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Abstract

The general reverse diffusion equations are derived. They are applied to the prob-
lem of transition density estimation of diffusion processes between two fixed states. For
this problem we propose density estimation based on forward-reverse representations
and show that this method allows for achieving essentially better results in comparison

with usual kernel or projection estimation based on forward representations only.

1 Introduction

Consider the SDE in the Ito sense
dX = a(s, X)ds + o(s, X)dW (s), to<s<T, (1.1)

where X = (X1, ..., X)) T, a=(a',...,a?) T are d-dimensional vectors, W = (W!,...,Wwm) T
is an m-dimensional standard Wiener process, o = {c¥/} is a d x m-matrix, m > d. We
assume that the d x d-matrix b := go', b = {b"}, is of full rank and that moreover the

uniform ellipticity condition holds: there exists o > 0 such that

H(a(s,x)a—r(s,x))ilH <al (1.2)

for all (s, ), s € [to,T], * € R% and some a > 0. The functions a’(s,z) and 0% (s, z) are
assumed to satisfy the same regularity conditions as in Bally and Talay (1996b), i.e. their
derivatives of any order exist and are bounded. This particularly implies existence and
uniqueness of the solution Xy .(s) € RY, X; .(t) = x, to <t < s < T, of (1.1), smoothness
of the transition density p(t, x, s,y) of the Markov process X, and existence of exponential
bounds for the density and its derivatives with respect to t > tg, z, y.

The aim of this paper is the construction of a Monte Carlo estimator of the unknown
transition density p(t,z,T,y) for fixed ¢,z,T,y, which improves upon classical kernel or

projection estimators based on realisations of X ,(7") directly.



Classical Monte-Carlo methods allow for effective estimation of functionals of the form

I(f) = / p(t 2. T,y) f () dy (1.3)

for smooth, not too fast increasing functions f. These methods exploit the probabilistic
representation I(f) = E f(X;.(T)). Let X:, be an approximation of the process X;,
and let Xt(,z) (T) for n =1,..., N be independent realizations of X; ,(T). Then, provided

the accuracy of approximating X;, by X, is sufficiently good, I(f) may be estimated

by

with root-N accuracy, i.e. a statistical error of order N~1/2.

The problem of estimating the transition density of a diffusion process is more in-
volved, see Bally and Talay (1996a), Hu and Watanabe (1996), Kohatsu-Higa (1997). For
an approximation X't,x, it is natural to expect that its transition density p(t,z,T,y) is
an approximation of p(t,z,T,y). Indeed, if X;,(T,h) is the approximation of X;,(T)
obtained via numerical integration by the strong Euler scheme with time step h, then the
density pp(t,z,T,y) converges to p(t,x,T,y) uniformly in y when the step size h tends to

zero. More precisely:

p(t,z,T,y) — pu(t,z, T,y) = hC(t,z, T,y) + K*Rp(t, 2, T, y), (1.4)
with
Ot 2, Toy)] + [Rult e, T,9)| < ot exp(—cl 2220
sy Ly h\ly Ly L, _(T—t)q T _¢ 5

where K, ¢, g are some positive constants, see Bally and Talay (1996b). Strictly speaking
the equality (1.4) is derived in Bally and Talay (1996b) for autonomous systems. However,
there is no doubt that under our assumptions of smoothness, boundedness, and uniform

ellipticity this result holds for the non-autonomous case as well.



Further, Hu and Watanabe (1996) and Kohatsu-Higa (1997) show that the quantity

ﬁh(ﬂ x, T, y) =FE ¢h(Xt7I(T7 h) - y)

with ¢p(z) = (27h?)~%2 exp {—|z*/(2h*)} converges to p(t,z,T,y) as h — 0. Hu
and Watanabe (1996) used schemes of numerical integration in the strong sense, while
Kohatsu-Higa (1997) applied numerical schemes in a weak sense. Combining this result
with the classical Monte Carlo methods leads to the following estimator of the transition

density
N
= 1 5
n=1

where X, = XIS’Z)(T, h), n=1,...,N, are independent realizations of X; (T, h).
More generally, one may estimate the transition density p(¢,z,T,y) from the sample
X, = t(Z;) (T') by using standard methods of nonparametric statistics. For example, the

kernel (Parzen-Rosenblatt) density estimator with a kernel K and a bandwidth ¢ is given

by

1 Y Xn—y

see e.g. Devroye and Gyrfi (1985), Silverman (1986) or Scott (1992). Of course, in reality

we have only the approximation X,, instead of X,, and so we get the estimator

~ N 1 al K Xn_y
Py (t7x7T7y) - N(Sd Z 5 . (17)
n=1

Clearly, proposal (1.5) is a special case of estimator (1.7) with kernel K being the standard
normal density and bandwidth § equal to the step of numerical integration h.

The estimation loss py,(t,z,T,y) — p(t,z,T,y) can be split up into an error p, — p
due to numerical approximation of the process X by X and an error p — p due to the
kernel estimation which depends on the sample size N, the bandwidth § and the kernel

K. The loss of the first kind can be reduced considerably by properly selecting a scheme



of numerical integration and choosing a small step h. The most important loss, however,
is caused by the kernel estimation. It is well known that the quality of density estimation
strongly depends on the bandwidth ¢ and the choice of a suitable bandwidth is a delicate
issue (see e.g. Devroye and Gyrfi (1985)). Even an optimal choice of the bandwidth ¢ leads
to quite poor estimation quality, in particular for large dimension d. More specifically,
if the underlying density is known to be two times continuously differentiable then the
optimal bandwidth & is of order N~%/(4+d) Jeading to the accuracy of order N—2/(4+d)
see Scott (1992) or Silverman (1986). For larger d, this would require a huge sample size
N for providing a reasonable accuracy of estimation. In the statistical literature this
problem is referred to as “curse of dimensionality”.

In this paper we propose a method of density estimation which is generally root-N
consistent and thus avoids the curse of dimensionality problem. First we consider in Sec-
tion 2 probabilistic representations for the functionals I(f) in (1.3), which provide different
Monte-Carlo methods for the evaluation of I(f). Besides, we show how the variance of
the Monte Carlo estimation can be reduced by the choice of a suitable probabilistic repre-
sentation. Then, in Section 3 we introduce the reverse diffusion process in order to derive

probabilistic representations for functionals of the form
I'(9) = [ g(@lptt,a T, ). (18)

Clearly, the “curse of dimensionality” problem doesn’t encounter in the estimation of
functionals I(f) in (1.3) by forward representations. Similarly, as we shall see in Section 3,
Monte Carlo estimation of functionals of the form (1.8) via probabilistic representations
based on reverse diffusion goes with root-N accuracy also. These important features have
been utilised in the central theme of this paper, the development of a new method for

estimating the transition density p(¢,z,T,y) of a diffusion process which generally allows



for root-N consistent estimation for pre-specified values of ¢,x,T, and y (we emphasize
that the problem of estimating p(t,z,T,y) for fixed ¢,z,T, and y is more difficult than
the problem of estimating the integrals I(f), I(f,g) or I*(g)). This method, which is
presented in Section 4, is based on a combination of forward representation (1.3) and re-
verse representation (1.8) via the Chapman-Kolmogorov equation and has been led to two
different types of estimators called kernel and projection estimators. General properties
of these estimators are studied in Sections 6 and 7. Previously, in Section 5 we demon-
strate the advantages of combining the forward and reverse diffusion for transition density
estimation at a simple one-dimensional example. We show by an explicit analysis of an

Ornstein-Uhlenbeck type process that root-IN accuracy can be achieved.

Throughout sections 5-7 all results are derived with respect to exact solutions of the
respective SDE’s. In Section 8 we study in particular the estimation loss due to applica-
tion of the strong Euler scheme with discretization step h of the different kernel estimators
presented in this sequel and found that this loss is of order O(h), uniform in the band-

width 6.

