
Adaptive weights smoothing with appli
ations to image restora-tionJ�org Polzehl 1 and Vladimir G. SpokoinyWeierstrass Institute for Applied Analysis and Sto
hasti
s, Berlin, GermanySummary: We propose a new method of nonparametri
 estimation whi
h is based on lo
ally
onstant smoothing with an adaptive 
hoi
e of weights for every pair of data-points. Sometheoreti
al properties of the pro
edure are investigated. Then we demonstrate the performan
eof the method on some simulated univariate and bivariate examples and 
ompare it withother nonparametri
 methods. Finally we dis
uss appli
ations of this pro
edure to magneti
resonan
e and satellite imaging.Keywords: adaptive smoothing; image restoration; Change point and edge estimation; magneti
resonan
e imaging, satellite imaging.1 Introdu
tionIn this paper we introdu
e a new lo
ally adaptive method for two and three dimensional imagepro
essing, i.e. image denoising and image enhan
ement. This method 
an be applied if theunderlying stru
ture 
an be well approximated by a lo
al 
onstant fun
tion. Su
h images meetin several �elds, e.g. from satellite imaging, x-rays, ultrasound or magneti
 resonan
e imag-ing. Usually these images will su�er from distortions, leading to the problem of re
overing theunderlying stru
ture of the image. Often interesting stru
tures 
orrespond to dis
ontinuitiesin the image, i.e. pro
edures used in this 
ontext should both redu
e distortions as well aspreserve dis
ontinuities. Classi
al nonparametri
 regression pro
edures are based on smooth-ness assumptions about the underlying fun
tion whi
h are not ful�lled in the neighborhoodof dis
ontinuities. This leads to so 
alled oversmoothing of the fun
tion in su
h regions. Inunivariate situations several proposals exist how to over
ome this problem, see e.g. M�uller(1992), Spe
kman (1994), Wu and Chu (1993) for pro
edures based on 
hange point dete
tion,or Banerjee and Rosenfeld (1993) for maximum a posteriori estimation.The generalization of this idea to the multidimensional 
ase leads to the edge estimationproblem. This problem is studied in details in Korostelev and Tsybakov (1993) where theoptimal rate of edge estimation is established for the 
ase of an image with the stru
ture of a1Address for 
orresponden
e: Weierstrass Institute for Applied Analysis and Sto
hasti
s, Mohrenstr. 39,10117 Berlin, Germany. E-mail: polzehl�wias-berlin.de1



boundary fragment. The reader 
an �nd further referen
es there. Unfortunately the proposedpro
edures are based on some quite restri
tive assumptions like the stru
ture of a boundaryfragment. Another in
onvenien
e is that the methods and results apply only to the 
ase of arandom or jittered design whi
h rarely meets in pra
ti
e.A large 
lass of methods 
ommonly used in this 
ontext is based on Markov random �eldmodels (MRF), see e.g. Besag (1986), Geman (1990) or Winkler (1995). A 
on
urrent ap-proa
h, used espe
ially in image segmentation, is based on re
ursive partitioning and mergingpro
edures. This 
lass 
ontains CART, see Breiman et al. (1984), or the region based seg-mentation method of Bose and O'Sullivan (1997). Wu (1993) dis
ussed similar ideas based ontesting homogeneity for subimages.There exist other methods whi
h estimate the image dire
tly without estimating edgesbut whi
h still pay spe
ial attention to the quality of estimation near edges. We mentionmodal regression, see e.g. S
ott (1992), the nonlinear Gaussian �lter, see Godtliebsen et al.(1997), the M-smoother of Chu et al. (1998) and di�erent proposals based on wavelets, see e.g.Nason and Silverman (1994), Engel (1994) or Donoho (1997) and referen
es there. One moreapproa
h in this dire
tion was proposed re
ently in Polzehl and Spokoiny (1998). The method
an be viewed as a multidimensional analog of the pro
edure from Spokoiny (1998) assignedto estimation of a univariate fun
tion allowing jumps or jumps of derivatives. The idea is toestimate the regression fun
tion separately at ea
h design point using a lo
ally 
onstant (orlo
ally polynomial) modeling with an adaptive 
hoi
e of a neighborhood (a window) from a large
lass of neighborhoods in whi
h the applied model �ts well the data. An in
onvenien
e of thisapproa
h is that the 
lass of 
onsidered windows has to be really large to get a reasonable qualityof estimation. This makes the pro
edure diÆ
ult to realize and 
omputationally intensive.In this paper we modify this idea. Namely we do not spe
ify the 
lass of 
onsideredwindows but we determine in a data-driven way the form of the neighborhood around thepoint of interest x in whi
h the fun
tion f 
an be well approximated by a 
onstant. A similaridea was dis
ussed in Tsybakov (1989) but the proposed method uses essentially some priorinformation about the stru
ture of the image and about the image values within ea
h region.Our method, whi
h in the sequel will be referred to as adaptive weights smoothing (AWS),is fully adaptive, that is, no prior information is required. It is important to remark that themethod does not depend on the dimensionality of the image and 
an be applied to smooththree and even higher dimensional images as well.The AWS pro
edure is assigned for image estimation and 
an in general be applied to anarbitrary image. However, su

