Forward and reverse representations for Markov
chains*

G. N. Milstein®, J.G.M. Schoenmakers®, V. Spokoiny®
November 8, 2006

Keywords: transition density estimation, forward and reverse Markov chains,
Monte Carlo simulation, estimation of risk

AMS 2000 Subject Classification: 60J05, 60H10, 62G07, 65C05.

*This research was supported by the Deutsche Forschungsgemeinschaft through the SFB
649 Economic Risk, and the DFG Research Center MATHEON in Berlin.

fa) Weierstrass Institut fiir Angewandte Analysis und Stochastik, Berlin, Ger-
many, {schoenma,spokoiny }@wias-berlin.de b) Ural State University, Ekaterinburg, Russia,
grigori.milstein@usu.ru



Abstract

In this paper we carry over the concept of reverse probabilistic rep-
resentations developed in Milstein, Schoenmakers, Spokoiny (2004) for
diffusion processes, to discrete time Markov chains. We outline the con-
struction of reverse chains in several situations and apply this to processes
which are connected with jump-diffusion models and finite state Markov
chains. By combining forward and reverse representations we then con-
struct transition density estimators for chains which have root-N accuracy
in any dimension and consider some applications.

1 Introduction

Classical density estimators for random processes such as the Parzen-Rosenblatt
estimator (see for instance Silverman (1986)) suffer typically from “curse of di-
mensionality”. I.e., when the dimension of the state space is larger, the efficiency
of such estimators is rather poor. In a diffusion setting, Milstein, Schoenmak-
ers, Spokoiny (2004) have developed a new density estimator which is based on
forward and reverse simulation of the underlying diffusion process. It is shown
that this forward-reverse density estimator (FRE) is basically root-N consistent
in any dimension, this in contrast to the Parzen-Rosenblatt estimator which has
accuracy N—1/(4+49) for dimension d.

The forward-reverse estimator has turned out to be very useful for practical
applications in different areas such as risk analysis and environmental mod-
elling. For example, in van den Berg, Heemink, Lin, Schoenmakers (2003),
Spivakovskaya, Heemink, Milstein, Schoenmakers (2005), and Spivakovskaya,
Heemink, Schoenmakers (2006), the FRE is applied successfully to the estima-
tion of pollutant concentrations in small coastal water regions, which are caused
by a certain calamity at another place. In the latter applications the pollutants
are modelled by a diffusion process. In other areas however, for instance fi-
nance, the relevant underlying quantities are often modelled by time series,
hence discrete-time Markov processes. While the analytical tools for diffusion
theory are essentially connected with parabolic partial differential equations,
the analytical formalism for discrete-time Markov processes is connected with
integral equations. So for such processes one can not relay on diffusion theory
and thus a discrete time version of the theory of forward reverse estimation in
terms of integral equations is called for. This theory is provided in the present
article.

For convenience of the reader we summarize the main results of Milstein,
Schoenmakers, Spokoiny (2004) in Section 2. The rest of the paper is organized
as follows. In Section 3 we introduce general forward representations for discrete
time Markov chains. From the forward chains a family of reverse chains are
derived in the spirit of Milstein, Schoenmakers, Spokoiny (2004) in Section 4.
Section 5 formalizes general variance reduction for both forward and reverse
chains. In Section 6 reverse chains are derived for a special class of autonomous
discrete-time Markov chains and some examples are given. In Section 7 we give
an application to jump-diffusion models and in Section 8 we deal with Markov



processes driven by finite state Markov chains. The forward-reverse density
estimator for Markov chains is discussed finally in Section 9.

2 Density estimation for diffusions based on for-
ward reverse representations

Consider a stochastic differential equation (SDE) in the It6 sense
dX = a(s, X)ds + o (s, X)dW (s), to<t<s<T, Xt)y==z, (1)

where X = (X', X)T a = (a',...,a?)" are d-dimensional vectors, W =
(W1, ..., W™)T is an m-dimensional standard Wiener process, and o = {¢%} is
a d x m-matrix, m > d. It is assumed that the d x d-matrix b := oo ", b= {b¥/},
is of full rank for every (s, ), s € [to,T], * € R%. The functions a’(s,r) and
0% (s,x) are assumed to be bounded and to have bounded derivatives of any
order, which implies existence and uniqueness of the solution X% (s), X%®(¢) =
x, tg <t < s <T,of (1), smoothness of the transition density p(¢,z, s, y) of the
Markov process X, and existence of all the moments of p(-, -, -, y).

The solution of SDE (1) may be approximated by different numerical methods,
see Kloeden and Platen (1992), Milstein and Tretyakov (2004).

2.1 The Parzen-Rosenblatt forward estimator (FE)

Let X“* be a numerical approximation of the process X»* and let X,*(T),
n = 1,...,N, be a sample of independent realizations of X»*(T). Then
one may estimate the transition density p(¢,z,T,y) from this sample by us-
ing standard techniques of non-parametric statistics such as the classical kernel
(Parzen-Rosenblatt) estimator. The kernel (Parzen-Rosenblatt) forward density
estimator with a kernel K and a bandwidth ¢ is given by

N —
. 1 Xte(T) —y
n=1

see Devroye and Gyérfi (1985), Silverman (1986). For example, in (2) one could
take the Gaussian kernel K (x) = (2r)~%/? exp(—|x|?/2). Here ¢ should decrease
to zero as N increases while N§¢ — oco. It is well known that the quality of
density estimation strongly depends on the bandwidth § and the choice of a
suitable bandwidth is a delicate issue (see e.g. Devroye and Gyrfi (1985)). Even
an optimal choice of the bandwidth ¢ leads to quite poor estimation quality, in
particular for large dimension d. More specifically, if the underlying density is
known to be two times continuously differentiable then the optimal bandwidth
§ is of order N~1/(4+4) Jeading to the accuracy of order N—2/(4+d) gee Scott
(1992) or Silverman (1986). For larger d, this would require a huge sample size
N for providing a reasonable accuracy of estimation. In the statistical literature
this problem is referred to as “curse of dimensionality”.



2.2 The reverse estimator (RE)

In order to proceed with more sophisticated density estimators we introduce
a reverse diffusion system for (1). We first introduce a reversed time variable
§=T+1t— s and define

cit(§,y) = a(T+t_§ay)a
b(s,y) = b(T+t-3,y),
a(8,y) = o(T+t-3,y).

