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2 LIPTSER, R. AND SPOKOINY, V. (1)(the matrix PTt=1XtX�t is assumed to be non singular). The estimation errorb� � � =  TXt=1 XtX�t !�1 TXt=1 Xt(Yt �X�t �) =  TXt=1 XtX�t !�1 TXt=1 Xt"t (1.3)is a zero mean Gaussian vector. Its covariance matrix, which is often called often theinformation matrix, reads as follows:W = E(b� � �)(b� � �)� = �2 TXt=1 XtX�t !�1By wk;k0 , k; k0 = 1; : : : ; p we denote the elements of the matrix W . The propertyb� � � � N (0;W ) implies: for every � > 0 and k = 1; : : : ; pP �jb�k � �kj > �w1=2kk � � 2e��22 : (1.4)The aim of this paper is to establish a similar exponential bound for probability ofdeviations b� � � for more complicated statistical models arising in time series analysis.Below we present two typical examples.Example 1.1. [Autoregression model] Let observations Y1; Y2; : : : ; YT follow the autore-gression equation Yt = �1Yt�1 + : : :+ �pYt�p + "t; (1.5)where one sets Y0; Y�1; : : : ; Y1�p = 0 and ("t)t�1 are i.i.d. Gaussian random errors withparameters (0; �2) .Introduce a vector � of the unknown coe�cients � = (�1; : : : ; �p)� 2 Rp and de�neXt = (Yt�1; : : : ; Yt�p)� 2 Rp . Then, the original autoregression equation given in (1.5)admits the `regression-like' representation (compare (1.1)):Yt = X�t � + "t:Moreover, formula (1.2) (resp. (1.3)) for the MLE b� (resp. for the deviation b� � � )remains valid for the autoregression case as well. Despite of this similarity, there is anessential di�erence between regression and autoregression models. For the autoregressioncase, the `design' points X1;X2; : : : are random and heavy correlated with the observa-tions Y1; Y2; : : : . Therefore, the matrix W = �PTt=1XtX�t ��1 , which is often called theconditional covariance or conditional information matrix, is also random and heavy cor-related with the observations. Hence, the estimation error b� � � is no more a Gaussianvector and the bound (1.4) does not apply.To analyze properties of the deviation b� � � for this situation, introduce a valued inRp process Mt = tXs=1Xs"s; t � 1:



DEVIATION PROBABILITY FOR MARTINGALES 3Since Xt depends only on Y1; : : : ; Yt�1 , and since "t is independent of Y1; : : : ; Yt�1 , theprocess (Mt)t�1 is a vector square integrable martingale with respect to the �ltrationgenerated by ("t)t�1. The predictable quadratic variation of this martingale reads asfollows hMit = �2 tXs=1XsX�s ; t � 1;so that W = hMiT . With this notation, on the set where hMiT is non singular, we haveb� � � = hMi�1T MT :Therefore, the original statistical problem leads to evaluation ofP �jz�hMi�1T MT j > �qz�hMi�1T z� (1.6)where z is a deterministic vector.Example 1.2 (Di�usion model). Let the observed process Xt follow the Itô equation(with respect to Wiener process wt)dXt = ��ft dt+ �t dwt ; X0 = 0: (1.7)Here � 2 Rp is an unknown vector, ft 2 Rp and �t 2 R+ are observed random processessuch that for every t > 0 , it holds R t0 kfsk2��2s ds < 1 . The particular cases of (1.7)are: the Orstein-Uhlenbeck model (p = 1)dXt = �Xt dt+ dwt;a nonlinear autoregression modeldXt = �h(Xt) dt+ s(Xt) dwtand a model with delay, when h(Xt) and s(Xt) are replaced by h(Xt��) and s(Xt��),� being the delay parameter.The MLE estimate b� of � from (1.7) reads as follows:b� = �Z T0 ftf�t ��2t dt��1 Z T0 ft��2t dXtso that the error of estimation b� � � can be represented in the formb� � � = �Z T0 ftf�t ��2t dt��1 Z T0 ft��2t ( dXt � f�t � dt) = hMi�1T MT ; (1.8)where Mt = Z t0 fs��1s dws; t � 0;is a continuous vector martingale and



