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Abstract
We consider the possibility of optimal choice of observation win-

dow in the problem of parameter estimation by the observations of an
inhomogeneous Poisson process. A minimax lower bound is proposed
for the risk of estimation under an arbitrary choice of observation win-
dow. Then the adaptive procedure is proposed which is asymptotically
efficient in the sense of this bound.

Let X be a separable metric space, B, the σ-algebra of its Borelian subsets,
the set A ∈ B and a family of Poisson processes of mean measures Λϑ,
ϑ ∈ Θ, Θ ⊂ IR observed n times on the set A. We suppose that the value of
the parameter ϑ is unknown to the observer and he have to estimate it by n
independent observations of the Poisson process. If the set A is fixed then
under the regularity conditions the maximum likelihood estimator (MLE)
ϑ̂n is asymptotically normal with the limit variance σ2 equal to the inverse
Fisher information, i.e.,

√
n(ϑ̂n − ϑ) =⇒ N (0, σ2),

σ−2 = I(θ) =
∫

A
Ṡ(ϑ, ϑ, x)2 Λϑ(dx)
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where dot means the derivation with respect to ϑ and

S(ϑ1, ϑ2, x) = Λϑ1(dx)/Λϑ2(dx), Ṡ(ϑ, ϑ, x) = ∂S(y, ϑ, x)/∂y
∣∣∣
y=ϑ

(see Kutoyants (1996), Theorem 2.4).
Let us call the set A an observation window and consider the problem

of its optimal choice. We write I(ϑ) = I(ϑ,A) and note that a reasonable
solution to this problem is to maximize I(ϑ,A) over some class of sets {A}.
For instance, one may consider the class A defined by

Am = {A : A ⊆ A, Λ(A) ≤ m}

where Λ is some measure on X (it can be one of the measures {Λϑ, ϑ ∈ Θ} or,
in finite-dimensional case, the Lebesgue measure), A is some (rather large)
set from B and m > 0 is a given number. We see that the information
matrix I(ϑ,A) depends generally on the unknown parameter ϑ and there-
fore there is no any universal optimal choice of the observation window A∗ .
This motivates considering so-called sequential strategies which can adapt to
unknown value of parameter.

We follow the standard framework of sequential experimental design due
to Chernoff (1959, 1972). Given n first observations X(n) = (X1, . . . , Xn) of
the Poisson process we construct an observation window An+1 ∈ Am for the
next observation on the base of X(n) . In the other words, if we denote by
Fj = σ(X1, . . . , Xj) the σ-algebra of the events up to time j, then Aj is Fj−1-
measurable with values in Am . The family of functions A(n) = (A1, . . . , An)
with Aj : X(j−1) → Am , j = 1, . . . , n , is called a sequential design or simply
a design. Let now ϑ̄n be an estimator of ϑ by observations X(n) . We
call the couple

(
A(n), ϑ̄n

)
an admissible strategy. The problem of sequential

experimental design is to select both the design A(n) and the estimator ϑ̄n

in certain optimal way. We consider this problem in the asymptotic set-up
when the number of observations n tends to infinity. First we state a lower
bound for the risk of an arbitrary admissible strategy

(
A(n), ϑ̄n

)
n≥1

. Then we

show that this bound is sharp. Moreover, we present strategies (A∗(n), ϑ̂n)
which are asymptotically optimal in the sense of this bound. Here A∗(n) are
special so-called two-stage procedure and ϑ̂n is the MLE.

The described problem is a particular case of a general problem of se-
quential experimental design considered in Spokoiny (1992). Here we specify
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the results for the case of windowed observation of a Poisson process that
allows to simplify and instructively verify the general regularity conditions.
Also we present a relatively simple and clear proof of the lower bound on the
base of Van-Tries inequality for the case of squared losses.

Our regularity conditions will be the uniform on Am versions of the con-
ditions of Theorems 2.1 and 2.4 in Kutoyants (1996).

C1. For all ϑ ∈ Θ and A ∈ Am we have Λϑ(A) < ∞ and all measures
Λϑ, ϑ ∈ Θ are equivalent on the set A.

C2. The function S(ϑ′, ϑ, x) = Λϑ′(dx)/Λϑ(dx), x ∈ A, ϑ′, ϑ ∈ Θ is differ-
entiable with respect to ϑ′ for almost all x ∈ A, the derivative Ṡ(ϑ′, ϑ, x) ∈
L3(Λϑ). Moreover, for all ϑ ∈ Θ

lim
δ1,δ2→0

sup
A∈Am

∥∥∥Ṡ(ϑ + δ1, ϑ + δ2)− Ṡ(ϑ, ϑ)
∥∥∥

A
= 0.

