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Summary: We propose a new method of nonparametric estimation which is based on locally
constant smoothing with an adaptive choice of weights for every pair of data-points. Some
theoretical properties of the procedure are investigated. Then we demonstrate the performance
of the method on some simulated univariate and bivariate examples and compare it with
other nonparametric methods. Finally we discuss applications of this procedure to magnetic

resonance and satellite imaging.
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1 Introduction

In this paper we introduce a new locally adaptive method for two and three dimensional image
processing, i.e. image denoising and image enhancement. This method can be applied if the
underlying structure can be well approximated by a local constant function. Such images meet
in several fields, e.g. from satellite imaging, x-rays, ultrasound or magnetic resonance imag-
ing. Usually these images will suffer from distortions, leading to the problem of recovering the
underlying structure of the image. Often interesting structures correspond to discontinuities
in the image, i.e. procedures used in this context should both reduce distortions as well as
preserve discontinuities. Classical nonparametric regression procedures are based on smooth-
ness assumptions about the underlying function which are not fulfilled in the neighborhood
of discontinuities. This leads to so called oversmoothing of the function in such regions. In
univariate situations several proposals exist how to overcome this problem, see e.g. Miiller
(1992), Speckman (1994), Wu and Chu (1993) for procedures based on change point detection,
or Banerjee and Rosenfeld (1993) for maximum a posteriori estimation.

The generalization of this idea to the multidimensional case leads to the edge estimation
problem. This problem is studied in details in Korostelev and Tsybakov (1993) where the

optimal rate of edge estimation is established for the case of an image with the structure of a
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boundary fragment. The reader can find further references there. Unfortunately the proposed
procedures are based on some quite restrictive assumptions like the structure of a boundary
fragment. Another inconvenience is that the methods and results apply only to the case of a
random or jittered design which rarely meets in practice.

A large class of methods commonly used in this context is based on Markov random field
models (MRF), see e.g. Besag (1986), Geman (1990) or Winkler (1995). A concurrent ap-
proach, used especially in image segmentation, is based on recursive partitioning and merging
procedures. This class contains CART, see Breiman et al. (1984), or the region based seg-
mentation method of Bose and O’Sullivan (1997). Wu (1993) discussed similar ideas based on
testing homogeneity for subimages.

There exist other methods which estimate the image directly without estimating edges
but which still pay special attention to the quality of estimation near edges. We mention
modal regression, see e.g. Scott (1992), the nonlinear Gaussian filter, see Godtliebsen et al.
(1997), the M-smoother of Chu et al. (1998) and different proposals based on wavelets, see e.g.
Nason and Silverman (1994), Engel (1994) or Donoho (1997) and references there. One more
approach in this direction was proposed recently in Polzehl and Spokoiny (1998). The method
can be viewed as a multidimensional analog of the procedure from Spokoiny (1998) assigned
to estimation of a univariate function allowing jumps or jumps of derivatives. The idea is to
estimate the regression function separately at each design point using a locally constant (or
locally polynomial) modeling with an adaptive choice of a neighborhood (a window) from a large
class of neighborhoods in which the applied model fits well the data. An inconvenience of this
approach is that the class of considered windows has to be really large to get a reasonable quality
of estimation. This makes the procedure difficult to realize and computationally intensive.

In this paper we modify this idea. Namely we do not specify the class of considered
windows but we determine in a data-driven way the form of the neighborhood around the
point of interest z in which the function f can be well approximated by a constant. A similar
idea was discussed in Tsybakov (1989) but the proposed method uses essentially some prior
information about the structure of the image and about the image values within each region.

Our method, which in the sequel will be referred to as adaptive weights smoothing (AWS),
is fully adaptive, that is, no prior information is required. It is important to remark that the
method does not depend on the dimensionality of the image and can be applied to smooth
three and even higher dimensional images as well.

The AWS procedure is assigned for image estimation and can in general be applied to an
arbitrary image. However, successful applications of the proposed method can be expected in

situations when the image contains large homogeneous regions, not necessary connected and



of may be complicated shape.

The further discussion and the precise description of the procedure are placed in Section 2.
In Section 3 we study some theoretical properties of our method. Section 4 provides a simulative
comparison with several alternative procedures for univariate and bivariate situations. Finally
Section 5 describes an application of our method to Magnetic Resonance Imaging and Satellite

Imaging.
1.1 Model

The model can be described as
Yi=f(Xi)+e X;€ Rd, Ee; =0, Varg; = o (1)

Here Xi,...,X, are design points which are usually assumed to be equispaced in the unit
cube [0,1]%. E and Var denote expectation and variance, respectively. At each point X; we
observe the regression function f(X;) with some additive error ¢;. We suppose the errors ¢; to
be independent identically distributed zero mean random variables with unknown distribution.

The regression function f is supposed piecewise constant. This means that the unit cube

[0,1]¢ can be split into disjoint regions Ay,..., Ay and
M
flz) =" aml(z € Ap) (2)
m=1
where ay,...,aps are some numbers, e.g. gray levels in an image, and 1 stands for the indicator

function. Obviously the function f is constant within each region A,,. The regions A,, . the
values a,, and even the total number of regions M are unknown. Clearly such an assumption
on the underlying structure is valid for an arbitrary image, since each region A,, may consist
of one point. However, an application of the procedure proposed below seems to be reasonable
for situations where the underlying image really contains large homogeneous regions. When
studying theoretical properties of the method proposed we impose some additional assumptions

on the size of these regions.