4 LIPTSER, R. AND SPOKOINY, V. (1)
hMit = Z t0 fsf�s ��2s ds (1.9)is its predictable quadratic variation.We see that for both examples, the study of the properties of the MLE b� leads toestablishing a proper bound for probability of the form (1.6).Some other examples where similar problems arise can be found in Liptser and Spokoiny(1997) in context of adaptive nonparametric estimation of the drift function for two-scaleddi�usion systems and in H�ardle, Spokoiny and Teyssi�ere (1999) for estimation of param-eters for time inhomogeneous �nancial data.The majority of general martingale results (see e.g. Liptser and Shiryaev (1986), Jacodand Shiryaev (1987)) concern only with asymptotic properties of MT , as T !1, undersome conditions on the behaviour of hMiT . Particularly, if for some deterministic factorsbT ! 0 as T !1 , random matrices bT hMiT converge to a non singular deterministicmatrix � , and also, for the discrete time case, the Lindeberg condition holds: for every" > 0 limT!1 bTE TXt=1 �Mt �Mt�1�2I(jMt �Mt�1j > ") = 0;then b1=2T MT is asymptotically, as T ! 1, normal with zero mean and the covariancematrix � and the bound (1.4) holds in the following asymptotic sense (b�k = b�k(T ),w1=2kk = w1=2kk (T )): for every �xed � > 0limT!1P �jb�k(T )� �kj > �w1=2kk (T )� � 2e��22 : (1.10)If bT hMiT converges in probability to a random matrix � , then the vector b1=2T MT isasymptotically mixed normal in the sense that the pairs (b1=2T MT ; bT hMiT ) converge indistribution to the pair (�1=2U;�) where U is an independent of � standard Gaussianvector (see, e.g. Liptser and Shiryaev, 1988, Ch. 5). This again leads to the same asymp-totic statement as in (1.10). Unfortunately, these results hold only under rather strongconditions on asymptotic behaviour of hMiT as T !1 and do not serve e�ectively thecase of a �nite T or a large � .In the case of a scalar unknown parameter, the time-scale arguments, see e.g. Rootzen(1983), help to get some non-asymptotic results but only for the case of scalar parameter� and for specially introduced random time moments T . An application of this idea tostatistical problems for autoregressive and di�usion models leads to the so called sequen-tial estimation, when the underlying parameter is estimated from the sample Y1; : : : ; Y�with a specially de�ned stopping time � , see e.g. Novikov (1972) for the case of alinear di�usion model and Grambsch (1983), Lai and Siegmund (1983), Shiryaev andSpokoiny (1997) for the Ornstein-Uhlenbeck model. Some generalizations to the vector



DEVIATION PROBABILITY FOR MARTINGALES 5autoregression in the special context of guaranteed estimation can be found in Konevand Pergamanshchikov (1996).There exists also vast literature devoted speci�cally to the problem of estimating theparameter � for autoregressive and linear di�usion models. Here again, the asymptoticapproach based on a preliminary study of asymptotic properties of the process hMit ast!1 , is usually used. For instance, for the �rst order autoregression (1.6), one distin-guishes between three essentially di�erent cases depending on the value of the unknownparameter �1 : ergodic for j�1j < 1 , unstable for j�1j = 1 and explosive for j�1j > 1 .In the ergodic case, the quantity T�1hMiT = T�1PTt=1 Y 2t�1 converges to a �xed valueand the MLE is asymptotically normal. For j�1j > 1 , the quadratic variation hMiTgrows exponentially with T so that e�2T j�1jhMiT converges in probability to some ran-dom variable � . The sums MT = PTt=1 Yt�1"t normalized by eT j�1j , turns out to beasymptotically mixed normal in the sense�e�T j�1jMT ; e�2T j�1jhMiT � w�! (�1=2U;�)where U is standard normal and independent of � . Hence, the normalized estimationerror eT j�1j(b�(T ) � �) = eT j�1jhMi�1T MT is also asymptotically mixed normal and thebound (1.4) applies in the asymptotic case, see White (1958). But for j�1j = 1 , thequadratic variation hMiT grows as T 2 in the sense that T�2hMiT converges in lawto some non degenerated distribution, and the deviation T (b� � �) weakly convergesto some special law which is neither normal nor mixed normal. Similar results for theautoregression of order p > 1 can be found in Basawa and Scott (1983), Chan and Wei(1988), Jeganathan (1988) or Cox and Llatas (1991).In this paper, we aim to state an exponential upper bound for the probability from(1.6) for a general vector case and in the non asymptotic set-up. This, of course, makesthe problem much more complicated and in particular, we are not able to establish therequired bound exactly in the form given in (1.4). Our basic result, presented in the nextsection, describes a bound of the following typeP �jz�hMi�1T MT j > �qz�hMi�1T z; hMi�1T is non singular� � P (�)e��2=2where P (�) is a polynomial of the degree p whose coe�cients are connected to regularityconditions on the matrix hMiT .Section 3 contains some statistical applications.2. Deviation probability for martingalesLet U be a zero mean Gaussian random vector valued in Rp with a positively de�nitecovariance matrix V : EU = 0 , EUU� = V . Then V �1U is also a Gaussian randomvector with parameters (0; V �1) . In particular, for every �xed vector z 2 Rp , the scalar



