procedure and the
metric that is used to measure the distance between the nonparametric and smoothed
parametric estimators of f. Section 23 explains how the distance between the nonparametric
and smocothed parametric estimators is centered and Studentized. The test procedure is
presented in Section 2.4. Sedion 2.5 explains how to estimate unknown pgoulation
parameters that enter the test statistic.



2.1 The Parametric Estimator
We nsider the model (1.1). The hypathesis to be tested is Hy: f O O
={F((P),600 6}, where F is a known function and © is an open subset of a finite-

dimensiondl Euclidean space We assume that there is an estimator of 6, denoted by 6, that
isnY2-consistent under Ho. Let 6, [ © denotethetrue value of 6if Hyistrue. That is, E(Y) =
F(X,6) for adl i if Hyistrue. Then, n"4(6, - 6) is bourded in probability under Ho.

Weasaumethat 6, isstableif Hyisfalse. By thiswe mean that thereisa 8¢ [1 © such
that n"4(6, - €*) is bounded in probability if Ho is false. Under assumptions stated in
Amemiya (1985, for example, the least-squares estimator of 6 has the required properties, as
do many other M estimators (Millar 1982).

2.2 The Kernel Smoother
We now explain the kernel smoathing procedure that is used in ou test. Let K dencte
the kernel and h denote abandwidth. For x 0 O let Kx(x) = K(x/h). Foreachi,j=1, 2, ...,n
define

Wa(X;, X ;) = nK“(Xi_X") .
ZKh(Xi = X)
k=1

The kernel norparametric estimator of f(X;) is
fr(Xi) = anwh(xivxj)Yj :
1=
The kernel-smoaothed parametric estimator is
Fn(Xi.6,) = iWh(XhXj)F(Xj,@n)-
=

The distance between the nonparametric and smoothed parametric estimators of f is defined to
be the sum of the squared differences f,(X)) - Fn(X,6,).% Accordingly, for any 6 0 ©, define

$i(6) = (X)) = Fn(X:.0)° .
=1

The test statistic is based on a ceitered, Studentized version of S,(6,) whose asymptotic
distribution hes amean o zero and variance of one.

Some vedor notation will be useful in the discussion that follows. Define the nx1
vedorsY = (Yy, ..., Yy) and F(6) = [F(X4,0), ..., F(X,,0)]". Let W, be the nxn matrix whose
(i,]) lement iswn(X;, X). Let | O denotethe 7, norm. Thatis, for any z0 O",



n
2
147 =5z
i=1
Then

$(6) = WY - F(o)]°
forany 60 ©.

2.3 Centering and Studentization

This section explains the method that is used to center and Studentize §,(6,). We
begin by defining further notation. Suppose that Ho is true. Then (X)) = F(X;, 6) for all i.
Define the nx1 vedor € = (&, ..., &)'. For 8 O O, define the nx1 vector by(8) = WH[F(6) -
F(6)]. Then

Y-F(0)=F(8y) -F(0)+¢,
and
2.  S,(60) =|Mhe + b, O = |Mhe[ +[jon (B)]7 + 201 (8) Wie .
Let a;, denote the (i, j) element of the nxn matrix A, = WW'W,. Let 54(X;) = E(ei“) and
0%(X;) =E(g?). Asume that these quantities exist.

To develop the method for centering and Studentizing $,(6,), it is first necessary to

evaluate the mean and variance of S,(6y) under Hy. Observe that

$:(60) =||V\415||2 = z zaij,hgigj .

= 3

Then
n

(22  Ewe"=N,= Zaii,haz(xi)-
Bl

In addition, Var|W,e|* =Vi? +vy,, where

23 WW=23 3 aino’(X)o*(X))
i=1 j=1

and
Vi = Zai%,h[s4(xi ) —30*(X)].
=

It is not difficult to show that v, = o(ViY) as n — o, so v, is asymptotically negligible.
Therefore, an asymptoticaly centered, namalized form of S(6) is



102 Sh(00) =Ny _[Whel” =Ny
Vh Vh

That is, the asymptotic distribution of T, has amean of zero and avariance of one.

To obtain the centered, Studentized form of S,(6,), define

h

where

(8| + 251(8,) Whe
nnh = .
Vh

It follows from Lemmas 4.3 and 4.50f the Appendix that 1, = 0y(1) asn — . Therefore, the
asymptotic distribution of T, has mean zero and variance one. However, T, cannat be
computed in an application because it depends on the unknown quantities az(Xi) i=1,...,
n). This problem can be solved by replacing ead oZ(Xi) in (2.2) and (2.3) with an
estimator. Methods for estimating az(Xi) are described in Sedion 2.5. For now, we
asume that such methods exist and denate the estimator of oZ(Xi) by oﬁ(xi). The
centered, Studentized form of S,(6,) is obtained from T, by replacing o?(X;) with o2(X;)
in N, and V,. Specificaly, define

(24 Np=Y an00(%),
1=1

(29 V=23 Y afaon(X)on(X)).

=1 =1
and

S1(6n) =Ny

h

(26 T,=

Then T, is afeasible statistic whose asymptotic distribution has mean zero and variance one.

It isthe centered, Studentized form of S,(6,) that is used to construct our test statistic.

2.4 The Test Procedure
The ideaof the test is to consider smultaneously a family of test statistics { Ty, h O
Hn}, where H, is a set of bandwidth values. We assume that H, is finite and denote the

number of elements of H,, by J.. A specific exampleisageometric grid of the form

(2.7 H,={h=h.,a% h=h, , k=012.},
n max min



where 0 < hpn < hpew, and 0<a < 1. Inthiscase, J, <109 1a (hmax/hmin).  The proposed test
procedure rejects Hy if at least one of the statistics Ty, for h O H, is sufficiently large. Thus,
we define

(289 Tr=maxT,= maxw.
hOH, hOH, Vi,

Weuse T* asatest statistic.

We now discusshow to obtain critical values for T*. The exad a-level critical value,
5 (0<a<1l)isthel- a quantile of the exact finite-sample distribution of T*. This criticd
value canat be evaluated in applications because 6, and the distributions of the & are
unknown. However, it is siown in Lemmas 8-10 d the Appendix that asymptoticdly (as n

- ), t,* is determined by the variances of the &'s, 02(Xi) . The value of 6, and other

features of the distributions of the &'s do rot affed the asymptotic aitical value. Therefore,
an asymptotic a-level criticd value, t;, can be obtained as the 1 - a quantile of the
digtribution d T* that is induced by the model Yi* = F(X;, 6, + &* where §* is sampled
randamly from the normal distribution N[O,aﬁ(xi )] . Thetest proposed here rejects Hy with
asymptotic level a if T* > t,. The asymptotic critical value t, can be etimated with any
desired acauracy by using the following simulation procedure:

1. Foreachi =1, ..., n, generate Y;* = F(X, 6,) + &*, where &* is sampled randomly
from the normal distribution N[0,02(X;)].

2. Usethedataset {Y*, X: i=1, ..., n} to estimate & and az(Xi). Dencte the
resulting estimates by 6,, and 62(X;), respectively. Compute the statistic T* that is
obtained by repladng Vi, 8, and a2(X;) with Y*, 8,,, and 62(X;) onthe right-hand side of
(2.5.