In Section 9 we compare the computational complexity of the forward-reverse esti-
mators with pure forward estimators and give some numerical results for the example
in Section 5. We conclude that, in general, for the problem of estimating the transition
density between two particular states the forward reverse estimator outperforms the usual

estimator based on forward diffusion only.

2 Probabilistic representations based on forward diffusion

In this section we present a general probabilistic representation and the corresponding

Monte Carlo estimator for a functional of the form (1.3). We also show that the variance



of the Monte Carlo method can be reduced by choosing a proper representation.

For a given function f, the function

u(t,z) = B (X, (T)) = / p(t, 2. T, 9) f (y)dy (2.1)

is the solution of the Cauchy problem for the parabolic equation

d
i i ou
g b (t 83:’8333 + E a'(t,x) (9:10’ =0, u(T,x) = f(x).
i=1

Via the probabilistic representation (2.1), u(t, z) may be computed by Monte Carlo simu-
lation using weak methods for numerical integration of SDE (1.1). Let X be an approxi-
mation of the process X in (1.1), obtained by some numerical integration scheme. With
x™ (T) being independent realizations of X;.(T), the value u(¢,z) can be estimated

t,x

by

)

N
1 >(n
= > F (X @), (2:2)
n=1
Moreover, by taking a random initial value X (t) = ¢, where the random variable ¢ has

a density ¢, we get a probabilistic representation for integrals of the form

1(,g) = / / g(@)p(t, =, T,y) () de dy. (2.3)

The estimation error | — u| of the estimator u in (2.2) is due to the Monte Carlo
method and to the numerical integration of SDE (1.1). The second error can be reduced
by selecting a suitable method and step of numerical integration. The first one, the Monte
Carlo error, is of order {N~! Var f(X;,(T))}/? ~ {N~! Var f(X;,(T))}'/? and can, in
general, be reduced by using variance reduction methods. Variance reduction methods

can be derived from the following generalized probabilistic representation for u(¢,z):

u(t7 x) =F [f(Xt,z(T))Xt,m(T) + Xt,m(T)]a (2'4)



where X ,(s), Xia(s), X¢2(s), s > t, is the solution of the system of SDEs given by

dX = (a(s,X) —o(s, X)h(s,X))ds + o(s, X)dW (s), X(t) ==z,

dX = h' (s, X)XdW (s), X(t) =1, (2.5)

dX = FT (s, X)XdW (s), X(t) = 0.
In (2.5), X and X are scalars, and h(t,z) = (h'(t,z),...,h"(t,z))" € R™, F(t,z) =
(F'(t,z), ..., F™(t,2))" € IR™ are vector functions satisfying some regularity conditions
(for example, they are sufficiently smooth and have bounded derivatives). The usual
probabilistic representation (2.1) is a particular case of (2.4)—(2.5) with h = 0, F = 0,
see, e.g., Dynkin (1965). The representation for h # 0, F' = 0 follows from Girsanov’s
theorem and then we get (2.4) since EX = 0.

Consider the random variable n := f(X; o(T)) X »(T) +X; »(T'). While the mathemat-
ical expectation E7n does not depend on h and F, the variance Varn = En? — (En)?
does. The Monte Carlo error in the estimation of (2.4) is of order \/m and so
by reduction of the variance Varn the Monte Carlo error may be reduced. Two variance
reduction methods are well known: the method of importance sampling where F' = 0, see
Milstein (1995), Newton (1994), Wagner (1988), and the method of control variates where
h = 0, see Newton (1994). For both methods it is shown that for sufficiently smooth
function f the variance can be reduced to zero. A more general statement by Milstein

and Schoenmakers (2002) is given in Theorem 2.1 below. Introduce the process
n(s) = u(s, X 2(5)) X 2(5) + X (), t<s<T.
Clearly n(t) = u(t,z) and n(T) = f(Xt2(T)) X (T) + Xi o(T).

Theorem 2.1. Let h and F be such that for any x € IR® there is a solution of the system

(2.5) on the interval [t,T]. Then the variance Var n(T) is equal to

2
Var n(T / Z (Z Uwi +uhd + FJ> ds (2.6)



provided that the mathematical expectation in (2.6) exists.

In particular, if h and F satisfy
d
9 . .
SN ol a4 FI =0, j=1,..,m,
, ox*
i=1
then Varn(T') = 0 and n(s) is deterministic and independent of s € [t,T).

Proof. The Ito formula implies

m d
. ou A . A
dn(s) = X, . (s)(Lu)ds + X .(s) ; (; oo Hull + FJ) dW7(s)

and then by Lu = 0 we have

s m d u . . .
n(s) =n(t) + /t Xoa(s') ) (Z o Sxi +ub? + FJ) AW (s").

Hence, (2.6) follows and the last assertion is obvious. O

Remark 2.1. Clearly, h and F' from Theorem 2.1 cannot be constructed without knowing
u(s,z). Nevertheless, the theorem claims a general possibility of variance reduction by

properly choosing the functions A/ and F7, j =1,...,m.

3 Representations relying on reverse diffusion

In the previous section a broad class of probabilistic representations for the integral
functionals I(f) = [ f(y)p(t,z,T,y)dy, and more generally, for the functionals I(f,g) =
[ 9(@)p(t,y,T,y)f(y)dzdy is described. Another approach is based on the so called
reverse diffusion and has been introduced by Thomson (1987) (see also Kurbanmuradov
et al., 1999, 2001). We here derive the reverse diffusion system in a more transparent and
more rigorous way. The method of reverse diffusion provides a probabilistic representation

(hence a Monte Carlo method) for functionals of the form

I'(9) = [ g(alptt, T, (3.1)
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where ¢ is a given function. This representation may be easily extended to the functionals
I(f,g) from (2.3).

For a given function g and fixed ¢ we define

o(s,y) = / o)t s, ), s>t

and consider the Fokker-Planck equation (forward Kolmogorov equation) for p(¢,x, s,y),

U

33 0

Then, multiplying this equation by g(z) and integrating with respect to x yields the

following Cauchy problem for the function v(s,y):

d
0
Z ayl(?yj s,y)v)iz;a -(a'(s 5>t
v(t,y) = g(y).
We introduce the reversed time variable s = T 4+t — s and define
5(§7 y) = U(T +1t— g7 y)a
aGy) = a(T+t—3y),
VIGEy) = BT +t—3y).
Clearly, v(T,y) = v(t,y) and
o 1 d d
— 7«] o ~
2 Z Z@yﬂ (s,y)v =0, s<T,

Since b = b and so b = b, the PDE in (3.2) may be written in the form (with s
instead of )

d 9~ d

~ ov 1 ; ov
Ly = R —— ! =0, T 3.3
U=ty E_jb (s, y)ayzayﬁr;a(s,y)ay (s,9)7 s<T, (33)
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where
. obY . a%m
1 — o
j=1 1,j=1 =1
So we obtain a Cauchy problem in reverse time and may state the following result.
Theorem 3.1. [*(g) has a probabilistic representation,
I"(g9) = v(T,y) = v(t,y) = E[g(Yiy(T))Vry(T)], (3.5)

where the vector process Y; ,(s) € IR? and the scalar process Vi, (s) solve the stochastic

system

dY = a(s,Y)ds + 5(s,Y)dW (s), Y(t) =y, 56
dy = c(s,Y)Vds, V() =1,

with o(s,y) =o(T +t—s,y) and W being an m-dimensional standard Wiener process.

It is natural to call (3.6) the reverse system of (1.1). The probabilistic representa-

tion (3.5)—(3.6) for the integral (3.1) leads naturally to the Monte Carlo estimator v for

o(T,y),
| M
7= > g (F5m) ), (3.7)
m=1
where ( by ,y )7 m =1,..., M, are independent realizations of the process (Y}yy, yty)

that approximates the process (Y;y,):y) from (3.6).