6 LIPTSER, R. AND SPOKOINY, V. (1)product z�V �1U is a zero mean Gaussian random variable with the variance z�V �1zand therefore P �jz�V �1U j > �pz�V �1z� � 2e��22 ; � > 0:In this section, we present a similar result for a random non Gaussian vector U . Moreprecisely, given a square integrable vector martingale (Mt)t�0 with M0 = 0 ( hMit ,t � 0 , denotes its predictable quadratic variation), we establish an exponential upperbound for the probability of the eventfz�hMi�1T MT > �qz�hMi�1T z; hMiT is nonsingularg:We consider here two di�erent cases. The �rst one corresponds to discrete time martin-gales with conditionally Gaussian increments while the second one concerns with contin-uous martingales.2.1. The model in discrete time. Let M = (Mt)t2N , N = f0; 1; 2; : : : g , be a squareintegrable martingale with M0 = 0 , valued in Rp , p � 1 , de�ned on a probabilityspace (
;F ;P ) supplied with �ltration F = (Ft)t2N (i.e. E (Mt j Ft�1) = Mt�1 andEkMtk2 <1 for all t 2 N ). The predictable quadratic variation hMi of M is de�nedvia increments �t =Mt �Mt�1 : �t = E (�t��t j Ft�1) ;hMit = tXs=1�s:Obviously, hMit is the predictable random process (i.e. hMit is Ft�1 measurable)valued in the set of p � p symmetric non negatively de�nite matrices (for more detailssee e.g. Liptser and Shiryaev [13], Ch.1 x8). Our main assumption is that for each t , theincrement �t = Mt �Mt�1 is conditionally, given Ft�1 , Gaussian random vector withconditional parameters (0;�t) : for every 
 2 Rp and t � 1E�e
��t���Ft�1� = exp�12
��t
� P � a.s. (2.1)Note that (2.1) does not imply that M is a Gaussian process. A speci�c example ofa martingale, obeying (2.1), is delivered by autoregressive processes from Example 1.1.The condition (2.1) implies that the processZt(
) = exp�
�Mt � 12
�hMit
� ; t 2 Nis a martingale. In fact,Zt(
) = Zt�1(
) exp�
��t � 12
��t
�



DEVIATION PROBABILITY FOR MARTINGALES 7and (2.1) provides E(Zt(
)jFt�1) = Zt�1(
) , P -a.s. Hence EZt(
) = 1 for everyt 2 N . This also implies for every stopping time TEZT (
) � 1 (2.2)see Problem 1.4.4. in Liptser and Shiryaev [13].2.2. The model in continuous time. Let M = (Mt)t2R+ be a continuous vectormartingale in Rp with M0 = 0 , de�ned on a probability space (
;F ;P ) supplied with�ltration F = (Ft)t�0 complying with, so called general conditions, see Liptser andShiryaev [13], Ch.1. By hMi = (hMit)t�0 we denote the predictable quadratic variationof M , see again [13], Ch.1 x1 and x8). As in the discrete time case, introduce the positiveprocess Zt(
) = exp�
�Mt � 12
�hMit
� :By the Itô formula dZt(
) = Zt(
)
�dMt , and hence the process Zt is a continuouspositive local martingale and simultaneously, by Problem 1.4.4. in Liptser and Shiryaev[13]), a supermartingale. Due to the supermartingale property, for every stopping timeT EZT (
) � 1: (2.3)2.3. Bound for scalar martingale. We �rst examine the case when (Mt)t�0 is ascalar martingale. Since the proof is based only on (2.2) and (2.3), we do not specifyhere whether t runs over N or R+ .The result is of independent interest and it will be essentially used when studying thegeneral vector case.Theorem 2.1. Let T be �xed or stopping time. For every b > 0 , S � 1 and � � 1P �jMT j > �phMiT ; b �phMiT � bS� � 4pe� (1 + log S) e��22 :Proof. The statement follows fromP �MT > �phMiT ; b �phMiT � bS� � 2pe� (1 + log S) e��22 (2.4)and from the similar result for �MT . So, it su�ces to check (2.4) only.Given a > 1 , introduce the geometric series bk = bak and de�ne random eventsCk = fbk � phMiT < bk+1g , k = 0; 1; : : : ;K , where K stands for the integer part ofloga S . Obviously



