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Abstract. We consider the problem of reconstructing a planar convex set from noisy obser-
vations of its moments. An estimation method based on pointwise recovering of the support
function of the set is developed. We study intrinsic accuracy limitations in the shape–from–
moments estimation problem by establishing a lower bound on the rate of convergence of
the mean squared error. It is shown that the proposed estimator is near–optimal in the sense
of the order. An application to tomographic reconstruction is discussed, and it is indicated
how the proposed estimation method can be used for recovering edges from noisy Radon
data.

1. Introduction

In this paper we consider the problem of reconstructing a planar region from noisy
measurements of its moments. The problem is closely akin to edge detection from
tomographic data, and we discuss this connection in detail.

Let G denote a simply connected compact set on the plane belonging to the
interior of the unit disc D. Assume that complex∫∫

D

zm1G(x, y)dxdy, z = x + ıy, m = 0, 1, . . . (1)

or geometric ∫∫
D

xkyl1G(x, y)dxdy, k, l = 0, 1, . . . , (2)

moments can be observed with noise. The shape–from–moments problem is to
reconstruct the set G from noisy measurements of its moments.

The shape–from–moments problem has numerious applications in a wide vari-
ety of diverse areas such as pattern recognition, tomography, inverse potential the-
ory. For example, in pattern recognition and image classification, moments are
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extensively employed as the global features of an image [see, e.g., Pawlak (1992)].
Typically in these applications a noisy version of an image is observed, and its
moments are calculated with errors. Therefore the important question is how well
the original image can be reconstructed from noisy measurements of its moments.
Milanfar et al. (1995) study recovery of polygons from the moment data and estab-
lish close connections of the shape–from–moments problem to array processing.
Milanfar, Karl & Willsky (1996) discuss a moment–based approach to tomographic
reconstruction. In our view, it is precisely this close connection to tomography that
makes the shape–from–moments problem interesting for applications and motivates
our paper.

An interesting approach to the shape–from–moments problem, that exploits
geometrical properties of the shape to be reconstructed, was proposed and studied
in Milanfar et al. (1995), Milanfar, Karl & Willsky (1996), Golub, Milanfar and
Varah (1999) and Gustafsson et al. (2000). Reconstruction methods described in
this literature are based on the use of quadrature formulas, and deal with recovering
polygons or quadrature domains. For instance if z1, . . . , zn designate the vertices
of a polygon G in the complex plane, and if f is an analytic function in an open
set containing G, then the so–called Motzkin–Schoenberg formula states that

∫∫
G

f ′′(z)dxdy =
n∑

j=1

ajf (zj ), (3)

where coefficients {aj } do not depend on f , and are determined completely by the
vertices z1, . . . , zn [see, e.g., Milanfar et al. (1995)]. Choosing f (z) = zk in (3)
we obtain

k(k − 1)
∫∫

G

zk−2dxdy =
n∑

j=1

aj z
k
j , (4)

so that the weighted complex moments [cf. (1)] are expressed directly through the
vertices z1, . . . , zn of the polygon G. The next step is to observe that the sequence
of the weighted complex moments in (4) satisfies a linear homogeneous difference
equation whose characteristic polynomial has the roots z1, . . . , zn. In this way
the problem is reduced to estimating the roots of a characteristic polynomial from
noisy observations of a sequence satisfying the corresponding linear homogeneous
difference equation. This idea underlies the Prony method widely used in signal
processing. Although various algorithms has been developed in the aforementioned
literature, their statistical properties have not been studied thoroughly. Most stud-
ies focus exclusively on algorithmic and implementation aspects for reconstructing
polygons, and ignore the effect of noise. We note, however, that in practically all
applications involving reconstruction of shapes from moments the effect of noise
is significant.

The shape–from–moments problem is a specific instance of the classical prob-
lem of moments where the objective is to find the function satisfying a given
sequence of moment conditions. The literature on this subject is vast; the classical
theory [see, e.g., Akhiezer (1965)], however, concentrates mainly on the questions
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of existence and uniqueness. A recent treatment of the classical moments theory
from the perspective of the inverse ill–posed problems is given in Ang et al. (2002).
In this context the shape–from–moments problem can be viewed as the problem of
estimating the indicator function 1G(·, ·) from noisy measurements of its moments.
The standard approach in this setup would be to expand 1G(·, ·) into the series with
respect to a system of orthogonal polynomials onD, and to estimate a finite number
of the coefficients in this expansion [see, e.g., Ang et al. (2002, Chapter 4)]. This
approach, however, has several disadvantages. First, the estimate of 1G(·, ·) is not
generally the indicator function, and therefore the estimate of the set G should be
defined in some way. Second, it is well–known that the traditional linear methods
based on the orthogonal polynomial expansions behave poorly when the function to
be estimated has edges. This fact motivated development of new harmonic analysis
tools for sparse representation of functions with edges, see, e.g., the recent work
by Candés and Donoho (2002).