Similar to (2.4)—(2.5), the representation (3.5)—(3.6) may be extended to

o(T,y) = Eg(Yey(T))Vey(T) + Ve (T)), (3.8)
where Yy (s), Viy(s), Yiy(s), s > t, solve the following system of SDEs,

dY = (a(s,Y) — 5(s,Y)h(s,Y))ds + (s, Y)dW(s), Y(t) =y,
dY = c(s,Y)Vds + h' (s, Y)VdW (s), V() =1, (3.9)

dY = FT(s,Y)YdW (s), Y(t) = 0.
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In (3.9), Y and Y are scalars, h(t,z) € IR™, and F(t,z) € IR™ are arbitrary vector

functions which satisfy some regularity conditions.

Remark 3.1. If system (1.1) is autonomous, then ’51‘3‘7 a', of, 7, and ¢ depend on y only,

b (y) = b (y), a'(y) = a’(y), and so 7(y) can be taken equal to o(y).

Remark 3.2. By constructing the reverse system of reverse system (3.6), we get the
original system (1.1) accompanied by a scalar equation with coefficient —c. By then

taking the reverse of this system we get (3.6) again.

Remark 3.3. If the original stochastic system (1.1) is linear, then the system (3.6) is

linear as well and ¢ depends on ¢ only.

Remark 3.4. Variance reduction methods discussed in Section 2 may be applied to the
reverse system as well. In particular, for the reverse system a theorem analogue to Theo-

rem 2.1 applies.

4 Transition density estimation based on forward-reverse

representations

In this section we present estimators for the target probability density p(¢,z,T,y), which
utilize both the forward and the reverse diffusion system. More specifically, we give two
different Monte Carlo estimators for p(t,z,T,y) based on forward-reverse representations:
a forward-reverse kernel estimator and a forward-reverse projection estimator. A detailed
analysis of the performance of these estimators is postponed to Sections 6 and 7.

We start with a heuristic discussion. Let t* be an internal point of the interval [t,T]].

By the Kolmogorov-Chapman equation for the transition density we have

p(t,z, T,y) = /p(t,x,t*,x’)p(t*,a:’,T, y)da'. (4.1)
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By applying Theorem 3.1 with g(z') = p(t,z,t*,2’), it follows that this equation has a

probabilistic representation,
p(t) $, T7 y) = Ep(t7 $) t*7 Yt*,y(T)) yt*,y(T)' (42)

Since in general the density function 2’ — p(t, z, t*, 2’) is unknown also, we cannot apply
the Monte Carlo estimator v in (3.7) to representation (4.2) directly. However, the key
idea is now to estimate this density function from a sample of independent realizations of X
on the interval [t,¢*] by standard methods of non-parametric statistics and then to replace
in the r.h.s. of (4.2) the unknown density function by its estimator, say ' — p(t, z,t*, 2’).
This idea suggests the following procedure. Generate by numerical integration of the
forward system (1.1) and the reverse system (3.6) (or (3.9)) independent samples Xt(’z) (t*),

n=1,...,N and (Yt(*n;) (1), l(my) (T)), m=1,..., M, respectively (in general different
step sizes may be used for X and Y). Let p(t,z,t*,2') be, for instance, the kernel

estimator of p(t,x,t*,2) from (1.7), that is,

N _(n) * /
p(t,ﬁ,t ,x)—WnE:1K(6 .

Thus, replacing p by this kernel estimator in the r.h.s. of reverse representation (4.2)

yields a representation which may be estimated by

M N (1) (4% - (m)
- 1|1 Xog () =Yy (T)\ m
p(t7$7T7 y) == M [W Z ZK < ty 5 t*y yt(*,y)(T)

m=1n=1

The estimator (4.3) will be called a forward-reverse kernel estimator.

We will show that the above heuristic idea really works and leads to estimators which
have superior properties in comparison with usual density estimators based on pure for-
ward or pure reverse representations. Of course, the kernel estimation of p(t,x,t*,z’) in
the first step will be crude as usual for a particular z’. But, due to a good overall property

of kernel estimators, namely, the fact that any kernel estimator is a density, the impact
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of these point-wise errors will be reduced in the second step, the estimation of (4.2). In
fact, by the Chapman-Kolmogorov equation (4.1) the estimation of the density at one
point is done via the estimation of a functional of the form (4.2). It can be seen that the
latter estimation problem has smaller degree of ill-posedness and therefore, the achievable
accuracy for a given amount of computational effort will be improved.

Now we proceed with a formal description which essentially utilizes the next general

result naturally extending Theorem 3.1.

Theorem 4.1. For a bivariate function f we have

// (t, o, t*, 2 p(t*, y, T, y) f (2, y)dx' dy’
= Ef(Xtx(t7), Y y(T)) Ver (T)]; (4.4)
where X ,(s) obeys the forward equation (1.1) and (Y y(s), Vi y(s)), s > t*, is the
solution of the reverse system (3.6).
Proof. Conditioning on X; ,(t*) and applying Theorem 3.1 with ¢(-) = f(2/,-) for every

7' yields

E (f(Xia(t"), Y y(T)) Ve y(T)) = EE (f(X1,2(t"),Yee y(T)) Ve oy (T) | Xpa(t7))

- / plt,z, ¢, 2) ( / f(m’,y’>p<t*,y',T,y>dy'> da.

O]

Let Xt(z,) (t*), n=1,..., N, be asample of independent realizations of an approxima-
tion X of X, obtained by numerical integration of (1.1) on the interval [¢,¢*]. Similarly,
let ( ( )yt* ( )), m=1,..., M be independent realizations of a numerical solution
of (3.6) on the interval [t*, T]. Then the representation (4.4) leads to the following Monte

Carlo estimator for J(f),

~ M - V, \)
7= oS s (XD v @) v @) (45)
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Formally, J(f) — p(t,z,T,y) as f — Odiag (in distribution sense), where dgiag(z’,7’) =
do(z' —y') and dg is the Dirac function concentrated at zero. So, aiming to estimate the
density p(t,z,T,y), two families of functions f naturally arise. Let us take functions f of

the form

1) = st ) =55 (S50

where 67K (u/d) converge to o(u) (in distribution sense) as § | 0. Then the correspond-
ing expression for J coincides with the forward-reverse kernel estimator p in (4.3). As
an alternative, consider functions f of the form
L
F@ ) = for (@) = wela)puy),
(=1
where {@g, £ > 1} is a total orthonormal system in the function space Ly(IRY) and L is

a natural number. It is known that f, 1 — dqiag (in distribution sense) as L — oo. This

leads to the forward-reverse projection estimator,

N M L L
B = e 0 e (X)) e (VM) VT = Y d A (46)
n=1m=1 ¢=1 (=1

with
L (n) L ¢ (m) (m)
ae= 2w (X)) Fe= a2 D e (V@) YD),
n=1 m=1

The general properties of the forward-reverse kernel estimator are studied in Section 6
and the forward-reverse projection estimator is studied in Section 7. As mentioned previ-
ously, by selecting properly a numerical integration scheme and step size h, approximate
solutions of systems of SDEs can be simulated sufficiently close to exact solutions. There-
fore, in sections 6 and 7 the analysis is done with respect to exact solutions Xy, (s) and
(Y y(8), Vix (). For the impact of their approximations X, ,(s) and (Y ,(s), Vi 4(s))

obtained by the Euler scheme on the estimation accuracy, we refer to Section 8.
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Remark 4.1. If we take t* = T in (4.3) we obtain the usual forward kernel estimator (1.6)
again. Indeed, for t* = T we have )_/T(m) (T') = y and 37%) (T') = 1 for any m. Similarly,

Y

taking t* = ¢ in (4.3) leads to the pure reverse estimator:

M o (m)
~ 1 L= }/t (T) o
Plt,w, Toy) = ooy 3K | ——5—2 ) YD), (4.7)
Mo 0
m=1

It should be noted that the pure forward estimator gives for fixed z and one simulation
sample of X an estimation of the density p(t,z,T,y) for all y. On the other hand, the
pure reverse estimator gives for fixed y and one simulation of the reverse system a density
estimation for all x. In contrast, the proposed forward-reverse estimators require for each
pair (z,y) a simulation of both the forward and the reverse process. However, as we will

see, these estimators have superior convergence properties.