8 LIPTSER, R. AND SPOKOINY, V. (1)
P �MT > �phMiT ; b �phMiT � bS� (2.5)� KXk�0P �MT > �phMiT ; b �phMiT � bS; Ck� :For every 
 , (2.2) (or (2.3)) impliesEI �MT > �phMiT ; Ck� exp�
MT � 
22 hMiT� � 1:Next, taking 
k = �bk , we obtain1 � E exp� �bkMT � �22bk hMiT� I �MT > �phMiT ; Ck�� E exp��2bkphMiT � �22bk hMiT� I �MT > �phMiT ; Ck�� E exp� infbk�v�bk+1��2vbk � �2v22b2k �� I �MT > �phMiT ; Ck�and, since \ infbk�v�bk+1 " is attained at the point v = bk+1 = abk , we end up withP �MT > �phMiT ; Ck� � exp���2�a� a22 �� :Inserting this bound in (2.5) and using that K � loga S , we getP �MT > �phMiT ; b �phMiT � bS� � (1 + loga S) exp���2�a� a22 �� :Finally, since the left side of this inequality does not depend on a , we may pick a tomake the right side possibly small. This leads to the choice a = 1 + 1=� so that�2�a� a22 � = �2(1 + 1� � 12 �1 + 1��2) = 12(�2 � 1):Since also log(1 + 1=�) � 1=(2�) for � � 1 , we obtain loga S � 2� log S and (2.4)follows.2.4. Bound for vector martingale. For the convenience of notation, set p = d + 1so that we consider martingale M = (Mt) valued in Rd+1 , d � 1 . Let T be �xed orstopping time. De�ne V = hMiT and let W stand for the inverse matrix of V on theset, where V is non singular, W = hMi�1T . We deal with the random vectorU =WMT � = hMi�1T MT �:Hereafter, the elements of the matrix W (resp. of the vector U ) are denoted bywij; i; j = 0; : : : ; d (resp. Ui; i = 0; : : : ; d ). Given a vector z from Rd+1 , we es-tablish an upper bound for the probability of the event fjz�U j > �pz�Wzg restricted



DEVIATION PROBABILITY FOR MARTINGALES 9to a set A , where the matrix V satis�es some regularity conditions given below. Westart with the vector z of the form z = (1; 0; : : : ; 0)� and postpone the general caseuntil Subsection 2.5.With the speci�ed z we havefjz�U j > �pz�Wzg = fjU0j > �pw00g:For some positive constants b , S � , r , de�ne
A = 8>>>>>>><>>>>>>>:

b � w�100 � bS;w00kV k1 � r;jw0k=w00j � �; 8k = 1; : : : ; d
9>>>>>>>=>>>>>>>; ;where kV k1 = supf�2Rd+1:k�k=1g kV �k is the norm of the matrix V .In many cases, the values b , S , � and r can be chosen such that the probability ofA is closed to 1 for su�ciently large T , see Subsection 2.6.Theorem 2.2. Let T be �xed or stopping time. For every b > 0 , S � 1 � > 0 , r � 1 ,and � � p2 P (jU0j > �pw00; A) � 4e log(4S)�1 + 2�prd ��d �e��22 :Proof. Set vk = w0;k=w00 , k = 1; : : : ; d . On the set A , we have jvkj � � . De�ne therandom vector v = (1; v1; : : : ; vd)� and note thatP (jU0j > �pw00;A) = P �jv�MT j > �qw�100 ;A� :Set also � = 1�prd and introduce the discrete grid D� = f� = k� : k 2 N; j�j � �g in theinterval [��; �] . Let �k;+ (respectively �k;� ) be the (random) point from D� closestto vk from above (respectively from below), i.e. �k;� � vk � �k;+ and j�k;� � vkj � �:Denote by D(v) the collection of random vectors � of the form (1; �1; : : : ; �d)�; where�k coincides either with �k;+ of with �k;� , k = 1; : : : ; d . Then, obviously,max�2D(v) j��MT j � jv�MT j : (2.6)We show now that for every � 2 D(v) , it holds on A :w�100 � ��V � � (1 + ��2)w�100 : (2.7)Let � 2 D(V ) . Then the vector � = ��v = (0; �1�v1; : : : ; �d�vd)� ful�lls k�k2 � d�2 .Recall now that W = V �1 and (w00; w01; : : : ; w0d) is the �rst row of the matrix W ,