The goal of this paper is to develop an optimal and computationally efficient
algorithm for estimating convex compact planar regions from noisy observations
of their moments. We also establish a lower bound on the estimation accuracy, thus
revealing the intrinsic accuracy limitations in the shape–from–moments estimation
problem. Our approach is based on pointwise estimation of the support function. It
is well–known that the boundary of a planar convex set is completely characterized
as the envelope of the support lines that graze the set in different directions. The
distance between a support line and the origin as function of the angle (direction) is
the support function. Thus pointwise estimation of the support function leads to a
pointwise estimate of the set boundary. Closely related problem of reconstructing a
convex set from noisy data on its support function has been considered in Prince &
Willsky (1990) and Fisher et al. (1997). We refer also to Korostelev and Tsybakov
(1993) for various models related to estimating sets from noisy data.

The main contributions of this paper are the following. First we develop a point-
wise estimator of the support function assuming that the geometric moments (2) can
be observed with independent zero mean Gaussian errors having variance σ 2. This
observation model is quite reasonable in the context of tomography, see Section 4.
We show that the mean squared error of this estimator converges to zero at a very
slow logarithmic rate as σ → 0. It is argued that this rate cannot be essentially
improved in the sense of the order. Therefore the shape–from–moments problem is
effectively insoluble in practical terms whenever noisy measurements of geometric
moments are given. The reason is that the design functions xkyl , k, l = 0, 1, . . .
are non–orthogonal. Considering the choice of the design functions as a part of our
estimation procedure, we develop a method with fast polynomial rate of conver-
gence. In particular, we show that the mean squared error of our pointwise estimator
converges to zero at the rate O([σ 2 ln( 1

σ
)]1/α) as σ → 0, where α ∈ [1, 2] is a

constant depending on the local behavior of the setG in the vicinity of the estimated
support value. We establish a lower bound showing that the proposed estimator is
near–optimal in order within a logarithmic ln( 1

σ
) factor. We discuss application of

the proposed procedure to reconstructing a convex set from noisy Radon data and
demonstrate that the same rates of convergence can be achieved in this particular
setup.
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It is interesting to compare our results with results obtained for the problem of
recovering functions with edges from indirect observations. Candés and Donoho
(2002) developed a method for recovering bivariate functions with edges from
noisy Radon data. The method is based on recently introduced curvlet decompo-
sition of the Radon operator. This technique applied to the problem of estimating
the indicator function 1G(·, ·) from noisy Radon data yields an estimator with the
mean integrated squared error of the order O(σ 4/5) as σ → 0, provided that the
boundary of the set G is twice differentiable. It is shown there that this rate cannot
be essentially improved. In Section 4 we show that for convex G the boundary can
be estimated with pointwise mean squared error of the order O([σ 2 ln( 1

σ
)]1/α) for

some α ∈ [1, 2]. This suggests that pointwise recovering of the edge from noisy
Radon data is easier than reconstruction of the whole indicator function in L2.

The rest of the paper is organized in the following way. In Section 2 we consider
the problem of reconstructing a convex set from noisy measurements of its geo-
metric moments. The case of orthogonal design is treated in Section 3. In Section 4
we discuss application of the proposed algorithm to tomographic reconstruction.
Section 5 contains the proofs.

2. Reconstruction from geometric moments

Let {µk,l} be the geometric moments of G given by

µk,l =
∫∫

D

xkyl1G(x, y)dx dy, k, l = 0, 1, . . . .

The objective is to reconstruct the set G using noisy observations

yk,l = µk,l + σεk,l , k, l = 0, 1, . . . , (5)

where {εk,l} are independent standard Gaussian random variables. In what follows
we always assume that the origin belongs to the interior of the set G.

It is well–known that the boundary of a convex planar set G can be char-
acterized as an envelope of the support lines �G(θ) of the set G in directions
ω = (cos θ, sin θ)′, θ ∈ [0, 2π). The line �G(θ) is orthogonal to ω and tangent to
the set G in ω-direction. The support function τ = τ(θ), θ ∈ [0, 2π) is defined as
the distance from the origin to the corresponding support line �G(θ) at angle θ for
the closed and bounded planar set G is given by

�G(θ) = {(x, y) : x cos θ + y sin θ = τ(θ)},
where

τ(θ) = sup
(x,y)∈G

{x cos θ + y sin θ}

is the support function. We note that the support function τ(·) takes values in [0, 1]
for θ ∈ [0, 2π). In what follows we concentrate on pointwise estimation of the
support function τ(·) of the set G using noisy observations of its moments. We call
the value of support function τ(·) at a single direction given by θ , the support value.
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From now on, for the sake of definiteness, we assume that θ ∈ [0, π) and define
the function

gθ (t) =
∫∫

D

1[t,1](x cos θ + y sin θ)1G(x, y)dx dy, for 0 ≤ t ≤ 1. (6)

If θ ∈ [π, 2π) then we define gθ (·) by (6) with 1[t,1](·) replaced by 1[−1,t](·)
under the integral sign. Clearly, gθ (t) is the Lebesgue measure (denoted by L{·})
of the intersection of G with the half–plane {(x, y) ∈ D : x cos θ + y sin θ ≥ t}:

gθ (t) = L{Gθ(t)}, Gθ (t) := {(x, y) ∈ D : x cos θ + y sin θ ≥ t} ∩G. (7)

It follows from (7) that gθ (·) = 0 for all t ∈ (τ (θ), 1] and grows monotonically
as t decreases from τ(θ) to zero. This property of gθ (·) underlies construction of
our estimator.