essful appli
ations of the proposed method 
an be expe
ted insituations when the image 
ontains large homogeneous regions, not ne
essary 
onne
ted and2



of may be 
ompli
ated shape.The further dis
ussion and the pre
ise des
ription of the pro
edure are pla
ed in Se
tion 2.In Se
tion 3 we study some theoreti
al properties of our method. Se
tion 4 provides a simulative
omparison with several alternative pro
edures for univariate and bivariate situations. FinallySe
tion 5 des
ribes an appli
ation of our method to Magneti
 Resonan
e Imaging and SatelliteImaging.1.1 ModelThe model 
an be des
ribed asYi = f(Xi) + "i Xi 2 IRd; E"i = 0; Var "i = �2: (1)Here X1; : : : ;Xn are design points whi
h are usually assumed to be equispa
ed in the unit
ube [0; 1℄d . E and Var denote expe
tation and varian
e, respe
tively. At ea
h point Xi weobserve the regression fun
tion f(Xi) with some additive error "i . We suppose the errors "i tobe independent identi
ally distributed zero mean random variables with unknown distribution.The regression fun
tion f is supposed pie
ewise 
onstant. This means that the unit 
ube[0; 1℄d 
an be split into disjoint regions A1; : : : ; AM andf(x) = MXm=1 am1(x 2 Am) (2)where a1; : : : ; aM are some numbers, e.g. gray levels in an image, and 1 stands for the indi
atorfun
tion. Obviously the fun
tion f is 
onstant within ea
h region Am . The regions Am , thevalues am and even the total number of regions M are unknown. Clearly su
h an assumptionon the underlying stru
ture is valid for an arbitrary image, sin
e ea
h region Am may 
onsistof one point. However, an appli
ation of the pro
edure proposed below seems to be reasonablefor situations where the underlying image really 
ontains large homogeneous regions. Whenstudying theoreti
al properties of the method proposed we impose some additional assumptionson the size of these regions.2 Adaptive weights smoothingIn this se
tion we present our estimation pro
edure.We start with some heuristi
 explanation.2.1 PreliminariesThe problem of estimating the fun
tion f of the form (2) 
an be treated as follows: to re
overthe values a1; : : : ; aM and to de
ide for ea
h point Xi in whi
h region Am it is.3



To explain the idea of the method, we imagine for a moment that the regions A1; : : : ; AMare known and only the values am are to be estimated. This leads to obvious estimatesbam = 1NAm XXi2Am Yiwhere NAm denotes the number of design points in Am , m = 1; : : : ;M . Then we simply setbf(Xi) equal to the mean bam of Yj 's over the region Am 
ontaining Xi . Therefore, given apartition A1; : : : ; AM , we 
an easily estimate the underlying fun
tion f .Next we 
onsider the inverse situation when the partition A1; : : : ; AM is unknown but weare given a pilot estimate bf0 of the regression fun
tion f . It is natural to use this estimate tore
over for every point Xi the 
orresponding region Am . Namely, for ea
h pair of points Xiand Xj , we know, if the value j bf0(Xi)� bf0(Xj)j is large 
ompared with its standard deviationthen these two points are almost de�nitely in di�erent regions. We therefore, for every designpoint Xi , estimate the region Am 
ontaining Xi bybA(Xi) = fXj : j bf0(Xi)� bf0(Xj)j � �b�0(Xi)gwhere b�0(Xi) is the standard deviation of bf0(Xi) and � is some number.Using these estimated regions, we de�ne a new estimate bf1 bybf1(Xi) = PXj2 bA(Xi)YjN bA(Xi) = Pj w1(Xi;Xj)YjPj w1(Xi;Xj)with w1(Xi;Xj) = 1�j bf0(Xi)� bf0(Xj)j � �b�0(Xi)� : (3)We 
an repeat this 
al
ulation using bf1 in pla
e of bf0 and so on.Our adaptive pro
edure mostly realizes this idea with two modi�
ations. First of all, atea
h iteration k , we restri
t the estimated region bA(Xi) to some lo
al neighborhood Uk(Xi)of the point Xi su
h that the size of Uk(Xi) grows with k . Se
ondly we use 
ontinuousweights wk(Xi;Xj) instead of zero-one weights in (3).Finally, to stabilize the pro
edure, we also add a 
ontrol step, 
omparing the new estimatewith the estimates from pre
eding iterations.Now we present a formal explanation of the method starting with a des
ription of the inputparameters of the algorithm. Our re
ommendations for a default 
hoi
e of these parametersand for a data-driven sele
tion are given in Se
tion 3.3 and 3.4.2.2 Parameters of the pro
edureThe most important element of the pro
edure is an in
reasing sequen
e of neighborhoodsaround ea
h design point. 4