10 LIPTSER, R. AND SPOKOINY, V. (1)that is, v�V = w�100 (w00; w01; : : : ; w0d)V = w�100 (1; 0; : : : ; 0):Hence v�V v = w�100 , v�V� = ��V v = 0 , v�V v = w�100 and��V � = (v +�)�V (v +�) = w�100 +��V�:Since ��V� � 0 , we get ��V � � w�100 . Moreover, on Aw00��V� � w00kV k k�k2 � rd�2and (2.7) follows in view of the de�nition of � .Next, being restricted to the set A , the variable w00 ful�lls b � w�100 � bS , so thaton A , we get for every � 2 D(v)b � ��V � � (1 + ��2)bS: (2.8)Now (2.6) and (2.7) imply�jv�MT j > �qw�100 ; A� � [�2D(v)�j��MT j > �q(1 + ��2)�1 ��V � ; A� ;and the use of (2.8) with A� = �b � ��V � � (1 + ��2)bS	 provides�jv�MT j > �qw�100 ; A� � [�2D(v)�j��MT j > �q(1 + ��2)�1 ��V � ; A��� [�2D� �j��MT j > �q(1 + ��2)�1 ��V � ; A�� :Therefore,P �jv�MT j > �qw�100 ; A� � X�2D� P �j��MT j > �p(1 + �2)�1��V � ; A�� :For every � 2 D� , the process ��Mt is the scalar square integrable martingale withh��MiT = ��V � . Then the application of Theorem 2.1 providesP �j��MT j > �p(1 + ��2)�1��V � ; A��� 4 �1 + log S(1 + ��2)� �p1 + ��2 exp�� �22(1 + ��2) + 12� :Since the number of di�erent elements in D� is at most (1 + 2���1)d , we conclude
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P �jv�MT j > �qw�100 ;A�� 4 �1 + 2���1�d �1 + log S(1 + ��2)�� exp�� �22(1 + ��2) + 12� :Substituting here ��1 = prd � and using �21+��2 � �2 � 1 for ��2 � 1=2 , we deriveP �jv�MT j > �qw�100 � � 4e�1 + log(3S=2)� �1 + 2�prd ��d �e��22� 4e log(4S)�1 + 2�prd ��d �e��22as required.2.5. Coordinate free form. In the previous section we state the bound for the prob-ability from (1.6) for the special vector z = (1; 0; : : : ; 0)� . Here we consider the generalcase when z is an arbitrary vector from Rd+1 with kzk = 1. Set

Az = 8>>>>>>>>>><>>>>>>>>>>:
b � 1z�hMi�1T z � bS;z�hMi�1T z khMiT k � r;supy2Rd+1 : jyj=1 jy�hMi�1T zjz�hMi�1T z � �;

9>>>>>>>>>>=>>>>>>>>>>; :
Theorem 2.3. Let T be �xed or stopping time. Then, for every positive constantsb > 0 , S � 1 , � > 0 , r � 1 , and � � p2P �jz�hMi�1T MT j > �qz�hMi�1T z; Az� � 4e log(4S)�1 + 2�prd��d �e��22 :Proof. For z = (1; 0; : : : ; 0)� , the statement holds by Theorem 2.2. The general casecan be reduced to that one simply by changing the coordinate system in the way that zbecomes the �rst coordinate vector.2.6. The ergodic case. Assume the increments of the martingale M form an ergodicprocess in a sense that P � limT!1 hMiTT = V ; (2.9)where V is a nonsingular deterministic matrix. Denote by W = (wij ; i; j = 0; : : : ; d)the inverse of V . The ergodic property implies that, for su�ciently large T , the randommatrix T hMi�1T falls outside any small open vicinity of the limit matrix W with a very