Let {pn(x)}n=0,1,... be the orthonormal Legendre polynomials on [−1, 1], and
let

pn(x) =
n∑

j=0

βn,j x
j , and pn(x) =

√
2n+ 1

2
Pn(x).

Denoting u = x cos θ+y sin θ and expanding the function 1[t,1](·) into Fourier
series with respect to this orthonormal system we can write 1[t,1](u) = ∑∞

n=0 an
pn(u), where for n ≥ 1

an = an(t) = −
∫ t

−1
pn(u)du = −

√
2n+ 1

2

∫ t

−1
Pn(u)du

= 1√
4n+ 2

[
Pn−1(t)− Pn+1(t)

]
, (8)

and the series converge in L2(−1, 1). Here we used the following well–known prop-
erties of the Legendre polynomials [see, e.g.,Erdéyi et al. (1953, v. II, Chapter X)]

(2n+ 1)Pn(x) = P ′
n+1(x)− P ′

n−1(x), Pn+1(−1) = Pn−1(−1), ∀n.

Then (6) is rewritten as

gθ (t) =
∞∑
n=0

an

∫∫
D

pn(x cos θ + y sin θ)1G(x, y)dxdy

=
∞∑
n=0

an

n∑
j=0

βn,j

∫∫
D

(x cos θ + y sin θ)j1G(x, y)dxdy

=
∞∑
n=0

an

n∑
j=0

βn,j

j∑
m=0

(
j

m

)
cosm(θ) sinj−m(θ)µm,j−m . (9)
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These considerations lead to the following natural estimator of the function
gθ (t). We define

ĝNθ (t) =
N∑
n=0

an

n∑
j=0

βn,j

j∑
m=0

(
j

m

)
cosm(θ) sinj−m(θ)ym,j−m , (10)

where {yk,l} are given by (5), and N is a natural number to be chosen.

Theorem 1. Let G be a convex set in the interior of the closed disc D1−h of the
radius 1 − h centered at the origin. Let ĝ∗

θ (t) be the estimator defined in (10) and
associated with

N = N∗ :=
⌊ 1

ln 32

{
ln

( 1

σ 2h2

)
− ln ln

( 1

σ 2h2

)} ⌋
. (11)

Then for any θ ∈ [0, π) and σ small enough

sup
t∈(0,1−h]

E |ĝ∗
θ (t)− gθ (t)|2 ≤ C1

[
h2 ln

( 1

σ 2h2

)]−1
,

where C1 is an absolute constant.

Now we define the estimator of the support value τ = τ(θ) at angle θ ∈ [0, π).
For fixed r = rσ > 0 let

τ̂ (θ) = max{t ∈ (0, 1 − h] : ĝ∗
θ (t) ≥ r},

where ĝ∗
θ (t) is given by (10) and (11). Observe that for small enough σ and r <

L{G} the estimate τ̂ (θ) is well–defined. It follows from (8) and (10) that ĝ∗
θ (·) is a

continuous function of t ; hence ĝ∗
θ (τ̂ (θ)) = r .

To analyze accuracy of the above estimator we introduce assumptions on the
local behavior of the boundary of the set G in the vicinity of the support point
τ = τ(θ).

We say that G belongs to the class Gθ (α, L) if there exist positive numbers
α, L, and + such that

gθ (t) ≥ L|τ − t |α, for t ∈ (τ −+, τ). (12)

It is important to emphasize that the class Gθ (α, L) is defined for a fixed direction
ω = (cos θ, sin θ)′, so that in general constants L, α, and + depend on θ . For
simplicity we omit this dependence from the notation.

Because gθ (t) is the Lebesgue measure of the setGθ(t) given by (7), the above
condition specifies the rate at which this measure increases as t decreases from τ(θ)

to zero. It is easily verified that if G is convex then necessarily α ∈ [1, 2] for any
angle θ . Next examples illustrate how parameters α and L of the class Gθ (α, L) are
related to geometrical properties of the set G.
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Examples. 1. Let G be a convex polygon. Then for any direction ω which is not
perpendicular to the sides of the polygon,G belongs to class Gθ with α = 2. The
constant L depends in an evident way on the angle between two adjacent sides
of the polygon corresponding to the support vertex. This situation corresponds
to the minimal increase of the Lebesgue measure ofGθ(t) as t varies in an open
left vicinity of the support value τ(θ). If the direction ω is perpendicular to a
side of the polygon, then the corresponding support line contains that side. In
this case G belongs to Gθ with α = 1, and we have the maximal increase of
L{Gθ(t)} as t varies in an open left vicinity of τ(θ).

2. IfG is a circle or an ellipse, then (12) is fulfilled with α = 3/2 for any direction
ω = (cos θ, sin θ)′. It turns out that this bound is rather general and holds for
a much more wider class of convex sets with smooth boundaries. Let (xω, yω)
denote the point on the boundary ∂G where the support value τ(θ) in direc-
tion ω = (cos θ, sin θ)′ is attained. If ∂G has non–zero curvature at (xω, yω)
then (12) holds with α = 3/2. If ∂G has everywhere positive curvature then
(12) holds with α = 3/2 for all directions. We refer to Brandolini, Rigoli and
Travaglini (1998) where further references can be found.