Then we introduce a vector process Y5¥! € R? and a scalar process Y'Y gov-
erned by the reverse time stochastic system

dY = a(s,Y)ds + (s, Y)dW (s), Y(t) =y,
1

dY = c(s,Y)Vds, Y() = to<t<s<T, (3)

with W being an m-dimensional standard Wiener process and

d >~
ob™ -
o' = Z - —a’,
=
d
1 D2
c = 51]2:: zayj

It is possible to construct an alternative density estimator in terms of the reverse
system (3). Suppose that (Y,L¥, VLol m = 1,..., M, is an i.i.d. sample of
numerical solutions of (3). Then a pure reverse estimator is given by

a2, Toy) = Z (D).

In fact, the reverse estimator (4) can be obtained as a side case from the forward-
reverse estimator presented below.

2.3 The forward-reverse estimator (FRE)

By combining the forward (1) and reverse (3) estimators via the Chapman -
Kolmogorov equation with respect to an intermediate time ¢*, one can construct
the forward-reverse estimator (see Milstein, Schoenmakers, Spokoiny (2004)),

1 o (XEE() = VEY(T) o
rae (b0 T0) = s o S0 K (ST praan. )
m=1n=1

It is shown that the forward-reverse estimator (5) has superior properties in
comparison with density estimators based on pure forward (2) or pure reverse
(4) representations. Obviously, by taking ¢t* = T and ¢* = 0, the estimator



(5) collapses to the pure forward estimator (2) and pure reverse estimator (4),
respectively.

For estimating a target value p by an estimator p we define the accuracy of
the estimator by

Accuracy(p) := €(p) := VE(P—p)? = \/Var(ﬁ) + Bias?(p). (6)

Loosely speaking, for a first order kernel applied in (5), any choice of 0 < t* < T,
and a bandwidth choice 5y = O(N~/#+d) the FRE has root-N (O(N~1/2))
accuracy for dimension d < 4. For d > 4 root-N accuracy is lost but then
the FRE accuracy order is still the square of the FE/RE accuracy order (see
Table 1). Moreover, it can be shown that root-N accuracy of (5) can also be
achieved for d > 4 by using higher order kernels in (5).

By definition (6) it is possible to relate the “expected” accuracy of the differ-
ent density estimators to the number of simulated trajectories involved. How-
ever, simulating trajectories is not the only costly issue in the density estimation.
For all estimators one has to evaluate a functional of the simulated trajectories.
In case of the FE and RE estimators, this functional consists of a single sum-
mation, whereas for the FRE estimator a more complicated double summation
needs to be evaluated. Therefore, for a proper comparison it is better to con-
sider the complexity of the different estimators which is defined as the required
computation cost for reaching a given accuracy e. For instance, naive evaluation
of the double sum in (5) would require a computational cost of order O(M N) in
contrast to O(N) for the FE and RE estimators. Clearly, such a naive approach
would have a serious impact on the complexity of the FRE. Fortunately, smarter
procedures for evaluating this double sum exist, which utilize the small support
of the kernel K. As a consequence, the main computational cost is due to the
simulation of forward and reverse trajectories which is merely order of M+N.
For details we refer to Milstein, Schoenmakers, Spokoiny (2004) and also van
den Berg, Heemink, Lin, Schoenmakers (2006).

The efficiency of the forward-reverse estimators in comparison with usual
ones is essentially based on specific integral representations of transition densi-
ties due to the Chapman-Kolmogorov equation. In this context, the principle
of finding efficient estimators has already been used in other respects. Frees
(1994) constructs root-N consistent estimators for densities of certain (known)
functions of a tuple observations. General results have been obtained by Gine
and Mason (2006a,b). Delaigle, Hall and Muller (2006) estimate the regression
function in a nonparametric regression model, whereas Saavedra and Cao (1999),
among others, estimate the stationary density of moving average processes.



Estimator FE/RE FRE d<14 FRE d>4

N N-/(4+d) N-V1og /e N | N-2/(+d)
Accuracy O(N~2 (4+d)) O(N—177) ON* (4+d))
Complezity (’)(5—2—‘1 2) O] 10g€|6_2) o] 10g5|€—1—d 4)

Compl.{FE/RE} —d/2 —1-d/4
Compl.{FRE}

|loge|~te |loge|~te

Table 1: Summary of accuracy and complexity of the forward (FE), reverse
(RE), and forward-reverse (FRE) estimators.

3 Forward probabilistic representations for Markov
chains

Consider a discrete-time Markov process (X,,, F,,), n =0,1,2, ..., on a probabil-
ity space (2, F, P) with phase space (5,S), henceforth called Markov chain. In
general we assume that S is locally compact and that S is the Borel o-algebra
on S. For example, S = R? or a discrete subset of R%. Let P,, n > 0, denote
the one-step transition probabilities defined by

P,(z,B):=P(Xp41 € B| X,=2),n=0,1,2,..., z€85, BeS. (7)

In the case of an autonomous Markov chain all the one-step transition proba-
bilities coincide and are equal to P := Py = P, = - - -

Let X»*, m > n, be a trajectory of the Markov chain which is at step n in
the point z, i.e., X" = x. The multistep transition probabilities P, ,, are then

defined by
Pom(z,B) =P(X»*e€B), €S8, BeS, m>n.
Due to these definitions, P, ,(z,B) = 6,(B) = 1p(z) (Dirac measure), P, =
P, n41, and the Chapman - Kolmogorov equation has the following form:
Py m(z,B) = /Pn,k(gc,dy)Pk’m(y,B)7 xeS, BeS, n<k<m. (8)
Let us fix N > 0 and consider for 0 < n < N the function

tin(z) = / Po (. dy)f(y) = E F(X57), (9)

where f is S-measurable and such that the mathematical expectation in (9)
exists; for example, f is bounded. By the Markov property we have for 0 < n <
N :

nax n+1,X""
Ef(XN):Ef(XN )

= F ETr1 f(X;\L[-H,X:fl) _z EXSﬁf(X;L]-i_l’X:fl)

= F un+1(XSf ) = /Un+1(y)Pn(xady)'

Un ()



Thus, u,(x) satisfies the following discrete integral Cauchy problem

un(z) = / w1 (y) P, dy), m < N, (10)
un(z) = f(a), (11)

and (9) is a forward probabilistic representation of its solution. In fact, the
probabilistic representation (9) can be used for simulating the solution of (10)-
(11) by Monte Carlo.