Here the norm ‖f‖A in L2(Λϑ) is defined by integration over the set A, i.e.

‖f‖2
A =

∫

A
f 2(x) Λϑ(dx).

The Fisher information I(ϑ,A) is positive and bounded away from zero and
from infinity uniformly on A ∈ Am, i.e.,

sup
A∈Am

I(ϑ,A) = I∗(ϑ) < ∞,

inf
A∈Am

I(ϑ,A) = I∗(ϑ) > 0.

Now we are about to formulate the main result concerning the lower
bound of quadratic risk for an arbitrary sequence of strategies. We take
therefore the loss function as `(u) = |u|2.
Theorem 1 Let the conditions C1 through C2 hold. Then for an arbitrary
design A(n) and every estimator ϑ̄n, the following inequality is fulfilled

lim
δ→0

lim
n→∞

sup
|ϑ−ϑ0|<δ

Eϑ`
(√

n(ϑ̄n − ϑ)
)
≥ I∗(ϑ0)

−1. (1)

Proof. This result and even more general results including the case of a
multi-dimensional parameter and a loss function of the form `(u) = |u|p for

3



some p ≤ 1 can be obtained as a specification of the general statement from
Spokoiny (1992, Theorem 3.1). However, the proof of this general theorem is
rather sophisticated and it requires special rather involved technique. Note
also that for the case of univariate parameter the method from Efroimovich
(1980) based on random time-scaling can be applied to get the desirable lower
bound.

We present below another proof which is clear and straightforward and
which makes heavily use of Van Trees’s inequality. This method can be
generalized on the case of multi-dimensional parameter but the quadratic
structure of the loss function is essential.

Let A(n) be some sequential design. Then the likelihood ratio can be
written as

L(ϑ, ϑ0, X
(n)) = exp





n∑

j=1

∫

Aj

ln S(ϑ, ϑ0, x) Xj(dx)

−
n∑

j=1

[Λϑ(Aj)− Λϑ0(Aj)]





where Aj are random Fj−1 measurable sets, j = 1, . . . , n. Let p(u), u ∈ IR1

be a continuously differentiable density with support B = [−1, 1], positive
on B and vanishing outside B (i.e. p(u) = 0 for |u| = 1). Introduce also the
rescaled density

pn(ϑ) = Hn−1/2 p(
√

n(ϑ− ϑ0)/H).

By the use of Van Trees’s inequality (Gill, Levit, 1995) we get for each δ > 0
and n > H2δ−2

sup
|ϑ−ϑ0|<δ

Eϑ

(
ϑ̄n − ϑ

)2 ≥ sup
ϑ∈Bn

Eϑ

(
ϑ̄n − ϑ

)2

≥
∫

Bn

Eϑ

(
ϑ̄n − ϑ

)2
pn(ϑ) dϑ

≥




n∑

j=1

∫

Bn

Eϑ

∫

Aj

S(ϑ, ϑ, x)2 Λϑ(dx) pn(ϑ) dϑ + n I(p)/H





−1

=





n∑

j=1

∫

Bn

EϑI(ϑ,Aj) pn(ϑ) dϑ + n I(p)/H





−1

(2)
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where Bn = {ϑ :
√

n|ϑ− ϑ0| < 1} and I(p) is the Fisher information corre-
sponding to the density p(·):

I(p) =
∫

B
ṗ2(ϑ) p(ϑ)−1 dϑ.

Recall that the sets Aj are random and hence the quantities I(ϑ,Aj) are
also random. However, by C2, with probability 1,

I(ϑ,Aj) ≤ I∗(ϑ).

Next, condition C2 easily implies that the function I∗(ϑ) is continuous in
ϑ and hence, for an arbitrary ε > 0 and n large enough, we obtain

I(ϑ,Aj) ≤ I∗(ϑ0) + ε.

Now we get from (2)

sup
|ϑ−ϑ0|<δ

Eϑ

(√
n(ϑ̄n − ϑ)

)2 ≥
{
I∗(ϑ0) + ε + I(p)/H2

}−1
.

Hence, letting H →∞ and ε → 0 we obtain

lim
n→∞

sup
|ϑ−ϑ0|<δ

Eϑ

(√
n(ϑ̄n − ϑ)

)2 ≥ I∗(ϑ0)
−1

as required.