3. If curvature of ∂G vanishes at (xω, yω) ∈ ∂G, the exponent α in (12) can be
different from 3/2. For example, suppose that ∂G is a graph of the function
y = −x2q , q ≥ 1, near the origin. Then G ∈ Gπ/2 with α = 1 + 1/(2q).
Observe, however, that in this example at any other point near the origin (ϕ
near π/2) we have G ∈ Gϕ with α = 3/2. It is shown in what follows that
support function τ(θ) can be estimated more accurately in directions whose
corresponding support values are attained at the points of zero boundary cur-
vature. The set G is “massive” in these directions.
Now we are in position to state the main result of this section.

Theorem 2. Let conditions of Theorem 1 be fulfilled. Let τ̂ be the estimator asso-
ciated with N = N∗ given by (11) and

r = rσ :=
[4 ln ln

(
1

σ 2h2

)
h2 ln

(
1

σ 2h2

) ]1/2

.

Then for σ small enough

sup
G∈Gθ (α,L)

E|τ̂ (θ)− τ(θ)|2 ≤ C2(hL)
−2/α

[ ln ln
(

1
σ 2h2

)
ln

(
1

σ 2h2

) ]1/α

, (13)

where C2 is an absolute constant.

Theorem 2 indicates that the estimator τ̂ converges to the support value τ(θ)
at a very slow logarithmic rate. In fact, it can be argued that this rate cannot be
substantially improved, see remark immediately after Theorem 5 in Section 3. As
proofs of the Section 5 indicate, this slow convergence rate is a consequence of the
fact that the monomials xkyl , k, l = 0, 1, . . . are highly non–orthogonal, and each



8 A. Goldenshluger, V. Spokoiny

geometric moment brings a small amount of information about the set to be esti-
mated. It was recognized widely in the literature that even if exact measurements of
the moments are available, this non–orthogonality leads to unstable reconstruction
algorithms.

3. Reconstruction from Legendre moments

In this section we show that the estimation accuracy can be substantially improved
by more careful choice of design functions. Typically in applications involving
reconstructing shapes from moments design functions can be selected; geometric
and/or complex moments are usually used only for the sake of simplicity and con-
venience. For discussion of these issues we refer to Milanfar et al. (1995), Milanfar,
Karl & Willsky (1995), and Golub, Milanfar and Varah (1999). We explore the situ-
ation where the moments with respect to the Legendre polynomials can be observed
with Gaussian noise.

As before, we consider the problem of pointwise estimation of the support value
τ(θ) at a single fixed direction ω = (cos θ, sin θ)′. Suppose that for given ω the
Legendre moments

νn = νn(θ) =
∫∫

D

pn(x cos θ + y sin θ)1G(x, y)dxdy, n = 0, 1, . . . (14)

can be observed with noise, i.e.,

yn(θ) = νn(θ)+ σεn(θ), n = 0, 1, . . . , (15)

where {εn(θ)} are independent standard Gaussian random variables. We construct
an estimate of the support function τ = τ(θ) based on observations (15).

With the above notation, considerations similar to those preceding (9) lead to
gθ (t) = ∑∞

n=0 an(t)νn(θ), where an(t) are given by (8). For fixed integer N we
define

ĝNθ (t) =
N∑
n=0

an(t)yn(θ). (16)

The next statement is obtained as an immediate consequence of Theorem 1.

Theorem 3. Let G be a convex set in the interior of the closed disc D1−h of the
radius 1 − h centered at the origin. Let gθ (t) be given by (16); then for any N and
θ ∈ [0, π)

sup
t∈(0,1−h]

E|ĝNθ (t)− gθ (t)|2 ≤ 2σ 2
(

1 + π

h2N

)
+ 8π

h2N
.

The estimator τ̂ of the support value τ = τ(θ) is defined as follows. Fix
N = N∗ = [σ−2], and let ĝ∗(·) = ĝ

N∗
θ (·). For r = rσ := 2σ

√
ln (1/σ 2) we define

τ̂ = max{t ∈ (0, 1 − h] : ĝ∗(t) ≥ r}. (17)
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Theorem 4. Let conditions of Theorem 3 hold, α ≥ 1 and τ̂ be given by (17). Then
for σ small enough

sup
G∈Gθ (α,L)

E|τ̂ (θ)− τ(θ)|2 ≤ C3

[σ 2

L2 ln
( 1

σ 2

)]1/α
,

where C3 is an absolute constant.

Proof of Theorem 4 goes along the same lines as the proof of Theorem 2, and
therefore it is omitted.

Theorem 4 shows that the rates given in (13) can be substantially improved
provided that for a fixed direction moments with respect to the correspondingly
rotated Legendre polynomials can be observed. The next statement establishes a
lower bound showing that the proposed estimator τ̂ is near–optimal in order up to
a logarithmic factor.

Theorem 5. Let G be a convex set in the interior of the closed disc D1−h of the
radius 1 − h centered at the origin. For any estimator τ̂ of τ = τ(θ) based on
observations (14)-(15) and for σ small enough

sup
G∈Gθ (α,L)

E|τ̂ (θ)− τ(θ)|2 ≥ C4

(σ 2

L2

)1/α
,

where C4 depends on α and h only.