For ea
h design point x , we assume to be given a sequen
e of neighborhoods Uk(x); k =0; 1; : : : ;1 with Uk(x) � Uk+1(x) 
ontaining x. One reasonable 
hoi
e of these neighborhoodsUk(x) is Uk(x) = fXi : jXi � xj � dkg with dk being a sequen
e of in
reasing radii. Anotherpossibility is to de�ne Uk(x) as the set of the Nk nearest neighbors of x, where Nk is anin
reasing sequen
e of integers. In the sequel, Nk(x) denotes the number of design points Xiin Uk(x) , Nk(x) = #fXi 2 Uk(x)g:Parameter k� denotes the maximal index of neighborhoods used.The pro
edure involves numeri
al parameters � and � whi
h are used as 
riti
al valuesfor tests entering in the adaptation and the 
ontrol steps.The role of these parameters andre
ommendations for their 
hoi
e are dis
ussed in Se
tion 3.3 and 3.4.We �x a univariate kernel K satisfying usual 
onditions: it is a symmetri
 smooth fun
tionwith the maximum at zero and nonin
reasing on the positive semiaxis. We assume the kernelto be integrable, i.e. R10 K(x)dx <1.In most appli
ations the noise varian
e �2 is unknown and an estimate b�2 
an be obtainedfrom the data, see e.g. Gasser et al. (1986) or Wu and Chu (1993) for di�erent proposals. Ageneral form of su
h estimates is b�2 = 1n nXi=1 be2iwhere pseudo-residuals bei are de�ned on the base of the di�eren
e Yi� bf(Xi) with a lo
al re-gression estimate bf(Xi) . Pseudo-residuals 
an also be de�ned using di�eren
es of observations.In the univariate 
ase one 
an use either bei = p2(Yi � Yi�1) or bei = p6 (�Yi�1 + 2Yi � Yi+1)and in the two-dimensional 
asebei1;i2 = p6 f2Yi1;i2 � Yi1+1;i2 � Yi1;i2+1g orbei1;i2 = p20 f4Yi1;i2 � (Yi1+1;i2 + Yi1�1;i2 + Yi1;i2+1 + Yi1;i2�1)g :In 
ase of a 
ompli
ated underlying image stru
ture, an estimate based on the inter-quartile-range b� = (t75% � t25%)=1:35, with t25% and t75% being the :25- and :75-quantile of theempiri
al distribution of the pseudo-residuals, is preferable.For some further dis
ussion 
on
erning the varian
e estimation, see Se
tion 3.4.2.3 The pro
edureWe begin with an initialization. 5



Initialization: For ea
h point Xi , we 
al
ulate initial estimates of f(Xi) and Var bf(Xi) asbf0(Xi) = 1N0(Xi) XXj2U0(Xi) Yjbs20(Xi) = b�2N0(Xi)and set k = 1. Here b�2 is the varian
e estimate de�ned previously.Adaptation: Compute weights wk(Xi;Xj) aswk(Xi;Xj) = K  bfk�1(Xi)� bfk�1(Xj)�bsk�1(Xi) ! (4)for all points Xj in Uk(Xi) and 
ompute new estimates of fk(Xi) and Var bfk(Xi) asbfk(Xi) = PXj2Uk(Xi)wk(Xi;Xj)YjPXj2Uk(Xi)wk(Xi;Xj) ; (5)bs2k(Xi) = b�2 PXj2Uk(Xi)w2k(Xi;Xj) PXj2Uk(Xi)wk(Xi;Xj)!2 (6)for all Xi.Control: After the estimate bfk(Xi) is 
omputed, we 
ompare it with the previous estimatesbfk0(Xi) at the same point Xi for all k0 < k . If there is at least one index k0 < k su
h that��� bfk(Xi)� bfk0(Xi)��� > �bsk0(Xi)then we do not a

ept bfk(Xi) and keep the estimates bfk�1(Xi) from the pre
eding iteration.This means that in su
h a situation we repla
e bfk(Xi) and bsk(Xi) by bfk�1(Xi) and bsk�1(Xi),respe
tively. It is worth mentioning that this 
ontrol step alone 
an be used to 
onstru
t anadaptive estimate, see Lepski, Mammen and Spokoiny (1997) or Lepski and Spokoiny (1997).Stopping: Stop if k = k� or if bfk(Xi) = bfk�1(Xi) for all i , otherwise in
rease k by 1 and
ontinue with the adaptation step.3 Properties and 
omputational detailsBe
ause of the iterative and 
omplex nature of the algorithm theoreti
al properties are ex-tremely diÆ
ult to obtain in a general situation. We 
onsider two spe
i�
 
ases whi
h are ofthe most interest. The �rst situation 
orresponds to estimation inside a large homogeneousregion and the se
ond one to estimation near an edge.6



