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Abstract

We consider the problem of recovering edges of an image from noisy tomographic
data. The original image is assumed to have a discontinuity jump (edge) along the
boundary of a compact convex set. The Radon transform of the image is observed with
noise, and the problem is to estimate the edge. We develop an estimation procedure
which is based on recovering support function of the edge. It is shown that the proposed
estimator is nearly optimal in order in a minimax sense. Numerical examples illustrate
reasonable practical behavior of the estimation procedure.
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1 Introduction

In this paper we address the problem of recovering edges of an image from noisy tomographic

data. The original image is modeled by function f defined on the unit disc B2(o, 1) ⊂ R
2.

Assume that f is smooth apart from a discontinuity jump along a smooth curve. The

problem of edge recovery from tomographic data is to estimate the discontinuity curve

from noisy measurements of line integrals of f .
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From statistical perspective the problem of image reconstruction from tomographic

data was studied in Vardi, Shepp, and Kaufman (1985), Johnstone and Silverman (1990),

Johnstone and Silverman (1991), Korostelev and Tsybakov (1993), Bickel and Ritov (1995),

Ritov (1998) and Cavalier and Koo (2002), among many others. In these papers typically

the reconstruction of the whole function f or a linear functional thereof is considered. In

many applications, however, one is interested in reconstruction of certain geometric features

of the image such as edges, boundaries, shapes etc. In particular, the problem of edge

detection arises in numerous imaging applications. For example, images with discontinuities

along edges are ubiquitous in medical applications; here edges bring important information

about body regions with different levels of metabolic activity. Thus edge recovery is an

important step in processing tomographic images.

The problem of edge recovery in tomographic images is extensively studied in applied

mathematics and image processing literature [see, e.g., Faridani, Ritman and Smith (1992)

and Srinivasa et al. (1992), for representative publications]. This literature however concen-

trates either on mathematical properties of reconstruction formulas, or on algorithmic and

implementation aspects. Typically the presence of observation noise is ignored, and statis-

tical properties of reconstruction procedures are not analyzed. Recently Hero et al. (1999)

and Ye, Bresler and Moulin (2000) discussed information–theoretic aspects in parametric

modeling of edge shapes using tomographic data. In these papers boundary estimation

procedures are proposed, and fundamental bounds on the performance of parametric esti-

mation are established via the Cramer–Rao lower bounds.

In the present paper we address information–theoretic issues arising in nonparametric

boundary estimation from tomographic data. Although various methods and proposals

are widely used in practice, theoretical limitations in the problem of nonparametric edge

estimation from the Radon data are yet to be understood. What is the best attainable

accuracy in recovering edges from noisy observations of projections? Which methods can

achieve this optimal performance? Our goal is to provide a theoretical perspective on these

questions and to develop easily implemented nearly–optimal algorithm for edge recovery

in tomographic images. We assume that the edge can be represented as the boundary

of a convex set, and propose a method for estimating support function of this set. Then

the boundary is recovered as the envelope of the estimated supporting lines. We analyze

theoretical properties of the proposed estimation scheme and show that it is nearly optimal

in order in the sense of the rates of convergence. Assuming that the Radon transform

of an image is observed with additive Gaussian white noise of variance σ2, we prove that

convex edges can be estimated with the pointwise risk of the order σ4/5 up to a logarithmic

factor. Our lower bound on the estimation accuracy demonstrates that this rate cannot
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be essentially improved. Numerical examples illustrate reasonable practical behavior of the

proposed estimator.

We would like to emphasize that the proposed recovery procedure does not involve

inversion of the Radon transform. We establish a close connection between the problem

of edge recovery and the boundary fragment model of Korostelev and Tsybakov (1993)

[see also Härdle, Park and Tsybakov (1995), Wang (1998)]. Exploiting this connection,

we show that the problem of recovering a convex edge from tomographic data can be

approached via detection of a cusp curve in the Radon domain from noisy observations.

This cusp curve is determined by the support function of the edge in the original image.

Thus our reconstruction procedure operates in the Radon domain where noisy observations

are directly available.

Recently Candés and Donoho (2002) considered the problem of recovering images with

edges from the Radon data contaminated by the Gaussian white noise. It was shown there

that if the image f is twice continuously differentiable except for a discontinuity along a

twice differentiable smooth curve, then the best achievable rate of convergence in estimating

f in L2–norm is σ2/5 up to a logarithmic in σ−1 factor. As we show in this paper, in the

same model the convex edge can be estimated with the rate σ4/5 (ignoring multiplicative

ln(1/σ)–factors). Our technique can be extended to other models with indirect observations;

see, e.g., Goldenshluger and Spokoiny (2004) and Goldenshluger and Zeevi (2004).

The rest of the paper is organized as follows. In Section 2 we formulate the problem of

edge recovery from noisy tomographic data, introduce definitions and discuss some prelim-

inary results. Section 3 describes construction of our estimation procedure, and presents

main theoretical results. In Section 4 we present numerical examples; Section 5 contains

concluding remarks. Proofs are given in Appendix.

2 Problem formulation and preliminaries

The observation model. Let f be a square–integrable function on the unit disc

B2(o, 1) ⊂ R
2. The Radon transform R : L2(B2(o, 1)) → L2([0, 1] × [0, 2π)) of f is defined

by integration of f along the lines lsϕ parametrized by angle ϕ ∈ [0, 2π) and distance to

the origin s ∈ [0, 1]:

(Rf)(s, ϕ) =
∫

lsϕ

f(x, y) dt,

here dt is the Lebesgue measure on lsϕ. Consider the the following white noise model

Y (ds, dϕ) = (Rf)(s, ϕ)ds dϕ + σW (ds, dϕ), (1)
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where W (s, ϕ) denotes the Wiener sheet, and σ is the noise level. The model (1) specifically

means that for any function v ∈ L2([0, 1] × [0, 2π)) the integral
∫∫

v(s, ϕ)(Rf)(s, ϕ)ds dϕ

can be observed with Gaussian error having zero mean and variance σ2
∫∫

v2(s, ϕ)ds dϕ.

Assume that f is smooth apart from a discontinuity jump along a smooth curve which is

the boundary ∂G of a convex set G ⊂ B2(o, 1); for simplicity, we suppose that o ∈ int(G).