We remark that the lower bound of Theorem 5 remains valid when the moments
with respect to any orthonormal system on [−1, 1] rotated correspondingly are
observed in (15). The proof of the lower bound exploits equivalence between the
Gaussain white noise model and the Gaussian sequence space model for Fourier
coefficients with respect to an orthonormal system of functions. By the same token,
Gaussian sequence space model with respect to a non–orthonormal system of func-
tions is equivalent to a continuous model with correlated Gaussian noise. Using
this idea and the same reasoning as in the proof of Theorem 5 one can show that
if the geometric moments are observed with Gaussian noise then the risk of the
pointwise estimation is bounded from below by O([ln( 1

σ
)]−1). Hence the upper

bound of Theorem 1 cannot be substantially improved.

4. Application to tomography

In this section we show that the model of Section 3 is equivalent to observing the
Radon transform of a convex set with Gaussian white noise. This implies that the
estimator of Section 3 can be used in the context of tomography.

We consider the problem of reconstructing a convex set G from noisy Radon
data given by the white noise model:

Y (dt, dθ) = (R 1G)(t, θ)+ σW(dt, dθ). (18)



10 A. Goldenshluger, V. Spokoiny

Here W(t, θ) denotes the Wiener sheet on [−1, 1] × [0, π ] and R : L2(D) →
L2([−1, 1] × [0, π ]) is the Radon transform,

(Rf )(t, θ) =
∫∫

D

f (x, y)δ(t − x cos θ − y sin θ)dx dy,

where δ(·) is the delta–function. The continuous observation model (18) means
that for any function s(·, ·) ∈ L2([−1, 1] × [0, π ]) we can observe integrals∫∫

s(t, θ)(Rf )(t, θ)dt dθ with zero mean Gaussian noise having the variance
σ 2

∫∫
s2(t, θ)dt dθ .

In practice the data are usually discretely sampled, and the continuous white
noise model (18) is only a useful idealization. We assume that discretization with
respect to the angle variable θ is performed, i.e. we can observe

Yθj (dt) = (R 1G)(t, θj )dt + σWθj (dt) (19)

for angles θj ∈ [0, π ], j = 1, . . . , nθ . We focus on the problem of estimating the
support function τ = τ(θ) of G at a single point θ ∈ {θ1, . . . , θnθ } using the data
(19). It follows immediately from the definition of the Radon transform that for
any square integrable on [−1, 1] function F(·)

∫ 1

−1
(Rf )(t, θ)F (t)dt =

∫∫
D

f (x, y)F (x cos θ + y sin θ)dx dy . (20)

In particular, the choice F(t) = e−iωt leads to the well–known Projection Slice
Theorem.

Let F(t) = pn(t), where pn(·) is the Legendre orthogonal polynomial of the
degree n on [−1, 1]. Then applying (20) for f (x, y) = 1G(x, y) we obtain from
(19) for given θ ∈ {θ1, . . . , θnθ }

yn(θ) :=
∫ 1

−1
pn(t)Yθ (dt)

=
∫ 1

−1
pn(t)(R 1G)(t, θ)dt + σ

∫ 1

−1
pn(t)Wθ(dt)

=
∫∫

D

pn(x cos θ + y sin θ)1G(x, y)dx dy + σεn(θ),

where εn(θ) is a sequence of independent standard Gaussian random variables.
This shows that the observation model (14)-(15) is equivalent to (19). An immedi-
ate consequence of this equivalence is that the upper bound of Theorem 4 is valid
for estimating the support function of the set G from noisy Radon data (19). In
particular, this implies that the mean squared error of the estimator developed in
Section 3 achieves the rate O([σ 2 ln( 1

σ
)]1/α) with α ∈ [1, 2] in the problem of

pointwise estimation of the edge of G.
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We close this section with several remarks concerning the tomographic appli-
cation of our technique.

Remarks. 1. The use of the moments with respect to the rotated Legendre poly-
nomials is closely related to the reconstruction technique proposed by Logan
and Shepp (1975). In this paper it is assumed that, similarly to (19), projections
(Rf )(t, θj ) are observed for all t ∈ [−1, 1] and j = 1, . . . , N . It is shown there
that the minimal L2–norm reconstruction having the same projections is given
as the sum of N ridge functions, with j -th function, j = 1, . . . , N , depending
on x cos θj + y sin θj only. This scheme is similar to construction of our esti-
mator of the linear functional gθ (t) which is defined for a fixed direction θ . We
note however that our focus is on estimation of the boundary; this requires a
completely different reconstruction technique.

2. We consider indicator functions in (19) in order to emphasize the connection
between the shape–from–moments problem and tomography. This is also in the
spirit of geometric tomography [see, e.g., Gardner (1995)] where the objective
is to extract information about a geometric object from the data on its projec-
tions and/or sections. We stress, however, that our technique can be extended
to the problem of estimating the support boundary of a general function f .
In this case the estimation accuracy will depend not only on the geometry of
the support set G, but also on the behavior of the function f near the support
boundary. In particular, if f has a discontinuity jump on the boundary ofG, the
same convergence rates of Section 3 can be attained in pointwise estimation of
the support boundary of f from noisy Radon data.