2 Adaptive weights smoothing

In this section we present our estimation procedure.We start with some heuristic explanation.

2.1 Preliminaries

The problem of estimating the function f of the form (2) can be treated as follows: to recover

the values ay,...,ap and to decide for each point X; in which region A,, it is.



To explain the idea of the method, we imagine for a moment that the regions Aq,..., Ay

are known and only the values a,, are to be estimated. This leads to obvious estimates

- 1

m = N—Am XieZAm Y;
where N, denotes the number of design points in A4,,, m =1,..., M. Then we simply set
f(XZ) equal to the mean a,, of Y;’s over the region A,, containing X;. Therefore, given a
partition Aq,..., Ay, we can easily estimate the underlying function f.

Next we consider the inverse situation when the partition Ai,..., Ay is unknown but we
are given a pilot estimate ﬁ] of the regression function f. It is natural to use this estimate to
recover for every point X; the corresponding region A,, . Namely, for each pair of points X;
and X;, we know, if the value \ﬁ)(XZ) - ﬁ](Xj)\ is large compared with its standard deviation
then these two points are almost definitely in different regions. We therefore, for every design
point X;, estimate the region A,, containing X; by

~

AX,) = {X; : fo(Xs) — fo(X;)| < XGo(Xi)}

where o¢(X;) is the standard deviation of ﬁ)(Xi) and ) is some number.

Using these estimated regions, we define a new estimate fl by

XY S (X X)Y)

n X;EA(X)) j
X;) = =
f1(Xi) NK(Xi) %:’U)l(Xi,Xj)
with
wi (X, X5) = 1 (1foX0) = folXy)| < A0(xX2)) (3)

We can repeat this calculation using fl in place of fo and so on.

Our adaptive procedure mostly realizes this idea with two modifications. First of all, at
each iteration k, we restrict the estimated region Z(XZ) to some local neighborhood Uj(Xj;)
of the point X; such that the size of Uy(X;) grows with k. Secondly we use continuous
weights wy,(X;, X;) instead of zero-one weights in (3).

Finally, to stabilize the procedure, we also add a control step, comparing the new estimate
with the estimates from preceding iterations.

Now we present a formal explanation of the method starting with a description of the input
parameters of the algorithm. Our recommendations for a default choice of these parameters

and for a data-driven selection are given in Section 3.3 and 3.4.
2.2 Parameters of the procedure

The most important element of the procedure is an increasing sequence of neighborhoods

around each design point.



For each design point z, we assume to be given a sequence of neighborhoods Uy(z), k =
0,1,...,00 with Ug(z) C Ugy1(x) containing z. One reasonable choice of these neighborhoods
Uk(x) is Ug(z) = {X; : |X; — z| < di} with di being a sequence of increasing radii. Another
possibility is to define Ug(z) as the set of the Ny nearest neighbors of xz, where N is an
increasing sequence of integers. In the sequel, Ni(z) denotes the number of design points X;
in Ug(r),

Ni(z) = #{X; € Ug(z)}.

Parameter £* denotes the maximal index of neighborhoods used.

The procedure involves numerical parameters A and n which are used as critical values
for tests entering in the adaptation and the control steps.The role of these parameters and
recommendations for their choice are discussed in Section 3.3 and 3.4.

We fix a univariate kernel K satisfying usual conditions: it is a symmetric smooth function
with the maximum at zero and nonincreasing on the positive semiaxis. We assume the kernel
to be integrable, i.e. [ K(z)dz < co.

2 is unknown and an estimate 52 can be obtained

In most applications the noise variance o
from the data, see e.g. Gasser et al. (1986) or Wu and Chu (1993) for different proposals. A

general form of such estimates is

where pseudo-residuals ¢€; are defined on the base of the difference Y; — f(XZ) with a local re-

~

gression estimate f(X;). Pseudo-residuals can also be defined using differences of observations.
In the univariate case one can use either & = v2(Y; —Y; 1) or & = V6 (=Y; | +2Y; — Y;;)

and in the two-dimensional case

/é\il:i2 = \/6{2Yil,i2 - Yi1+1,i2 - Yil,i2+1} or
/e\il,iQ = v20 {4}/;1,1'2 - (Y;lJrl,iQ + }/;1*1,2'2 + Yil,i2+1 + Yil,hfl)} .

In case of a complicated underlying image structure, an estimate based on the inter-quartile-
range 0 = (t750 — tosy)/1.35, with fo50, and t7594 being the .25- and .75-quantile of the
empirical distribution of the pseudo-residuals, is preferable.

For some further discussion concerning the variance estimation, see Section 3.4.

2.3 The procedure

We begin with an initialization.



~

Initialization: For each point X;, we calculate initial estimates of f(X;) and Var f(X;) as

X]‘EUo(Xi)
~2
L o
(X)) = No(X;)
I3

and set k = 1. Here 52 is the variance estimate defined previously.

Adaptation: Compute weights wy,(X;, X;) as

wn(X X;) = K (ﬁl(xi) - fkl(xj)>

ASp—1(X3)

for all points X; in Ug(X;) and compute new estimates of f;(X;) and Var ﬁg(X,) as

Y wi(X, X;)Y;

Tovay . NiEUR(Xi)
X;eUp(Xs)
82X UZ(X)U)]%(XZ,X])

~ i€ i

Si(X) = — 2 (6)
X;€U,(X;)

for all X;.