3. Estimate t, by the 1 - a quantile of the ampirical distribution of T* that is
obtained by repeating steps 1-2 many times.

2.5 Estimating o2(X;)

This section explains how az(Xi) can be estimated. We need an estimator that is
consistent regardless of whether Hy is true. Thus, we anna base the etimator on the
residuals of the parametric model Y; - F(X;, 6).”

Recdl that the &'s are asumed to be independently distributed. Asaume for the

moment that they are also identicaly distributed so that g?(X;) = o? for some cnstant

02>0. If d=1 (the X’sare scaars), then we can estimate 02 by using the method d Rice



(1984), Gasser, et al. (1986, and Buckley, et al. (1988). Let Xy < Xp < ... < X be the
ordered sequence of design points, and let Y;;) and &), respectively, be the similarly ordered
values of the Yi's and &'s. Then Y+ 1 - Yo = & + 1) - &) + fOXi + 1) - f(Xp). Now,

E(&i+1) —€iy)° =20°. Moreover, urder the assumptions of Section 3.1, [f(X; « 1) - f{(Xg)| -

Oasn - . Therefore, we @n estimate o2 by
1 n-1 )
PN (Y(i+1) _Y(i)) .
2(n-1 ;
This estimator is n"?-consistent under the assumptions of Section 3.1, regardless of whether
Hop istrue (Rice 1984).

We now explain how this method can be extended to multivariate settings. We

(29 o2

restrict the discussion to the case of d < 4. Let j(i) (i =1, ..., n) be aset of indices that is
defined through the following reaursion:

i@ =ag min |X; - Xy
and

The number j(i) is the index of the design point that is nearest to X; among those whose

indicesarenat j(1), ...,j(i - 1). Then o2 can be estimated by
2_1¢ 2
(2.10) Unzﬁg(Yi_Yj(i)) :

Under the assumptions of Section 3.1,(2.10) is a n**consistent estimator of o2, regardless

of whether Hy istrue.

The estimator oﬁ can be extended to g's that have heteroskedasticity of unknown
form by replacing the global sumsin (2.9) and (2.10) by sums over shrinking neighborhoads
of the design pdnts X2 Let o?() satisfy the Lipschitz condition
lo%(X;) =a?(X;)l < LIIX; = X;|| for some finite L > 0. Let b, be abandwidth that
convergesto Oas n — oo, and let I([) be the indicator function. Define j(i) as before. Then

under the assumptions of Section 31, oZ(Xi) can be estimated by

> (Y =Yiag)* 11Xk = Xi1 < by)
oa(X) =<

z|(|xk‘xi|S by)

k=1

If by - 0and nhiigby’ — o0 asn — oo, then g3(X;) -0 (X;) =0, (hyg) asn - o

10



It is hown Lemma 8 of the Appendix that if o3(X;)-0?(X;)=o0,(hyn), then
T* =maXy,ny_Tho + 0, (1), Where Ty =[S,(6*) = Np]/V;, and 6% = 6 if Ho is true. Thus,

the asymptotic distribution of T* is the same & it would be if 6 and oZ(Xi) were known,

regardlessof whether Hy istrue.

3. THE MAINRESULTS
This section presents theorems that give the asymptotic behavior of the proposed test.
Sedion 31 states our assumptions. The behavior of the test under Ho is given in Section 3.2.
Sedions 3.3-3.5, respectively, give the test’s behavior under a fixed aternative hypaothesis,
under the sequence of local alternative hypotheses (1.2), and undr smooth aternatives that
are contained in a Holder ball whose distance from the null hypothesis converges to zero at

2s/(4s+d
the optimal rate of testing (n'l,/loglogn) (der ). The alaptive, rate-optimal property of the

test is established in Sedion 3.5.

3.1 Assumptions
Our results are obtained urder the assumptions stated in this sction. Define
OgF (x,0) = 0F (x,0) /30, O5F(x,0) =0°F(x,0)/3600', 0,F(x,0)=0F(x,0)/dx, and
02F(x,0) = 0%F(x,0) / 9xdx' whenever these derivatives exist. For any gxq matrix D,
define
Dv
Iof. = sup 12,
vooe M|
where |0 is the ¢, nom. Let OgF(6) be the nxq matrix whose (i,j) element is
oF(X;,6)/00; .
Asaimption 1 (Parametric family): The parameter set © is an open subset of (09 for
somed= 1. The parametric family O = {F([]0), 6 (] ©} satisfies:
(i) Differentiability in 8 For each x 0 [-1,1] %, F(x, 6) is twice differentiable with

respect to 6. For finite constants C;; and Cyp, each i = 1, ..., n, and each 8 O O,

[D6F (X;,6)] < Cyy,and |[O3F(X,0)| < Cp.

(i1) Differentiability inx: For each 80 O, F(x, 6) is twice differentiable with respect

tox O [-1,1]%. Moreover, |

D)Z(F(x,e)”oo < Cy3 for somefinite constant Cys.

(iii) Identifiability: Thereisa finite C, > 0 such that

11



sup| [n'TgF (6)' TpF ()] Y| < ¢}
6006

and for every 6> 0

inf F(6)-F(@)f = ca%n.
e,e'D(!):nw—eqza” 6)-F(@)[" = Cd°n

Asamption 2(Parametric estimator): (i) Let Ho betrue. Then 6, 0 © and

lim P(n"?|6, - 6] >2) <5
for any > 0 and all sufficiently large z. (ii) Let Hqy be false. Then thereisa 8¢ O © such
that

lim P(n"?|6, -6%>2) <5
for any 6 > 0 and all sufficiently large z. (iii) Let {6, n=1, 2, ..} be a sequence in ©
whose limit points, if any, areall in®. Let{g,: i=1,...,n;n=1.2, ..} beatriangular
array of real numbers that is bounded away from 0 and . Define Y* = F(X;,8,9) + 0iw;,
where {w;:i =1,...,n} areindependently distributed as N(0,1). Let én be the estimator of 6,9
that is obtained fromthe data set { Y;*, X;: i =1, ...,n}. Then

lim P(n”2

n - o

én - Bno

>z)<5

for any 0> 0 and all sufficiently large z
Asamption 2(iii) establishes a stability property of the parametric estimator that is used to
justify the simulation procedure for obtaining the critical value of the test statistic.

For every x 0 0% and every h > 0, define M (x) as the number of elementsin the set
{Xi:]|X; =] < ht.

Asamption 3 (Design): (i) The design points X, 0 0% (i = 1, ..., n) are non-
stochastic and scaled so that | X;| < 1 for all i. (ii) There are positive constants C; and C,

suchthat for all hO Hyand all i = 1, ..., n, Cinh® < My(X) < Cnh.

Asaumption 3(i) restricts the X; to a bourded subset of 0% Given baundednessof the
Xi, there is noloss of generdity in the scaling assumption. Assumption 3ii) is satisfied with
probability approaching 1 asn — oo if H, satisfies Assumption 6 below and { X} is sampled
randamly from a distribution that is absolutely continuous with resped to Lebesgue measure,
has bounded support, and whose density is bounded away from zero on its upport.
Therefore, our results hold conditional on { X;} that are generated this way. However, we do
nat require { X;} to be sampled from a distribution.