For simpli
ity we assume homogeneous Gaussian noise with known varian
e �2 . We also
onsider the uniform kernel K(x) = 1(jxj � 1) . All properties 
an be easily extended to the
ase of a 
ontinuous kernel K .3.1 Estimation inside a homogeneous regionWe study an idealized situation where the underlying image fun
tion is 
onstant, f(x) � a .For simpli
ity we also assume that ea
h neighborhood Uk(Xi) 
ontains exa
tly Nk designpoints where Nk is a pres
ribed in
reasing sequen
e. We aim to show that in this situationour estimate is, with a very large probability, also a 
onstant and the deviations bf(Xi)�a areof order n�1=2 .In the next statement we need an estimate for the sum N1+ : : :+Nk� . Sin
e the sequen
eNk typi
ally grows exponentially, this sum is of order Nk� . Also we assume that Nk� = n ,that is, we stop when the largest possible neighborhood is taken. This leads to the boundN1 + : : :+Nk� � Cn (7)with some C > 0 .Proposition 3.1 Let f(x) � a and �2 � (2 + Æ) log(n) with some Æ > 0 . Then for allk � k� and all pairs Xi and Xj 2 UP (wk(Xi;Xj) = 0 for some k � k� and i 6= j) � 
k�with 
k� = expf��2=4gn2C=2 + expf��2=2gnk�(k� + 1)=2and C is from (7).We defer the proof of this and the next proposition to the appendix.The quantity 
k� is small provided that �2 � (8+Æ) log n and �2 � (2+Æ) log n with some
onstant Æ > 0 . Then with a probability of at least 1 � 
k� all estimates bfk�(Xi) 
oin
idewith the mean values of all observations Yj .3.2 The 
ase of many regionsNow we dis
uss the situation when there are more than one regions. To simplify the presenta-tion, we suppose that there are only two large regions A1 and A2 in the image and hen
e thefun
tion f has only two values a1 and a2 . The result allows straightforward generalizationto the 
ase of many regions. 7



By � = ja1 � a2j we denote the image 
ontrast. We also denote by AÆm the set of pointsXi in ea
h region Am for whi
h the initial neighborhood U0(Xi) belongs 
ompletely to Am ,AÆm = fXi : U0(Xi) � Amg; m = 1; 2:We intend to show that if the image 
ontrast is suÆ
iently large 
ompared to the noise levelthen we typi
ally get wk(Xi1 ;Xi2) = 0 for all pairs (Xi1 ;Xi2) with Xi1 2 AÆ1 and Xi2 2 AÆ2and for all k � 1 .Proposition 3.2 Let f(x) = a11(x 2 A1) + a21(x 2 A2) . Then it holdswk(Xi;Xj) = 0; 8Xi 2 AÆ1; Xj 2 AÆ2; and 8k � k�;with a probability greater or equal to1� 0:5Cn2 exp�����1N1=20 ja1 � a2j � 2��2 =4�where C is from (7) and N0 is the number of points in the initial neighborhood.We know from Proposition 3.1 that a proper 
hoi
e of �2 is (2 + Æ) log(n) . Therefore, if��1N1=20 ja1 � a2j > 4�the probability of wk(Xi;Xj) = 0 for any two points Xi;Xj from the same region 
an bebounded by n2 expf��2g . If n suÆ
iently large, this probability is again very small.The results of Propositions 3.1 and 3.2 lead to the following 
on
lusion. Let a point Xilie inside a large region and let for all j 2 Uk+1(Xi) the neighborhood Uk(Xj) belong to thesame region. Then a

ording to Proposition 3.1 all weights wk+1(Xi;Xj) are 1 and hen
e theestimate efk+1(Xi) is very 
lose to the mean of observations over Uk+1(Xi) . Su
h an estimate isunbiased and its varian
e is of order �2=Nk+1(Xi) . Moreover, the 
ontrol step guarantees thatfurther iterations do not lead to an essential de
rease of the a