Control: After the estimate fk(Xl) is computed, we compare it with the previous estimates

fiw(X;) at the same point X, for all k' < k. If there is at least one index k' < k such that

Je(Xi) = Fuo(X3)| > i (X))

then we do not accept ﬁc(Xl) and keep the estimates fk_l(Xi) from the preceding iteration.
This means that in such a situation we replace ﬁc(Xz) and S (X;) by fk_l(Xi) and Sg_1(X;),
respectively. It is worth mentioning that this control step alone can be used to construct an
adaptive estimate, see Lepski, Mammen and Spokoiny (1997) or Lepski and Spokoiny (1997).
Stopping: Stop if & = k* or if ﬁg(X,) = ﬁ,l(Xi) for all i, otherwise increase k by 1 and

continue with the adaptation step.

3 Properties and computational details

Because of the iterative and complex nature of the algorithm theoretical properties are ex-
tremely difficult to obtain in a general situation. We consider two specific cases which are of
the most interest. The first situation corresponds to estimation inside a large homogeneous

region and the second one to estimation near an edge.



For simplicity we assume homogeneous Gaussian noise with known variance o?. We also
consider the uniform kernel K(z) = 1(|z| < 1). All properties can be easily extended to the

case of a continuous kernel K .

3.1 Estimation inside a homogeneous region

We study an idealized situation where the underlying image function is constant, f(z) = a.
For simplicity we also assume that each neighborhood Ujy(X;) contains exactly Nj design
points where Nj is a prescribed increasing sequence. We aim to show that in this situation

~

our estimate is, with a very large probability, also a constant and the deviations f(X;)—a are
of order n~1/2.

In the next statement we need an estimate for the sum Ny + ...+ Ng«. Since the sequence
Ny, typically grows exponentially, this sum is of order Ng«. Also we assume that Ng« = n,

that is, we stop when the largest possible neighborhood is taken. This leads to the bound

Ni+ ...+ N <Cn (7)

with some C > 0.

Proposition 3.1 Let f(z) = a and \? > (2 + 6)log(n) with some & > 0. Then for all
k <k* and all pairs X; and X; € U

P (wy,(X;, X;) =0 for some k <k* and i # j) < v+

with
Vi = exp{—\?/4}n?C/2 + exp{—n*/2}nk* (k* + 1)/2

and C s from (7).

We defer the proof of this and the next proposition to the appendix.
The quantity 7+ is small provided that A\? > (8+6§)logn and n? > (2+4§) logn with some
constant § > 0. Then with a probability of at least 1 — -y« all estimates ﬁ*(Xl) coincide

with the mean values of all observations Y .

3.2 The case of many regions

Now we discuss the situation when there are more than one regions. To simplify the presenta-
tion, we suppose that there are only two large regions A; and As in the image and hence the
function f has only two values a; and as. The result allows straightforward generalization

to the case of many regions.



By a = |a; — az| we denote the image contrast. We also denote by AS the set of points

X; in each region A,, for which the initial neighborhood Uy(X;) belongs completely to A, ,
A;in = {Xz : U[](XZ) C Am}, m=1,2.

We intend to show that if the image contrast is sufficiently large compared to the noise level
then we typically get wy(X;,,X;,) =0 for all pairs (X;,,X;,) with X; € A and X;, € A9
and for all £ >1.

Proposition 3.2 Let f(z) = a11(x € A1) + a2l(z € A2). Then it holds
wi(X;, X;) =0, VX; € A}, X; € A5, and Yk <k”,
with a probability greater or equal to
1 —0.5Cn? exp {— (0*1N01/2\a1 —ag| — 277)2 /4}
where C is from (7) and Ny is the number of points in the initial neighborhood.
We know from Proposition 3.1 that a proper choice of 5? is (24 §)log(n). Therefore, if
U_INUI/2|a1 —ag| > 4n

the probability of wy(X;, X;) = 0 for any two points X;, X; from the same region can be
bounded by n?exp{—n?}. If n sufficiently large, this probability is again very small.

The results of Propositions 3.1 and 3.2 lead to the following conclusion. Let a point X;
lie inside a large region and let for all j € Uj41(X;) the neighborhood Uy(X;) belong to the
same region. Then according to Proposition 3.1 all weights wy1(X;, X;) are 1 and hence the
estimate fi,1(X;) is very close to the mean of observations over Uy 1(X;). Such an estimate is
unbiased and its variance is of order 0?/Ny1(X;). Moreover, the control step guarantees that
further iterations do not lead to an essential decrease of the accuracy of estimation. Therefore,
inside every large region, the estimate should perform quite well.

At the same time, for points near an edge, the probability to assign a weight w(X;, X;)
of 1 for two points X;, X; from different regions could be quite high. This leads to a larger
bias in estimating the image function especially when the image contrast is small compared
to the standard deviation of the errors, see Proposition 3.2. It can be also shown that the
procedure delivers the rate optimal quality of edge recognition in the sense discussed in Polzehl
and Spokoiny (1998). This issue is also in agreement with simulation results, see the next
sections.