Asamption 4 (Kernel): K is non-negative, supported on [-1,1]%, and symmetrical

about the origin. Moreover, K(u) < 1 for all u, and K(u) = « for ||u|<1/2 and some k > 0.

12



Asaumption 5 (Moments of &): (i) The random variables & are independent with

means of zero and uniformly bounded moments of order 4 + & for some 6 > O: E|£i|4+ < Ce
for some constant Ce < o and all i = 1, ..., n. (i) 0%(X,)=E(e?) and s,(X;) = E(&})
satisfy [0%(X;)~0? (X))l < U|X = X;| and [s;(X;) =8 (X))l < L|X; = X;| for some

constantL<ecandalli,j, =1, ...,n. (iii) 02(Xi) >m, for some constant m, >0 and all i.

Asaumption 6: (Bandwidths): The set H, of bandwidths has the structure (2.7) with
hmax > hmin = N for some constant y such that 0 < y < min(/3, Yd), and hnx =
Cy (loglogn) ! for some finite constant Cy > 0.

Under Assumption 6, J, <O(logn) asn — oo,

3.2 Behavior of the Test Satistic under the Null Hypothesis

Recdl from Sedion 2.4that t, isthe 1 - a quantile of the digtribution d T* that is
induced by the model Y* = F(X, 6,) + &*, where &* is sampled randomly from the normal
digtribution N[O,aﬁ(xi )] . The main result on the behavior of the test statistic T* under Hp is
that t, isan asymptoticdly correct a-level critical value under any model in Ho. Thisresult is
established by the following theorem.

Theorem 1: Let Assumptions 1-6 hold. Let Ho betrue. Then

lim P(T*>t,)=a.

n - oo
3.3 Consistency Againgt a Fixed Alternative
We now show that our test is consistent against a fixed alternative model. Let (1.1)

hold. Define the nx1 vedor f =[f(Xy), ..., f(X,)]'. Measure the distance between f and the

parametric family O by the normalized /7, distance

B 9 1/2
@Y et =Li,gfe(n‘1||f ~FO) ﬂ -

If Ho is false, then p(f, ) = ¢, for all sufficiently large n and some c, > 0. A consistent test
will reject afalse Hy with probability approaciing one & n — . Theorem 2 establishes the
consistency of our test.

Theorem 2: Let Assumptions 1-6 hold. If thereisan ng such that p(f, O) = ¢, for al n
> ng and some ¢, > 0, then

lim P(T* >t,) =1.

n - o

3.4 Consistency Against a Sequence of Local Alternatives
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This section establishes the consistency of our test under locd alternatives of the form
(1.2 with p, = cn"Y2 floglogn for some cnstant C > 0.

Define the nx1 vedors g =[g(Xy),...,g(X,)]" and f, =[f,(Xy),..., T,(X,)] . We

asume that gisa cntinuous function that is normali zed so that
12 _1¢

2 fal" =13 1906)F 21,
n n&

We aso assume that g is not an element of the space spanned by the wlumns of ClgF(6,) .
That is,
33 [g-nig| = Ig]
for some 6> 0, where
My = 0gF(8)[OpF (1) DgF ()] g F (61)
is the projection operator into the wlumn spaceof OyF(8,). Condtions (3.2) and (3.3

exclude functions g for which || f,- F(Bn,o)”:o(pn) for some nonstochastic sequence

{60} O O. Thus, (3.2) and (3.3) insure that the rate of convergence of f, to the parametric
model F([]6,) is the same & the rate of convergence of p, to zero. In particular, uncer (3.2)

and (3.3),
1/2

[ int (n‘1|| - F(9)||2ﬂ > 5, [1- o(1)]
asn - o,

Finaly, we asume that 6, is the least squares estimator of 6. This assumption is
made for technical convenience only and is not essential to the wnsistency result, which is
stated in the following theorem.

Theorem 3: Let Assumptions 1 and 3-6 hold with h,, =Cy (loglogn) ™ for some
finite constant Cy. Let 6, be the least-squares estimator of 6. Let f, satisfy (1.2) with
p, 2 Cn"Y2 [loglogn for some constant C > 0. Let g satisfy (3.2) and (3.3). Then

lim P(T* >t,)=1.

n - o

This result shows that the power of the alaptive, rate-optimal test approaches 1 as n
- oo for any function g and sequence {p,} that satisfy the assumptions of the theorem.
However, the result is not uniform over all possble g's. Uniformity is addressed in the next
sedion.
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3.5 Consistency Against a Sequence of Smooth Alternatives
This section gves condtions under which ou test is consistent uniformly over
aternatives in a Holder smoothness class whose distance from the parametric model
approades zero at the fastest possible rate. The results can be extended to Sobolev and Besov
classes under some additional technical condtions on the design { X} .

To specify the smoothnessclasses that we consider, let | = (i, ..., ja), Wherejy, ..., jq

> 0 areintegers, be amulti-index. Define

d
il Z I
k=1
and
, ljl
Dif(x=210)
OX{*...0x ]!

whenever the derivative exists. Define the Holder norm

Ity .= sup S IDIF().
H.s xO[-1,1¢ |J|zss

The smoothness classes that we consider consist of functions f O SH,s) =

{f:[f], s = Cg} for some (unknown) s> max(2, d/4) and Cr < .

Theorem 4 states that our test is consistent uniformly over the sets
2s/(4s+d
(34 By, E{f OS(H,s): p( f ,D)zCa(n_lwllogIogn) (der )}

for some s= max(2, d/4) and all sufficiently large C, < co.
Theorem 4: Let Assumptions 1-6 hold. Then for 0 < a < 1 and By, as defined in

(3.9,

lim inf P(T*>t,)=1
now fOB,, ( a)

for all sufficiently large C, < c.

4. MONTE CARLO EXPERIMENTS
This section presents the results of Monte Carlo experiments that illustrate the
numericd performance of the alaptive, rate-optimal test. The section has two parts. Section
4.1 pesents a sequence of aternatives against which ou test is consistent but the tests of
Andrews (1997), Bierens (198), Bierens and Ploberger (1997), and Hérdle and Mammen
(198) are not. This sequence motivates the design of the Monte Carlo experiments. The
experiments and their results are described in Section 4.2.
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4.1 An Example

This section presents a parametric model and a sequence of aternatives against which
our test is consistent but the tests of Andrews (1997), Bierens (1982), Bierens and Ploberger
(1997), and Hardle and Mammen (1993 are nat. All of these tests are mnsistent against each
aternative in the sequence, however. The fact that the tests are not consistent against the
sequence itself, as opposed to its individual eements, illustrates their ladk of uniform
consistency.