3. Although many different methods for recovering functions from noisy Radon
data have been analyzed in the literature, the focus is usually on estimation of
smooth functions [see, e.g., Johnstone and Silverman (1990), Korostelev and
Tsybakov (1993) and references therein]. Recently Candés and Donoho (2002)
considered the problem of recovering a function which is smooth apart from
a discontinuity along a twice differentiable curve on the plane. As mentioned
in the previous remark, our procedure may be viewed as an estimator of the
support boundary of a general function f . This is of interest in the context of
recovering edges/singularities from tomographic data [see, e.g., Quinto (1993)
and Ramm and Katsevich (1996)]. In particular, it was emphasized in Quinto
(1993) that the Radon transform (Rf )(t, θ) is smooth at every point (t, θ) if
and only if the line with coordinates (t, θ) is not tangent to the sharp support
boundary ∂G. Thus our focus on estimation of support functions is in complete
agreement with this general principle.

5. Proofs

In the proofs below we use well–known properties of the Legendre polynomials;
all these facts can be found, e.g., in Natanson (1949, Part 2, Chapter V) and Erdéyi
et al. (1953, v. II, Chapter X).
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5.1. Proof of Theorem 1

For fixed N we have

E |ĝNθ (t)− gθ (t)|2

= vN + b2
N = σ 2

E

( N∑
n=0

an

n∑
j=0

βn,j ξj

)2

+
( ∞∑

n=N+1

an

∫∫
D

pn(x cos θ + y sin θ)1G(x, y)dx dy
)2

, (21)

where

ξj = ξj (θ) :=
j∑

m=0

(
j

m

)
cosm(θ) sinj−m(θ)εm,j−m , j = 0, . . . , n . (22)

First we bound the variance term vN . To this end we observe that ξj , j =
0, . . . , n are independent zero mean Gaussian random variables with variances

γ 2
j := var{ξj (θ)} =

j∑
m=0

(
j

m

)2
cos2m(θ) sin2(j−m)(θ) .

Therefore the variance term vN can be written in the form vN = σ 2a′
NB=

2B ′aN ,
where aN = (a0, a1, . . . , aN)

′, = = diag(γ0, . . . , γN), and B is the (N + 1) ×
(N + 1) lower triangular matrix with non-zero elements given by

B =




β0,0
β1,0 β1,1
β2,0 β2,1 β2,2
...

...
...

βN,0 βN,1 βN,2 · · · βN,N


 .

Noting that γ 2
j ≤ 2j for all j = 0, . . . , n we obtain vN ≤ σ 22N‖aN‖2λmax[BB ′],

where λmax[·] stands for the maximal eigenvalue of a matrix. Because of (8) and
the well-known fact that

|Pn(t)| ≤ 1

h

√
π

2n
, ∀t ∈ [−1 + h, 1 − h], n = 1, 2, . . .

we have

|an| ≤
√

π

h(4n+ 2)

[ 1√
2(n+ 1)

+ 1√
2(n− 1)

]

≤
√
π

h
√
(2n+ 1)(n− 1)

for n = 2, 3, . . . . (23)
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In addition, a0 = (1 − t)/
√

2 and a1 = √
3/8(1 − t2). Thus,

‖aN‖2 ≤ 2 + π

h2

N∑
n=2

1

(n− 1)2
≤ 2 + π

h2

(
1 +

∫ N

1
x−2dx

)

≤ 2
(

1 + π

h2N

)
. (24)

To bound λmax[BB ′] we note that trace[BB ′] = ∑N
n=0 S

2
n where S2

n is the sum of
squared coefficients of the polynomial pn(x): S2

n = ∑n
j=0 β

2
n,j . It is well–known

that

Pn(x) = 1

2n

[n/2]∑
m=0

(−1)m
(
n

m

)(
2n− 2m

n

)
xn−2m

where [·] denotes the integer part. Therefore

S2
n ≤ 2n+ 1

2

1

4n

[n/2]∑
m=0

{(
n

m

)(
2n− 2m

n

)}2

≤ 2n+ 1

2

1

4n

{(
2n
n

)}2

(2n)2 ≤ 42n

π

(
1 + 1

2n

)
,

where we have used the fact that (2n)!(n!)−2 ≤ 4n(nπ)−1/2 [see Natanson (1949,
p. 666)]. Therefore trace[BB ′] = ∑N

n=0 S
2
n ≤ 42N(10π)−1 and combining this

inequality with (24) we finally obtain

vN ≤ v̄N := 25Nσ 2

5π

(
1 + π

h2N

)
. (25)

Now we bound the bias term in (21). The orthogonal transformation of the
coordinate system results in

cn :=
∫∫

D

pn(x cos θ + y sin θ)1G(x, y)dx dy

=
∫ 1

−1
pn(u)

∫ ϕ2(u)

ϕ1(u)

1G(u,w)dw du

=
∫ 1

−1
pn(u)[ϕ2(u)− ϕ1(u)]du, (26)

where u = x cos θ + y sin θ , w = −x sin θ + y cos θ , and ϕ1(·) and ϕ2(·) are the
w–coordinates of the intersection points of the lines u = const with the boundary
of G. We note that the function ϕ2(·) − ϕ1(·) is defined on [−1, 1], takes values
in [0, 2] and is continuous because G is a convex simply connected set. Therefore
ϕ2(·) − ϕ1(·) belongs to L2(−1, 1), and cn in (26) is nothing but the n-th Fourier
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coefficient of this function with respect to the Legendre orthonormal system on
L2(−1, 1); hence by the Parseval formula

∞∑
n=0

c2
n =

∫ 1

−1
[ϕ2(u)− ϕ1(u)]

2du ≤ 8.