The goal is to estimate the boundary of G.

Support function of convex sets. It is well known that there is a one-to-one cor-

respondence between convex sets and their support functions. Therefore our approach to

estimating the edge ∂G from observations (1) will be based on pointwise recovering the

support function of G. Below we collect some preliminary results and definitions that will

be repeatedly used in what follows. These results can be found, e.g., in Schneider (1993),

Gardner (1995), and Groemer (1996).

If G is a nonempty compact convex set in R
2, the support function gG of G is defined

by gG(u) = g(u) := max{xT u : x ∈ G} for u ∈ S1 := {(cos ϕ, sin ϕ) : ϕ ∈ [0, 2π)}. Every

compact convex set is uniquely determined by its support function:

G = {x ∈ R
2 : xT u ≤ g(u), u ∈ S1}.

If u ∈ S1 then Hu := {x : xT u = g(u)} is the supporting line to G with outward normal

u. Support function g(u) gives the signed distance from the origin o = (0, 0) to Hu. For

simplicity we assume that o ∈ G so that g(u) gives the actual distance from the origin o to

Hu. In the planar case it is natural to view the support function as function of ϕ ∈ [0, 2π)

and write g(ϕ) rather than g(u) or g(u(ϕ)). Basic properties of support functions are

summarized as follows.

(I) The support function g(ϕ) is 2π–periodic. If G ⊂ B2(o, 1) then

|g(ϕ1) − g(ϕ2)| ≤ |ϕ1 − ϕ2|.

Thus g is absolutely continuous and |g′(ϕ)| ≤ 1 almost everywhere on [0, 2π).

(II) A twice differentiable 2π–periodic function g(ϕ) is the support function of some convex

domain if g(ϕ) + g′′(ϕ) > 0 for all ϕ ∈ [0, 2π).

(III) The position vector q(ϕ) of the closed convex curve ∂G is given by

q(ϕ) = g′(ϕ)u′(ϕ) + g(ϕ)u(ϕ),

where as before u(ϕ) = (cos ϕ, sin ϕ). The radius of curvature ρ(ϕ) of ∂G at the point

q(ϕ) is given by ρ(ϕ) = g(ϕ) + g′′(ϕ) and the center of curvature e(ϕ) is

e(ϕ) = g′(ϕ)u′(ϕ) − g′′(ϕ)u(ϕ).
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Figure 1: An illustration of the Radon transform behavior near the edge for f(x) =

f̃(x)1G(x), f̃(x) ≥ c > 0.

Properties of the Radon transform. It turns out that estimating support function

of the edge is rather natural when noisy Radon observations are available. According to

general results on singularities of the Radon transform of discontinuous functions [Quinto

(1993), Ramm and Zaslavsky (1993)], the Radon transform (Rf)(s, ϕ) is smooth at ev-

ery point (s, ϕ) if and only if the line lsϕ with coordinates (s, ϕ) is not tangent to the

discontinuity curve of f . If f is discontinuous along the boundary ∂G of a convex set G

with support function g then supporting lines have coordinates (g(ϕ), ϕ), and they are tan-

gent to the discontinuity curve of f . Therefore R(s, ϕ) has a singularity along the curve

{(s, ϕ) : s = g(ϕ), ϕ ∈ [0, 2π)}. The type of this singularity is essentially determined by

geometrical properties of the boundary ∂G. In particular, if ∂G has everywhere positive

curvature then the Radon transform Rf has the one–sided singularity cusp of the order

1/2 along the curve {(s, ϕ) : s = g(ϕ), ϕ ∈ [0, 2π)}, i.e. there exist 0 < L0 ≤ L1 such that

for some h0 > 0

L0h
1/2 ≤ |(Rf)(g(ϕ), ϕ) − (Rf)(g(ϕ) − h, ϕ)| ≤ L1h

1/2, 0 < h ≤ h0, ∀ϕ. (2)

This can be explained using simple geometrical argument which is illustrated in Figure 1

for f = f̃1G, f̃ ≥ c > 0. In this case the Radon transform Rf is supported on the set

{(s, ϕ) : 0 ≤ s ≤ g(ϕ), ϕ ∈ [0, 2π)}, and (Rf)(g(ϕ) − h, ϕ) equals to the “weighted” length

of the chord AB. Since ∂G has non–zero curvature and f̃ ≥ c > 0, this “weighted” length is

at least of the order O(h1/2) for sufficiently small h; hence (2) follows. The Radon transform

Rf is smooth apart from the set {(s, ϕ) : s = g(ϕ), ϕ ∈ [0, 2π)}; for general results on local

smoothness of Rf we refer to Quinto (1993). However, for our purposes it will be sufficient

to assume the Lipschitz condition for every fixed ϕ ∈ [0, 2π):

|(Rf)(τ, ϕ) − (Rf)(t, ϕ)| ≤ L2|τ − t|, ∀τ, t ∈ [0, g(ϕ) − h0] ∪ [g(ϕ), 1]. (3)

5



The above considerations show that the problem of recovering a convex edge from

observations (1) can be viewed as the problem of estimating the cusp curve in the Radon

domain. This is similar to the boundary fragment model of Korostelev and Tsybakov

(1993); see also Härdle, Park and Tsybakov (1995) and Wang (1998).

In the rest of the paper we assume that the underlying function f belongs to some class

of functions f with edges.

Functional class. We say that function f on B2(o, 1) belongs to the class F if it

can be represented as f = f0 + a1G, where

(A) f0 is supported on B2(o, 1) and satisfy the Lipschitz condition, a ∈ R, |a| > 0 is a fixed

constant, and 1G is the indicator function of a convex set G ⊂ B2(o, 1), o ∈ int(G);

(B) the convex set G has smooth boundary with everywhere non-zero curvature and sup-

port function g which is twice continuously differentiable and satisfies

0 < r ≤ g(ϕ) + g′′(ϕ) ≤ R < ∞, ∀ϕ ∈ [0, 2π). (4)

The collection of convex sets satisfying (B) will be designated G.