We now are going to write the discrete Cauchy problem (10)-(11) in another
form, thus entailing an alternative probabilistic representation for its solution
(9).

Let us consider for n = 0,1, ..., functions p, : S x S — Ry such that the
measures
P (z, dy)

pn(T,Y)

are one-step transition functions as well, and functions h, : S x S — R such
that

Qn(z,dy) = , T,y €S (12)

/hn(x,y)Pn(:r,dy) =0, z€b. (13)

Note that for arbitrary functions g, : S x § — Ry the functions p,(z,y) =

pn(x,y) [ Po(z,dy’)/pn(x,y’) satisfy (12), and that for arbitrary functions h,, :

S x S — R the functions h,(x,y) := h(z,y)— fl:n(m, y' )Py (x, dy’) satisfy (13).
By (12) and (13), (10)-(11) can be written as
un@) = [(naw) + b)) Qued), n < N. (19
un(z) = flz) (15)

The next theorem provides a forward probabilistic representation for the solu-
tion of a class of discrete integral Cauchy problems which covers (14)-(15).

Theorem 1 Let P, be the one-step transition density of a Markov chain X as
in (7) and let the function f : S — R be measurable and bounded. Let further
S xS —=Randg,: S x5 — R be measurable and bounded functions for
n=20,1,2,... Then, the solution of the problem

wn(z) = / (Wni1(2) + G (@, 2))pu(2, 2)Pa(z,dz), n <N,  (16)
wy(z) = f(z) (17)

has the following probabilistic representation:

wa2) = B [F(XRT)R + X300 (18)



where (X, X,X) is an extended Markov chain in which X and X are governed
by the equations

n,T,y n,T,y n,T n,r n,o,y __
Xk+1 - Xk; @k(Xk 7Xk;+1)a Xn =7, (19)
n,r,y,kx  __ n,xr,y,k n,r n,xr n,r n,xr n,x,y n,T,Y,k __
X1c+1 - Xk + @k(Xk an+1)gk(Xk 7Xk+1)Xk 3 Xn = R,

where n < k < N.

Proof. Note that X7 = 7" and X" = 4X"50 4 k. Thus, for
n < N, (18) may be written as

n+1, X0 L X X n+1, X005 T X o
wp(z) = B |:f(XN )X + Xy
. n,z,1 (Xn,a: 7Xn,z,1,xn,z,1,0) n+1’X:_f1 n+1,X::_’*_m1,1 n+1,X:f1,1,0
=E X7 EY i ntr g fat (XN )Xy + Xy
+E Xn,x,l,o

n+1
n,x,1 n,x n,z,1,0
=E |:‘Xn+1 wn+1(Xn+1) + X0 }
= E [pn(z, X3 wn (X075) + @n (2, X000 gn (2, X307
= [@air(2) + (. )pn(,2) Pal ),

and (17) is trivially fulfilled for n = N. =

4 Reverse probabilistic representations

For definiteness we take S = R? in this section, hence S = B(R?), and assume
that the transition probabilities P, ,,(z,dy) have densities py, m,(x,y) with re-
spect to the Lebesgue measure on (S,S). Then the representation (9) can be
written in the form

I(f) = E f(X37) = / P (@,9) F () dy. (20)

Let the initial value £ of the chain X at moment n be random with density g(x).
Consider the functional

(g, ) = / / 9(2)pa (2, 9) f(y)dedy = EF(XES). (21)

Formally, by taking for g a d-function we obtain (20) again, and by taking f to
be a d-function we obtain the integral

J(g) = / 9(@)pnn (2, 9)d, (22)

We now propose suitable (reverse) probabilistic representations for J(g). From
the Chapman - Kolmogorov equation (8) we obtain straightforwardly the Chap-
man - Kolmogorov equation for densities,

P (®:7) = / Pk (@, ez y)dz, Ty e S, n<k<m,  (23)



where a ”density” py,,, is to be interpreted as a Dirac distribution (J-function).
Let us fix n and N, n < N, and introduce the functions

on(y) = / 9(@)pni(,9)dz, n <k <N, (24)

where ¢ is an arbitrary integrable function on S, not necessarily a density. From
(23) we get

ve(y) = /vk_l(z)pk_l(z,y)dz, n<k<N, (25)

u(y) = g(y),

where pi_1 := pr—1,, denote the one-step densities. We are going to construct a
class of reverse Markov chains which give a probabilistic representation for the
solution of (25); hence J(g). For this we introduce for n < k < N a reversed
time variable m = N + n — k and consider functions ¢, : S x § — Ry such
that for each m and y the function

pN+n7m71('7 y)
wm(y7 )

is a density on S. For example, one could take v, independent of the second
argument, and then obviously

1pm(?f) = /pN+n,m,1(z,y)dz. (27)

We next introduce v, (y) := Un4n—m(y), and transform the problem (25) into

am(y,-) = (26)

Um(y) = Um+1(2)Vm (Y, 2)gm(y, 2)dz, n <m <N, (28)

ﬁ\

un(y) =

Via Theorem 1 we thus obtain a probabilistic representation of the form (18)
for the solution of problem (28), hence (25) and J(g). Indeed, by taking in
Theorem 1 instead of X a Markov chain Y, where Y is governed by the one-
step transition probabilities Q. (y,dz) := gm(y, 2)dz (hence @ instead of P),
constructing ) according to

Yt =yl (VM YY), Vvt =1, m<k<N,  (29)
and taking g, = 0, it follows by Theorem 1 that

U y) = ongn-m(®) = B [gOF VR n<m<N, (30)
and in particular
19) = o) = [ s ntoy)ds =B [g07v ] @D

The representation (31), with ) given by (29), is a reverse probabilistic rep-
resentation due to the time reversed chain Y. Obviously, in general different
choices for the functions 1, give rise to different reverse representations for

J(g).



5 Variance reduction

In this section we discuss how to obtain variance reduction in the probabilistic
representations (9) and (31). To this aim we consider the variance of the random
variable

<= SRR+ X (32)
in Theorem 1 and prove the next theorem.