This along with (21) and (23) yields

b2
N ≤

( ∞∑
n=N+1

ancn

)2 ≤ 8
∞∑

n=N+1

a2
n ≤ 8π

h2N
:= b̄2

N . (27)

Combining (25), (27) and (11) we complete the proof. ��

5.2. Proof of Theorem 2

First we prove an auxiliary lemma. Denote

XN(t) = σ

N∑
n=0

an(t)

n∑
j=0

βn,j ξj , 0 ≤ t ≤ 1 − h, (28)

where an = an(t), n = 1, 2, . . . and ξj = ξj (θ) are given by (8) and (22) respec-
tively. We note that {XN(·)} is a zero mean gaussian process with continuous sample
paths, and

sup
t∈[0,1−h]

E |XN(t)|2 = vN ≤ v̄N < ∞,

where v̄N = (5π)−125Nσ 2(1 + πh−2N−1) [cf. the proof of Theorem 1]. In the
sequel we write v∗ and v̄∗ for vN∗ and v̄N∗ respectively, where N∗ is given by (11).

Lemma 1. There exists an absolute constant c1 such that for fixed N and all δ ≥
2
√
v̄N

P

{
sup

t∈[0,1−h]
|XN(t)| ≥ δ

}
≤ c1N

√
v̄N

vN
exp

{
− δ2

2vN

}
. (29)

In particular, if N = N∗ and σ is small enough then for δ = √
2κ v̄∗ ln(1/v̄∗) with

κ ≥ 1 we have

P

{
sup

t∈[0,1−h]
|XN∗(t)| ≥

√
2κ v̄∗ ln

( 1

v̄∗

)}
≤ c1N∗v̄κ

∗ . (30)

Proof. The proof is based on Theorem 2.4 from Talagrand (1994). Below we use
the notation introduced in the proof of Theorem 1. We have for 0 ≤ s < t ≤ 1 − h

ρ2(XN(s),XN(t)) := E[XN(s)−XN(t)]
2

= σ 2[aN(s)− aN(t)]′B=2B ′[aN(s)− aN(t)]

≤ σ 22N‖aN(s)− aN(t)‖2λmax[BB ′].
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As it was shown in the proof of Theorem 1, σ 22Nλmax[BB ′] ≤ v̄N . Moreover, by
(8)

‖aN(s)− aN(t)‖2 =
N∑
n=0

|an(s)− an(t)|2

≤
N∑
n=0

2n+ 1

2

∣∣∣∫ t

s

Pn(t)dt

∣∣∣2 ≤ |t − s|2N2 .

Therefore ρ2(XN(s),XN(t)) ≤ N2|t − s|2v̄N , and the minimal number of balls of
the radius ε (with respect to the semi–norm ρ) covering the index set [0, 1 − h]
does not exceed Nε−1√v̄N , for any ε ∈ (0,

√
v̄N ). Applying Theorem 2.4 from

Talagrand (1994) we obtain that for all δ ≥ 2
√
v̄N

P

{
sup

t∈[0,1−h]
|XN(t)| ≥ δ

}
≤ c1N

√
v̄N

vN
exp

{
− δ2

2vN

}
,

which completes the proof of (29).
To derive (30) we set N = N∗ in (29) and choose δ = √

2κ v̄∗ ln(1/v̄∗) with
κ ≥ 1. For σ small enough we have

P

{
sup

t∈[0,1−h]
|XN∗(t)| ≥

√
2κ v̄∗ ln(1/v̄∗)

}
≤ P

{
sup

t∈[0,1−h]
|XN∗(t)|

≥
√

2κv∗ ln(1/v∗)
}

≤ c1N∗v̄κ

∗ .

The lemma is proved. ��
Proof of Theorem 2. We write

E|τ̂ − τ |2 = I1 + I2 + I3

:= E[|τ̂ − τ |21{τ −+ ≤ τ̂ ≤ τ }]
+ E[|τ̂ − τ |21{τ̂ < τ −+}]
+ E[|τ̂ − τ |21{τ̂ > τ }]. (31)

We bound I1, I2 and I3 separately.
To bound I1 we note that for τ −+ ≤ τ̂ ≤ τ we have from (12)

|τ̂ − τ |2 ≤ L−2/α|gθ (τ̂ )|2/α

≤ L−2/α
(
|gθ (τ̂ )− ĝ∗

θ (τ̂ )| + |ĝ∗
θ (τ̂ )|

)2/α

= L−2/α
(
|gθ (τ̂ )− ĝ∗

θ (τ̂ )| + r
)2/α

.