This bound justifies the following
Definition. Let conditions C1, C2 be fulfilled. Strategies

(
A(n), ϑ̄n

)
n≥1

are asymptotically efficient if for all ϑ0 ∈ Θ

lim
δ→0

lim
n→∞ inf

A(n),ϑ̄n

sup
|ϑ−ϑ0|<δ

Eϑ`
(√

n(ϑ̄n − ϑ)
)

= I∗(ϑ0)
−1. (3)

To state a result about existence of such strategies we need to strengthen
our regularity conditions.

C3. The functions S(ϑ, ϑ0, x), l(ϑ, ϑ0, x) = ln S(ϑ, ϑ0, x), x ∈ A have
two continuous bounded derivatives in ϑ for all ϑ0 ∈ Θ.

C4. For any ν > 0 and ϑ0 ∈ Θ

inf
A∈Am

inf
|ϑ−ϑ0|>ν

∫

A

(√
S(ϑ, ϑ0, x)− 1

)2

Λϑ0(dx) > 0
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Note that the quantity I∗(ϑ) can be calculated as follows: put

A(r) =
{
x : l̇(ϑ, ϑ, x)2 λ(ϑ, x) ≥ r

}

and define r as a root of the equation

Λ(A(r)) = m. (4)

The sequence A(r), r ≥ 0 is monotone, i.e., A(r1) ⊂ A(r2) if r2 ≤ r1. Denote
this value of r as r(ϑ,m) and introduce the function

F (ϑ, r) = Λ
(
l̇(ϑ, ϑ, x)2λ(ϑ, x)− r ≥ 0

)
.

We suppose that
C5. For all ϑ ∈ Θ̄ the sets A(r(ϑ,m)) ⊂ A, the function F (ϑ, r) is strictly

monotone on r and the Fisher information I(ϑ,A(r(ϑ′,m))) is continuous func-
tion of ϑ′ at the point ϑ, i.e.,

lim
ϑ′→ϑ

I(ϑ,A(r(ϑ′,m))) = I∗(ϑ)

This condition means that

Λ
(
x : l̇(ϑ, ϑ, x)2λ(ϑ, x) = r(ϑ,m)

)
= 0

and this simplifies the proof. If the function f(ϑ, x) = l̇(ϑ, ϑ, x)2λ(ϑ, x) −
r(ϑ,m) is constant on some subsets of the set {x : f(ϑ, x) = 0} of positive
measure Λ, then the solution A∗ is not unique. In this case we can take any
subset A(r) solving (4) as A∗ in the integral

I∗(ϑ) =
∫

A∗
l̇(ϑ, ϑ, x)2 Λϑ(dx)

and this will provide the optimal experiment design (see example with inten-
sity (5) below).

Of course we can not choose A∗ as observation window because its defini-
tion depends on unknown parameter ϑ. This equality suggests to construct
the optimal strategy in two stages. On the first step we estimate by the first
n1 = [

√
n ] ([q] is an integer part of q) observations X1, . . . , Xn1 on some set

A ∈ Am the value of unknown parameter ϑ using the MLE ϑ̂n1 (or any other
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consistent estimator, say, MDE) and then we define the observation window
Â∗

n with the help of this estimator as

Â∗
n =

{
x : |l̇(ϑ̂n1 , ϑ̂n1 , x)|2 λ(ϑ̂n1 , x) ≥ r(ϑ̂n,m)

}
.

The next n2 = n − n1 observations Xn1+1, . . . , Xn we realize on the set Â∗
n.

We denoted this strategy as (Â∗
n, ϑ̂n).

Theorem 2. Let the conditions C1-C5 be satisfied then the strategy
(Â∗

n, ϑ̂n) is asymptotically optimal in the sense of (3). Proof. The estimator
ϑ̂n1 is consistent by the Theorem 2.10 in Kutoyants (1996) (see also Kutoyants
(1984), Theorem 4.3.3) ( and the function I(ϑ, A(r(ϑ̂n1 ,m))) is continuous by

condition C5 hence
Pϑ − lim

n→∞ I(ϑ, Â∗
n) = I∗(ϑ).

For the fixed experiment design Aj = Â∗
n, j = n1 + 1, . . . , n and n2 observa-

tions Xn1+1,
. . . , Xn we can study the asymptotic behavior of the maximum likelihood
estimator ϑ̂n2 through the study of the likelihood ratio Zn(u) which is

Zn(u) = exp





n∑

j=n1+1

∫

Â∗n
ln S(ϑ + u/

√
n, ϑ, x) Xj(dx)−

−n2 Λϑ+u/
√

n2(Â
∗
n) + n2 ; Λϑ(Â

∗
n)

}
.