Theorem 2 Let wy, Py, f, ¢n,gn as in Theorem 1. Then it holds

oy e | 1,0 me el e 1,0 &y ] 1,0
wk(X;Lm)X]:x JrXZm — pXEa Xy ) wk-l—l(X]?_,’_xl)an L

k+1 k+1 )
(33)
and
Va8 A [ (gt et (69

n,r n,x,l n,x,1,0 n.z,l n,x n,x n,x
— EXTXTEY ) (Xk' )2(80k(Xk 7Xk+1)wk+1(Xk+1)
n,xr n,r n,xr n,r n,r\\2
‘Hpk(Xk 7Xk+1)gk(X}c an+1) - wk(Xk )"
As a consequence, if ©n, gn, and wg in (16)-(17) are such that
‘pk($7y)(wk+1(y)+gk($vy)):wk(x>7 r,y €S, n<k<N, (35)
then
n,r n,x,l n,z,1,0 __ n,r n,z,1 n,z,1,0
wi (X, )AL + X = f(XyO)XyT + XG0, n<k<N, as.
hence, the random variable (32) is deterministic.
Proof. For k < N we may write using the abbreviation E* := BT xeeht)
wy, (X]:L,x)X]?,x,l + Xz,x,l,o
_ X]?,a;,lEk [f(lei/’X’“7 4)X]];’X’“' "1 +X§f\;xk",1,0} +XZ’””’1’O

_ Ek} |:f(X]k\);X;L,w)lez,X;L,w)X;,m,l + Xf\}xg,m7xgl,z,l7x:,z,l,0:|

k+1)XN k+12Vk+1 +XN k4+1"k+1 k41

= EF {f(x

E41,X7" E41,X™" el E41,XT" el Xn,w,1,0:|
N

k+1,XLLJ’rw1 k+1,XLLJ’rz1,1 k+1,X;:f1,1,0 n,z,1,0
~ )Xy + Xy | +x5t]

= B* A0 B (X
= B* [wnna (D)X + X055
thus proving (33). Next, by (33) we have

Var®XET 8T [ ()0 + X
= B i D X - ()t ]
= B () (e X e (X1

Fon (X0 X ge (X0 T, Xi) — we (X0 0)%,

10



hence (34). m

Let us now go back to the with (9) equivalent Cauchy problem (14)-(15).
The solution of this problem has a probabilistic representation according to
Theorem 1. Spelling it out, we have

Un(z) = B [ F(Xp")Xp™! + Xp10 (36)

where X and X are governed by the equations

nx,l n,z,1 n,T ,T n,x,l __
Xk+1 = Xk pk(Xk) an+1)7 X, =1,
n,r,1,0 n,z,1,0 n,x n,r n,x n,r n,r,l n,z,1,0 __
Xk+1 = Xk + pk(Xk 7Xk+1)hk(Xk 7Xk+1)xk ) Xn =0,

n < k < N. By Theorem 2 the variance of this probabilistic representation
vanishes if

(2, y) (1 (y) + he(2,9)) = un(z),  n<k<N. (37)

In principle, (37) may be satisfied while (12) and (13) hold. Indeed, if the
functions py, satisfy (12), then the hj obtained by solving (37) satisfy (13). Vice
versa, if the functions hy, satisfy (13) then the p;, obtained by solving (37) satisfy
(12). In general the exact solution uy, is not known of course, so it will be not
possible to choose py and hy, such that ¢ in (32) is true deterministic. However,
if we have a good approximation uy of ug, n < k < N, at hand, there are
possibilities for variance reduction. To formalize the idea of an approximation,
we assume that uy is a known solution of the problem

(@) — / Ut ) Po(a,dy) + Gu(a),  n<k<N,  (38)

in(z) = f(a),

<
o
—~
8
~
|

where ]?, f and the gj are close to zero in some sense. N

Importance sampling. Let us assume that both f and its approximation f
are positive, and that the approximate solution uy is for all k£ positive as well.
By then taking hjy = 0 for all k, and

uk(z) — gi() ’

Ur41(y) (39)

P (2, y) =
(12) holds and we may expect that the variance of (32) will be close to zero. If
f does not satisfy f > 0 but is bounded from below we may shift the problem
by choosing a constant C such that f + C > 0, and then consider (9) with f
replaced by f+ C.
Control variates. By taking py, =1 for all k, and

hi(,y) = up(2) — gr(x) = U1 (y),

(13) holds and again we may expect that the variance of (32) will be close to
Z€ro.

11



Combined variance reduction. Importance sampling and control variates
can be combined in the following way. Assume that functions p; > 0 may be
identified such that (12) holds. Then by taking

o)

(13) holds and we may expect that the Monte Carlo estimator for u, (x) corre-
sponding to (36) has low variance.
For the reverse probabilistic representation (29)-(31) of the solution of (28)

hi(z,y) =

analogue variance reduction methods apply. To be more specific, let p,, and 7Lm
be such that

@m(yv dZ) = Qm (y’ dZ)/ﬁm (ya Z) = qm (ya Z)dz/ﬁm(yr Z) (40)

are one step transition probabilities (see (26)), and
[ o206 0,2)Qun (.2 = 0 (41)

for all y € S. Then with ¥, := Y pm (28) may be equivalently written as the
integral Cauchy problem

Bnly) = / Fons1(2) + oo (0 2)Bon (0 2) O dz), 1< < N,

on(y) = g(y)

for which Theorem 1 gives a probabilistic representation of its solution. Ac-
cording to Theorem 2 the variance of the corresponding random variable (32)
in this probabilistic representation vanishes when

G (Y, 2) Ong1 (2) + hn (Y, 2)) = T (1), y,2€ 8, n<m<N.

Based on an approximate solution of Cauchy problem (28) of the form,

Only) = / Bt 1 () (U, )@ (9, d2) + m(y),  n<m <N, (42)
un(y) = g(y),

we may apply importance sampling, control variates, or a combination of both
as for the forward representation above. For example, if p,, is such that (40)
holds, then
7 Um\Y) — am\Y
iy, 2) = U~ nly)
Ym (Y, 2)

satisfies (41) and may lead to a variance reduced representation.

- :Jm+1(z)

Concluding we may say that Theorem 2 provides variance reduction methods
as combinations of importance sampling and control variates and thus can be
regarded as a discrete time version of Th. 4.2 in Milstein and Schoenmakers
(2002) and Th. 2.1 in Milstein, Schoenmakers, Spokoiny (2004).