For weights equal 0 or 1 and for a particular iteration k the estimated regions of homogeneity

A\(XZ) are restricted to a local neighborhood Uy (X;). Therefore these regions strongly depend



on the point X; and do not yield a segmentation of the data domain. But, if the noise is small
compared to the image contrast, then due to Proposition 3.1 and 3.2, for a point X; lying in a
region A,,, we get with a high probability at k-th iteration zzl\k(Xi) = A, NUR(X;). In such
case, for sufficiently large k*, we have A,, N Uy« (X;) = Ay, . Hence zzl\k(Xi) = A, for all X;
in A,,. For a large noise, these arguments do not apply. Both issues are again in agreement

with our simulation results, see Section 4.

3.3 Computational issues

Now we discuss how the parameters of the procedure can be selected and indicate one possible
default choice used in our simulations. Although this choice involves some arbitrariness we
observe that moderate changes of the parameters lead to essentially similar results. A way for

a data-driven parameter choice, used in our examples, is also presented.

Size of Uy: The size Ny(X;) is important in the context of image recognition and edge
estimation, see Proposition 3.2. For the cases with contrast-to-noise ratio a/o > 2, the choice

Ny =1 can be advised. Here « is the (minimal) image contrast,

a = min{|ay — am|, m #m', am # ap}.

For smaller contrast-to-noise ratio Ng = 5 or Ny = 9 may be desirable.

Sequence of neighborhoods Uy: The sequence should satisfy the conditions X; € Uy(X;)
and Ug_1(X;) C Uk(X;). It can be recommended to select sequences Uy (X;) in a way that the
numbers Ni(X;) of points in every such neighborhood grow exponentially with k.

In our simulation study and all examples we use neighborhoods Uy (z) = {X; : |X; —z| <
dy} with d € {0:8,2-(5:12),4-(7:12),8(7:12),16 - (7 : 10),32- (6 : 8)}, k* = 35 for
univariate situations, and di € {(0 : 8)/2,4.4,5 : 10,2 - (6 : 10)}, £* = 19 for images ((a : b)
denotes a sequence of integers from a to b). This choice gives Ny = 513 and Ny~ = 1257 points

in the largest neighborhood for univariate and bivariate situations, respectively.

k*: The value of k*, and therefore Ny, is mainly determined by the degree of locality that
one wishes to maintain and the computational effort one is able to spend. Increasing k* allows
for additional variance reduction in large homogeneous regions but usually does not change
the estimates where local structure is present. A data-driven choice of k* is discussed in

Section 3.4.
K: Our default choice for the kernel is K(z) = exp (—z?).

A: The choice of this parameter mostly determines the properties of the procedure. Increasing

the parameter reduces the probability of detection of artificial jumps in a homogeneous situation



(error of first kind) and increases the probability not to detect an existing discontinuity (error
of second kind), see Propositions 3.1 and 3.2 . Our default choice, for the above K, is A = 3.

A data-driven choice of X is discussed in Section 3.4.

1n: The control step prevents the algorithm from loosing previously detected discontinuities,

see Proposition 3.2. Suitable values for 1 are between 3 and 4. We use = 4 in all cases.

Remark: There is no magic behind the recommended choice A ~ 3 and 1 ~ 4. We illus-
trate this on the simplest situation corresponding to the first step of the algorithm assuming
Up(X;) = {X;} for all i. Then the initial estimates fy(X;) coincide with the observations
Y;. Therefore, if points X; and X; belong to the same region A,,, then the difference
fo(Xj) — fo(Xi) coincides with the differences &; — g;j of the corresponding stochastic errors,
see (1). If these errors are normally N(0, 02) -distributed and independent, then the difference
is also normal N(0,20%). Calculating the weight wi(X;, X;) we compare this difference with
Aog(X;) = Ao . The parameter X is chosen to provide an essentially large probability of the
event {|e;—e;| < Ao}. The value A = 3 corresponds to the probability 2®(1/9/2)—1 ~ 0.966,
® being the standard normal CDF (note that similar arguments hold for further iterations as-
suming that the neighborhoods Uy (X;) and U(X;) are still inside the region A,,). Of course
larger values of A lead to even larger probability of such an event. But, when A increases, the
quality of estimation near an edge decreases. The choice A = 3 provides a reasonable com-
promise for most cases. However, we keep a possibility to tune this parameter in some specific
situations depending on what is important in each particular case. In many cases (especially
for a large contrast-to-noise ratio) the choice of A\ between 2.8 and 4 does not change the result
of the procedure significantly. If the noise is comparable with the image contrast this choice
becomes more crucial: increasing A decreases the probability to detect a discontinuity and
therefore results in oversmoothing while decreasing A may lead to a random segmentation of
homogeneous regions. A Bootstrap-based choice of the parameters A and k* is discussed in

Section 3.4.

The iterative algorithm introduced in Section 2 is computationally intensive but still fea-
sible. The number of operations necessary to process an image containing n pixel is of order
O(nNg-) if the sequence Ni- is exponentially growing. We illustrate the speed of the algorithm
giving the CPU-Time reported for the MR-images analyzed in Section 5.1. We implemented
AWS using Fortran for the time critical parts of the algorithm and Splus as an user interface.
On a 255 Mhz DEC-Alpha Workstation the CPU-Time (User) taken by our implementation
using the default parameter settings is 87 s for an image of 256 x 256 pixel and 383 s for an

image of 512x 512 pixel. For many applications this can be reduced significantly by using a

10



smaller value of k*.