Several remarks on the above definition are in order. First, (A) along with the assump-

tion of non–zero boundary curvature in (B) implies that the Radon transform Rf obeys

(2) and (3). In particular, for some h0 > 0,

(Rf)(s, ϕ) =
√

2ρ(ϕ)a(g(ϕ) − s)1/2
+ + Q(s, ϕ), g(ϕ) − h0 ≤ s ≤ g(ϕ), (5)

where ρ(ϕ) is the radius of curvature of ∂G at q(ϕ) [see (III)], and Q(s, ϕ) is a smooth

function; see, e.g., Gelfand, Graev and Vilenkin (1966, §1.7). Inequality (4) states the

lower and upper bounds on the radius of curvature ρ(ϕ) = g(ϕ) + g′′(ϕ) of the boundary

[see (III)]. Thus (5) along with (4) implies that the left inequality in (2) is valid with

L0 =
√

2r|a|. In what follows we always assume that R 
 r so that the class G is rich

enough. Note that when r = R the class G contains only discs of the radius r. The lower

bound in (4) implies that G is the r–smooth set [see, e.g., Groemer (1996, p. 19)]. We recall

that a set G is called r–smooth if it can be written as G = G̃ + rB2(o, 1) for some convex

set G̃ and r > 0. In other words, a convex set G with support function g is r–smooth if

g(·) − r is the support function of a convex set. Observe that Li, i = 0, 1, 2 in (2) and (3)

are determined entirely by parameters of the functional class F .
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3 Estimation procedure and main results

Our approach to estimating the convex edge is based on pointwise recovery of its support

function. As mentioned in the previous section, the Radon transform Rf has a cusp-type

singularity along the curve given by the support function of the edge. We will use a probe

functional in order to detect the location of this singularity.

The probe functional. We focus on estimating the support function g of the edge at

a single given point θ ∈ [0, 2π). Let δ > 0, h > 0, and Iδ := [θ − δ, θ + δ]. For t ∈ [δ, 1 − δ],

and b ∈ [−1, 1] we let wt,b(ϕ) := t + b(ϕ − θ) and define

	δ,h[t, b] :=
∫

Iδ

∫ wt,b(ϕ)

wt,b(ϕ)−h
(Rf)(s, ϕ)dsdϕ −

∫
Iδ

∫ wt,b(ϕ)+h

wt,b(ϕ)
(Rf)(s, ϕ)dsdϕ. (6)

The next statement establishes detection properties of the probe functional 	δ,h[t, b].

Lemma 1 Suppose that h and δ are sufficiently small and

h ≥ (16L1/L0)2/3Rδ2, (7)

where constants L0, L1 and R are given in (2) and (4) respectively.

(i) Then

|	δ,h[g(θ), g′(θ)]| ≥ 2
3
L0h

3/2δ. (8)

(ii) Let κ > 6. Then

sup
t:|t−g(θ)|>κh

sup
|b|≤1

|	δ,h[t, b]| ≤ C∗κ−1/2h3/2δ, (9)

where C∗ is a positive constant that may depend on Li, i = 0, 1, 2, and R only.

The lemma shows that the localization accuracy of the probe functional 	δ,h[t, b] is κh:

if distance between t and the target value g(θ) (measured as a multiple of h) grows by

κ, the absolute values of 	δ,h[t, b] decreases by κ
−1/2. The important feature of the probe

functional is the scaling restriction (7) on the horizontal and vertical size of the probe

functional template. As it will be shown, the scaling h � δ2 allows “maximal smoothing”

along the angles while preserving “good” localization properties in the vertical direction.

It is interesting to note that the similar scaling law underlies construction of the curvelet

frames used for recovering functions with singularities along smooth curves [Candés and

Donoho (2002)].
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Estimation procedure. We define the estimator ĝ(θ) of the cusp curve at point

θ ∈ [0, 2π) as follows. For fixed t ∈ [δ, 1 − δ] and |b| ≤ 1 let

	̂δ,h[t, b] :=
∫

Iδ

∫ wt,b(ϕ)

wt,b(ϕ)−h
Y (ds, dϕ) −

∫
Iδ

∫ wt,b(ϕ)+h

wt,b(ϕ)
Y (ds, dϕ) ; (10)

	̂δ,h[t, b] is the estimate of 	δ,h[t, b] based on observations (1). Define

(t̂, b̂) = arg max
(t,b)∈[δ,1−δ]×[−1,1]

|	̂δ,h[t, b]|, (11)

and let

ĝ(θ) := t̂. (12)

Bounds on the risk. The main results of this paper are given in the following theo-

rems.

Theorem 1 Let ĝ(θ) be given by (10), (11) and (12) with

δ = C∗
1

{
σ

√
ln

1
σ

}2/5
, h = C∗

2δ2 (13)

for some positive constants C∗
1 and C∗

2 . Then there exists a constant C∗
3 < ∞ depending

on Li, i = 0, 1, 2 and R only such that

sup
f∈F

{
E|ĝ(θ) − g(θ)|2

}1/2 ≤ C∗
3σ4/5

(
ln

1
σ

)2/5
.

for all sufficiently small σ.

Theorem 2 Let g̃(θ) be an arbitrary estimator of g(θ) based on observations (1). Then

for sufficiently small σ

sup
f∈F

{
E|g̃(θ) − g(θ)|2

}1/2 ≥ C∗
4σ4/5

(
ln

1
σ

)−2/5
,

where C∗
4 depends on r and R.

These results show that our estimator ĝ(θ) is nearly optimal in order within a logarithmic

in σ−1 factor.

Based on the pointwise estimates of the edge support function we define the estimator

of the set G as follows

Ĝ = {(x, y) ∈ B2(o, 1) : x cos ϕ + y sin ϕ ≤ ĝ(ϕ), ∀ϕ ∈ [0, 2π)}, (14)

where ĝ(ϕ) is given by (10) and (11). The estimate of the boundary ∂G is given by (14)

with the inequality sign replaced by equality. Note that Ĝ is a convex set by construction.
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Therefore global accuracy of Ĝ may be measured using metrics for classes of convex sets.

In particular, global distances between two convex sets G1 and G2 in R
2 with support

functions g1 and g2 can be defined by

dp(G1, G2) :=
{ 1

2π

∫ 2π

0
|g1(ϕ) − g2(ϕ)|pdϕ

}1/p
, p ∈ [1,∞]

with d∞ being the well–known Hausdorff distance [see, e.g., Groemer (1996)]. The next

statement establishes an upper bound on the accuracy of Ĝ.