12



6 Reversing autonomous Markov chains

In this section we study Markov chains in the state space S = R? with au-
tonomous one step transition density p(x,y) (p does not depend on the step
number due to autonomy). If the density p(x,y) and the integral function

B(y) = / p(z,y)dr,  yeRY,

are known, we can define a Markov chain Y with one step transition density

p(2,y)
o) (43)

and then give for the solution of (24) the following reverse probabilistic repre-
sentation (see (29)-(31)):

q(yv Z) =

w(y) = B g0yt (44)
Yo =y, n<k <N,
yNAnThul s YNkl (y NEnmhyy N 4~k < < N,
it = L

A large class of autonomous Markov chains can be written in the form
Xn+1 :A(Xn7£n+1)7 n:071u27"'7 (45)

where &,, n = 1,2,..., are i.i.d. random variables with density ¢ in R%. Let us
assume that the map A : RY x R? — R? is continuously differentiable and such
that there exists a continuously differentiable inverse a with

Az, a(z,2)) = 2. (46)

For any bounded measurable f the one-step transition density p(z,y) satisfies
[ fpeady = E FO05) = EFAGg0) (47)
— [ rawepeee = [ rwotate |25 ay
Hence, from (47) it follows that

pla.y) = d(ale,y)) \det ay] | (48)

According to Section 2, a reverse chain is identified by choosing a function
¥ : R? x R? — R, such that

gy, 2) = L at) (49)



is a density in z for fixed y. Of course there are infinitely many possible possi-
bilities. The choice (43), for instance, gives the one-step density

dla(z,y)) |det 2220

[ ola(z,y)) ’det %z’y)’ dz

q(y,z) =

When there exists in addition a continuously differentiable inverse 3 such that

A(B(z,9),y) = 2, (50)

we may consider the ”physically reversed” chain
Yn+1 :B(Yn,€n+1), TL:O,].,2,..., (51)
where the sequence En is an i.i.d copy of the sequence &,,, hence

A(Yn+l7gn+l> = A(B(Ynagn+1)agn+l) =Y,.

The chain (51) has a one-step density of the form (49) for a particular choice of
1. Indeed, let g(y, z) be the one-step transition density for Y,,. Then, by noting
O(y, a(z,y)) = z and writing 7(y, z) := a(z,y), we have similar to (48),

_ Iy, z) da(z,y)
a(y, z) = o(n(y, 2)) 9% 9%

B |det Ox(z,y)/0z|

det det

= o(a(z,y)) (52)

0A
det %(z, a(z, y))' )

Thus, by taking for all &,

-1

Ui (y, 2) == Y(y, z) = |det %(z,a(z;y))

in the construction of Section 2 and applying Theorem 1, we obtain as in (30)
a probabilistic representation for the solution of

o () = ON () = / 9@ PrNinm(@y)de,  n<m<N,

(hence the integral (24)) of the form

wly) = E[gay ™yt m<k <, (53)
YA = BN ), Ndn—k<r <N,

_ 9A . . -
P <y e SRR a (iR k)

ox
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Example 3 Let A in (45) be of the form,
A(z,6) = B(z) + C(z)¢, B:R?*—=RY C:R? SR> ¢cecRY (54)

In fact, such a form A arises when discretizing a diffusion SDE and then exchang-
ing Wiener increments with some i.i.d. system of random variables (£,)n=12,. .,
which reflect certain features (for example heavy tails) of a problem under con-
sideration. As a special case we consider the Markov chain

Xpi1 = A(Xp,&n1) = BX, + Cényy, B,C € R, (55)

which may be regarded as a discrete Ornstein-Uhlenbeck process under an i.i.d.
noise sequence &,, n = 1,2, ..., of not necessarily Gaussian random variables.
Let us suppose that B and C are invertible. Then, o and 8 in (46) and (50)
exist with

a(z,z) =C7'(z = Bx),  flzy) =B (2~ Cy),

and as a reverse chain we may take

vt = BTHYY = Clita), Yo =y,
m,y,1
m,y,1 yk
= £ m < k<N,
k+1 |det B| -
y;gw = 1, n<m<N.

In the case where the £, are Gaussian the chains X and Y are Gaussian as
well and all characteristics of X and Y can be computed analytically. However,
this analytical tractability is generally lost when X is governed by (55) with
non-Gaussian &, for example i.i.d. copies of some heavy tailed distribution.

Example 4 Consider a discrete Black-Scholes model
Xi = A(X,,8) =X} exp [Mz‘ + (o))" €n+1} :
wi € R, o eRY Xi>0 i=1,..,d,

where the ¢; and &, are to be interpreted as column vectors in R?, and the d x d
matrix o := [01,...,04] is assumed to be invertible with inverse c=1. Then,
a and § in (46) and (50) exist, where

d
a;(z, z) Z((J’_l)ik (—pr —Inag +1nzyg),

k=1

Bi(z,y) = ziexp [fmf(cn)Ty}-

Note that 0A;(z,y)/0xr = 0k exp [,ui + (Ui)—r y} , and so after a little algebra
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we obtain a reverse chain given by

% ~ 7 T
VI = Bi(Yie&en) = Y exp [ — (00) &
Y™V =y, i=1,...d,

d v 'm,
Vit = Y lexp | —p 1= oy (VI YY) —ym’y’lﬂy’“ﬁy
k41 = Yk p|—H i O (X1 Ty =Yk vimy

7 =1 "k
= Vi lexp [—uTl—lTaka}, m < k<N,

ypvl = 1, n<m<N,

according to (53). For Gaussian noise, both X and Y are log-Gaussian Markov
chains, hence analytically tractable like in the previous example. But also here
the analytical tractability is lost when non-Gaussian noise is considered.