3.4 Bootstrap-based choice of the parameters of the procedure

The performance of the proposed procedure strongly depends on the choice of the involved
parameters, especially on A and k*. Our simulated results and applications to real data show
that there is no one universal optimal choice for all situations, and the quality of the procedure
can be improved by tuning these parameters.

Another important point is connected to the quality of variance estimation, see Section 2.2.
It turns out that the proposed variance estimator overestimates the true variance in case of
a complicated underlying structure, e.g. in MRI applications. The use of 52 in place of o2
is clearly equivalent to replacing A by Ao /o which leads again to the question of an optimal
choice of parameter A for each particular example. Below we discuss one possibility for a
data-driven choice of these parameters based on the resampling (bootstrap) idea.

The underlying idea is that the proper choice is connected to the complexity of the image
and this complexity is recovered by our estimate with the default choice of these parameters.
Then we can resample the data using the estimate as a reference image and select a proper set
of parameters for this known reference. Finally we apply this bootstrap-based choice to the
original data. This procedure may be iterated by repeating the resampling step with the new

estimate. The procedure reads as follows:

Run with default parameter set. AWS is used with the default parameters A =3, n =4

and k* =19. This provides us with an estimate of the image f(XZ) and two sums
Wl(XZ) :Zw(Xi,Xj), and W2 Zw XZ,X
J
based on the weights w(X;, X;) used at the last iteration of AWS, all of this for every i =
1,...,n. Clearly W;(X;) = Wy(X;) for the case of zero-one weights.
Variance estimation on the base of f . Next we recalculate the noise variance using the
estimate f. The representation f(XZ) = W > w(Xi, X;)Y; with w(X;, X;) =1 leads to

the variance estimate
_ 1 Z ( . )2 Wi (X;) .
n Z WQ(XZ) + Wl(XZ)Q — 2W1 (Xz)

Resampling. We draw new bootstrap samples Y;", using the model Y’ = f(Xl) + o%el

,m

where &7, are independent standard normal errors. Here m denotes the number of the

bootstrap sample, m=1,..., M.

11



Parameter optimization. For every considered set of parameters A, k*, and for every boot-
strap sample Yy', ..., Y7 . we carry over the AWS procedure resulting in the image estimate

fr, and compute the quality criterion

where 1) is some loss function, e.g. a quantile function, or (¢) = |t| or ¥ (¢) = ¢*>. Parameters
are chosen minimizing this criterion w.r.t. A and k*.
Since our criterion is defined by summation over all design point, one can expect a degen-

erated behavior of the optimized quantity even for one bootstrap sample, that is, for M = 1.

Final run. Finally apply AWS to the original data using the selected set of parameters.

4 Simulations

In the following subsections we demonstrate the capabilities of our approach using some uni-
and bivariate simulations. We illustrate the behavior of our algorithm for different contrast-
to-noise ratios ranging from easy to handle situations (a/o = 4) to situations where the signal
is hardly visible by eye (/o =1 and larger) and different size of the homogeneous regions.
We compare our AWS procedure with some established alternative approaches. It should

be mentioned that the following list is far from being complete.

4.1 Alternative procedures

Gauss filtering: Here we use an Nadaraya-Watson kernel estimate with Gaussian kernel and

smoothing parameter h

o > Yiexp{—(X; — X;)%/(2h?)}
F(Xi) = ij exp {—(X; — X;)?/(2h%)}

Nonlinear Gauss filtering: The Nonlinear Gauss Filter was proposed by Godtliebsen et

al. (1997) as a generalization of the Sigma Filter of Lee (1983). It replaces the discontinuous
(uniform) weight function of the sigma filter by an Gaussian weight scheme. The filter is defined

) fiy = Sievtong Yiew (0 ¥ /20)
LD Y S R ORICT

where the radius of U(z) and g are smoothing parameters.

Modal regression: Modal regression is introduced in Scott (1992) as a robust alternative
to nonparametric regression procedures estimating a conditional mean. The modal regression

curve is defined as

~

f(z) = arg mgxz?(y, )

12



with p(y, z) being an estimate of the joint density of y and z. Although Scott proposes to use
multiple modes simultaneously we concentrate on the mode closest to the observed Y. The

estimate depends on two bandwidths in z and y domain.

Change point methods: An alternative in case of well separated jumps can be based on
methods of change point estimation. We use the procedures of change point estimation pro-

posed by Miiller (1992). The change point estimate is only used in the univariate case.

CART: A suitable procedure for the univariate case can be based on the classification- and
regression trees (CART) introduced by Breiman et al. (1984). We use CART as implemented
in Splus with the number of splits determined by CV-pruning. CART is only used in the
univariate simulations since it is not flexible enough to allow for a reasonable reconstruction of

our test image.

Wavelets: For our comparisons we use the Wavelet package wavethresh of G. P. Nason, see
Nason and Silverman (1994) for a description of the software. We use the Haar basis and the
biorthogonal Haar basis for univariate and bivariate situations, respectively. We suppose this
choice to be the most adequate for local constant functions from the selection of bases offered.
Parameters, i.e. threshold value and levels for thresholding, are selected to provide optimal
mean integrated squared error (MISE) for the underlying true structure. We used hard or soft
thresholding depending on which method provided better results in terms of MISE. We do not
discuss more sophisticated wavelet procedures like the translation invariant wavelet transform,
see Coifman and Donoho (1995), or anisotropic wavelet bases, see Daubechies (1992), Chapter

10.1, or Neumann (1998).