Remark 4.2. In general it is possible to apply variance reduction methods to the estimator

J in (4.5), based on the extended representations (2.4)-(2.5) and (3.8)—(3.9).

5 The explicit analysis of the forward-reverse kernel esti-

mator in a one-dimensional example

We consider an example of a one-dimensional diffusion for which all characteristics of the
forward-reverse kernel estimator introduced in Section 4 can be derived analytically. For

constant a,b, the one-dimensional diffusion is given by the SDE
dX = aXdt+ bdW (t), X(0) ==z, (5.1)

which is known for a < 0 as the Ornstein-Uhlenbeck process. By (3.6), the reverse system
belonging to (5.1) is given by
dY = —aYds+bdW(s), Y(t)=y, s >t, (5.2)

dy = —aYds, Y(t)=1. (5.3)
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Both systems (5.1) and (5.2) can be solved explicitly. Their solutions are given by

X(t) = e (:g +b /0 t e_a“dW(u)>

and

Y(s) = ea(s—) <y + b/ e“(“_t)dW(u)> ,
t

Y(s) = et

respectively. It follows that

Qat_l

t
EX(t)=e"z, VarX(t) = erQGt/ e~20ugy = p2° 5 = o%(t)
0 a

and, since the probability density of a Gaussian process is determined by its expectation
and variance process, we have X (t) ~ N (e®z,c%(t)). The transition density of X is thus
given by,

ea(s t)$ — )2
px(t,z,s,2) = 1(8_t)exp <()> . (5.4)

27‘(0’2 20'2(8 - t)

Similarly, for the reverse process Y we have Y (s) ~ N (e79(s7y, e=20(s=052(s — 1)) and

SO

1 (c=ey — 2)
py(t.y.s,2) = V2re 206052 (s — t) P <_ 2e~2a(s—1) g2 (5 — t))
is the transition density of Y.
We now consider the forward-reverse estimator (4.3) for the transition density (5.4),
where we take t = 0 and 0 < t* < T'. For simplicity, we don’t deal with variance reduction,

i.e, we take h = 0 and F' = 0. It follows that

,aT t*) M N

px(0,2,T,y) 2 éxn =~ D > Kum, (5:5)

m=1n=1
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where

t*
Ky = K(éleat* (x—l—b / ea“dW<">(u)>
0

T —
- 5—le—a(T—t*) <y + b/ ea(u—t*)dW(m) (u)>>
t*
= K (671 (e“t*x — e Ty 4 (Y UP) — =T =) (T — t*)V(m)>) (5.6)

with U and V(™ being i.i.d. standard normally distributed random variables. Note
that in general ¢ in (5.5) and (5.6) may be chosen in dependence of both N and M, so ¢
= 5N,M in fact.

By choosing the Gaussian kernel

K(z) = exp(—22/2), (5.7)

1
V2T
it is possible to derive explicit expressions for the first and second moment of {n s in

(5.5). In particular, for the expected value we have

1 aT . _ )2
Eévm = \/27r (02e20—) 1 02(T)) exp (‘2(5262(:(T3i*) ji)OZ(T))> (5.8)
and for the variance it follows that
Var (§nur) = % exp (—B++2(T)>
+27rMN\/B+U2(T—t*]\)/[\_/lB—&QUZ(T)—UZ(T—t*) oxp (_B+202(T)602(T—t*))
+27rMN\/B+02(T)702(7]“V:t1)\/B+02(T)+02(T7t*) b <_B+02(T)102(T—t*))
+27rM]ff:5(i</TB_j—*2)02(T) xp <_B++2(T)) : (5.9)

with the abbreviations A := (e?Tx —y)?, B := §22*T~*") Since in Sections 6 the forward
reverse kernel estimator will be analysed quite general, we here sketch the derivation of
(5.8) and (5.9) just briefly. It is convenient to use the following standard lemma which we

state without proof.
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Lemma 5.1. Let U be a standard normally distributed random variable and let the kernel

K be given by (5.7). Then,

2
exp (‘fﬁ)
EK(p+qU)= —+(12
2r(1+¢?)

In (5.5) the K, are identically distributed and so (5.8) follows straightforwardly by
application of Lemma 5.1. The variance expression can be derived as follows. We consider
the second moment

—2a T—t*)

M N
E&QV,M M2N2652 Z Z Z E K Ky (5.10)

n=
and split the sum into four parts: n # n’ and m # m/;n =n" and m #m/; n #n’ and m =
m'; n = n’ and m = m’. Then, to each part we apply Lemma 5.1 with appropriate

substitutes for p and g. After collecting the results, (5.9) follows by Var ({nxv) = E 512\{, M
(E&na)?.

Clearly, as in Remark 4.1, substituting ¢t* = T and ¢t* = 0 in (5.5) yields the pure
forward estimator and pure reverse estimator, respectively. In this example the forward

estimator is given by
| XN N
T -1
FZ ZK((ea z—y+o(T) UMY
n=1 n:l
and a similar expression holds for the reverse estimator. The bias and variance of these
estimators may be derived analogously, but, also follow from (5.8) and (5.9) by setting
=Tort*=0.
We now compare the bias and variance of the forward-reverse estimator with the pure

forward estimator. By (5.8) we have for the forward-reverse estimator, i.e. (5.5) with 0 <

t* < T,

eaTxi 2
exp <_( 202(1?))

3702 (T) ) (1+cod? + 0(6%) = px (0,2, T,y)(1 + O(6?),  (5.11)

El{ny =
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where ¢( is a constant not equal to zero. Hence, for a kernel given by (5.7) the bias is of
order O(6%). Obviously, the same is true for the forward estimator.

For the variance of the forward estimator we have

exp <_ (eaTw_y)2> o (_ (eaTx_y)2>
1 §21202(T) 1 p 521 o2(T)
Var ({y) = ) (5.12)

T 21N §\/52 1 20%(T) 2aN 82+ o%(T)

which follows by substituting t* = T in (5.9) where then M drops out. Then, comparison

of (5.9) with (5.12) leads to the following interesting conclusion.

Conclusion 5.1. We consider the case M = N and denote the forward-reverse estimator
for px (0,2, T,y) by v as well. The width § will thus be chosen in relation to N, hence §

= 0n. We observe that

E(éy —px(0,2,T,y))> = Var(én) + (Eéy —px(0,2,T,y))?, (5.13)

where ey := /E(év — px(0,2,T,y))? is usually referred to as the accuracy of the esti-
mation. From (5.11), (5.12), and (5.13) it is clear that for the forward estimator ex | 0
when N — oo, if and only if 0y — 0 and Noy — oo. By (5.11) and (5.12) we have for
the forward estimator

C1
Ny

e2 = ( +c20y)(1+0(1)), Néy— oo and 6y |0, (5.14)

for some positive constants ci, co. It thus follows that the best achievable accuracy rate

2/5 1/5.

for the forward estimator is ey ~ N~“/°  which is attained by taking oy ~ N~

We next consider the forward-reverse estimator which is obtained for 0 < t* < T From

(5.11), (5.9), and (5.13) it follows by similar arguments that

dq do
6%:(N+m+d36jlv)(l+o(l)), N2y — oo and Sy | 0, (5.15)
for some positive constants di, do and ds. So, from (5.15) we conclude that by using the

1/2

forward-reverse estimator the accuracy rate is improved to ey ~ N~/ and this rate may

be achieved by dny ~ NP for any p € [%, 1].



21

Remark 5.1. It is easy to check that for the reverse estimator we have the same accuracy

(5.14) and so the same conclusions as in 5.1 apply.

6 Accuracy analysis of the forward-reverse kernel estimator

in general

In this section we study the properties of the kernel estimator (4.3) for the transition
density p = p(t,x,T,y) in general. However, here and in Section 7 we will disregard the
discretization bias caused by numerical integration of SDE’s and will only concentrate
on the loss due to the particular structure of the new estimators. We thus assume in
sections 6,7 that all random variables involved are due to exact solutions of the respective
SDE’s.