Example 5 Let us consider the following stochastic volatility model:

Xn+1 = Xn + f(Vn)gnJrly
Vat1 = c+9g(Xn) + Mnt1,

where ¢ > 0, f,g : R — R are smooth and invertible functions with continuous
non-zero derivatives, and (&, Mn)n=1,2,... are i.i.d. random variables. Hence,

Alz,v,6,m) = [z + f(v)€, e+ g(x) + 1]

and according to (46), (50), we solve aq, ag from

x4+ f(v)ag = r
ct+g(x)+as = s,
yielding
an(x,v,r,8) = ﬁ () #0,
()(2(33,1/,7‘,3) = 3_g($)_c7

and S, 3> from
B+ f(B)E = v,
ct+g(B)+n = w,
yielding
51 (yv w, gv 77) = gi'nv (U) i/ C) _
52(%“1’5777) = f”“)(gily*gilglnv(w77]70))7 57&0
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Thus, as a reverse chain we may take

Yot = gt Wittt — e —o), Yt =y
myw i —1 ymy,w —1 ym,yw YW
Wk+1 = fmv(fk+1yk - §k+1Yk+1 )s Wit =w
Y w,l
ym,y,w,l _ y’:ly " ymywl — q n<m<N
) M
+ +

Note that the inverse (r,s) — a(z,v,r,s) exist only for f(v) # 0. This cor-
responds to the fact that the one step transition density of X does not exist
when f(V},) = 0. On the other hand the inverse (y, w) — B(y,w, &, n) exists only
for ¢ # 0. This means that the construction of Y41 breaks down for a draw
&k+1 = 0. However, since the random variables (&,,,) are assumed to have a
density, and f’ # 0, both {41 = 0 and f(V,,) = 0 are events of probability zero.

7 Reversing the jump chain of a jump-diffusion

We consider a pure jump process' J;, t > 0, in R, with jump times 0 < 7, <
Tg < - -, where 741 — 7 are i.i.d. according to an exponential distribution
with parameter A, 7p := 0, Jy := 0, and where the jumps are i.i.d. according to
a density v on R. Hence

T

k: 11 <t

with AJ_ = Jﬁc+1 — J,, being ii.d distributed with density v. The process J;
is piece-wise constant and is continuous from the right with limits from the left

(c.r.l.1.). The solution of the SDE
dXt = /A,L(th, th)dt + O'(th, th)th + 77(th7 Jt,)th, XO = X,

for smooth functions p,n : R xR — R, 0 : R x R — R, with a from J indepen-
dent Wiener process W, is generally called a jump diffusion. The process X; is
c.r.l.l. as well and at jump times we have

Tk4+1
X, - Xfﬁ/ (Xo,J, s+ o(X,, J, )dW,

.

Tk
0(Xr = I ) AT
We now consider the autonomous Markov chain X in R? defined by X; =
(They X1y JTk ), k=0,1,..., and its associated reverse representations. As a mo-
tivation, we imagine that we consider a process of which only its jumps and
jump times are of importance. For example, a jump might be connected with
some default event and an insurance company is concerned with the occurrence
of thelOth default, since she then has to pay money due to a certain insur-

ance contract. If the actual default time of the 10th default is irrelevant for

IFrom now on we rather denote time parameters by subscripts.
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the insurance company, one could only consider the autonomous Markov chain
(X+.,J. ), k =0,1,.... In many cases the one-step transition density of the

Tk Yoy
latter chain is less tractable, however.

Let 7% (t,-) be the transition density in R of the process U;"" defined as
solution of the SDE

dU; := uw(Uy, a)ds + o (U, a)dWy, t>0, Uy ==,
and let a(a, b, y) be the solution of the equation
a+n(aa)(b—a)=y

Then given 7, = ¢, X. = z, J. = a, hence X; = (¢, z,a), the one-step density
of Xpq1 = (Thy1, Xrpprs Jrpr) in (7,9,0), ¢ < 7, is given by

p(gx,a, Tay,b) = )\e—)\(‘r—c)ﬂ_aw(,r - gﬂa(avbv y))l/(b - a‘)a ¢<T. (56)
Clearly, the chain X is autonomous. By taking the integral

Wryb) = [ A Mde / o / (1 — <, ala,b,y))v(b - a)da

/:T /\e_/\gdg/dﬂlj /Wa’z(g,a(a7b7 y))v(b — a)da, (57)

we obtain from (43) the one-step transition density

p(ﬁ,z,a T7y7b)
T, 7b77~97z7c C(ry,b)
q( Y ) ¢(T7yab)
/\B*A(Tfﬁ)ﬂ'c’z(T — 9, 0(¢,b,y))v(b—c)
_ ale,b, , 9 <T(58
¥(7,y,b) ()

and the corresponding reverse Markov chain (Y,)) in R3 x R, where
Yy := (O, Zy, Cy) is governed by the one-step density (58), with

@z, TY,b T, ZZLL, Y0 _ v, C';Z’ Ty,b _ b, (59)
and Y satisfies
m, 7,y,b,1  _ m, 7,y,b,1 m, 7,y,b m, T,y,b ~m, T,y,b
yk+1 - ylc '(/J(@k >Zk 7Ck; )a
ymomybl o — 1 m <k <N, (60)

(see (29)-(31) and (44)).
As a more particular case we consider the autonomous process

dXt = M(Xt)dt + O'(Xt)th + djt, (61)

where the diffusion component of X has transition density 7*(¢,-), which is
independent of a. Then, Xy, := (7%, X+, ), £k =0, 1, ..., is an autonomous Markov
chain itself, with one step transition density

(s, z,7,y) = e AMT9) /WI(T — ¢,y —u)v(u)du, ¢ < T. (62)
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Thus, according to (57), (58), we obtain a reverse chain Y with one step tran-
sition density

_ p(ﬂ,Z,T, y)
q(7—7yu 19’ Z) - 11[}(7_’ y) 9 19 < T7 (63)
where -
s = d A —As d * 3 - d . 64
vir) = [ doxe [ar [ 2y —wri (64)

Example 6 Consider the jump-diffusion
dXy = k(x — Xy)dt + odWy + dJ,
for which the diffusion component
dU; = k(x — Uy)dt + odW;
is a mean reverting Gaussian process with transition density

_ 1 oy [ X (@ = x)e™™ —w)?
m(t,z,u) = Jro (1 —e ) /n b [ o2(1 —e 26t /g } 7

and so (62) becomes

e~ AMT=¢)
X
Vro2(1 — e=2:07=9)) /g

_ —k(T—5) _ 2
X /exp {— O+ <:2(1X—>Z2“(T<)—i)_/i y) } v(uydu, ¢<T.

p(s,z,7,y)

It is easy to see that [ 7%(t,u)dz = e, hence (64) becomes,
blry) = / dedes / de / (6, — w(u)du
0

(/1—)\)7'_1
e

= dghe Asehs du = \—88
/0§e e /V(u)u P

and the reverse transition density (63) is thus given by

— —Ar—9)
ory.0.2) = = Ae <)
(e(nf)\)‘r _ 1) \/7r02(1 _ 672;«”(7719))/”

(x + (2= )e " +u—y)?
X /exp [ 21 = e B v(u)du, 9 < T

The dynamics (58)-(60) thus collapses to the chain Y = (O, Zi) governed by
(65) with

@:)n% ™ =, Zl,'f’ T,y v,
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and scalar process ) satisfying

) _ , Ty, Ty ) Tl
Vip et = Y e yper Yz ),
ym.omebl o — 1 m <k <N.