The null hypothesis model (parametric family) in the exampleis
(40 Y =Bo+BiX ¢,
where 3, and 3; are mngtants, the X;'s are scaars that are sampled from a distribution that is
symmetrical about 0, and & ~ N(O,oz) for every i. The distribution of & is ecified
parametrically because Andrews (1997) test requires a fully parametric model. The other
tests do not require specification o the distribution d &. The sequence of alternative models
is
(42 Y =X +1t0X 1)+,
where § ~ N(0,1), @is the standard namal density function, and 7, = C(n'l\/m)_ﬂ9

for some finite ¢ > 0. The function f,(x) = x + 7,"@(X/T,}) has a peak that is centered at x = 0
and that becomes narrower as n increases. The sequence of alternative models {f} is
contained in By, with s = 2. The distance between f, and the parametric model (4.1

-4/9
satisfiesp(f,,0) O (n'l,/loglogn) , S0 the distance mnverges to zero more slowly than n’

12

It is not difficult to show under that the sequence (4.2), the noncentral parameters of
the tests of Andrews (1997), Bierens (1982), Bierens and Ploberger (1997), and Hardle and
Mammen converge to zero asn — o. Therefore, these tests are inconsistent against (4.2). It
follows from Theorem 4, however, that the adaptive, rate optimal test is consistent against this
sequenceif Cissufficiently large.

4.2 Monte Carlo Experiments
This section presents the results of Monte Carlo experiments that illustrate the
numericd performance of the alaptive, rate-optimal test. In ead experiment, a parametric
null-hypathesis model and two aternatives are spedfied. Monte Carlo simulationis used to
estimate the probability that the alaptive, rate-optimal test regjects the parametric model when
it is correct and the test’'s power against the dternatives. To provide abasis for judging

whether the test’s power is high or low, the powers of the tests of Andrews (1997) and Hardle
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and Mammen (1993 are dso estimated by Monte Carlo smulation. In al experiments, the
nominal probability of reecting a crrect null hypothesis is 0.06. The computing time
required for the experiments is lengthy becaise al of the tests use of Monte Carlo or
bodastrap methods to dbtain critical values. Accordingly, the designs of the experiments are
simple so as to minimize the time required to compute the test statistics.

The null-hypothesis model in the experimentsis
(4.3 Y =Lgt+BX+g; 1=12,..,250
where eadh X, is a scalar that is sampled from the N(0,25) distribution truncated at its 5th and
95th percentiles. In experiments where (4.3) is correct (Hpistrue), Bo= 31 =1. The §'swere
sampled independently from three distributions, depending on the experiment. These ae
N(0,4), a variance mixture of normals in which g is sampled from N(0,1.56 with probability
0.9andfrom N(0,25 with probability 0.1, and the Type | extreme value distribution scaled to
have avariance of 4. The mixture distribution is leptokurtic with a variance of 3.9, and the
Type | extreme value distributionis asymmetrical.

The alternative models have the form
(4.4 Y =1+X+GB/0)p(X;/1)+¢;,
where the &' s are sampled from one of the three distributions just described and =1 or 0.25,
depending on the experiment. Figure 1 plots the function f(x) =1+ x+(5/1)@(x/1) for
eat value of 1. The example of Sedion 4.1suggests that the power of the aaptive, rate-
optimal test should be high compared to the powers of the tests of Andrews (1997) and
Hérdle and Mammen (1993 in the @ase 1 = 0.25, where the difference between the null and
aternative models consists of a narrow peak. The power advantage of the aaptive, rate-
optimal test is likely to be lessor even nonexistent under the more moderate Gase 17 = 1.
However, Theorem 3 suggests that the power of the adaptive, rate optimal test shoud be
satisfactory in comparison to the powers of the other tests when 7= 1.

The Xi’s were sampled orce from the spedfied distribution and held fixed in repeated
redizations of the Yi's. The values of 3, and 3, were estimated by ordinary least squares.
Equation (2.9) was used to estimate o2 in experiments with the alaptive, rate-optimal test.
The HardleeMammen test does not require an estimator of o2. In experiments with
Andrews’ test and &'s with the normal or extreme value distribution, the distribution of the
&'s was asumed to be known upto 0?2, which was estimated from (2.9. In experiments
with Andrews' test and &’ s with the mixture-of-normals distribution, the mixing probabiliti es,
0.9and 01, were asumed to be known a priori. The variances of the normal comporents of
the mixture were estimated from estimates of the variance and fourth central moment of the

&'s. The variance was estimated from (2.9). The fourth central moment was estimated by
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1 n-1 A 5
(Yiip = Yiy)* —602.
2(I’1—1) ; (i+1) (i) n

$n =

The kerndl used for the adaptive, rate-optimal test and the test of Hardle and Mammen (1993
is K(u) = (15/16)(1-u?)?I (Ju|< ).

Implementing the test of Hardle and Mammen (1993 requires selecting a bandwidth
parameter, h. Existing theory provides no guidance on howv this gwould be done in
applications. We foundthrough preliminary simulations that in al of our experiments, the
power of the test is maximized nea h = 3.5 and varies little over the range 3 < h < 4.
Acoordingly, we used h = 3.5for all experiments with the test of Hardle and Mammen (1993.
The set of bandwidths for the adaptive, rate optimal test was {2.5, 3,3.5,4, 4.5 in al of the
experiments.

The experiments were carried out in GAUSS using GAUSS pseudo-randam number
generators. There were 1000 Monte Carlo replications in the experiments in which Hy is true
and 250in the experiments in which Ho is false. The larger number of replications for the
experiments with a true Ho insures that the probabilities of Type | errors are estimated
reasonably precisely. The lower number of replications with a false Hy conserves computing
time while providing sufficient precison to be informative @out the relative powers of the
tests. Bootstrap criticd values for the tests of Andrews (1997) and Hardle and Mammen
(198) were computed from 99 bamtstrap resamples. There were 99 replications in the Monte
Carlo procedure that was used to estimate the aitical value of the alaptive, rate-optimal test.

The results of the experiments are presented in Table 1. When Hp is true, all tests
have enpirica regedion probabilities that are close to the nominal probability of 0.05. None
of the ampirica regection probabilities differs from the nominal rejection probability at the
0.01level. The power of the adaptive, rate-optimal test is much higher than the powers of the
other tests when Ho is false and T = 0.25. All of the differences between the powers of the
adaptive, rate-optimal test and the other tests are significant at the 0.01level when 1t = 0.25.
The power of the alaptive, rate-optimal test is similar to that of the Hardle-Mammen test but
greder than that of Andrews' test (p < 0.01) when Hpisfalse and 1= 1. Thus, the smulation
results are consistent with the expectation based ontheory that the adaptive, rate-optimal test
has higher power than the other tests in the presence of a relatively extreme dternative and
has satisfactory power in comparison to the others in the presence of a more moderate

aternative.
5. CONCLUSIONS

This paper has developed a new test of a parametric model of a mnditional mean

function against a nonparametric aternative. The test adapts to the unknown smoathness of
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the aternative model and is uniformly consistent againgt alternative models whose distance
from the parametric model converges to zero at the fastest possible rate. This rate is dower
than 2. Some eisting tests have nontrivial power against local alternative models whase
distance from the null hypothesis deaeases at the rate 2. However, this rate is not
adhievable uniformly over reasonable classes of alternatives. As a consequence, there ae
situations in which the new test has much higher finite-sample power than do tests that have
nontrivial power against N2 local aternatives. The new test is consistent (though na
uniformly) against local alternatives whase distance from the null hypothesis decreases at a
rate that is only slightly slower than n 2. This property provides some protection against the
occurrence of situations in which the power of the new test is much lower than that of existing
tests. The predictions of theory have been illustrated numerically by the results of a small set
of Monte Carlo experiments.