Markov Random Fields (MRF): Out of the wide range of Markov Random Fields methods
in image analysis we use an Metropolis algorithm, see e.g. Winkler (1995), page 133. We start

~

with initial values f(X;) = Y;. A new proposal y* in a randomly chosen point z is generated

from a strictly positive probability distribution G(y*|z) with support on the range of Y. A

new proposal y* in point z is accepted as a new value for f(z) with probability

~

min(1,exp (H(f(x)|z,Y) — H(y"|z,Y)/T)),

otherwise the old value is kept. Here

- F(X))2
Hy X, v) = = LX) B

20° x;ev(xn/ixiy P ((FX) = F(x3)) /67

is an energy function designed for a continuous state space. The temperature 7 is chosen to
slowly decrease with the number of iterations. For more discussions see e.g. Winkler (1995)

Chapter 10 for the Metropolis algorithm and Chapter 2 for the energy function used.
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Except the Gauss filter all of the procedures considered are designed to handle discontinu-
ities. Most of the alternative procedures depend on smoothing parameters. These parameters

are chosen to minimize an estimate of MISE in the situation studied.

4.2 A univariate simulation example

In our first univariate example we use a piecewise constant regression function with varying
size of the homogeneous region. The left column of Figure 1 presents three data sets generated
for different values of . The central plots show the true function together with the AWS
estimates. The third column provides estimates obtained by the best alternative procedures,

wavelets and CART, for a comparison.
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put Figure 1 around here
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put Table 1 around here

We run 1000 simulations with sample size 256 and error standard deviation ¢ = .25, .5
and 1, respectively. Table 1 displays results of the simulations in terms of estimated MISE
and mean, over z, estimates of P( \/f:(x) —f(x)| > a/4), a =1. We call this quantity large
deviation probability (LDP). Note that AWS performs best with respect to both MSE and LDP
in case of 0 < .5. For ¢ = 1 our adaptive procedure does not always detect the discontinuities
for small z, i.e. where the homogeneous regions are small. This leads to an increased mean

squared error and large deviation probability for small z.

4.3 Bivariate simulations

We use an artificial image to demonstrate the power of our procedures in more complicated

situations, see Figure 2.
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put Figure 2 around here

The image possesses two different image contrasts, @« = .5 and 2 a = 1, and homogeneous
regions of various size and form. The image contains n = 256 x 256 pixel. Note that in the
image the size of homogeneous regions increases from the lower left to the upper right. There

are very detailed structures in the upper left and lower right of the image.
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put Figure 3 around here

In the left column of Figure 3 we display this image distorted by additive Gaussian noise of
standard deviation o = .25, .5, and 1, respectively. The second column contains the reconstruc-
tion of the noisy images by AWS (with default parameters). For a comparison we provide the
results obtained by modal regression, wavelets and Markov random fields. For the alternative
procedures estimated gray levels, that are out of scale are projected.

With standard deviation increasing we first loose the most detailed structure (o = .5) and
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observe some loss in edge accuracy for the lower contrast level (o = 1). Note that we still
recover the main structure that is hardly visible in the noisy original. The AWS-estimates
behave very stable with respect to changes of the parameters, e.g. each A € (3,3.6) gives
essentially the same quality of reconstruction for all o considered.

To illustrate the local behavior of our procedure in more detail we conduct a comparative
simulation study based on the test image, see Figure 5. We perform 100 simulations with error
standard deviation of o = .25, .5 and 1, respectively. We use our default parameter settings
for AWS and again approximately MISE-optimal parameters for the alternative procedures.

Table 2 provides the simulation results using the same criteria as in the univariate case.
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put Table 2 around here

For the lowest noise level we observe that even the detailed structures in the upper left
and lower right of the image are recovered by our method. MRF and modal regression both
work reasonable in this situation, providing an improvement to the gauss filter with respect
to both criteria. The wavelet estimate suffers especially for detailed structures and where the

boundaries are not parallel to the axes. Increasing o we see a clear advantage of our procedure.

5 Applications

5.1 An Application to Magnetic Resonance Imaging

Magnetic Resonance imaging (MRI) is a new technique of noninvasive analysis providing a
delineation of a physical object. The signal, or true image, can be interpreted as a weighted
spin density of the system of atomic nuclei the physical object consists of. For an excellent
introduction into the mathematics and physics of MRI see for instance Sebastiani and Barone
(1991) and Lange (1996).

In Fourier imaging, which is the most common MR imaging technique, a finite number of
coefficients from the 2-D Fourier series expansion of the true image are measured. The MR
image is then obtained applying the discrete Fourier transform to the raw data, i.e. the MR
image can be viewed as a truncated Fourier series of the weighted spin density distorted by
noise, see e.g. Barone and Sebastiani (1992).

It is reasonable to characterize the underlying image by a piecewise constant function, with
homogeneous regions corresponding to the same type of tissue and therefore having a similar
spin density and discontinuities at the interface between adjacent tissues. Random errors can

be modeled as additive white Gaussian noise, see e.g. Sebastiani and Barone (1995).

kosk sk okok skokokok kokok ok sk ok okok sk ok sk ko

put Figure 4 around here
Our first example is based on a MR image recorded at the MR center at Trondheim,
kindly provided to us by F. Godtliebsen. The same data were analyzed e.g in Barone and
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Sebastiani (1992), Chu et al. (1998), and Godtliebsen et al. (1997). Reconstructions of the
same image using Markov random field methods can be found in Godtliebsen and Sebastiani
(1994). The upper left plot of Figure 4 shows the central part of the image. The upper right
plot gives the estimate obtained by AWS. Parameters are selected by the procedure described
in Subsection 3.4 using ¥ (t) = |¢|.