ura
y of estimation. Therefore,inside every large region, the estimate should perform quite well.At the same time, for points near an edge, the probability to assign a weight w(Xi;Xj)of 1 for two points Xi;Xj from di�erent regions 
ould be quite high. This leads to a largerbias in estimating the image fun
tion espe
ially when the image 
ontrast is small 
omparedto the standard deviation of the errors, see Proposition 3.2. It 
an be also shown that thepro
edure delivers the rate optimal quality of edge re
ognition in the sense dis
ussed in Polzehland Spokoiny (1998). This issue is also in agreement with simulation results, see the nextse
tions.For weights equal 0 or 1 and for a parti
ular iteration k the estimated regions of homogeneitybA(Xi) are restri
ted to a lo
al neighborhood Uk(Xi). Therefore these regions strongly depend8



on the point Xi and do not yield a segmentation of the data domain. But, if the noise is small
ompared to the image 
ontrast, then due to Proposition 3.1 and 3.2, for a point Xi lying in aregion Am , we get with a high probability at k -th iteration bAk(Xi) = Am \ Uk(Xi) . In su
h
ase, for suÆ
iently large k� , we have Am \ Uk�(Xi) = Am . Hen
e bAk(Xi) = Am for all Xiin Am . For a large noise, these arguments do not apply. Both issues are again in agreementwith our simulation results, see Se
tion 4.3.3 Computational issuesNow we dis
uss how the parameters of the pro
edure 
an be sele
ted and indi
ate one possibledefault 
hoi
e used in our simulations. Although this 
hoi
e involves some arbitrariness weobserve that moderate 
hanges of the parameters lead to essentially similar results. A way fora data-driven parameter 
hoi
e, used in our examples, is also presented.Size of U0: The size N0(Xi) is important in the 
ontext of image re
ognition and edgeestimation, see Proposition 3.2. For the 
ases with 
ontrast-to-noise ratio �=� > 2 , the 
hoi
eN0 = 1 
an be advised. Here � is the (minimal) image 
ontrast,� = minfjam � am0 j; m 6= m0; am 6= am0g:For smaller 
ontrast-to-noise ratio N0 = 5 or N0 = 9 may be desirable.Sequen
e of neighborhoods Uk: The sequen
e should satisfy the 
onditions Xi 2 U0(Xi)and Uk�1(Xi) � Uk(Xi). It 
an be re
ommended to sele
t sequen
es Uk(Xi) in a way that thenumbers Nk(Xi) of points in every su
h neighborhood grow exponentially with k.In our simulation study and all examples we use neighborhoods Uk(x) = fXi : jXi � xj �dkg with dk 2 f0 : 8; 2 � (5 : 12); 4 � (7 : 12); 8 � (7 : 12); 16 � (7 : 10); 32 � (6 : 8)g, k� = 35 forunivariate situations, and dk 2 f(0 : 8)=2; 4:4; 5 : 10; 2 � (6 : 10)g, k� = 19 for images ((a : b)denotes a sequen
e of integers from a to b). This 
hoi
e gives Nk� = 513 and Nk� = 1257 pointsin the largest neighborhood for univariate and bivariate situations, respe
tively.k�: The value of k�, and therefore Nk�, is mainly determined by the degree of lo
ality thatone wishes to maintain and the 
omputational e�ort one is able to spend. In
reasing k� allowsfor additional varian
e redu
tion in large homogeneous regions but usually does not 
hangethe estimates where lo
al stru
ture is present. A data-driven 
hoi
e of k� is dis
ussed inSe
tion 3.4.K: Our default 
hoi
e for the kernel is K(x) = exp (�x2) .�: The 
hoi
e of this parameter mostly determines the properties of the pro
edure. In
reasingthe parameter redu
es the probability of dete
tion of arti�
ial jumps in a homogeneous situation9