APPENDI X

Sedions A.1-A.4 present technical lemmas that are used in the proofs of Theorems 1-
4. The prodfs of the theorems are in Section A.5. It is assumed throughou that Assumptions
1-6 hdd. To minimize the complexity of the notation, it is assumed that d = 1. The
generdization to the @ase d > 1 is straightforward but requires more complicated vector
notation. The structure of the proofs is as follows. In Lemma 10, we use acentra limit
theorem for sums of randam quadratic forms to show that under Ho, T* has the same limiting
digribution as the verson d T* that is obtained by sampling from the model
Y, = F(X;,0p) +o(X;)w;, where the w;’s are independently distributed as N(0,1). This
result forms the basis of the proof of Theorem 1. Lemma 13 shows that P(T* >t,) -» 1lasn
— oo Whenever the distance between the parametric family O and f([)] exceeds a specified

value. Thisresult forms the basis of the proofs of Theorems 2-4.

A.1 Moments of §,(6)
Lemmal: Let Abeanxnsymmetrical matrix whose (i,j) elementisa;. Let{s: i=

1, ...,n} beindependent random variableswith Eg®= 0, Eg? = 07, and Eg* = 5. Then

=}

=2

n
=1 j=1

n
&€ = zaiiaiz
=1

and

n n n n n
Var[z Zaijsisjlzi: ZZaiJzaizaJ?+;aﬁ(q—30i4).

=1 =1 1 §=1

Proof: Obvious. Q.E.D.
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Lemma 2: There are positive constants Cy;, Cne, Cn, Cuv1, and Cy, that depend only

on C; and C, in Assumption 3, on Cg in Assumption 5, and on K such that for all h O H,: (i)
Cnih ™ < Ny < Cpoh™, (i) Giih™ <2 < Gyoh ™, and (iii) Wowg| < Cy

Proof: Assumptions 3 and 4imply that for al i

n Xi_Xj
A) K — | < Mp(X;) = Conh,
=1
n Xi_xj 2
(A2) ZK . < M (X;) £C,nh,
=1
n Xi_Xj
(A3 K " [2KMpz(X) 2KCn/ 2,

and

2
n X = X

(A4) ZK( 'h ’j >K2My(X;)2k?Cinh/ 2.
j=1

Therefore,
Kp (X = X Kn(X: = X
(A5) h( i J)SWh(Xi,Xj)S h( i J),
KkCinh/ 2
2 n
K“Cnh/2 C,nh
Cl—zS W (X5, Xj)? S — o2 =
(C,nh) &l K“C{(nh/2)

and the first assrtion foll ows.

Next, since al elements of the matrix A, = W,'W, are non-negative,

1<i<n

n
A, < max Zaij,h-
=

Using (A1) and z?:lwh(xk,xj) =1, we obtain for every i, k< n,

C,nh
kCnh/2

n n n n
D an=Y > WX X)Wh (X, Xj) = 5 Wh (X, Xi) <
j=1 =1 k=1 =

and the third assertion follows.
Now, the Cauchy-Schwarz inequality and (A2)-(A4) yield

(A6) a2 <iw(x X)Ziw(x X)2<[—Cznh T<(C/nh)2
ijh S FACAVIRAY h{AAj) = =
A & " 7l keinh/ 2)

for asuitable constant C. These inegualities give the bound
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n

n n
V2 :Zz Za”?’haz(xi)az(xj)sZnLEnizixna“(Xi)M max a; hj max Za,-j,h
. <i< <

1=1 J:l lSi,an ’ 1<i<n
SZn{ max 04(Xi)}&.
1<i<n nh

A similar argument bounds th from below, thereby yielding (ii). Q.E.D.

A.2 Bounding b,(6)

Lemma3: Let Cy; beasin Assumption 1 and Cy beasin Lemma 2. For every >0

max  sup  |b,(6)|° < CACynd2.
hUH, g 0e:|6-6,| <

Proof: By Asamption 1(i) and the mean vaue theorem,

|F(6) - F(8,)| < CZ|6 - 6|, Therefore,

Iby ) = MLLF(6) - F (80|
=[F(6) - F(Bo)]' WML F (6) - F(6o)]

<[Wew ., [F (8) - F(8o)°

n
2
S CN Z C121||9 - 60” S c:flcN n52.
i=1
Q.E.D.
Lemma4: Asn -
352 max Vi[O F (6) W] = Op (1)
and
I M2 max Vi e = 0, (2) .
hOH,
Proof: To obtain thefirst result, it suffices to show that for some @mnstant C < «

Ry =t zvh'2E||D9F(90)'V\4{V\41£||2 <C.

hOw,

Using Asumption 1(i), we obtain
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E[[T6F (B0) W,e|* = Etr[TgF (86) WM, W, g F (6)]
s[ max Uz(xi)}tr[DQF(eo)'(\/\ﬁW)zDeF(eo)]

1<i<n
<| max o?(X;) |CAtr )2
= 1<i<n i Cll (V%’V% .
Therefore,

R Jit zvh‘z[lgnag az(xo}clitrww?

hOH,

LT@X o (X )}0121” (W)

ZLg_lip 04(Xi)}tr(V\Mq)2 |

Thefirst result now foll ows from Assumption 5.

To prove the secondresult, it suffices to show that

Riz=3" S Vi PEMpel*<cC

hOw,

for some C < 0. Using Lemma 2, we get

I -2 -1 1 )
Rh2 = Jdn th Np < J, Z Cn2Gi =GOt
T, nm,

which proves the secondresult. Q.E.D.
Thefollowing result isa crollary of Lemma 4.

Lemmab: Let Hy hold. Then for eachu >0

max sup Vi b () Whe]| = O, (3720 7Y2) .
hOH, g De:|6-6,| <n*?u

The foll owing result holds when Hy isfalse.

Lemma6: Givenh O H,, let B, =||V\4][f_ - F(GO)]” . 1f By = V,, then for every u >0

and 6> 0,

P[ sp | [f - FOMW,e|2 3B [=0()
6 00:[6-6,| <n™?u

asn —» oo,
Proof: Assumption 1(i) and a Taylor series approximationto F(6) - F(6,)

give
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sip by (OWhe] < LT - F(Bo) W]

600:6-6,|<n

+n~Y2U| 06 F (8) WWLE]| + n~Y2CiR2u? W é]
By this result and Lemma 4, it suffices to prove that By*E[|[f - F(BO)]’MWS||2 =o(1) asn
- c0. UseLemma2 to oktain

ByYE| [T - F(Oo) W]’

<| max (%) By f ~ F(Bo)]' (W) f ~ F(6o)]

<| max a®(X;) By MR T = F(80)) WWL)L T — F(8,)]

=| max 0?(%,) [B | WL T - F (8

1<i<n

-| max az(Xi)—Bh'

1<i<n

’Cy.

Since B2 =V/?, the result follows from Lemma 2 and h, = 0(1) asn — . Q.E.D.

A.3 Sequences of Local Alternative Models
Write the local alternative model (1.2) in the form f, = F(8;) + p,g, 6. 0 O, where

f, and g are asdefined in Section 3.4. Define
6o, =arg gg@”fn ~F(9)[.
This quantity exists for all sufficiently large n. Let |,, denote the nxn identity matrix.