To illustrate the quality of reconstruction we present the result of another well established
method to reduce the noise level by averaging several MR-Images recorded from the same slice
of the brain, see the lower left plot. Images, recorded successively, can not be assumed to have
exactly the same location. This leads to some convolution in the averaged image. In the lower
right plot we show gray level densities for both the averaged image and the AWS estimate.
Since gray levels correspond to certain tissues in the brain, a density with spikes is more what
one would expect. By averaging images this property is lost. AWS allows to preserve the
structure, although at the given noise level there is no definite decision whether peaks of the

gray level density are due to the structure or introduced by the procedure.

5.2 An example from satellite imaging

In our last example, suggested by a referee, we use a log-transformed C-band, HH-polarization,
synthetic aperture radar (SAR) image recorded by Dr. E. Attema at the European Space Re-
search and Technology Centre in Noordwijk, Netherlands. The example is also used in Glasbey
and Horgan (1995). The data can be obtained from ftp://peipa.essex.ac.uk/ipa/piz/books/glasbey-

horgan/ . The image shows an area near Thetford forest, England.
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put Figure 5 around here
In Figure 5 we show the noisy original, the reconstruction obtained by AWS and a residual

image. Parameters for AWS are selected according to Subsection 3.4 using ¢(t) = |¢|.

6 Conclusions

The simulated results and the examples demonstrate a reasonable performance of the proposed
procedure especially in situations where the underlying image is piecewise constant or can be
approximated by such images. In such cases the procedure outperforms most other methods.
The nice visual quality of restoration for such examples is due to the two most important
features of the method: the estimated image is homogeneous within every large homogeneous
regions independently of its shape and, simultaneously the procedure provides a reasonable
quality of estimation near image edges. The procedure is very stable w.r.t. increasing noise
level. All these issues are in agreement with theoretical properties of the procedure which surely

should be investigated further. The algorithm can be easely applied to higher dimensional
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situations.
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Appendix: Proofs

Proof of Proposition 3.1. We argue by induction in k. First we consider the weights
w1 (X, X;) . Since every initial neighborhood Up(X;) contains exactly Ny design points, each
estimate f()(XZ-) is normal with the mean a and the variance s3(X;) = 0?/Ny. First we

evaluate the probability of the event
{170(X:) = Fo(X;)| > AoNg '/? for some i # j}.

By (1), 1 1
foXi) = JoXj) = 5= D er— 5 D e
O vo(xs)

0
Uo(X;)
and this is a linear combination of Gaussian errors. Therefore this difference itself is a Gaussian

zero mean random variable with
E|fo(X:) — fo(X;)|? = 0® No(Xi, X;)/Ng

where No(X;, X;) is the number of design points lying either in Uy(X;) or in Up(X;) but not

in their intersection,
No(Xi, Xj) = #{Uo(X;) UUo(X;) \ Uo(X;) N Up(X;)}-
Obviously Ny(X;, X;) < 2Ny . Therefore,

P (1fo(X) = Jo(X,)| > AoNg /%)

AQUQN(;I
S expq -~ 2 YL\ N2
202Ny (X;, X;)N,

=P T 2n (X, X))

< exp{—A2/4}.

In the adaptation step we compute the weights wi(X;, X;) for all X; and for every X; from
Ui (X;). This involves about nN;/2 comparisons for different pairs (X;, X;). Therefore

P ({\fo(xi) — Fo(X;)] > AoNg /2 for some i # j})
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<3 S PR - Rl > eny )

i=1 U1 )
< 0.5nNy exp{—\?/4}.

We see that all the weights wi(X;,X;) = 1 with a probability greater than
1 — 0.5nN; exp{—A?/4}. Therefore, assuming that an event of type {w;(X;, X;) = 0} does
not occur, all estimates fl(Xz) are simply mean values of the observations Y; over U;(Xj;).

All these arguments apply to the next iteration with fl in place of fo and so on.

Now suppose that we have got the equal weights wy (X;, X;) = 1 for all &' < k with
a probability of at least 1 — 7, with some number 7;. We intend to estimate the similar
probability to the next iteration. First we note that by the previous arguments wy1(X;, X;) =
1 for all i # j with a probability of at least 1—~; —0.5n Ny, 1 exp{—A?/4}. It remains only to
check that the control step does not reject the estimate fk+1( ;). Let k' < k. Then obviously
ﬁchl(Xi) - ﬁc’( k+1 Z Y — Nkfl Z Y; = k+1 Z Nkfl Z Ej-

Uk+1(Xi) Ut (Xi) Uk+1(X) Uy (Xi)

Since all errors ¢; are independent A/(0, 0?) r.v.’s, this difference is also a normal zero mean

r.v. with the variance
B (fun(Xi) - o (X)) = (Vg = Nl < o* N
Therefore, using s, (X;) = U2Nk_'1
P (|fi1(X:) = fi(X2)| > noNp ) < P (] > n) < exp{—n?/2}

where ¢ denotes a standard normal r.v. The total number of such control tests is not greater
than nk and the probability that at least one such event occurs at the (k + 1)-th iteration
can be bounded by exp{—n?/2}nk. Therefore, if

Yet1 =Yk + 0.5nNgyq exp{—)\2/4} + exp{—n2/2}nk,

then, with a probability greater or equal to 1 — 7,41, we get all wyy(X;, X;) =1

Summing over all iterations we get the following upper bound for g,

k* ks
e < 0.5mexp{—X\?/4} Z Ny, 4 exp{—n?/2}n Z k
k=1 k=1
< COn?exp{—X?/4}/2 + exp{—n*/2}nk* (k* +1)/2

as required. O
Proof of Proposition 3.2. Let us fix one pair (X;,X;,) with X; € Ay, m =1,2.