Applying Theorem 1 we obtain

I1 ≤ 21/αL−2/α
(
E|gθ (τ̂ )− ĝ∗

θ (τ̂ )|2 + r2
)1/α

≤ 21/αL−2/α
{
r2/α + C

1/α
1

[
h2 ln

( 1

σ 2h2

)]−1/α}
. (32)
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For the second term I2 we have

I2 = E[|τ̂ − τ |21{τ̂ < τ −+}]
≤ P{τ̂ < τ −+}
≤ P{ĝ∗

θ (τ −+) ≤ r}
≤ P{|gθ (τ −+)− ĝ∗

θ (τ −+)| ≥ gθ (τ −+)− r}
≤ c2 E|gθ (τ −+)− ĝ∗

θ (τ −+)|2

≤ c3

[
h2 ln

( 1

σ 2h2

)]−1
, (33)

where we used inequality (12) for gθ (τ −+), the fact that σ is sufficiently small,
and Theorem 1. Here constants c2 and c3 may depend on L and +.

To bound I3 we note that

I3 ≤ 4 P{τ̂ > τ } ≤ 4 P{ĝ∗
θ (t) ≥ r for some t ∈ (τ, 1 − h]}

= 4 P

{
sup

t∈(τ,1−h]
ĝ∗
θ (t) ≥ r

}

≤ 4 P

{
sup

t∈[0,1−h]
|XN∗(t)| ≥ r − |b̄N∗ |

}
,

whereXN(t) is defined in (28), and b̄N is given by (27). Clearly, for σ small enough
r − |b̄N∗ | ≥ r/2. By Lemma 1 for our choice of r we have

I3 ≤ 4 P

{
sup

t∈[0,1−h]
|XN∗(t)| ≥ r/2

}
≤ c4N∗v̄κ

∗

≤ c5 ln
( 1

σ 2h2

)[
h2 ln

( 1

σ 2h2

)]−κ

. (34)

Combining (34), (33) (32), and (31), and taking into account that I1 dominates I2
and I3 when κ = 2 and σ small enough, we complete the proof. ��

5.3. Proof of Theorem 5

Without loss of generality we assume that θ = 0. Let G0 be a convex set in the
interior of the unit disc with support value τ0 = τ0(0) in the direction associated
with angle θ = 0. Denote

g0(t) := gG0(t) =
∫∫

D

1[t,1](x)1G0(x, y)dx dy

and assume that for some + > 0

g0(t) = L|t − τ0|α, for t ∈ (τ0 −+, τ0).
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In addition, let

νn,0 =
∫∫

D

pn(x)1G0(x, y)dx dy, n = 0, 1, . . .

denote the Legendre moments of G0 associated with the angle θ = 0. It follows
from (9) that g0(t) = ∑∞

n=0 an(t)νn,0, where functions an(t) are given by (8). It
is important to emphasize here that g0(·) depends on the underlying set G0 only
through the moments νn,0.

Fix δ ∈ (0,+), and let Gδ denote the translate of G0 by vector (−δ, 0)′:
Gδ = G0 − (δ, 0)′. Clearly, support value τδ of the set Gδ in the direction θ = 0 is
τδ = τδ(0) = τ0 − δ, and gδ(t) := gGδ (t) = g0(t + δ). In addition, we can write
gδ(t) = ∑∞

n=0 an(t)νn,δ , where

νn,δ =
∫∫

D

pn(x)1Gδ (x, y)dx dy, n = 0, 1, . . . .

Using the aforementioned definitions we obtain g0(τ0 − δ) − gδ(τ0 − δ) =
g0(τ0 − δ) = Lδα , and therefore

g0(τ0 − δ)− gδ(τ0 − δ) =
∞∑
n=0

an(τ0 − δ)[νn,0 − νn,δ] = Lδα. (35)

Now we evaluate the Kullback–Leibler distance K(·, ·) between the probability
measures Q0 and Qδ corresponding to the observations (15) associated with sets
G0 and Gδ . For this purpose we note that by definition

νn,0 =
∫ 1

−1
pn(x)

[
ϕ0(x)− ϕ

0
(x)

]
dx

νn,δ =
∫ 1

−1
pn(x)

[
ϕδ(x)− ϕ

δ
(x)

]
dx

where ϕ0, ϕ0
, and ϕδ, ϕδ

are the y–coordinates of the intersection points of the
lines x = const with the boundary of G0 and Gδ respectively. Hence {νn,0} and
{νn,δ} are noting but the Fourier coefficients of the functions ψ0 = ϕ0 − ϕ

0
and

ψδ = ϕδ −ϕ
δ

with respect to the Legendre orthonormal system on [−1, 1]. There-
fore, by equivalence of the model (15) and the standard white noise model, we
obtain

K(Q0,Qδ) = 1

2σ 2

∞∑
n=0

|νn,0 − νn,δ|2 . (36)

Now we note that K(Q0,Qδ) ≤ c4σ
−2L2δ2α , where c4 depends on h only. This

follows from the fact that the norm of the sequence {an(τ0 − δ)} is bounded away
from zero for any fixed δ, and the maximal value of the Kullback–Leibler distance
given by (36) under restriction (35) equals L2δ2α[2σ 2 ∑∞

n=0 a
2
n(τ0 − δ)]−1. There-

fore choosing δ so that σ−2L2δ2α � O(1) [or, equivalently, δ � O(1)(σ/L)1/α]
as σ → 0, we obtain that the probability of the error in distinguishing between
the sets G0 and Gδ on the basis of observations (15) is of the order O(1). This
completes the proof. ��
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