We can check the conditions of Theorem 2.10 and verify that

• The family of measures {P(n2)
ϑ , ϑ ∈ Θ} generated by the observations

Xn1+1, . . . , Xn is uniformly on compacts K ⊂ Θ LAN, i.e.,

Zn(u) = exp

{
u∆n2 −

u2

2
I(ϑ, Â∗

n) + rn(u)

}
=

= exp

{
u∆n2 −

u2

2
I∗(ϑ) + r̃n(u)

}
,

where

∆n =
1√
n

n∑

j=n1+1

∫

A∗n
l̇(ϑ, ϑ, x) [Xj(dx)− Λϑ(dx)]

and uniformly on ϑ ∈ K

Lϑ (∆n2) =⇒ N (0, I∗(ϑ)), Pϑ − lim
n2→∞

r̃n(u) = 0.
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The proof. Note only that Īn(ϑ) → I∗(ϑ) and the limit random variable
∆(ϑ) is Gaussian N (0, I∗(ϑ)).

• For all u, v ∈ Un = {u : ϑ + u/
√

n ∈ Θ}

sup
ϑ∈K

Eϑ

(
Z1/2

n (u)− Z1/2
n (v)

)2 ≤ C |u− v|2.

Indeed by Lemma 1.3 (Kutoyants 1996)

Eϑ

(
Z1/2

n (u)− Z1/2
n (v)

)2
= Eϑ

(
Eϑ

(
Z1/2

n (u)− Z1/2
n (v)

)2 |Fn1

)
≤

≤ n2Eϑ

∫

A∗n

(√
S(ϑ + u/

√
n, ϑ, x)−

√
S(ϑ + v/

√
n, ϑ, x)

)2

Λϑ(dx) ≤

≤ n2 (u− v)2

4n

∫ 1

0
EϑI(ϑ + u/

√
n + s(u− v)/

√
n,A∗

n) ds ≤ C (u− v)2.

• For all compacts K ∈ Θ

sup
ϑ∈K

EϑZ
1/2
n (u) ≤ exp {−κ|u|µ}

with some positive κ and µ.

We have by the same Lemma 1.3

EϑZ
1/2
n (u) = Eϑ

(
EϑZ

1/2
n (u)|Fn1

)
=

= Eϑ exp

{
1

2

∫

A∗n

(√
S(ϑ + u/

√
n, x)− 1

)2

Λϑ(dx)

}
.

The integral

∫

A∗n

(√
S(ϑ + u/

√
n, x)− 1

)2

Λϑ(dx) ≥ 2κ |u|ν

because the conditions C are uniform on A ∈ Am.
These properties of the likelihood ratio provide by Theorem 2.10 (Kutoy-

ants 1996) the uniform asymptotic normality

Lϑ

(√
n2(ϑ̂n2 − ϑ)

)
=⇒ N (0, I∗(ϑ)−1)
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and the uniform convergence of moments

lim
n→∞np/2Eϑ

∣∣∣ϑ̂n2 − ϑ
∣∣∣
p

= I∗(ϑ)−p/2E|ξ|p.

The last equalities provide the asymptotic efficiency (3) of this two-stage
strategy.

Examples.

Example 1. Let us consider the periodic Poisson process X of intensity

Λϑ([0, t]) =
∫ t

0
[b + ϑ sin(ωx)]2 dx 0 ≤ t ≤ T,

proposed by J.Tukey. Here b and ω > 0 are known parameters and we have to
estimate ϑ ∈ (α, β). The asymptotics corresponds to T →∞. We introduce
the number of periods n on [0, T ] as the integer part of (2π)−1 T ω. Using
independence of increments of the Poisson process we can say that this model
is equivalent to the n independent observations on the one period τ = (2π)/ω
of the process and n → ∞. Let m ∈ (0, τ) and Λ be a Lebesgue measure
(Λ(dx) = dx). The Fisher information

I(ϑ,A) = 4
∫

A
(sin(ωx))2 dx

does not depend on ϑ and the set

A(r) = {x : | sin(ωx)| ≥ r} =

=
(

1

ω
arcsin(

r

2
), π − arcsin(

r

2
)
) ⋃ (

1

ω
π + arcsin(

r

2
), 2π − arcsin(

r

2
)
)

.