Let r(u) be the density of the random variable X ,(t*), that is, r(u) = p(t, z,t*, u).
Similarly, let g(u) be the density of Y« ,(T') and further denote by p(u) the conditional
mean of YV, (T) given Yi ,(T) = u. By the following lemma we may reformulate the

representation for p in (4.2) and J(f) in (4.4).

Lemma 6.1.

p = /rwmwmwm% (6.1)
() = ](/°f<u,v>r<u>q<v>u<v>chﬁdv. (6.2)

Proof. Equality (6.1) follows from (4.2) by

p = Er(Yey(T)Vey(T) = E [r (Y y(T) E (Vi y(T) | Yi= (T))]

=.Emnwawua%Aﬂ>=/#wmmMWMu (6.3)

and (6.2) follows from (4.4) in a similar way. O
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For a kernel function K(z) in IR? and a bandwidth &, we put f(u,v) = frs(u,v) =

69K ((u—wv)/d) and thus have by Lemma 6.1,

g U — O
Moo = [ [ 5K @) dudo,
which formally converges to the target density p in (6.1) as § | 0. Following Section 4,

this leads to the Monte Carlo kernel estimator

ﬁ:mvzzymK< "5 m):MNZZan (6.4)

n=1m=1

with

Zym =6V K (X”EY’”) :
where X,, := X,SZ,) (t*) € R, n =1,...,N, may be regarded as an i.i.d. sample from
the distribution with density r, the sequence Y,, = 1@&";) (T e RY, m=1,...,M,as an
ii.d. sample from the distribution with the density ¢, and the weights Y, = yt(l” y) (1),
m = 1,..., M, may be seen as independent samples from a distribution conditional on
Y,n, with conditional mean u(y) given Y,, = u. Below we derive some properties of this

estimator.
Lemma 6.2. We have
Ep—ps = //r(u+5v)q(u)u(u)K(v) dudv /r(g(u))\(u)du
with
Au) = q(u)p(u)
and
ro(1t) = (5—d/r(v)K (6~ (v — ) dv = /r(u + 60K (v)dv.
Morcover, if the kernel K fulfills [ K(u)du = 1, K(u) > 0, K(u) = K(—u) for all

u€ R, and K(u) =0 for |u| > 1, then the bias |p — E p| satisfies

lp— Ep| = |p—ps| < Ck|r"||6? (6.5)
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1
with Cx = if\vPK(v)dv - [Aw)du and ||r"|| = sup, [[r"(v)||, where ||r"(v)| is the

2
FEuclidean norm of the matriz " (v) = {afz‘gvj }

Proof. Since all Z,, areii.d., by (4.4) it holds Ep = J(fk,s) = E Znm for every n =

1,...,N,and m=1,...,M. Hence, by Lemma 6.1,
EZy, = 6°°¢ // r(u)g(v)p(v)K (6 (u—v)) dudv
= //T(u + 0v)q(u)p(u) K (v) dudv = ps .

For the second assertion it is sufficient to note that the properties [ K(v)dv =1, [ K(v)vdv =

0, and K(v) =0 for |v| > 1, imply

rs(u) — r(u) /T(U + dv)K (v)dv —r(u) = / [T(U +ov) —r(u) — (5UT’F’(U)} K(v)dv
= /;521;7"”(11 + 6(v)dv)v K (v)dv

1
<SP [ PR,
where |0(v)| <1, and so

Ips — p| < / rs(u) — 7(u) | Mu)du < Crd?||r"|| /)\(u)du.
OJ

Remark 6.1. The order of the bias |ps — p| can be improved by using higher-order
kernels K. We say that K is of order /3 if it holds [ wll . ..uffK (u)du = 0 for all
nonnegative integer numbers ji,...,Jjg satisfying 0 < j1 4+ ...+ jg < (. Similar to the
proof of Lemma 6.2 one can show that the application of a kernel K of order 3 satisfying
[ K(u)du=1, K(u) =0 for |u| > 1, leads to a bias with |ps — p| < C6**!, where C is
a constant depending on r,q and K.

~2

Concerning the variance Varp = E (p — Ep)” of the estimator (6.4) we obtain the

next result.
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Lemma 6.3. It holds

Varp = ﬁé_ng + ]\]4\7]_\/[1 /r(u))\g(u)du + % /rg(u),ug(u)q(u) du
M
where
Bs = /r(;’g(u)ug(u)q(u)du
with

Proof. Since Z,,, and Z,.,, are independent if both n # n’ and m # m/, it follows

that

M) =
NE

2
M?N*Varp = E ( (Zym — p5)> (6.7)

1 1

N M
E (an — p5)2 + Z Z Z (E anan’ - p?i)

1 n=1m=1m'#m

N M
+ Z Z Z(E ZnmZn'm —Pﬁ)-

n=1n'#nm=1

S
I
3
I

[
M=
M=

1

3
I
3
I

Note that for m # m’ we have

E ZpyZpyy = 04 ///K (67 Hu—v)) K (67 (u—")) r(w) M) A(v")du dv dv’
= 51 //K (67w — ) r(w)As(w)A(v) du dv
= /r(u)/\g(u) du

and, similarly, for n # n’ it follows

EZZym = /rg(u)ug(u)q(u) du.
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Further,

EZ2, = 6 M EY2K? (571 (X, — Yn))
= 6B (K? (67 (X — Yi)) E (V2 | Yin))
= 5 // K? (5_1(u —v)) r(u)g(v)p2(v) dudv

= 5d/ug(v)q(v)m72(v)dv

and so we get

5 9Bs—p2 M -1 N -1
Varp = — (/ r(u) A3 (u)du — p§> +ar (/ rs (u)pa(u) g(u)du — p?)
from which the assertion follows. O

Let us define
B= / K2(w)du - / () (1) () . (6.8)

By the Taylor expansion
r(u+ 0v) = r(u) + ov '’ (u) + %(520Tr”(u + 0(v)dv)v,
one can show in a way similar to the proof of Lemma 6.1 that
|Bs — B| =0(5%), §]0.

In the same way we get

‘/r(u))\g(u)du _ /r(u))\Q(u)du ~ 0@, 40,
'/rg(u)ug(u) q(u) du — /rz(u)ug(u) q(u)du| = O(5?), 010
Further, introduce the constant D by
D := /r(u))\z(u)du—i— /rz(u)ug(u)q(u) du — 2p*. (6.9)

Then, from Lemmas 6.1 and 6.3 the next lemma follows.



26

Lemma 6.4. For N = M we have

D ¢°B
Varp—ﬁ— N2

N2 N N2

—d+2 2 1
§C<5+5+>. (6.10)

In particular, if 6 =: 6y depends on N such that Sx,dN_l = o(1) and dy = o(1) as

N — o0, then

D 1
Varp — — :0](\[)’ N — co.

Now, by combining Lemmas 6.2 and 6.4 we have the following theorem.

Theorem 6.1. Let N = M and § = dny depend on N. The following statements hold:
1) If d < 4 and 6N is such that

1
W =o(1) and S5 N = o(1), N — o,
then the estimate D (see (4.3) or (6.4)) of the transition density p = p(t,x,T,y) satisfies

~ . D 1
E(p—p)2 = (ps —p)2 + Varp = ~ + 0](\7), N — o0. (6.11)

Hence, a root-N accuracy rate is achieved (we recall that \/W is the accuracy of
the estimator). Besides in this case the variance is of order N~ and the squared bias is
o(N~h).

2)Ifd=4 and oy = CN—Y4 where C is a positive constant, then the accuracy rate

12 put now both the squared bias and the variance are of order N~!.