12 LIPTSER, R. AND SPOKOINY, V. (1)small probability. This particularly yields that for large T the probability of the event
AT = 8>>>>>>>>><>>>>>>>>>:

12w00 � Tw00 � 2w00 ;w00khMiT k � 2w00kV k;maxk=1;::: ;d jw0kjw00 � 2 maxk=1;::: ;d jw0kjw00
9>>>>>>>>>=>>>>>>>>>;is closed to 1 and therefore P (AcT ) = 1 � P (AT ) is small. In this case, the followingresult can be useful.Proposition 2.1. Assume (2.9) with the nonsingular matrix V . Then there exist con-stants C1 and C2 , depending on V only, such that for all � � p2P �jz�hMi�1T MT j > �qz�hMi�1T z� � C1(1 + C2�)d�e��22 + P (AcT ):3. Statistical applicationsWe revert now to the statistical examples from Section 1. First we consider the discretetime model which generalizes Example 1.1. Assume we observe a process Yt , t 2 N , andFt denotes the � -�eld generated by the observations Ys with s � t . We also supposethat the observations Yt follow the equationYt = f�t � + �t"t; t = 1; : : : ; T; (3.1)where the errors "t are independent standard normal random variables and ft (resp.�t ) is a Rp -valued (resp. R+ -valued) predictable process w.r.t. the �ltration (Ft)t2N ,that is, ft and �t are completely determined by the observations Y1; : : : ; Yt�1 . Weadditionally assume that E��2t jftj2 <1; 8t:Note that the autoregressive model, see Example 1.1, is a particular case of (3.1) withft = (Yt�1; : : : ; Yt�p)� . Similarly to that case, the MLE estimate of the unknown pa-rameter � 2 Rp from the observations Yt , t � T , for the model (3.1) reads as follows:b� =  TXt=1 ��2t ftf�t !�1 TXt=1 ��2t ftYtand it holds for the estimation errorb� � � =  TXt=1 ��2t ftf�t !�1 TXt=1 ��1t ft"t = hMi�1T MT ; (3.2)



DEVIATION PROBABILITY FOR MARTINGALES 13where Mt = tXs=1 ��1s fs"s and hMit = tXs=1 ��2s fsf�s : (3.3)It is straightforward to check that (Mt ; t 2 N) is a square integrable martingale withconditionally Gaussian increments and (hMit ; t 2 N) is its predictable quadratic varia-tion.The second application corresponds to the continuous time linear di�usion model (1.7)from Example 1.2.In the statement below, we treat both models (3.1) and (1.7) simultaneously. Let T bea stopping time w.r.t. the �ltration (Ft) and b� be the MLE of the unknown parameter� from the observations Yt , t � T . Let then hMiT be from (1.9) or (3.3). De�neV = hMiT and let W stand for the inverse of V . By wk;k0 we denote the elements ofthe matrix W = V �1 , k; k0 = 1; : : : ; p .We formulate the result concerning the �rst coordinate b�1 � �1 of the vector b� � � .The other components of this vector can be treated in a similar way. The assertion isthe direct application of Theorem 2.2.Theorem 3.1. Let b� be the maximum likelihood estimate of the parameter � from ob-servations Yt , t � T , for the model (3.1) (resp. for the model (1.7)) due to (3.2) (resp.(1.8)). For positive constants b > 0 , S � 1 � > 0 and r � 1 , introduce the eventA = 8>>>>>>><>>>>>>>:
b � w�111 � bS;w11kV k � r;jw1k=w11j � �; 8k = 2; : : : ; p

9>>>>>>>=>>>>>>>; :Then, with any positive � � p2 , it holdsP �jb�1 � �1j > �pw11; A� � 4e log(4S)�1 + 2�pr(p� 1) ��p�1 �e��22 :References[1] Basawa, I.V. and Brockwell, P.J. (1984). Asymptotic conditional inference for regular nonergodicmodels with an application to autoregressive processes. Ann. Statist. 12 161{171.[2] Basawa, I.V. and Scott, D.J. (1983). Asymptotic Optimal Inference for Non-ergodic Models. SpringerNew York.[3] Chan, N.H. and Wei, C.Z. (1988). Limiting distributions of least squares estimates of unstableautoregressive processes. Ann. Statist. 16 367{401.[4] Cox, D.D. and Llatas, I. (1991). Maximum likelihood type estimation for nearly nonstationarityautoregression time series Ann. Statist. 19 1109{1128.
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