(error of �rst kind) and in
reases the probability not to dete
t an existing dis
ontinuity (errorof se
ond kind), see Propositions 3.1 and 3.2 . Our default 
hoi
e, for the above K, is � = 3 .A data-driven 
hoi
e of � is dis
ussed in Se
tion 3.4.�: The 
ontrol step prevents the algorithm from loosing previously dete
ted dis
ontinuities,see Proposition 3.2. Suitable values for � are between 3 and 4. We use � = 4 in all 
ases.Remark: There is no magi
 behind the re
ommended 
hoi
e � � 3 and � � 4 . We illus-trate this on the simplest situation 
orresponding to the �rst step of the algorithm assumingU0(Xi) = fXig for all i . Then the initial estimates ef0(Xi) 
oin
ide with the observationsYi . Therefore, if points Xi and Xj belong to the same region Am , then the di�eren
eef0(Xj) � ef0(Xi) 
oin
ides with the di�eren
es "i � "j of the 
orresponding sto
hasti
 errors,see (1). If these errors are normally N (0; �2) -distributed and independent, then the di�eren
eis also normal N (0; 2�2) . Cal
ulating the weight w1(Xi;Xj) we 
ompare this di�eren
e with��0(Xi) = �� . The parameter � is 
hosen to provide an essentially large probability of theevent fj"i�"jj � ��g . The value � = 3 
orresponds to the probability 2�(p9=2)�1 � 0:966 ,� being the standard normal CDF (note that similar arguments hold for further iterations as-suming that the neighborhoods Uk(Xi) and Uk(Xj) are still inside the region Am ). Of 
ourselarger values of � lead to even larger probability of su
h an event. But, when � in
reases, thequality of estimation near an edge de
reases. The 
hoi
e � = 3 provides a reasonable 
om-promise for most 
ases. However, we keep a possibility to tune this parameter in some spe
i�
situations depending on what is important in ea
h parti
ular 
ase. In many 
ases (espe
iallyfor a large 
ontrast-to-noise ratio) the 
hoi
e of � between 2.8 and 4 does not 
hange the resultof the pro
edure signi�
antly. If the noise is 
omparable with the image 
ontrast this 
hoi
ebe
omes more 
ru
ial: in
reasing � de
reases the probability to dete
t a dis
ontinuity andtherefore results in oversmoothing while de
reasing � may lead to a random segmentation ofhomogeneous regions. A Bootstrap-based 
hoi
e of the parameters � and k� is dis
ussed inSe
tion 3.4.The iterative algorithm introdu
ed in Se
tion 2 is 
omputationally intensive but still fea-sible. The number of operations ne
essary to pro
ess an image 
ontaining n pixel is of orderO(nNk�) if the sequen
e Nk� is exponentially growing. We illustrate the speed of the algorithmgiving the CPU-Time reported for the MR-images analyzed in Se
tion 5.1. We implementedAWS using Fortran for the time 
riti
al parts of the algorithm and Splus as an user interfa
e.On a 255 Mhz DEC-Alpha Workstation the CPU-Time (User) taken by our implementationusing the default parameter settings is 87 s for an image of 256�256 pixel and 383 s for animage of 512�512 pixel. For many appli
ations this 
an be redu
ed signi�
antly by using a10



smaller value of k�.3.4 Bootstrap-based 
hoi
e of the parameters of the pro
edureThe performan
e of the proposed pro
edure strongly depends on the 
hoi
e of the involvedparameters, espe
ially on � and k� . Our simulated results and appli
ations to real data showthat there is no one universal optimal 
hoi
e for all situations, and the quality of the pro
edure
an be improved by tuning these parameters.Another important point is 
onne
ted to the quality of varian
e estimation, see Se
tion 2.2.It turns out that the proposed varian
e estimator overestimates the true varian
e in 
ase ofa 
ompli
ated underlying stru
ture, e.g. in MRI appli
ations. The use of b�2 in pla
e of �2is 
learly equivalent to repla
ing � by �b�=� whi
h leads again to the question of an optimal
hoi
e of parameter � for ea
h parti
ular example. Below we dis
uss one possibility for adata-driven 
hoi
e of these parameters based on the resampling (bootstrap) idea.The underlying idea is that the proper 
hoi
e is 
onne
ted to the 
omplexity of the imageand this 
omplexity is re
overed by our estimate with the default 
hoi
e of these parameters.Then we 
an resample the data using the estimate as a referen
e image and sele
t a proper setof parameters for this known referen
e. Finally we apply this bootstrap-based 
hoi
e to theoriginal data. This pro
edure may be iterated by repeating the resampling step with the newestimate. The pro
edure reads as follows:Run with default parameter set. AWS is used with the default parameters � = 3 , � = 4and k� = 19 . This provides us with an estimate of the image bf(Xi) and two sumsW1(Xi) =Xj w(Xi;Xj); and W2(Xi) =Xj w2(Xi;Xj);based on the weights w(Xi;Xj) used at the last iteration of AWS, all of this for every i =1; : : : ; n . Clearly W1(Xi) =W2(Xi) for the 
ase of zero-one weights.Varian
e estimation on the base of bf . Next we re
al
ulate the noise varian
e using theestimate bf . The representation bf(Xi) = 1W1(Xi)Pj w(Xi;Xj)Yj with w(Xi;Xi) = 1 leads tothe varian
e estimate(��)2 = 1n nXi=1 �Yi � bf(Xi)�2 W 21 (Xi)W2(Xi) +W1(Xi)2 � 2W1(Xi) :Resampling. We draw new bootstrap samples Y �i;m using the model Y �i;m = bf(Xi) + ��"�i;mwhere "�i;m are independent standard normal errors. Here m denotes the number of thebootstrap sample, m = 1; : : : ;M . 11