18 again N~
3) If d > 4 and 6y = CN—2/U4+d) then the accuracy rate is N~ 4+d)  and both the

squared bias and the variance are of the same order N~8/(4+d)

Proof. Clearly, (6.5) and (6.10) imply (6.11). The conditions 3 N~! = o(1) and N&}, =
o(1) can be fulfilled simultaneously only when d < 4. In this case one may take,
for instance, oy = N~ Ydlog!/? N yielding 5;,‘1]\7_1 = 1/log N = o(1) and Néjlv =
N'=%d10g*? N = o(1). By (6.5) the squared bias is then of order O(5%) = O(N~*?1og"? N)

= o(N7!) for d < 4. The statements for d = 4 and d > 4 follow in a similar way. O
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Remark 6.2. We conclude that, by combining forward and reverse diffusion, it is really
possible to achieve an estimation accuracy of rate N~—1/2 for d < 4. Moreover, for d > 4
an accuracy rate of root-N may be achieved as well by applying a higher order kernel K .

In section 9 we will see that with the proposed choice of the bandwidth §y = N—1/4 logl/ 9\
for d <3 and oy = N~2/(+d) for d > 4, the kernel estimator p can be computed at a

cost of order N log N operations.

Remark 6.3. For the pure forward estimator (1.6) and pure reverse estimator (1.6) it is
not difficult to show that

C1

e =E@{p-p?= <N<5d - cQ(s;*V) (1+0(1)), Oy l0andNé% — oo,  (6.12)
N

where ¢; and ¢y are positive constants. So the best achievable accuracy rate for the forward
estimator is ey = O(N~%/(4+d)) which is obtained by a bandwidth choice y = N~/ (4+d),
Clearly, this rate is lower than the accuracy rate of the forward-reverse estimator which is

basically root-N.

Remark 6.4. In applications it is important to choose the intermediate time t* properly.
In this respect we note that D in (6.9) only depends on the choice of t* and, in particular,
it is not difficult to show that D — oo as t* | t or t* T T. So, by Lemma 6.4, in the
case N = M and d < 4 we should select a t* for which this constant is not too big. In
practice, however, a suitable t* is best found by just comparing for different choices the
performance of the estimator for relatively small sample sizes. For d > 4 and N = M also

the constant B in (6.8) is involved but similar conclusions can be made.

7 The forward-reverse projection estimator

In this section we discuss statistical properties of the projection estimator pP" from (4.6)

for the transition density p(t,x,T,y). First we sketch the main idea.
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Let {¢¢(2), £ =1,2,...} be a total orthonormal system in the Hilbert space Ly(IR?).

For example, in the case d = 1 one could take

1 —u?
(,0“_1(“): WH[(U)e /2, l:O,l,...,

where Hj(u) are the Hermite polynomials. In the d-dimensional case it is possible to
construct a similar basis by using Hermite functions as well. Consider formally for r(u) =

p(t, x,t*,u) (see Section 6) and h(u) := p(t*,u,T,y) the Fourier expansions

r(u) = Z appe(u), h(u) = pre(u), with
=1 =1

avi= [rwewde, = [ hpdwdu
By (2.1), (3.1), and (3.5) it follows that
ar = Eopi(Xe.(t)), (7.1)
Yo = Eoi(Ye y(T) Ve (T), (7.2)

respectively. Since by the Chapman-Kolmogorov equation (4.1) the transition density p =

p(t,z,T,y) may be written as a scalar product p = [ r(u)h(u)du we thus formally obtain

po= D (7.3)
=1

Therefore, it is natural to consider the estimator

L
7 =3 aA (7.4)
=1
where L is a natural number and
1 & 1 Y
Qp:= > eu(Xn), A= i > 0e(Yi)Vm (7.5)
n=1 m=1

are estimators for the Fourier coefficients «y, 7., respectively. For the definition of X,
Y., and Y,,, see Section 6. Note that (7.4)—(7.5) coincides with the projection estimator

introduced in (4.6).
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We now study the accuracy of the projection estimator. In the subsequent analysis
we assume that the originating diffusion coefficients a and ¢ in (1.1) are sufficiently good
in analytical sense such that, in particular, the functions y' — p(t,z,t*,y’) and ¢y’ —
p(t*,y', T,y) are squared integrable. Hence, we assume that the Fourier expansions used
in this section are valid in Ly(IR%). The notation introduced in Section 6 is maintained

below. We have the following lemma.
Lemma 7.1. It holds for every £ > 1
Ba = ar= [redwdu,
Vara; = N !'Var wi(X1) = N1 (/ Lpg(u)r(u)du — a?) =: Nﬁlag’z.

Similarly,

By = 2= [ ewnuatudn

Vary, = M 'VarYip,(Y;)=M" </ iz () o7 (u)q(u)du — ’V?) = M 'y,

where pa(u) := B (V2|Yi = u).

Proof. The first part is obvious and the second part follows by a conditioning argument

similar to (6.3) in the proof of Lemma 6.1. O
Since the @y and the 7,’s are independent, it follows by Lemma 7.1 that
L L
Ep" =E Zaﬁz = Zaew-
(=1 (=1

So, by (7.3) and the Cauchy-Schwarz inequality we obtain the next lemma for the bias

E pP" — p of the estimator pP".

Lemma 7.2. It holds

oo 2 (o] (o]
(Ep —p)° = ( > aeW) < e YA

{=L+1 {=L+1
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By the following result we may estimate the variance of p’”. For convenience, we

restrict ourselves to the case N = M .

Lemma 7.3. Let (L +1)2 < N and the Fourier coefficients oy and ~, satisfy the

conditions

o o
Z ’Oég| < Cl,av Z |’7€| < 01,7 (76)
/=1 =1
max oy, <Chq, max Y2 < Copy. (7.7)
Then we have
N Varp” < C

with C depending on C1,,C24 and Ci,Co only.

Proof. Let us write

L L L L L
Sad=> arye = Y (@r— )@ —v) + Y@ —ve) + Y (A — an)we
=1 =1 =1 =1 =1

= L+ 1)+ Is.

The Cauchy-Schwarz inequality implies

L 2 L L
E()’=E (Z (Ve — w)) < E (Z el D lowel (e — w)z>
/=1 /=1

=1
L
< Cra Y |oulEF —)? < C3,Cay N7
=1
and similarly
L 2
E(L)’=E (Z Ye(@p — az)) < CP CoaNTL
=1

The Cauchy-Schwarz inequality and independence of the ay’s and the 7,’s imply

L L L
(=

2
E(L)=E (Z(ae —ag)(3e — ’Ye)) < E) (- a)’E Y (e—)’

—1 1 —1
< C2aCay(L+1)°N72 < CyqCoy N7
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Hence,

Varp” = B (I + I+ 1;) < (VEDP + VEGE + VEGR) <

={le

with C = 3(0127040277 + 0127702,0( + 02@02,7). O
Application of lemmas 7.2 and 7.3 yields the following theorem.

Theorem 7.1. Let the Fourier coefficients ay and ~yp satisfy the condition

S oapehlt<cr N gt < 2 (7.8)
/=1 /=1

with 3> d/2 and let condition (7.7) hold true. Let also L = Ly fulfill L% /N = o(1),
NLJ_\,w/d =0(1) as N — oco. Then, for the accuracy of the estimator pP" with N = M
we have

E (7 —p)’ < ONL.