Theorem 3 Let Ĝ be the estimate of G defined in (14) and assume that (13) is valid for

some constants C∗
1 and C∗

2 . Then

sup
f∈F

{
E[dp

p(Ĝ,G)]
}1/p

≤ C∗
5σ4/5

(
ln

1
σ

)2/5
, p ∈ [1,∞]. (15)

In the case p = ∞ the left hand side of (15) is interpreted as supf∈F Ed∞(Ĝ,G).

4 Numerical examples

We conducted a small numerical experiment in order to illustrate practical potential of the

proposed estimation scheme. Although the theoretical properties have been investigated

for the idealized continuous white noise model, the estimator can be easily implemented for

more realistic discrete observations model.

The original image used in our experiments is displayed in Figure 2(a). It is given

by the function that equals 1 inside the ellipse G with center (0.1,−0.1) and semi-axes

a = 0.64 and b = 0.47, and 0.4 outside G. Thus f has a discontinuity jump of size 0.6

along the boundary of the ellipse; support function of G is depicted in Figure 2(b). In

our experiments the Radon transform of the original image is observed with noise at the

points of the regular grid with step size 0.01 on [0, 2π] × [0, 1]. We assume that the noise

is zero mean Gaussian and consider the low, medium and high noise level conditions when

the noise standard deviation σ equal to 0.05, 0.1 and 0.3 respectively. For instance, the

Radon transform observations with added Gaussian noise of standard deviation σ = 0.05 is

shown in Figure 3(a). As it was indicated in Section 2, the cusp curve visible in Figure 3(a)

corresponds to the support function of the ellipse in Figure 2.

In our implementation for any fixed angle ϕ, we compute the value of the probe

functional 	h,δ[t, b] for all (t, b) from the discrete set of 200 × 20 regular grid points on

[0, 1] × [−1, 1]. The pair (t, b) corresponding to the maximum of the probe functional is

selected, and its t–component is taken as the estimate of the support function at point ϕ.
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Figure 2: (a) The original image; (b) the support function of the ellipse.
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Figure 3: Edge recovery for the low noise level (σ = 0.05): (a) The noisy observations in

the Radon domain. (b) The support function estimate. (c) The “true” edge (solid line)

along with the estimated supporting lines. (d) The extracted estimate of the edge.
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Figure 4: Edge recovery for the medium noise level (σ = 0.1): (a) The noisy observations

in the Radon domain. (b) The support function estimate. (c) The “true” edge (solid line)

along with the estimated supporting lines. (d) The extracted estimate of the edge.

In the numerical examples below the bandwidths h and δ were selected to achieve good

visual appearance of the estimated edge. Because the data are available on the regular grid,

we specify the bandwidths h and δ in the grid step size units; for example, h = 5 means

that that the actual bandwidth is 5 × 0.01 = 0.05.

Figure 3 displays the results obtained for the case of low noise level conditions, σ = 0.05.

Here the values h = 5 and δ = 7 were selected. The panel (a) shows noisy observations

in the Radon domain; (b) presents the estimate of the support function along with the

“true” curve. The reconstructed set can be seen in Figure 3(c) as the inner envelope of the

estimated supporting lines; the original set is also presented (solid line). Finally, panel (d)

displays the extracted boundary. The similar graphs are presented in Figure 4 and 5 for

σ = 0.1 and σ = 0.3 respectively. In the case of the medium noise level we selected h = 6

and δ = 8, while in the case of high noise level h = 9 and δ = 12. The numerical results

demonstrate reasonable practical behavior of the proposed estimation scheme.
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Figure 5: Edge recovery for the high noise level (σ = 0.3): (a) The noisy observations in

the Radon domain. (b) The support function estimate. (c) The “true” edge (solid line)

along with the estimated supporting lines. (d) The extracted estimate of the edge.
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5 Concluding remarks

1. Our approach to edge recovery from tomographic data exploits duality between

convex sets and their support functions. Using this duality relationship we reduce the

inverse ill–posed problem of edge recovery from tomographic data to estimation of the cusp

curve from direct noisy observations in the Radon domain. We note that many recently

developed practical procedures for image denoising can be used in order to estimate the

cusp curve in the Radon domain. In particular, the fully adaptive AWS algorithm of Polzehl

and Spokoiny (2000) can be applied for this purpose.

2. It is interesting to compare our results with the results on estimation of convex bound-

aries for models with direct observations. Korostelev and Tsybakov (1994), Korostelev,

Simar and Tsybakov (1995) and Mammen and Tsybakov (1995) study this problem under

various assumptions. In particular, Korostelev and Tsybakov (1994) show that if we are

given a sample of n independent data points, uniformly distributed over a convex planar

region G with smooth boundary, then the best achievable accuracy in estimating ∂G in

Hausdorff metric is n−2/3. With usual calibration n−1/2 = σ, this corresponds to the rate

σ4/3 for the white noise model. Our results indicate that the convergence rate slows down

to σ4/5 when noisy observations in the Radon transform are available.

3. The minimax rates of convergence derived here depend crucially on the assumption

that the boundary has everywhere positive curvature. This assumption guarantees that

the Radon transform has a singularity of the order 1/2 along the curve given by the sup-

port function of the edge. The points of zero curvature on the boundary correspond to

sharper cusps in the Radon domain. However, one cannot improve accuracy of estimation

in these particular directions because the set of points where the curvature vanishes has

zero Lebesgue measure.

4. If instead of the class of convex boundaries with positive curvature we consider the

class of all convex boundaries, the minimax rates of convergence will change. For instance,

if G is a convex polygon then the Radon transform will have singularity of the order 1. In

other words, the first partial derivative of the Radon transform with respect to the distance

variable will have a jump along the curve determined by the support function of the edge.

In this case a sensible estimation procedure could be based on the search for the change

curve in the first partial derivative of the Radon transform. Under these circumstances the

minimax rates of convergence are slower than σ4/5 and depend on smoothness of the Radon

transform away from the change curve.

5. Although we considered functions with a single edge along the boundary of a convex
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set, our technique can be extended to more general images comprised of several convex

domains with different intensities. Such images are usually serve as phantoms in numerical

studies, see, e.g., Vardi, Shepp, and Kaufman (1985). In particular, the proposed procedure

can be applied to images with several convex edges having well–separated support functions.