Lemma7: Define g =(I,, - ;)3 , where I, isas defined in Section 3.4. Then

fo=F(80n) = n8"| = 0()
ash - o. Moreover, the least-squares estimator 6, satisfies
2
|F(6n) = F(8o,)| =0,

asn - oo,

Proof: See Millar (1982, Theorem 3.6). Q.E.D.

A.4 Gaussian Approximation of Quadratic Forms
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This section presents properties of the centered, normalized quadratic forms
To =Vi 1Sh(6n) = Nyl and Tyo =[S,(6*) = Nyl /Vi,. Lemma 8 shows that T, = Tyg + 0, (1)
fordl h. Let & =o0(X)w; (i =1, ..., n), where the s are independently distributed as
N(0,1). Define T, =[|[\/\412§||2 = Np]/V,,. Lemmas 9-10 show that under Ho, max,oy_ Ty, and

MaXp oy Tho have identica asymptotic distributions. This result is used in the proof of

Theorem 1 to justify the smulation method for estimating the aitical value of T*. Lemmas
11-14 povide results that are used in the proofs of Theorems 2-3.

Define Y* =F(X;,0,)+& (i=1,...,n). Let 8, and 62(X;) bethe estimators of
6, and o?(X;) that are obtained from the data set {Y*,X;}. Let T, be the version of T,
that is obtained by replacing 8, with 8,,, and o2(X;) with 62(X;), and & with &2(X; ),
in (2.4)-(2.6).

Lemma 8: Let 04(X;)—0(X;)=0p,(hun) uniformly over i = 1, ..., n. Then
Ty = Tho + 0, (1) and T, = Tpo +0,(2) uniformly over h O H,

Proof: This result follows from Lemmas 1 and 2 and an application of the delta
method. Q.E.D.

Lemma9: Asn .- o,

n
maxVi. 1S a; (2 -0?) =0,(1).
maxVh ;an,h(| )=0,(D

Proof: It suffices to show that

] 2
Ri= > Vh_2E|:;aii,h(fi2 ‘02):| =0(D

h{w,

asn - co. Takingthe expected value gives

n 2
Ri= Y vh‘z[zaﬁ,h(sfo“)] :
i=1

hOH,

By Assumption 5,5, < 0*C¢ . By Lemma2, V;;? < Gyth and a; j, < Cy (nh) ™. Therefore,

Ris cv‘%h[icﬁ (nh)‘za“ce‘}
=1

hOH,

<n7'gjcio’ct yh
hm

n

<nIGyiCE 0 Clhpg (1-a) ™
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Thelemmanow follows. Q.E.D.
Lemma 10: Let Ho be true. Then max, gy Ty and maxy oy, Tho have identical

asymptotic distributions.
Proof: By Lemmas 8 and 9, it suffices to show that the joint distributions of

Vh'lz ah&i€; (hOH,) and Vh'lz an& €; (hOH,) are asymptoticaly the same. For h

E3] B3]
OHpand & =¢; or & (i =1,...,n), define

Brn (§1,-+:€n) =Vh_1z & néic; -

7]
Let B,(¢4,....€,) bethe vedor that is obtained by stacking By, (¢y,....¢,) (hOH,). Let g,

be a3-times continucusly differentiable function on 0 . Define

9°g,(v)
0V;0V; 0V

O3 = SUp  max
e i k=L,

The proof takes placein two steps. Thefirst step isto show that

L 332
(A7) |EJ[B, (€1, €n)] — EQ[Bn(&1,.., En)]IS Cy g3n[ﬁ)
n hmm
for any 3-times differentiable g, some finite constant ¢y, and al sufficiently large n. The

seaond step uses (A7) to prove that Vh_lz ajnei€; (hOH,) and Vh_lz ajn&€; (hOH,)
B B3

have the same asymptotic distribution.

Step 1: Define by =&, / Vi, Assuume without lossof generality that o(X;) =1 for
ali=1,..,n [If o(X;)#1, replace g with & /a(X;), & with & /o(X;), and by, with
b ho(X)o(X;).] Itiseasily shown that

(A8) ”Eg[ Bn(glv"'gn)] - Eg[ Bn(zlv""zn)]”

< Z”Eg[ B (€11e1Ei 1 Eia1s-En)] — EA[ By (€, 6121, & 1o E0)]|
=

where B, (€1,...,€n,Ens1) = Br(€7,-..,€,) and B (€g,€1,&) = B, (€1,-..,€,,) - We now derive
an upper bound onthe last term of the sum on the right-hand side of (A8). Similar bourds
can be derived for the other terms. Let u,_q,4,,, and Zn, respectively, denote the vectors
that are obtained by stading

n-1 n-1

Upp = Z Zhj,hsisj :
==
i
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n-1
Ah,n = 2"‘:n Z lQn,h“:i '
=

and

n-1
Ah,n = 2En z t]n,h“:i :
=

Then a Taylor-series expansion of the last term of the sum on the right-hand side of (A8)
abou €, =¢, =0 yields

|EQBA (1,01 8n)] ~ EQIBy (€1,-w1En-1, ED| S [EQ (Un1)(B — Bp)]

+ (1 2EI830" (U1) B = By’ 0" (Ur-)B]l*+ (G / O)E]B|° + E[[ )
where g' and g", respectively, dencte the gradient and matrix of second derivatives of g.
Since ¢, and &, are independent of ¢;,....6,4, E€, =EZ,=0, and E€2 =E£> =1, we
have
E(An = Apler,sEnq) = E[(AnAL = B AL) €., En1] = 0.
Therefore,

(A9 [EQIB, (&1, £0)] ~ EQLBy (B EIIS (030 O)E]A, | + E[B ).

To find bourds on E|jA,[* and E||Zn||3, let by, be the vedor that is obtained by stacking

Bnn(h=1, ,Jn). Then Holder'sinequdity gives
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3
E[a,|° =Ele,fE

n-1
22 tan“:i
1=1

3/4

n-1 2 2
<8Ele, 1 E z [Zhn,hgi]

hCH, \i=1

34
n-1
_ 3
=8E|¢,| EZ Z Zhn,hbjn,hbkn,sbfzn,ssisjSkse
W\, §H. i k=

3/4

n-1 n-1
= 8E|£n|3 E Z Z Z (Q%,hbjzn,s + 2t%,hhn,sbjn,hbjn,s) + Z hﬁhhﬁsE(Sft)
i=1

hOA, sCH, |i,]=1

i7 J
3/2
in

for some finite ¢ > 0, where the last line follows from Lemma 2 and (A6). A similar result

holds for E||En||3. Therefore

, s 3 32
clonf+ effof* <2 0]

and (A9) gives

3/2
|EQLBn (1,1 E0)] ~ EQLBA(E1s-rs £t E)]| < (0031 ,3)(n;n. j |

Similar bounds hald for the other terms of the sum on the right-hand side of (A8). Summing
the bounds yields (A7).
Step 2: It sufficesto show that for any red z

lim {P{hmmax Bin(E11e-1&n) S z} - P[hmmax Bin (€11 En) < z}} =0

n- o n

or, equivalently, that

lim =0.