Proof. Clearly,

oo o
>l S(L+1)70 N 0t < cinm,
=L+1 =L+1

Similarly, 52, .77 < C’%L‘Qﬁ/d and so

o 2
N ( Z a[yg> < C’gC,%NLiM/d = o(1).
{=L+1

Next,

L 2 L L L
(Z |Oég‘> <Y PPN < 2N 0 < G2y
/=1

/=1 /=1 /=1

with Cg = S0, £729/1 < o0, Similarly

L 2
(Z mr) < C2Cy
=1
and thus condition (7.6) holds with C1 , = Can/z and C 5 = C'WC';/% Now the assertion

follows from Lemma 7.3. OJ
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Remark 7.1. In Theorem 7.1, § plays the role of a smoothness parameter. Indeed,
for a usual functional basis such as the Hermite bases, condition (7.8) is fulfilled if the
functions 2’ — p(t,x,t*,2’) and 2’ — p(t*,2',T,y) have square integrable derivatives up
to order 8. For 3 =2, the conditions L%,/N = o(1) and NL;m/d = 0(1) can be fulfilled
simultaneously only if d < 4, so we then have a similar situation as for the kernel estimator
in Section 6. In general, if (7.8) holds for § > d/2, one may take Ly = (N log N)%/(45)
in Theorem 7.1 thus yielding L%/N = N1/ (26) 1694/ (28) N — o(1) and NLJ_\,w/d =
log”! N = o(1). However, with respect to sufficiently regular basis functions (e.g. Hermite
basis functions) condition (7.8) is fulfilled for any 3 > d/2 when the densities p(¢,z,t*, 2’)
and p(t*,2',T,y) have square integrable derivatives up to any order. So, according to
Theorem 7.1, one could take Ly = O(N7) for any 0 < 7 < 1/2 to get the desirable
root-N consistency. If, moreover, the coefficients ay and -, decrease exponentially fast
so that >, ape® < oo and Y, v < 0o for some positive ¢ (which corresponds to the
case of analytical densities p(t,z,t*,2') and p(t*,2',T,y)), then even Ly = O(log N)
Fourier coefficients provide a negligible estimation bias (see Pinsker (1980)) thus leading
to root-N consistency again. Generally it is clear that properly choosing Ly is essential

for reducing the numerical complexity of the procedure, see Section 9.

Remark 7.2. The conditions of Theorem 7.1 are given in terms of the Fourier coefficients
ay and vy . We do not investigate in a rigorous way how these conditions can be transferred
into conditions on the coefficients of the original diffusion model (1.1) and the chosen
orthonormal basis. Note, however, that in the case of e.g. the Hermite basis, both (7.7)
and (7.8) follow from standard regularity conditions. For instance, when the coefficients of
(1.1) are smooth and bounded, their derivatives are smooth and bounded, and the matrix
i

o(s,z)o ' (s,z) is of full rank for all s,z.
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8 Estimation loss caused by numerical integration of SDE’s

In this section we analyse the estimation loss of the kernel estimators due to application
of the Euler scheme. Let X := X;.,(t*,h) and (V,Y) := (Y (T, h), Vi (T, h)) be an
approximation of Xy ,(t*) and (Y= (1), Vi 4(T')), obtained by applying the Euler scheme
to the systems (1.1), and (3.6), respectively. Let 7#(u) be the density of the random variable

X, so 7(u) = pp(t,z,t*,u). Let further g(u) be the density of Y and denote by ji(u) the

conditional mean of ) given Y = u. Instead of (6.4) we now consider the estimator

1 N M ~ X _ }7 1 N M -
P sy 2 2 Ik ( . ) = 3w 2 2 Zon (8.1)
where
7. iy I (Xngym)

with X, n = 1,..., N and (Y, Ym) m = 1,..., M being independent realizations of X

and (Y,)), respectively. We thus have

Ep=EZ,, = 5d//r(u)q(v),u(v)K(51(u —v)) dudv
_ / / F (4 00)(u)i(u) K (v) dudy

— [ Bttt e, where (8:2)

7s(u) == / 7(u + 60) K (v) dv.

Due to the result of Bally and Talay (1996b) (see (1.4) we obtain
|7s(u) — rs(u)| < Kh, (8.3)
uniform in v and J for some positive constant K. Hence for some K > 0,

|ED — /r(;(u)q(u)u(u) du| < Kih. (8.4)
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uniform in 4. Further we have

/ ra(w)g(u)i(u) du = Er5(¥). (8.5)

It is not difficult to show that rs(u) has derivatives which are uniformly bounded with

respect to §. Therefore, since the Euler scheme has weak order 1, we have for some Ky > 0,

|Ers(Y)Y — Ep| < Ksh, (8.6)
uniform in §. Combining (8.4)-(8.6) yields

|Ep — Ep| < Ksh, (8.7)

uniform in § for some K3 > 0 and then by Lemma 6.2 we get
Lemma 8.1. The estimation loss |ED — p| satisfies

|ED — p| < K46* + Ksh,
for some positive constants Ky, K5 independent of § and h.

We now proceed with estimating Var p. For Var p we obtain an expression similar to
(6.6) by replacing ps in (6.6) with ps := Ep and throughout Lemma 6.3 the quantities
T,T5, 75,2, q, 12, A\, A5, Bs by their corresponding analogies 7, 75, 7's.2, , [l2, X\, \;, Bs defined
with respect to the random variables X and (Y,)). Analogue to the proof of (8.7) it

follows that for some positive constants C, Cy,

|Bs — Bs| < Ch and |/r§(u),u2(u)q(u) du — /r?(u)ug(u)q(u) du| < C1h,

uniform in d. From our boundedness assumptions in Section 1, it follows that c(s, y) in (3.6)
is bounded (see (3.4)). As a consequence, Y+, (T) is bounded and so exists a constant

(5 > 0 such that for every h and u,

|i(u)] = [E (Vi y(T) | Yer (T) = )| < Ca.
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Therefore,
As(u)] = | /q(u + 6v)i(u + 6v) K (v) dv| < Cg/q(u + dv) K (v) dv (8.8)

for some C3 > 0 and all u, h, J.

By Bally and Talay (1996b) again, q(u) — ¢(u) = O(h) uniform in wu, hence, \s(u) is
uniformly bounded with respect to u, h and 6 and so [ 7(u)A%(u)du is uniformly bounded
with respect to h and . Now, from Lemma 6.3 and the above arguments the following

result is obvious.

Lemma 8.2. There exists positive constants Cy and Cs, not depending on h and 9, such

that for N = M,

Cy Cs

Varﬁg NT(SCI‘{‘W

(8.9)

It should be noted that Lemma 6.4 is more refined compared to Lemma 8.2 in the sense
that it gives some kind of expansion of Var p. Nevertheless, it is clear that Lemma 8.1 and

Lemma 8.2 are sufficient to get the following main theorem.

Theorem 8.1. For M = N and positive constants D, D1, Dy, D3 we have

Dy D

E (D —p)2 < D6+ Dh? =,
(p—p)* < D&* + 1h+N25d+N

(8.10)

Let us take 6 = 6y as in Theorem 6.1. Then it is clear from Theorem 6.1 that for
d < 4 and h = O(N~1/2) the accuracy of the estimator p is O(N~/2) and for d > 4 and
h = O(N—%@+d) the accuracy of p is O(N~%“+4)), Hence by properly choosing h in

dependence of N the accuracy rates for p and p coincide.

Remark 8.1. For the pure forward estimator (1.7) (and the pure reverse estimator cor-

responding to (4.7)) similar arguments (even much simpler) give

. D
E (p—p)® < D4h® + Dso* +

N% (8.11)

for some positive constants Dy, D5, Dg. For comparison see also Remark 6.3.
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Remark 8.2. The assertions of this section are derived only for the Euler method in
the strong sense since we essentially use the results of Bally and Talay (1996b). Most
likely they remain true in the context of methods of numerical integration in a weak sense.

However, this requires additional investigations.

Remark 8.3. Without proof we note that for the projection estimators similar conclusions

can be made with respect to the estimation loss due to application of the Euler scheme.

9 Implementation of the forward-reverse estimators, com-

plexity of the estimation algorithms, numerical examples

In the previous sections we have shown that, both, the forward-reverse kernel and projec-
tion estimator have superior convergence properties compared with the classical Parzen-
Rosenblatt estimator. However, while the implementation of the classical estimator is
rather straightforward one has to be more careful with implementing the forward-reverse
estimation algorithms. This especially concerns the evaluation of the double sum in (4.3)
for the kernel estimation. Indeed, straightforward computation would require the cost of
MN kernel evaluations which would be tremendous, for example, when M = N = 10°.
But, fortunately, by using kernels with an in some sense small support we can get around

this difficulty as outlined below.