If the boundaries have everywhere non–zero curvature then the problem is reduced to

estimating cusp curves of the order 1/2 in the Radon domain. This can be pursued by the

method developed in this paper.

Appendix

In the proofs c1, c2, . . . stand for positive constants whose values can be different on dif-

ferent occasions. These constants may depend only on parameters Li, i = 0, 1, 2, R and

r characterizing the functional class F . In what follows meas(·) stands for the Lebesgue

measure of a set on the real line.

Proof of Lemma 1

Proof (i). Let pθ(ϕ) := g(θ) + g′(θ)(ϕ − θ) for ϕ ∈ Iδ, and ∆(s, ϕ) := (Rf)(s, ϕ) −
(Rf)(g(ϕ), ϕ). Then

	δ,h[g(θ), g′(θ)] =
∫

Iδ

∫ pθ(ϕ)

pθ(ϕ)−h
(Rf)(s, ϕ)dsdϕ −

∫
Iδ

∫ pθ(ϕ)+h

pθ(ϕ)
(Rf)(s, ϕ)dsdϕ

=
∫

Iδ

∫ pθ(ϕ)

pθ(ϕ)−h
∆(s, ϕ)dsdϕ −

∫
Iδ

∫ pθ(ϕ)+h

pθ(ϕ)
∆(s, ϕ)dsdϕ

=: J1 − J2.

We have

J1 =
∫

Iδ

∫ g(ϕ)

g(ϕ)−h
∆(s, ϕ)dsdϕ −

∫
Iδ

∫
A1

∆(s, ϕ)dsdϕ

=: J11 − J12,

where A1 := [g(ϕ) − h, g(ϕ)]�[pθ(ϕ) − h, pθ(ϕ)], and � denotes the symmetric difference.

By (2)

|J11| ≥
∫

Iδ

∫ g(ϕ)

g(ϕ)−h
L0|g(ϕ) − s|1/2dsdϕ =

4
3
L0h

3/2δ.

Because supϕ∈Iδ
|g(ϕ) − pθ(ϕ)| ≤ Rδ2, meas(A1) ≤ 2Rδ2 and hence

|J12| ≤ 2
∫

Iδ

∫ Rδ2

0
L1s

1/2dsdϕ ≤ 4
3
L1

∫
Iδ

(Rδ2)3/2 ≤ 8
3
L1R

3/2δ4.
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Combining two last inequalities we obtain

|J1| ≥ 4
3
L0h

3/2δ − 8
3
L1R

3/2δ4.

Note that the difference on the RHS is positive in view of (7).

Now we bound J2 from above. Similarly, we write

J2 =
∫

Iδ

∫ g(ϕ)+h

g(ϕ)
∆(s, ϕ)dsdϕ −

∫
Iδ

∫
A2

∆(s, ϕ)dsdϕ,

where A2 = [g(ϕ), g(ϕ) + h]�[pθ(ϕ), pθ(ϕ) + h]. It follows from (3) that the absolute value

of the first term on the RHS is less than 1
2L2h

2δ, while the absolute value of the second

term does not exceed 8
3L1R

3/2δ4 by the same argument as in bounding J12. Combining

these inequalities and taking into account (7) we come to (8).

(ii). Introduce the following notation: S∗ := {(s, ϕ) : s = g(ϕ), ϕ ∈ Iδ},

S+ := {(s, ϕ) : s > g(ϕ), ϕ ∈ Iδ}, S− := {(s, ϕ) : s < g(ϕ), ϕ ∈ Iδ}
Tt,b := {(s, ϕ) : wt,b(ϕ) − h ≤ s ≤ wt,b(ϕ) + h, ϕ ∈ Iδ}.

We will prove the statement of the lemma considering different subsets of the set {(t, b) :

|t − g(θ)| > κh, |b| ≤ 1}.

1. First assume that t − g(θ) > κh and Tt,b ⊂ S+, i.e. the template Tt,b of the

probe functional 	δ,h[t, b] lies entirely above the cusp curve. Condition Tt,b ⊂ S+ imposes

restrictions on the slope b of the template. In particular, simple argument shows that if

|b − g′(θ)| ≤ 1
δ
[(κ − 1)h − Rδ2] =: c0κhδ−1 (16)

then Tt,b ⊂ S+. Under these conditions we have

	δ,h[t, b] =
∫

Iδ

∫ wt,b(ϕ)

wt,b(ϕ)−h
(Rf)(s, ϕ)dτdϕ −

∫
Iδ

∫ wt,b(ϕ)+h

wt,b(ϕ)
(Rf)(s, ϕ)dsdϕ

=
∫

Iδ

∫ wt,b(ϕ)

wt,b(ϕ)−h
[(Rf)(s, ϕ) − (Rf)(wt,b(ϕ), ϕ)]dsdϕ

−
∫

Iδ

∫ wt,b(ϕ)+h

wt,b(ϕ)
[(Rf)(s, ϕ) − (Rf)(wt,b(ϕ), ϕ)]dsdϕ.

Applying (3) to the both integrals on the RHS we obtain

|	δ,h[t, b]| ≤ 2
∫

Iδ

∫ wt,b(ϕ)+h

wt,b(ϕ)
L2|s − wt,b(ϕ)|dsdϕ = 2L2h

2δ. (17)

2. Now let g(θ) − t > κh and Tt,b ⊂ S−; here the template Tt,b lies entirely under the

cusp curve {(s, ϕ) : s = g(ϕ), ϕ ∈ Iδ}. Condition (16) along with g(θ)− t > κh guarantees
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that Tt,b ⊂ S−. In view of (5) we have

	δ,h[t, b] =
∫

Iδ

L(ϕ)
∫ wt,b(ϕ)

wt,b(ϕ)−h
(g(ϕ) − s)1/2dsdϕ

−
∫

Iδ

L(ϕ)
∫ wt,b(ϕ)+h

wt,b(ϕ)
(g(ϕ) − s)1/2dsdϕ − 	Q

δ,h[t, b]