Nn- o

E[(Bmesn) <A-E [ 1[Brn(Es-rrEn) < 2

hCH,, hCH,

Let g be anon-deaeasing function that is 3 times continuausly diff erentiable on the red line
andsatisfiesg(v) =0if v<-landg(v) =1if v=0. Let 5, = J;z. Some dgebra shows that
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(AL0) |E [ 1B (Ernr&n) <2 -E [11[ByEroenn ) < 2]
B (€1, Ep) = Z B (€15e-18p) = Z
Jeq g

L S T

B, (€1,.60) — 2 ]
Oy

+ 3 Elg Bh“(gl’(;’gn)‘z —1[Byy, (s 1) 7] |
hOH L n _

Eadh term of the summands of the second two sums on the right-hand side of (A10) is
bounded from above by J,,0, = J;l. Therefore, using (A7) to bound the first term on the
right-hand side of (A10) yields

15/2

A11) |P| maxBp.(&1,...,6.) < 2| - P| maxB..(;,...,6.) < +23°1
( ) ‘[hDHthn(l n) Z:| LDHthn(l n) Z:| n

<__-n
- L1/2,.3/2
n hmin

Thelemmafollows by taking limitsasn - o on both sidesof (A11). Q.E.D.

Lemmall: For anyz=1,h [0 H,, and all sufficiently largen

P(T, >2) <exp(-Z*/4).

Proof: Write €' WW, € = w'ZWW Zw, where 5 is the diagonal matrix whose (i, i)
element is 0(X;) and w is a nx1 vector of independent N(0,1) variates. Let A be the
diagonal matrix of eigenvalues of ZWW 2, {A;: i =1, ...,n} be the eigenvalues, and I be
the orthogonal matrix such that 2WW, 2 =T1'Al'l . Define Z = MNw. Then the elements of Z
are independent N(0,1) variates,

EWWE = ZAiZf |

E(EWWE) = Z}u ,
and

V2 =Var (FWWE) = 22)\3
Therefore,

-ﬁ]o :V_lei(Ziz -1).
1=1
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It now foll ows from the Chebyshev exporential inequality (seg e.g., Loéve 1977, p.160 that

for every u>0,
Q =P(T,>2) <e™E exp[uV‘lz A (Z° —1)]
1=1
Sincethe Z are independent N(0,1) variates,

Eexp[uV'li A (Z7 —1)} = |‘J exp[—uV'lx\i -(1/2)log(1- 2uV'1/\i)]

whenever uV'lx\i <1. It follows from Lemma 2 and Assumption 5that V'*A; < dfor any &>

0 and all sufficiently large n. Therefore, using the inequality Hog(1 —u) < u + U for all

sufficiently small u> 0, we have
E exp{uv‘lz Az —1)} < |'J exp(2u™V A7) = exp(-?)
1=1 1=

and
Q, < exp(-uz+ u?)
for al sufficiently large n. Thelemmafollows by setting u = z/2. Q.E.D.

For 0< a < 1, define t, tobethe 1 - a quantile of MaXp, gy, Tho -

Lemma12: For all sufficiently largen, t, <2./logJ, —loga .
Proof: Letz>1. By Lemmall,

PlmaxTa>zl<s S P(T,>Z
(hDHn ho ) h; (Tho>2)

hOH, 4

Therefore,

—i2
a<J,exp Af’ .

The Lemmafollows by taking logarithms on bdh sides of thisinequality. Q.E.D.

Lemma 13 Let 't;*:max(f,,\/Zloanh/ZIoan). Suppose  that

ML F - IE(9*)]”2 > 4V, t,* for someh O H,. Then
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lim P(T*>t,) =1.

n- o

Proof: By Lemma8, T* can bereplaced by max,y_ Tho. By Lemmas8and 10,t,

can bereplaced by t, . Thus, it sufficesto prove that

lim P(max To>t,) =1,
N e (hDH hO a)

which holdsif
lim P(Tho>t,) =1
n - o

n

for someh O H,. Forany hOH,,

Ion ()] + 201" Whe

To=T N
hO ho Vh

Therefore, by Lemma6,

o YCal
Vh

Tho=Tho * +0,(D),

and

Jon 6)I°
v

lim P(To>1,) = lim P(T +
n - oo n - oo h

>T).
But [, (6%)| = W[ T - F(@)]|". Therefore, W[ f - F(6*)]] 2 4v,E,*,

2
im p(F, + O ) 2 im p (7, > -4 - 1

h
asn - o becuse Ty isbounded in probability and t, -4t * — -0 asn - . QED.
Lemma14: Let h O H, Let mbe thelargest integer that islessthans. Let | be a
subinterval of [0,1] with length h, = (m+ 1)h. Let x denote the center of I. Let }, , bethe (m
+ 1)x(m+ 1) matrix with elements

k+7¢
Xi — X
Vip = Z( Ih ) )
i:X Tl

There exists a number R depending only on the constants C; and C, from Assumption 3 such
that

Mol <R
il <=

and
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Proof: Thisresult is proved for the cae of aregular design in Ingster (199c) and for
the case of adesign satisfying Assumption 3in Héardle, et al. (1997, Lemma 6.6). Theideais
as follows. To obtain a non-degenerate, nonsingular , ,, it suffices to have m + 1 distinct

design points inside the interval 1. Under Asumption 3, | contains O(nh) points, which is
more than sufficient. Q.E.D.

A.5 Proofs of Theorems

Proof of Theorem 1: By Lemma8, maXy gy Th = MaXpy, Tho +0p(D) . By Lemma

10, maxygy Tho d MaXp 'Fho an - o. A further application d Lemma 8 gives

maxyon, Tho — ¢ Maxy oy, Th +0,(D) . Therefore, maxppy Ty - Maxypp Ty +0,(2) .

Q.E.D.
Proof of Theorem 2: By Lemma 13, it suffices to show that

||V\4][f_ - If(é?*)]”2 > 4V,,t,* for some h 0 H, and al sufficiently large n, where
s 2
o< =arg inf |[f ~F(6)|".
600
Because hy — O asn — oo and W[ f — F(0)] is the result of smoathing the cntinuots
function (3 — F(1J 6) by the kernel method, [Wi[ T -~ F(6)]|" - | ~F(8) asn - «. But

under Hy, (;Bfe”f - F(B)”2 =c,n for some c, >0 andall sufficiently large n. The resuilt that

AL - l?(e*)]”2 > AV, t* now followsfrom Lemmas 2 and 11. Q.E.D.

Proof of Theorem 3: By Lemma 13, it suffices to show that

B2 = ||\/\Hf - If(eoyn)]”2 > 4V, t,* for someh O H, andall sufficiently large n, where
Bop = argeigfen f, - F(9)||2.

To show this, use the inequality a° = 0.5” — (b —a)® to write

e N S A SRR

By Lemmas2and 7,
MLy = F (o) = paa ] < i,

asn - o, Moreover, becaise hyx — 0Oasn - o and \/\4]gD is the result of smoathing the

B? > 05p2

fo = F(000) - pag”| =001

continuaus function g” by the kernel method, "\/\4195”2 R ||gD||2 asn - . Therefore, for

sufficiently large n,
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B? 202507 g°| = 0250767 g 2 0.25np?%6°.