Parameter optimization. For every 
onsidered set of parameters �; k� , and for every boot-strap sample Y �1;m; : : : ; Y �n;m , we 
arry over the AWS pro
edure resulting in the image estimatef�m and 
ompute the quality 
riterion1M MXm=1 nXi=1  � bf(Xi)� f�m(Xi)�where  is some loss fun
tion, e.g. a quantile fun
tion, or  (t) = jtj or  (t) = t2 . Parametersare 
hosen minimizing this 
riterion w.r.t. � and k�.Sin
e our 
riterion is de�ned by summation over all design point, one 
an expe
t a degen-erated behavior of the optimized quantity even for one bootstrap sample, that is, for M = 1 .Final run. Finally apply AWS to the original data using the sele
ted set of parameters.4 SimulationsIn the following subse
tions we demonstrate the 
apabilities of our approa
h using some uni-and bivariate simulations. We illustrate the behavior of our algorithm for di�erent 
ontrast-to-noise ratios ranging from easy to handle situations (�=� = 4) to situations where the signalis hardly visible by eye (�=� = 1 and larger) and di�erent size of the homogeneous regions.We 
ompare our AWS pro
edure with some established alternative approa
hes. It shouldbe mentioned that the following list is far from being 
omplete.4.1 Alternative pro
eduresGauss �ltering: Here we use an Nadaraya-Watson kernel estimate with Gaussian kernel andsmoothing parameter h bf(Xi) = Pj Yj exp f�(Xj �Xi)2=(2h2)gPj exp f�(Xj �Xi)2=(2h2)g :Nonlinear Gauss �ltering: The Nonlinear Gauss Filter was proposed by Godtliebsen etal. (1997) as a generalization of the Sigma Filter of Lee (1983). It repla
es the dis
ontinuous(uniform) weight fun
tion of the sigma �lter by an Gaussian weight s
heme. The �lter is de�nedas bf(Xi) = Pj2U(Xi) Yj exp f�(Yj � Yi)2=(2g2)gPj2U(Xi) exp f�(Yj � Yi)2=(2g2)gwhere the radius of U(x) and g are smoothing parameters.Modal regression: Modal regression is introdu
ed in S
ott (1992) as a robust alternativeto nonparametri
 regression pro
edures estimating a 
onditional mean. The modal regression
urve is de�ned as bf(x) = argmaxy bp(y; x)12



with bp(y; x) being an estimate of the joint density of y and x. Although S
ott proposes to usemultiple modes simultaneously we 
on
entrate on the mode 
losest to the observed Y . Theestimate depends on two bandwidths in x and y domain.Change point methods: An alternative in 
ase of well separated jumps 
an be based onmethods of 
hange point estimation. We use the pro
edures of 
hange point estimation pro-posed by M�uller (1992). The 
hange point estimate is only used in the univariate 
ase.CART: A suitable pro
edure for the univariate 
ase 
an be based on the 
lassi�
ation- andregression trees (CART) introdu
ed by Breiman et al. (1984). We use CART as implementedin Splus with the number of splits determined by CV-pruning. CART is only used in theunivariate simulations sin
e it is not 
exible enough to allow for a reasonable re
onstru
tion ofour test image.Wavelets: For our 
omparisons we use the Wavelet pa
kage wavethresh of G. P. Nason, seeNason and Silverman (1994) for a des
ription of the software. We use the Haar basis and thebiorthogonal Haar basis for univariate and bivariate situations, respe
tively. We suppose this
hoi
e to be the most adequate for lo
al 
onstant fun
tions from the sele
tion of bases o�ered.Parameters, i.e. threshold value and levels for thresholding, are sele
ted to provide optimalmean integrated squared error (MISE) for the underlying true stru
ture. We used hard or softthresholding depending on whi
h method provided better results in terms of MISE. We do notdis
uss more sophisti
ated wavelet pro
edures like the translation invariant wavelet transform,see Coifman and Donoho (1995), or anisotropi
 wavelet bases, see Daube
hies (1992), Chapter10.1, or Neumann (1998).Markov Random Fields (MRF): Out of the wide range of Markov Random Fields methodsin image analysis we use an Metropolis algorithm, see e.g. Winkler (1995), page 133. We startwith initial values bf(Xi) = Yi. A new proposal y� in a randomly 
hosen point x is generatedfrom a stri
tly positive probability distribution G(y�jx) with support on the range of Y . Anew proposal y� in point x is a

epted as a new value for bf(x) with probabilitymin(1; exp (H( bf(x)jx; Y )�H(y�jx; Y )=�));otherwise the old value is kept. HereH(y�jXi; Y ) = (Yi � bf(Xi))22�2 � XXj2U(Xi)=fXig �1 + (( bf(Xi)� bf(Xj))=Æ)2is an energy fun
tion designed for a 
ontinuous state spa
e. The temperature � is 
hosen toslowly de
rease with the number of iterations. For more dis
ussions see e.g. Winkler (1995)Chapter 10 for the Metropolis algorithm and Chapter 2 for the energy fun
tion used.13