=: K − 	Q
h,δ[t, b],

where for brevity we denoted L(ϕ) =
√

2ρ(ϕ)a, and 	Q
δ,h[t, b] is the probe functional 	δ,h[t, b]

applied to the function Q(s, ϕ) [see (5)]. Using the same reasoning as in the proof of (17)

we obtain

|	Q
δ,h[t, b]| ≤ 2L2h

2δ. (18)

Further, integrating with respect to s we have

K =
2
3

∫
Iδ

L(ϕ)
{

(g(ϕ) − wt,b(ϕ) + h)3/2 − 2(g(ϕ) − wt,b(ϕ))3/2

+ (g(ϕ) − wt,b(ϕ) − h)3/2
}
dϕ. (19)

Note that

g(ϕ) − wt,b(ϕ) ≥ g(θ) − t + (g′(θ) − b)(ϕ − θ) − Rδ2

≥ g(θ) − t − |g′(θ) − b|δ − Rδ2 > h

provided that g(θ) − t > κh, and (16) is valid. Therefore expanding the integrand in (19)

in the Taylor series we obtain for some η ∈ (0, 1)

|K| ≤ L1h
2

∫
Iδ

dϕ

(g(ϕ) − wt,b(ϕ))1/2
+

3
8
L1h

4

∫
Iδ

dϕ

(g(ϕ) − wt,b(ϕ) − ηh)5/2

=: K1 + K2.

In order to bound from above K1 and K2 under g(θ) − t > κh and (16), we consider

separately the cases where |g′(θ) − b| ≤ 2h, and 2h ≤ |g′(θ) − b| ≤ c0κhδ−1.

If |g′(θ) − b| ≤ 2h, then

K1 ≤ L1h
2

∫ δ

−δ
[g(θ) − t + (g′(θ) − b)ϕ − Rδ2]−1/2dϕ

≤ 2δL1h
2[κh − 2hδ − Rδ2]−1/2 ≤ c1L1h

3/2δκ
−1/2

and

K2 ≤ 3
8
L1h

4

∫ δ

−δ
[g(θ) − t + (g′(θ) − t)ϕ − ηh − Rδ2]−5/2dϕ

≤ 3
4
L1h

4δ[κh − 2hδ − ηh − Rδ2]−5/2 ≤ c2L1h
3/2δκ

−5/2
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so that

|K| ≤ c3L1h
3/2δκ

−1/2. (20)

If 2h ≤ |b − g′(θ)| ≤ c0κhδ−1 then integrating w.r.t. ϕ we obtain

K1 ≤ L1h
2

∫ δ

−δ
[g(θ) − t + (g′(θ) − b)ϕ − h − Rδ2]−1/2dϕ

≤ L1h
2

|g′(θ) − b|
{

[g(θ) − t + |g′(θ) − b|δ − h − Rδ2]1/2

− [g(θ) − t − |g′(θ) − b|δ − h − Rδ2]1/2
}
.

Noting that function x 
→ [(a+ δx)1/2 − (a− δx)1/2]/x, a > 0, δ > 0 is monotone increasing

in (0, a/δ) we conclude that

K1 ≤ L1h
2δ

(κ − 1)h − Rδ2
(2κh)1/2 ≤ c4L1h

3/2δκ
−1/2.

Similar argument shows that K2 ≤ c5L1h
3/2δκ

−5/2; hence (20) holds also for 2h ≤ |b −
g′(θ)| ≤ c0κhδ−1. Combining these inequalities with (18) and (17) we finally get

max
|t−g(θ)|>κh

max
|g′(θ)−b|≤c0κhδ−1

|	δ,h[t, b]| ≤ c6L1h
3/2δκ

−1/2.

3. To complete the proof of the lemma it remains to establish (9) for (t, b) such that

|t − g(θ)| > κh, and |b − g′(θ)| > c0κhδ−1. (21)

This corresponds to the case where Tt,b ∩ S∗ �= ∅, i.e. the template of the probe functional

intersects the cusp curve. For definiteness we assume here that g(θ) − t > κh, and define

Φ+ := {ϕ ∈ Iδ : (s, ϕ) ∈ Tt,b ∩ S+}, Φ− := {ϕ ∈ Iδ : (s, ϕ) ∈ Tt,b ∩ S−}, Φ∗ = Φ+ ∩ Φ−.

In words, Φ+ and Φ− denote the set of those ϕ for which the template Tt,b lies above and

below the cusp curve respectively.

Note that Iδ = Φ+ ∪Φ− so that 	δ,h[t, b] can be written as a sum of three integrals over

the sets Φ−\Φ∗, Φ∗, and Φ+\Φ∗:

	δ,h[t, b] =
∫

Φ−\Φ∗

{∫ wt,b(ϕ)

wt,b(ϕ)−h
(Rf)(s, ϕ)ds −

∫ wt,b(ϕ)

wt,b(ϕ)−h
(Rf)(s, ϕ)ds

}
dϕ

+
∫

Φ∗

{∫ wt,b(ϕ)

wt,b(ϕ)−h
(Rf)(s, ϕ)ds −

∫ wt,b(ϕ)

wt,b(ϕ)−h
(Rf)(s, ϕ)ds

}
dϕ

+
∫

Φ+\Φ∗

{∫ wt,b(ϕ)

wt,b(ϕ)−h
(Rf)(s, ϕ)ds −

∫ wt,b(ϕ)

wt,b(ϕ)−h
(Rf)(s, ϕ)ds

}
dϕ

=: J1 + J2 + J3.
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The absolute values of J1 and J3 are bounded from above exactly as |	δ,h[t, b]| in the

cases Tt,b ⊂ S− and Tt,b ⊂ S+ respectively. In particular, |J3| ≤ c7L1h
2δ and |J1| ≤

c8L1h
3/2δκ

−1/2.

To bound |J2| we argue first that

meas(Φ∗) ≤ c9δκ
−1. (22)

Indeed, let ϕ1 and ϕ2 be defined by equations

g(θ) + g′(θ)(ϕ1 − θ) − h = t + b(ϕ1 − θ), g(θ) + g′(θ)(ϕ2 − θ) + h = t + b(ϕ2 − θ).