Set h=h,_, =C,(loglogn)™. Then theorem foll ows from the definition of p, and Lemma

2. QE.D.
Proof of Theorem 4: Let g=f -F(6*). Then by Lemma 12, (3.4 and the

definition of S(H,s),

(A12) n_y2||g||2 Ca(n_lﬁ,* )23/(4s+1)

and ||g[,, ;< C,4 for some Cy <o . By Lemma 13, it suffices to show that Mgl = AVt

for some h 0 H,. Thisis dore by approximating g by a piecewise polynomia function and

proving that each segment of the polynomial satisfies the required condtion.

Set hy=(h™tF)?@D . Then nh®=hY?,*. Select h O H, such that
h <h<2h,. It will now be shown that |[\/\41g||2 > 4V, t,* for the selected h. First, observe
that by Lemma 2(ii), Vi, < G,,h™Y2. Moreover, sinceh > hy,

M Tx <4Ch V2 <4Ch Y2 = 4C,nhZS < 4C,nh?S.
Therefore, it suffices to show that
(A13) |W,g|” = 4G, ,nh%.

Let m be the smallest integer lessthans. Set h, = (m+ 1)h. Let | be asubinterval of [0,]]

with length h,. Let x denote the center of I. The smoothness assumption ||g|,, < C4 implies

that there exists a polynomial

P(U) = Bo + By ; X +...+Bm[“éhx)

such that |g(u) — P(u)|< Ch® for al u with [u-x|<h, /2+h;, where C depends only on C,

andm. Define
WLa(X;) = th(XivXj)g(Xj)-
=

Define W,P(X;) similarly. Then, since w,(X;,X;)=0 for dl X; with ||xi —Xj||>h,
MLa(X;) =W, P(X;)|< Ch®. Moreover,

Y 1gx)F <2 S IPOXOE +2 S 19(X;) — P(X)P
i X0l i:X: 0l D
<2 Z|P(Xi)|2+2N|C2h25,

i X 0l
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where N, denotes the number of design pdantsin|. Similarly

Y MhGOOF 22 Y MEPOKOE - Ny P,

i X; Ol i X; Ol

Let V,, , bethe (m+ 1)x(m+ 1) matrix with elements

k+¢
Xi — X
Vi = Z( Ih ) )
e

Let B=(Bo,....Bm) . Then

z IP(X)F = B'Vh.B,

i X; Ol
and, by Lemma 14, BV, ,B< R|B|°. Equivalently, |B]° = R™BV, 8.

Now define the numbers Zy (i = 1, ..., n; k=1, ..., m) asthe solutions to the
equations

Zy X\ _ L v XJ_Xk
(2 )‘;W“‘X"XJ’( =

Define V, , to bethe (m+ 1)x(m+ 1) matrix with elements

k !
e 3 (B2 (22 kmonm
i X; Ol

h h

Itiseasy to seethat |X - Zy| < hforal k=0, 1, ...,mand for al i with X[(O |. Therefore,, for

every k, the sequence {Z: X O I} satisfies Assumption 3, and Lemma 14 applies to \7w

Thisyields |V, | <R and V| <R. Next, by definition of Z,

WP(X) = Bo+ B 23X oy Bm X

so that
> MEP(X)F = BV B

i XTI

Similarly, BV, 82 R7Y|B|° . Therefore,
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> MAg(Xi)F >— > MLP(X)F = N, C*h*

i | X
=(1/2)B'Vy, B~ N, C?h?®
>(1/2RYB - N,C?h*

> (1/2)R™?B'V;,,B- N, C?h*®

[P(X;)P = N,C?h?s
2R2 i XZDI

1 228
> la(X; )| —N C“h
4R |XZEII

Now split [0,]] into N intervals, |4, ..., Iy of length nogreater than h,. Applying the foregoing
inequality to ead interval yields

n N
(ALY S MIODE=S S MAg(X)F
=1

=1 X0,

LN - 21125
ST Z ZDIQ(X)I ZN C*h

j=1

4R2 Zlg(x )E-(3/2)nC?h*,

Inequality (A14) combined with (A12) implies (A13) for sufficiently large C, in (3.4).
Q.E.D.
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FOOTNOTES
! The fixed design formulation used here includes as goecia cases random designs in which

the distribution o X is absolutely continuous with respect to Lebesgue measure. If (Y, X) isa
randam variable, then the null hypothesisis that f(X) = F(X, 8) amost surely for some 6 [ ©.
The alternative hypaothesisisthat P[f(X) = F(X, 8)] < mfor every 60 @ andsomem< 1.

2 Andrews (1997) assumes that the distribution of & in (1.1) is known up to a finite-

dimensional parameter. Thus, Andrews tests a parametric model of the condtiona
distribution d Y not just the conditional mean function. It is not difficult, however, to modify
Andrews' test so that it becomes atest of a hypothesis about f dlone. See Whang (1998).

® Triebe (1992 provides definitions of Holder, Sobolev, and Besov spaces.

4 The mndition s > d/4 is unlikely to be restrictive in applications because the arse of

dimensiondlity makes nonparametric estimation and testing unattractive when d islarge. Hart
(1997) discusses tests that have the optimal rate of testing when s < d/4.

® Guerre and Lavergne (199) describe amethod for adhieving the optimal rate of testing
against an aternative of known smoothness. Their test is not adaptive and its behavior
against aternatives of the form (1.2) is unknown.

¢ Hardle and Mammen (1993 use the integrated squared difference between f, and Fy,. As
they note, the properties of their test are the same with summed o integrated squared
differences except, possbly for the values of constants in the expressions for the mean and
variance of the test statistic’s asymptotic distribution.

" The variance estimators described in this section are not the only possble ones. For

example, Hart (1997, Section 53) describes an dternative estimator that is unbased if X isa

scdar, F(x,0) is a linear function d x, and the &'s are homoskedastic. The doice of

variance estimator does not affect the asymptotic properties, adaptiveness or rate optimality
of our test. The choice may aff ect the small-sample performance of the test, but investigation

of the small-sample performances of aternative variance estimators is beyond the scope of
this paper.
& If the form of the heteroskedasticity of the &’sis known, then this knowledge can be used to

form a variance estimator. For example, if Y; is binary, then az(Xi) can be estimated by

f.(X)[1- f,(X)], where f (x) isanorparametric estimator of f (x).
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TABLE 1: RESULTSOF MONTE CARLO EXPERIMENTS"

Probability of Rejecting Null

Hypothesis
Distribution Andrews’ Hardle-Mammen Rate-
Optimal
£ T Test Test
Test
Hull Hypothesis Is True
Normal 0.057 0.060 0.066
Mixture 0.053 0.053 0.054
Extreme
Value 0.063 0.057 0.055
Hull Hypothesis Is False
Normal 1.0 0.680 0.752 0.792
Mixture 1.0 0.692 0.736 0.796
Extreme
Value 1.0 0.600 0.760 0.820
Normal 0.25 0.536 0.770 0.924
Mixture 0.25 0.592 0.704 0.932
Extreme
Value 0.25 0.604 0.696 0.968

! The differences between empirical and namina rejection probabilities under H, are not
significant at the 0.01 level. Under H,, the differences between the rejedion probabilities of
the rate-optimal and Andrews' test are significant at the 0.01level. Under Hy, the differences
between the rejection probabilities of the rate-optimal and Hérdle-Mammen tests are
significant at the 0.01level when 7=0.25.
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Figure1: Null and Alternative Models
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