Finally we note that for a variety of jump densities v, (65) can be expressed in
close form (for instance when v is Gaussian).

8 Reversed representations for ODE processes
driven by continuous time Markov chains

To complete the picture we describe in this section the reversion of processes
obtained as the solution of an ordinary differential equation which is driven by
a continuous time Markov chain with finite state space. Suppose we are given a
regular Markov chain (X;);>o on a probability space (2, F,P) with state space
S = {z1,..., T, }. In connection with the chain X we consider a system of
ordinary differential equations

dy

E = a(X, Y), (66)
where Y = [Y1, .., Y¥)T and a: S x R? 3 (z,y) — [ Yz, y), ..., a¥(z,y)]T € RY
We assume the functlons a](y) = a'(xj,y), i = 1,..,d, j = 1,...,m, have

bounded continuous derivatives. Let

—q1 q12 - Qim
Q= q21  —q2 ... CI2.m ’
dm1 dm2 —qm

be the infinitesimal generator matrix of the chain X with ¢;; > 0, % # j, and
Z qi; = qi- (67)
J#i

Tt is well known that the infinitesimal generator of the Markov process (X,Y)
generated by the system (66) is given by

Af(ziy) = Za i, Y) 8J;<x“y) aif (@ y) + Y aiif(zj,y), (68
k=1 j#i
1=1,...,m, yeRd

(see for example Milstein & Repin (1969)). In particular, for some smooth func-
tion f(x,y) with bounded derivative with respect to y, the functions w;(t,y) :=
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Ef(X®i(t),Y*¥(t)) satisfy the hyperbolic system

d
E(tvy) = Za (xi,y)afyk(ﬂci,y) *Qiuﬂrzqijuu
ui(0,y) = f(zyy) i=1,...,m, ycRL

By considering the semigroup generated by the extended Markov process (X, Y, )
on S x R? x R, where Y is defined by

dyah sY,S
dt

=D(X,Y)Yrovs, Yt =,

for some bounded real valued function b(z,y) in S x R? with continuous deriva-
tives in y, it follows that the functions

t
vilty) = E F(X5,Y7V) exp( / b(XT Y0 ds), (69)
0
i=1,..,m, ye R t>0,

satisfy the more general hyperbolic system

d

(91)1- a']_}i

ot = Zak(xi,y)a—yk + (4, y)vi — qivi + Z(Jijvj (70)
k=1 J#i

w;(0,y) = f(zi,y), i=1,...,m, y € RY.

So, (69) is a probabilistic representation for the solution of (70) which may be
used for evaluating the v;(¢,y) in (70) by Monte Carlo simulation.
Let an initial distribution of (X,Y") be given by

P{Xo==w;, Yoe H} = /H Xi(y)dy (71)

for i = 1,...,m, with \;(y) being a density on R?. Suppose further that the
\i(y)a¥ (x;,y) have continuous partial derivatives d(\;a¥)/0y* and that the in-

tegrals
d
8()\1ak) .
IZ-:/ Y(y)dy, i =1,...,m,
wi o Y

exist. Then for each i = 1,...,m, the function 1;(¢,y) defined by the property

/H it y)dy = P({X, = ©:, Vi € HY),

satisfies the forward Kolmogorov equation

O <= O(iak)
ot == oy*

(v) = athi + Y qji (72)

k=1 j#i
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with initial condition

In fact ¢;(t,)/P({X(t) = x;}) is the conditional density of Y at time ¢ > 0,
given X (t) = z;. In order to obtain a probabilistic representation for ¥;(¢,y) we
will cast the system (72) into the form of (70):

d

O; o, . .
o Zak(ﬁﬂiay)ﬂ + c(@i, y)bi — g i + Zqijwj, (74)
k=1 Yy j#i
where
q = Zq;} = qu‘i,
J#i i
d
aak (Iia y) *
c(zi,y) = *;Tyk +aq; — qi-

Thus, for the solution of (72) we obtain a probabilistic representation
t
ity) = EACG Y exp( [ (G Y s), (76)
0

via a reversed process (X*,Y™*), where X* is a Markov chain with generator
matrix Q* := {g;;} with ¢; = —¢;, and Y* is governed by the equation

dy’™
= —a(X*,Y™).
= —a(XY) (77

Note that the representation (76) for the solution of the problem (72)-(73) holds
for any \ with bounded derivatives of first order, hence not only for densities.

Some bibliographical notes. The first probabilistic representation of solu-
tions for hyperbolic equations (for telegraph equation) goes back to M. Kac.
Sufficiently general systems of ordinary differential equations driven by a Markov
chain were considered in [9]. The detailed description of the process (X,Y) was
done in Milstein & Repin (1969). In a lot of papers such processes were treated
in connection with random evolution (see, for instance, Griego & Hersch (1969),
Hersch & Papanicolaou (1972) and references therein). In all these papers the
process X does not depend on the state of Y. The interaction of general processes
X and Y is considered in Milstein (1972). Instead of the system of ordinary
differential equations (66) it is possible to examine a system of stochastic differ-
ential equations interacting with a Markov chain as well. Both Cauchy problems
and boundary value problems for systems of partial differential equations aris-
ing in connection with interacting Markov processes are considered in Milstein
(1978).
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9 Forward-reverse transition density estimation
with applications

In this section we describe for a Markov Chain (7) an efficient procedure for
estimating the transition density p, m,(z,y) by a forward-reverse probabilistic
representation. The procedure below is in fact a discrete-time version of the
method developed in Milstein, Schoenmakers, Spokoiny (2004) for continuous-
time processes given by an Ito SDE. Thus, let us take x,y and n,m fixed and
concentrate on the problem of estimating py ., (z,y). If m = n + 1 this is a
one step transition density which is assumed to be given. Therefore we assume
m —n > 1 and, in the spirit of Milstein, Schoenmakers, Spokoiny (2004),
for some fixed £* with n < k* < m we consider the Chapman - Kolmogorov
equation