Then, in view of (21),

|ϕ1 − ϕ2| ≤ 2h
|b − g′(θ)| ≤

2δ
c0κ

. (23)

Let ϕ− ∈ Iδ be the minimal solution to the equation |g(ϕ) − t − b(ϕ − θ)| = h. In words,

ϕ− is the left endpoint of the set Tt,b ∩ S∗. Using the definition of ϕ1 we have

h = |g(ϕ−) − t − b(ϕ− − θ)|
= |g(ϕ−) − t − b(ϕ1 − θ) + b(ϕ1 − ϕ−)|
= |g(ϕ−) − g(θ) − g′(θ)(ϕ1 − θ) + h + b(ϕ1 − ϕ−)|
= |g(ϕ−) − g(θ) − g′(θ)(ϕ− − θ) + h + (g′(θ) − b)(ϕ− − ϕ1)|;

hence

h ≥ |g′(θ) − b| |ϕ− − ϕ1| − Rδ2 − h ⇒ |ϕ− − ϕ1| ≤ 2h + Rδ2

|g′(θ) − b| ≤ c10δκ
−1.

Similarly, the same inequality is established for |ϕ+ − ϕ2|, where ϕ+ stands for the right

endpoint of the set Tt,b ∩ S∗. Using these inequalities and (23) we get (22). Therefore for

sufficiently small h and δ

|J2| ≤ 4L1

∫
Φ∗

∫ g(ϕ)

wt,b(ϕ)−h
(g(ϕ) − s)1/2dsdϕ ≤ c11L1h

3/2δκ
−1.

This completes the proof of the lemma.

Proof of Theorem 1

Let κ > 6 be a fixed constant, large enough so that C∗κ−1/2 ≤ L0/3, where C∗ appears on

the RHS of (9). Because supp(f) ⊆ B2(o, 1), we can write

E|ĝ(θ) − g(θ)|2 ≤ (κh)2 + E

[
|ĝ(θ) − g(θ)|21{|ĝ(θ) − g(θ)| > κh}

≤ (κh)2 + P

{
|ĝ(θ) − g(θ)| > κh

}
. (24)
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Our goal is to bound the probability on the RHS of (24).

Define u := (t, b), u∗ = (g(θ), g′(θ)), U0 := [δ, 1 − δ] × [−1, 1], and U := {(t, b) ∈ U0 :

|t − g(θ)| > κh, |b| ≤ 1}. For brevity throughout the proof we write 	δ,h[u] for 	δ,h[t, b]. We

have for small enough σ

P{|ĝ(θ) − g(θ)| > κh} ≤ P

{
sup
u∈U

|	̂δ,h[u]| ≥ |	̂δ,h[u∗]|
}

≤ P

{
sup
u∈U

|	̂δ,h[u] − 	δ,h[u]| + sup
u∈U

|	δ,h[u]| ≥ |	̂δ,h[u∗]|
}

(a)

≤ P

{
sup
u∈U0

|	̂δ,h[u] − 	δ,h[u]| + c1κ
−1/2h3/2δ ≥ |	̂δ,h[u∗]|

}

≤ P

{
2 sup

u∈U0

|	̂δ,h[u] − 	δ,h[u]| + c1κ
−1/2h3/2δ ≥ |	δ,h[u∗]|

}

(b)

≤ P

{
sup
u∈U0

|	̂δ,h[u] − 	δ,h[u]| ≥ c2h
3/2δ

}
, (25)

where (a) follows from Lemma 1 (ii), and (b) is a consequence of Lemma 1 (i) and the fact

that c1κ
−1/2h3/2δ < 2

3L0h
3/2δ if κ is sufficiently large. Thus it remains to bound from

above the probability P{supu∈U0
|Xu| ≥ c2h

3/2δ}, where

Xu = X(t,b) := σ
{∫

Iδ

∫ wt,b(ϕ)

wt,b(ϕ)−h
W (ds, dϕ) −

∫
Iδ

∫ wt,b(ϕ)+h

wt,b(ϕ)
W (ds, dϕ)

}
(26)

is the zero mean Gaussian process indexed by u = (t, b) ∈ U0 = [δ, 1 − δ] × [−1, 1]. For

this purpose we apply the exponential inequality of Talagrand (1994) for general Gaussian

processes [see also van der Vaart and Wellner (1996)]. First we note that

sup
u∈U0

E|Xu|2 ≤ c3σ
2hδ. (27)

Let ui = (ti, bi), and for a fixed ϕ ∈ Iδ we define M+
i = [wti,bi

(ϕ) − h,wti,bi
(ϕ)], M−

i =

[wti,bi
(ϕ), wti,bi

(ϕ) + h], i = 1, 2. Then

Xu1 − Xu2 = σ
{∫

Iδ

∫
M+

1 \M+
2

W (ds, dϕ) −
∫

Iδ

∫
M+

2 \M+
1

W (ds, dϕ)
}

− σ
{∫

Iδ

∫
M−

1 \M−
2

W (ds, dϕ) −
∫

Iδ

∫
M−

2 \M−
1

W (ds, dϕ)
}

and

E|Xu1 − Xu2 |2 ≤ c4σ
2[δ|t1 − t2| + δ2|b1 − b2|].

This implies that one needs no more that N(ε) = c5σ
2δ3ε−4 balls of radius ε in the natural

semimetric in order to cover the index set U0 = [δ, 1 − δ] × [−1, 1]. Now we apply the

exponential inequality of Proposition A.2.7 from van der Vaart and Wellner (1996) [with
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K ∼ σ1/2δ3/4, V = 4, ε0 ∼ σ
√

hδ and λ ∼ h3/2δ]. With this choice of the parameters all

conditions of the proposition are fulfilled so that we obtain

P{ sup
u∈U0

|Xu| ≥ c2h
3/2δ} ≤

(c6σ
1/2δ3/4h3/2δ

σ2hδ

)4
exp

{
−c2h

3δ2

σ2hδ

}

= c7
δ3h2

σ6
exp{−c2h

2δσ−2} ≤ c8(κh)2

where the last inequality follows by appropriate choice of C∗
1 and C∗

2 in (13).

Proof of Theorem 2

In the proof below c1, c2, . . . stand for constants that may depend on r and R only. We

assume that R 
 r so that class of sets G is sufficiently rich (e.g., r = R implies that G
contains only discs of radius r = R).