Implementation of the kernel estimator and its numerical complexity

We here assume that the kernel K(x) used in (4.3) has a small support contained in
|Z|max < /2 for some o > 0, where |2|max := maxj<;<q|z’|. This assumption is easily
fulfilled in practice. For instance, for the Gaussian kernel, K (z) = (27)~ %2 exp(—|z|?/2),

which has strictly speaking unbounded support, in practice K (x) is negligible if for some
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i, 1 <i<d, |z;| > 6 and so we could take for this kernel o = 12. Then, due to the small
support of K, the following Monte Carlo algorithm for the kernel estimator is possible.
For simplicity we take t = 0, t* = T'/2 and assume N = M. For both forward and reverse
trajectory simulation we use the Euler scheme with time discretization step h = T'/(2L),

with 2L being the total number of steps between 0 and 7.

Monte Carlo algorithm for the forward-reverse kernel estimator (FRE simulation)

e Simulate N trajectories on the interval [0,#*], with end points {X™(t*) : n =

1,...,N}, at a cost of O(NLd) elementary computations;

e Simulate N reverse trajectories on the interval [t*, T, with end points {(Y (™) (T)), Y(™)(T)) :

m=1,...,N} at a cost of O(NLd) elementary computations;

e Search for each m the subsample
(XY k=1, L) = {X® @) : n=1,...,N}n{z: |z=Y "™ (T)| ez < adn}.

The size I,,, of this intersection is, on average, approximately N4 x {density of X (t*)
at Y™ (T)}. This search procedure can be done at a cost of order O(N log N), see
for instance Greengard and Strain (1991) where this is proved in the context of the

Gauss transform;

e Finally, evaluate (4.3) by

e ZZK LX) () = Y (1)) YT,

N m=1k=1

at an estimated cost of O(N?6%).

For the study of complexity we use the results in Section 6. We distinguish be-

tween d < 4 and d > 4. For 1 < d < 4 we achieve root-N accuracy by choosing dy =
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(N/log N)~Y? 1In practice, the number of discretization steps 2L (typically 100-1000) is
much smaller than the Monte Carlo number N, which is typically 10° - 10°. Therefore, as
we see from the FRE algorithm, with 6y = (N/log N)~!/¢ the FRE simulation requires a
total cost of O(N log N). Hence, the aggregated costs for achieving ey ~ 1/v/N amounts
O(N log N) which comes down to a complexity C**"" ~ |loge|/e2. For d > 4 we achieve
an accuracy rate ey ~ N~ by taking dy = N_4+Ld, again at a cost of O(Nlog N). So
the complexity C**™ is then of order O(]loge| /a%d). For comparison we now consider
the classical estimator. It is well known (see also Remark 6.3) that for N trajectories the
optimal bandwidth choice is oy ~ N 7ﬁ, which yields an accuracy of ey ~ N ~Ta. The
costs of the classical estimator amounts O(N) and thus its complexity C£@%* is of order
O(1 /5#). By comparing the complexities C. and C%% it is clear that the forward-
reverse kernel estimator is superior to the classical Parzen-Rosenblatt kernel estimator for

any d.

Complexity of the projection estimator

From its construction in Section 7 it is clear that the evaluation of the projection estimator
(4.6) requires a cost of order O(LyN) elementary computations. Just as for the kernel
estimator, we now consider the complexity of the projection estimator. In Remark 7.1 we
saw that if condition (7.8) is fulfilled for a smoothness 3 with 5 > d/2, we may choose Ly
— (N'log N)¥“8) which yields a complexity CP"(e) of order O(log¥“d) |g|/e2+d/(20)),
If, moreover, the Fourier coefficients «y and 7, decrease exponentially then, (see Re-
mark 7.1) we get root-N accuracy by taking Ly = log N and so we obtain a complexity
of order CP™J(g) = |loge|/e? for any d. Obviously, compared to the classical estimator,

the projection estimator has in any case a better order of complexity.
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Remark 9.1. For transparency, the complexity comparison of the different estimators
above is done with respect to exact solutions of the respective SDE’s. Of course when
Euler approximations are used, the discretization step h must tend to zero as well when
the required accuracy ¢ tends to zero. However, it is easy to see that also with respect to

approximate Euler scheme solutions the same conclusions can be made.

Numerical experiments

We have implemented the classical and forward-reverse kernel estimator for the one di-
mensional example of Section 5. We fix a = —1, b = 1 and choose fixed initial data ¢t = 0,
r=1,T=1,y =0, for which p = 0.518831.

Let us aim to approximate the ”true” value p = 0.518831 with both the forward-reverse
estimator (FRE for short) and the classical forward estimator (FE for short). Throughout
this experiment we choose t* = 0.5 and M = N for the FRE and the FE is simply
obtained by taking t* = 1. For the bandwidth we take 64F = N-Y5 and SR = N=1
yielding variances U%E ~ C1N4/5 and U%RE ~ CoN~!, respectively. It is clear that
org may be estimated directly from the density estimation since the classical estimator
is proportional to a sum of N independent random variables. As the forward-reverse
estimator is proportional to a double sum of generally dependent random variables it is,
of course, strictly not correct to estimate its deviation in the same way by just treating
these random variables as independent. However, the result of such an, in fact, incorrect
estimation, below denoted by ¢*, turns out to be roughly proportional to the correct
deviation oprp. To show this we estimate oprp for N = 102,103, 10%, respectively,
by running 50 FRE simulations for each value of N and then compute the ratios x :=
oprp/o*, see Table 1. The SDEs are simulated by the Euler scheme with time step

At = 0.01.
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Table 1: 50 FRE simulations

N OFRE o* K

102 | 0.068 | 0.050 | 1.4

103 | 0.021 | 0.015 | 1.4

10* | 0.007 | 0.005 | 1.4

So, in general applications we recommend this procedure for determination of the
ratio K which may be carried out with relatively low sample sizes and allows for simple
estimation of the variance a% rp- I, for instance, we define the Monte Carlo simulation
error to be two standard deviations, the Monte Carlo error of the forward-reverse estimator

may be approximated by 2xko*.

In this article we did not address the time discretization error due to the numerical
scheme used for the simulation of the SDEs. In fact, this is conceptually the same as
assuming that we have at our disposal a weak numerical scheme of sufficiently high order.
We note that if a relatively high accuracy is required in practice, the Euler scheme turns out
to be inefficient, as it involves a high number of time steps which yields in combination
with a high number of paths a huge complexity. Fortunately, in most cases it will be
sufficient to use a weak second order scheme, for instance, the method of Talay Tubaro
(1990). The application of this method comes down to Richardson extrapolation of the
results obtained by the Euler method for time step 2At and At, respectively. However,
we have to take into account that the deviation of this extrapolation, and so the Monte
Carlo error, is /5 times higher. In the experiments below we compare the forward-reverse
estimator with the classical one for different sample sizes. For both estimators FRE and
FE we use the weak order O((At)?) method of Talay-Tubaro with time discretization

steps At = 0.02 and At = 0.01. From Table 2 it is obvious that for larger N the forward-
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Table 2: True p = 0.518831

N | FRE |20pgp | 02pgN | (sec.) | FE | 20pp | 02 NY® | (sec.)
10 | 0.522 | 0.031 | 2.40 2 0.524 | 0.036 | 0.51 2
10° | 0.519 | 0.010 | 2.50 20 0.515 | 0.016 | 0.64 18
109 | 0.5194 | 0.0031 | 2.45 203 || 0.5164 | 0.0064 | 0.65 183
107 | 0.5193 | 0.0010 | 2.50 2085 || 0.5171 | 0.0026 | 0.68 1854

reverse estimator gives a higher Monte Carlo error than the pure forward estimator while
the computational effort involved for the FRE is only a little bit larger. For example,
the FRE gives for N = 10° almost the same Monte Carlo error as the FE for N = 107.
Moreover, due to the choice 6y = N~! in the FRE, the bias of the FRE is O(N~2) and so
negligible with respect to its deviation being O(N~1/2). Unlike the FRE, with the usual
choice 0y = N—1/5 the bias of the FE is of the same order as its deviation and so its

overall error is even larger than its Monte Carlo error displayed in Table 2.
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