Prm(@,y) = / Do (@, 2)pie (2 )2 (78)

and observe by Section 4 that for h*(2) := py i~ (z,2) (78) has a probabilistic

representation
Pron(es) = [ W@ () = B [l (08 001,

where (YY) is constructed as in (30). We next consider h® to be a Parzen-
Rozenblatt estimator for the density function z — h*(z). Hence,

L
~ ~ 1 k(1)
0 (2) = Page (2,2) = —5 > K (=T,

where K is some kernel, § is a bandwidth parameter, and X,?,;”(cl) are independent

realisations of X" for I = 1,..., L. By replacing py i in (78) by its estimator h
we obtain

Prm(2,9) = / B (2)pie (2, y)dz = B [R*(YE v)yk vt

and completely similar to a proof in Milstein, Schoenmakers, Spokoiny (2004)
it follows that the estimator

R
~ 1 ~ . "
Puml@:) = R D ROy
R n,z k*y
1 Xk*(l) B Ym(r) k*y,1
— LR Oy

with (Y,iz;z)!,yﬁ:(%’l) being independent realisations of (Y,F"¥, YE" 1) for r =

1,..., R, is a root-L consistent estimator for the target density py . (x,y) when
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L = R. For a detailed study of the properties of the forward-reverse density
estimator (79) we refer to Milstein, Schoenmakers, Spokoiny (2004). Below we
consider some applications of the forward-reverse estimator (79).

Estimating the probability of visiting a bounded region

Let pe be a probability measure concentrated on G. Let y1,...,yr be i.i.d.
drawings from pg. Then the estimator

L X k" y,
k*(1 m(r k* yr,
P (T, pe) LR(Sd ;Z;K M)ym(% 1 (80)
has expectation
5 RS Xl = Yoy | e e
Eﬁn,m(xaMG) =LK LRo4 ZZK(#)J}"L(’SJ;’ |y1, e YM
=1 r=1
R L n,x k* yr
L 1 et = Vo) | et et
=ER Y B\ gm > K50y o
r=1 =1
R

:EZ%mm@M+@%»

= /uc(dy)pn,m(:v,y)+/uc(dy)6(5, Y)
=: /uc(dy)pn,m(x,y) + €(0, pa),

since the bias of the FRE is independent of L and R. If the kernel K is of suffi-
cient order (for d < 4 first order is enough) and the region G is bounded, it fol-
lows from Section 6 of Milstein, Schoenmakers, Spokoiny (2004) that (4, ug) =
0(6?), and moreover if (R = L),
= C 1
VarD, e ne) < 7 +o(7), L— oo,
where C is a constant.

Suppose G is some bounded (Borel) region in R? with small probability to
be visited by the chain X in m —n steps when X starts from x at time n. Hence
Pym(z,G) = [, G Pn.m(2,y)dy is small. In such a situation one could estimate
P (z, G) in principle with root-N accuracy using a standard Monte Carlo
estimator, IAG say, for the probabilistic representation (20), where f is taken to

be the indicator of G. However, the relative accuracy v/ Varfg/Pn,m(x, G) of

this estimator is equal to \/(Pn_,rln (x,G) —1)/N. Hence the relative accuracy

is root-N, but with a large order coefficient when P, ,,,(z,G) is small. The
FRE estimator (80) mends this problems. Indeed, take p to be the uniform
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distribution on G, then (80) yields an estimator for P, ,,,(z,G)/A(G) (with A
denoting the Lebesgue measure on R?) with accuracy of \/C/N + €2(8, ug).

o~

Hence, A(G)p,, (7, i) is an estimator for P, (v, G) with relative accuracy
MG)P, ) (2,G)\/C/N + €(0, pg). Since Py, n(x,G)/A(G) can be interpreted
as the average density over the region G, the root-N coefficient does not explode
when, for instance, the density py . (z,y) is continuous and positive for all y.

The problem of estimating the probability of visiting a critical region at a
certain time has many applications in the area of environmental modelling, e.g,
see Spivakovskaya et al. (2005), van den Berg et al. (2006).

Probability of visiting an unbounded domain

If the domain G is unbounded but such that it does not intersect with a certain
sphere, we may map G to the inside of this sphere and then work with the image
of the chain X under this map. Spelling it out, let G C {x € R? : |2 — x| > 70}
for some zg € R¢ and ry > 0, and let

i

m(.’lf—xo), .'L'ERd, I?él‘o,

S:x— 20+

be the spherical inversion with respect to the sphere of radius ry with center
xo. The map S is a bijective transformation on R%\{zo} with inverse S~ = S,
which maps {z € R? : |2 — 29| > 70} onto {z € R? : 0 < |z — mg| < ro}. Let us

define UL = S(X,?{Sil(u)), u # xo. Then, clearly,
P,m(z,G) =P(X;* € G) = P(S(X;*) € S(GQ))
= P(UM® ¢ S(G)), x # o,
with S(G) = {S(z) € R? : |x| € G} being bounded. We so can apply our
forward-reverse methodology to the Markov chain U and the region S(G). For

this we need to find the one-step transition density of the chain U, denoted by
pY. Tt holds,

/ pY (u,v)dv := P(UMY € A) = P(X:fl_l(“) € S71(A)
A

0S—1
= / P (S7H(u), y)dy = / Pn(S7H(u), ST (v)) |det dv, u# xg,
5-1(4) A v
by the standard transformation theorem. We thus yield,
08—t oS
Y (u,v) = pp (S (u), ST (v)) |det 50| = Pn(S(u), S(v)) |det o R # xo.

Estimating Value at Risk

Let L(z) be the loss (in absolute value) of a portfolio as function of the as-
set position vector z = X% and consider G, := {z € R%: L(z) > a} for a > 0.
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Then G, is typically unbounded but may be contained in the complement of
some sphere, so that we may use the above transformation. The value of a such
that P, o (z,Gq) = a, where « is a given quantile, e.g. 5%, is called the a%
Value at Risk.

Generally, straightforward Monte Carlo evaluation of the Value at Risk of a

large portfolio is very time consuming since one needs many sample trajectories
to generate a reliable number in a certain critical region. A forward-reverse
approach may therefore be considered as an elegant solution.
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