Without loss of generality we assume θ = π/2, and let G0 be the disc B2(o, ρ) of

radius r < ρ < R, centered at the origin o = (0, 0). The support function of G0 is

gG0(ϕ) = g0(ϕ) = ρ, ∀ϕ. For some h > 0 define G̃1 = G0 ∩ B2(A,R), where B2(A,R)

is the disc of radius R centered at A = (0,−R − h + ρ); see Figure 6. By construction,

gG̃1
(π/2) + h = gG0(π/2); note however, that G̃1 �∈ G, because ∂G̃1 is not differentiable at

the points E and F of intersection of ∂B2(A,R) and ∂G0. We define G1 ∈ G by replacing

the boundary of G̃1 by circular arcs of the radius r in vicinity of the singularity points E

and F as shown in Figure 6; this is always possible if G is rich enough. For such a set

G1 ⊂ G0 we have gG1(π/2) = gG0(π/2) − h.

Now assume that f0(x) = 1G0(x) so that it has a discontinuity jump along the boundary

of G0, and let f1(x) = 1G1(x). Assume that we have observations (1). The Kullback–Leibler

divergence between the probability measures P0 and P1 corresponding to the processes

Yi(ds, dϕ) = (Rfi)(s, ϕ)dsdϕ + σW (ds, dϕ), i = 0, 1

is given by

K(P0, P1) = E0 ln
dP0

dP1
(Y0)

=
1

2σ2

∫ 2π

0

∫ 1

0
|(R(f0 − f1))(s, ϕ)|2dsdϕ . (28)

To bound K(P0, P1) we use the idea similar to that in Candés and Donoho (2002);

namely, we show that G0\G1 contains an ellipse with certain ratio of semi–axes and is

contained in another ellipse with the same ratio of the semi-axes. Then the Radon transform

of 1G0\G1
can be bounded in terms of the Radon transform of an appropriate ellipse. Indeed,
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Figure 6: Illustration of the proof of Theorem 2

G1 belongs to the set G0\{(x, y) : ρ−h ≤ y ≤ ρ}. Therefore G0\G1 contains an ellipse with

semi-axes of the size c2h and c3

√
h. On the other hand, G0\G1 is also contained in some

ellipse with semi-axes c4h and c5

√
h. In order to show this it suffices to verify that |CD| ≤

c6h for some constant c6 [see Figure 6]. Setting α = ∠oAE we note that |CD| = R−R cos α;

considering the triangle AoE we find that ρ2 = R2+(R−ρ+h)2−2R(R−ρ+h) cos α and after

straightforward calculations we obtain |CD| = R−R cos α = 1
2h(2ρ−h)/(R−ρ+h). Thus

for small enough h, |CD| ≤ c6h and this, in turn, implies that |CE| ≤ c7

√
h. Therefore the

set G0\G1 can be covered by an ellipse with semi-axes of the size c2h and c3

√
h as claimed.

Recall that the Radon transform of the indicator of ellipse E(a, b) with semi-axes a and

b is given by

(R1E(a,b))(s, ϕ) =
ab

p

(
1 − s2

p2

)1/2

+
, p2 := a2 cos2 ϕ + b2 sin2 ϕ. (29)

Further, if V is the orthogonal matrix representing the planar rotation by θ, e ∈ R
2, and

u(ϕ) = (cos ϕ, sin ϕ) then

{R1E(a,b)(V x − e)}[s, u(ϕ)] = {R1E(a,b)}[s − eT V u(ϕ), V u(ϕ)].
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Using this property and (29) we bound the integral on the RHS of (28) as follows

‖R(f0 − f1)‖2
2 ≤ c8

∫ 2π

0

∫ p

0

h3

p2

(
1 − s2

p2

)
+
dsdϕ

= c9h
3

∫ 2π

0

dϕ√
h2 cos2 ϕ + h sin2 ϕ

≤ c10h
5/2 ln

1
h

.

Thus if we choose h = c11[σ2(ln 1
σ )−1]2/5 the Kullback–Leibler divergence will be of the

order of O(1); this completes the proof of the lower bound.

Proof of Theorem 3

Noticing that

dp(Ĝ,G) =
{ 1

2π

∫ 2π

0
|ĝ(ϕ) − g(ϕ)|pdϕ

}1/p
.

we conclude that in the case of p ∈ [1,∞) the statement of the theorem follows immediately

from Theorem 1 by integrating the risk upper bound over θ ∈ [0, 2π). Therefore only the

case p = ∞ should be considered.

First we note that the statement of Lemma 1 holds for all θ ∈ [0, 2π), in particular,

|	δ,h[g(θ), g′(θ)]| ≥ 2
3
L0h

3/2δ, ∀θ ∈ [0, 2π)

sup
t:|t−g(θ)|>κh

sup
|b|≤1

|	δ,h[t, b]| ≤ Cκ
−1/2h3/2δ, ∀θ ∈ [0, 2π).

Further, the argument similar to (25) leads to

P

{
sup

θ∈[0,2π)
|ĝ(θ) − g(θ)| > κh

}
≤ P

{
sup
u∈U0

|Xu| ≥ c1h
3/2δ

}
,

where the Gaussian process {Xu} is again given by (26), but now the index set is different:

u = (θ, t, b), U0 = [0, 2π) × [δ, 1 − δ] × [−1, 1]. We again apply the general exponential

inequality in order to bound this probability. To this end, we first observe that (27) is valid.

Setting ui = (θi, ti, bi), i = 1, 2 we find from straightforward geometrical considerations that

E|Xu1 − Xu2 |2 ≤ c2σ
2
[
δ2|b1 − b2| + δ|t1 − t2| + |θ1 − θ2| |t1 − t2| + h|θ1 − θ2|

]

so that one needs no more than N(ε) = c3σ
2hδ3ε−6 balls of radius ε in the natural semimetric

in order to cover the index set [0, 2π)× [δ, 1− δ]× [−1, 1]. Then by Proposition A.2.7 from

van der Vaart and Wellner (1996) [with K ∼ σ1/3h1/6δ1/2, V = 6, ε0 ∼ σ
√

hδ and λ ∼ h3/2δ]

P

{
sup
u∈U0

|Xu| ≥ c1h
3/2δ

}
≤ c3

h4δ3

σ10
exp{−c4h

2δσ−2} ≤ c5(κh)2,

where the last inequality follows by appropriate choice of C∗
1 and C∗

2 in (13).
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