Therefore the value r(ϑ,m) can be chosen as

r(ϑ, m) = 2 sin(π −m/2)ω ≡ r∗

In this particular case we need not preliminary estimate ϑ and the strategy
(A(r∗), ϑ̂n) will be optimal in the s ens (2), i.e., we observe the process X over
the sets

n−1⋃

i=0

(
(2i + 1)π −m

2ω
,
(2i + 1)π + m

2ω

)
.
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The conditions C1 -C3 of course satisfied. To check C4 we write (supposing
for simplicity that b > β)

∫

A

(√
S(ϑ, ϑ0, x)− 1

)2

Λϑ0(dx) ≥ (ϑ− ϑ0)
2

(b + β)2

∫

A
[sin(ωx)]2 dx ≥ ν2 C(A)

and infA∈Am C(A) > 0.
In the case

Λϑ(A) =
∫

A
[ϑ + b sin(ωx)]2 dx (5)

the Fisher information is I(ϑ, [0, t]) = 4 t and any subset A(r) of Lebesgue

measure m can be taken for asymptotically efficient strategy (A(r), ϑ̂n) .
The case of frequency modulation:

Λϑ(A) =
∫

A
[c + b sin(ϑx)]2 dx

is more complicate because the Fisher information is

I(ϑ,A) = b2
∫

A
x2 [sin(ϑx)]2 dx

and to introduce Â∗
n we need at first to estimate ϑ and knowing ϑ̂n1 we con-

struct Â∗
n as a sequence of increasing intervals of total Lebesgue measure

mn. This type of modulation is not a particular case of theorems 4.8 and
4.9 because we do not know the period and we can not replace this model
by repeated observations of the same process, but the consideration of this
section can be generalized to include such situations too (scheme of series).

Example 2. We consider a two-dimensional Poisson process with the in-
tensity function S(ϑ, x, y), x, y ∈ A ⊂ IR2 with respect to Lebesgue measure.
Suppose that S(ϑ, x, y) = S(ϑ, %), %2 = x2 + y2 and consider at first the
linear case: S(ϑ, ρ) = ϑ f(%) where f(%) is a continuous, positive function.
Then (in polar coordinates) the Fisher information

I(ϑ,A) =
∫

A

Ṡ(ϑ, %)2

S(ϑ, %)
%d% dϕ = ϑ−1

∫

A
f(%)% d% dϕ

depends on ϑ, but the optima l set A∗ can be chosen without preliminary
estimation. The set

A(r∗) = {%, ϕ : f(%) ≥ r}
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with ∫

A(r∗)
%d% dϕ = m

is a disc or a disc and rings and their choice does not depend on ϑ.
If, say,

S(ϑ, %) = exp
{
−(ϑ− %)2/2

}
, ϑ ∈ Θ = (0, β)

then the MLE ϑ̂n1 constructed by n1 observations on some set A (say, A =
{x, y : x2 + y2 ≤ m/π}) is consistent, Fisher information

I∗(ϑ) =
∫

A∗
e−(ϑ−%)2/2 (ϑ− %)2 % d% dϕ

and the observation window Â∗
n is defined as follows. Let us denote x1(r)

and x2(r) two solutions of the equation 2xe−x = r, (x1(r) < x2(r)). There
are two possibilities. If r satisfies the equality

(
ϑ̂n1 +

√
x1(r)

)2

−
(
ϑ̂n1 +

√
x2(r)

)2

= m/π

and ϑ̂n1 ≤ x1(r) then Â∗
n is the ring

Â∗
n =

{
%, ϕ : 0 ≤ ϕ < 2π, ϑ̂n1 +

√
x1(r) ≤ % ≤ ϑ̂n1 +

√
x2(r)

}
.

If ϑ̂n1 > x1(r) and

(
ϑ̂n1 −

√
x1(r)

)2

+
(
ϑ̂n1 +

√
x1(r)

)2

−
(
ϑ̂n1 +

√
x2(r)

)2

= m/π

then Â∗
n is the disc and the ring

Â∗
n =

{
%, ϕ : 0 ≤ ϕ < 2π, 0 ≤ % ≤ ϑ̂n1 −

√
x1(r),

} ⋃

⋃ {
%, ϕ : 0 ≤ ϕ < 2π, ϑ̂n1 +

√
x1(r) ≤ % ≤ ϑ̂n1 +

√
x2(r)

}
.
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