First we note that ﬁ](Xim) ~ N(am,0*Ny ') and we may represent these estimates in the
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form ﬁ](Xim) = am, + 0N61/2§im where m = 1,2 and ¢, and §;, are independent standard

Gaussian r.v.’s.

Next, in view of the control step, we have for every k& > 1

P (Xin) = Fo(Xin)| < moNy /2, m=1,2.

Therefore

Fe(Xi) = Fa(Xi)| 2 [fo(Xiy) = fo(Xa,)|
- ‘J?k(Xu) - ﬁ](Xh)‘ - |./$;€(X12) - J?O(Xzz)‘

> a1 — asf — 290Ny * = o Ny ey, — €.

The difference &;, — &;, is a zero mean Gaussian r.v. with the variance 2 and hence

P (1F(Xi) = ulXi)| < 2ol ?)

< P (It — €l > 07Ny %01 — as| - 2n)

2
< exp {— (U*INUI/Z\al —ag| — 277) /4} .

The number of such pairs can be very roughly bounded by nNy/2 and therefore the probability

to meet by k-th iteration at least one such event is smaller than

2
0.5n N} exp {— <0_1N01/2\a1 —az| — 277) /4} .

Summing up over all £ < k* and using (7), we obtain the required assertion. O
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MISE LDP

c=.20 o0=.5 o0o=1 0=.20 o=.5 o=
AWS 0.003 0.023  0.123 0.002 0.026  0.243
Gauss filtering 0.019 0.039  0.081 0.069 0.182  0.368
Nonlinear gauss 0.013 0.040  0.089 0.038 0.189  0.394
Modal regression 0.008 0.040  0.084 0.015 0.179  0.378
Change point 0.014 0.043  0.095 0.047 0.196  0.388
CART 0.006 0.031  0.149 0.008 0.066  0.414
Wavelets 0.009 0.038  0.097 0.008 0.146  0.379
MRF 0.010 0.044  0.112 0.021 0.191  0.422

Table 1: Estimated mean integrated squared error (MISE) and large deviation probability (LDP) in the
univariate simulation experiment

MISE LDP
c=.20 o=.5 o0=1 0=.25 o0c=.5 o=1
AWS  0.0021  0.0109 0.0328 0.007 0.032  0.119
Gauss filtering  0.0138  0.0243  0.0396 0.212 0.313  0.452
Nonlinear gauss  0.0096  0.0262 0.0454 0.151 0.334  0.491
Modal regression  0.0068  0.0254  0.0426 0.078 0.290 0.479
Wavelets  0.0079  0.0147  0.0468 0.073 0.172  0.437
MRF  0.00560 0.0204 0.0475 0.048 0.248  0.497

Table 2: Estimated mean integrated squared error (MISE) and large deviation probability (LDP) in the
bivariate simulation experiment
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Figure 1: Data generated in the univariate experiment (left column), true function (dashed line), AWS
estimate (solid line) (central column), wavelet estimate (best hard thresholding,solid line) and CART

estimate (dashed line) (right column) for standard deviations o = .25, .5 and 1.
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Figure 2: Artificial test image
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sigma=.25 wavelets
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Figure 3: Image plus noise (left), AWS-reconstructions (second), modal regression (third), wavelet
(fourth) and MRF estimate (right column) for different values of o.
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Single MR-Image Reconstruction
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Figure 4: Central part of Original Magnetic Resonance image and AWS estimate (upper row); average
of eight images of the same slice and estimated densities of gray levels (lower row)
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SAR image AWS Reconstruction Residuals
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Figure 5: Synthetic aperture radar (SAR) data: original image (left), AWS Reconstruction (central)
and residuals (right).
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Figure 1: Data generated in the univariate experiment (left column), true function (dashed
line), AWS estimate (solid line) (central column), wavelet estimate (best hard thresholding,solid
line) and CART estimate (dashed line) (right column) for standard deviations o = .25, .5 and
1.

Figure 2: Artificial test image

Figure 3: Image plus noise (left), AWS-reconstructions (second), modal regression (third),
wavelet (fourth) and MRF estimate (right column) for different values of o.

Figure 4: Central part of Original Magnetic Resonance image and AWS estimate (upper row);
average of eight images of the same slice and estimated densities of gray levels (lower row)

Figure 5: Synthetic aperture radar (SAR) data: original image (left), AWS Reconstruction
(central) and residuals (right).

Table 1: Estimated mean integrated squared error (MISE) and large deviation probability
(LDP) in the univariate simulation experiment

Table 2: Estimated mean integrated squared error (MISE) and large deviation probability
(LDP) in the bivariate simulation experiment
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