Ex
ept the Gauss �lter all of the pro
edures 
onsidered are designed to handle dis
ontinu-ities. Most of the alternative pro
edures depend on smoothing parameters. These parametersare 
hosen to minimize an estimate of MISE in the situation studied.4.2 A univariate simulation exampleIn our �rst univariate example we use a pie
ewise 
onstant regression fun
tion with varyingsize of the homogeneous region. The left 
olumn of Figure 1 presents three data sets generatedfor di�erent values of �. The 
entral plots show the true fun
tion together with the AWSestimates. The third 
olumn provides estimates obtained by the best alternative pro
edures,wavelets and CART, for a 
omparison.************ put Figure 1 around here ************************ put Table 1 around here ************We run 1000 simulations with sample size 256 and error standard deviation � = :25, :5and 1, respe
tively. Table 1 displays results of the simulations in terms of estimated MISEand mean, over x, estimates of P( jbf (x) � f(x)j > �=4) , � = 1 . We 
all this quantity largedeviation probability (LDP). Note that AWS performs best with respe
t to both MSE and LDPin 
ase of � � :5. For � = 1 our adaptive pro
edure does not always dete
t the dis
ontinuitiesfor small x, i.e. where the homogeneous regions are small. This leads to an in
reased meansquared error and large deviation probability for small x.4.3 Bivariate simulationsWe use an arti�
ial image to demonstrate the power of our pro
edures in more 
ompli
atedsituations, see Figure 2.************ put Figure 2 around here ************The image possesses two di�erent image 
ontrasts, � = :5 and 2 � = 1, and homogeneousregions of various size and form. The image 
ontains n = 256 � 256 pixel. Note that in theimage the size of homogeneous regions in
reases from the lower left to the upper right. Thereare very detailed stru
tures in the upper left and lower right of the image.************ put Figure 3 around here ************In the left 
olumn of Figure 3 we display this image distorted by additive Gaussian noise ofstandard deviation � = :25, :5, and 1, respe
tively. The se
ond 
olumn 
ontains the re
onstru
-tion of the noisy images by AWS (with default parameters). For a 
omparison we provide theresults obtained by modal regression, wavelets and Markov random �elds. For the alternativepro
edures estimated gray levels, that are out of s
ale are proje
ted.With standard deviation in
reasing we �rst loose the most detailed stru
ture (� = :5) and14



observe some loss in edge a

ura
y for the lower 
ontrast level (� = 1). Note that we stillre
over the main stru
ture that is hardly visible in the noisy original. The AWS-estimatesbehave very stable with respe
t to 
hanges of the parameters, e.g. ea
h � 2 (3; 3:6) givesessentially the same quality of re
onstru
tion for all � 
onsidered.To illustrate the lo
al behavior of our pro
edure in more detail we 
ondu
t a 
omparativesimulation study based on the test image, see Figure 5. We perform 100 simulations with errorstandard deviation of � = :25, :5 and 1, respe
tively. We use our default parameter settingsfor AWS and again approximately MISE-optimal parameters for the alternative pro
edures.Table 2 provides the simulation results using the same 
riteria as in the univariate 
ase.************ put Table 2 around here ************For the lowest noise level we observe that even the detailed stru
tures in the upper leftand lower right of the image are re
overed by our method. MRF and modal regression bothwork reasonable in this situation, providing an improvement to the gauss �lter with respe
tto both 
riteria. The wavelet estimate su�ers espe
ially for detailed stru
tures and where theboundaries are not parallel to the axes. In
reasing � we see a 
lear advantage of our pro
edure.5 Appli
ations5.1 An Appli
ation to Magneti
 Resonan
e ImagingMagneti
 Resonan
e imaging (MRI) is a new te
hnique of noninvasive analysis providing adelineation of a physi
al obje
t. The signal, or true image, 
an be interpreted as a weightedspin density of the system of atomi
 nu
lei the physi
al obje
t 
onsists of. For an ex
ellentintrodu
tion into the mathemati
s and physi
s of MRI see for instan
e Sebastiani and Barone(1991) and Lange (1996).In Fourier imaging, whi
h is the most 
ommon MR imaging te
hnique, a �nite number of
oeÆ
ients from the 2-D Fourier series expansion of the true image are measured. The MRimage is then obtained applying the dis
rete Fourier transform to the raw data, i.e. the MRimage 
an be viewed as a trun
ated Fourier series of the weighted spin density distorted bynoise, see e.g. Barone and Sebastiani (1992).It is reasonable to 
hara
terize the underlying image by a pie
ewise 
onstant fun
tion, withhomogeneous regions 
orresponding to the same type of tissue and therefore having a similarspin density and dis
ontinuities at the interfa
e between adja
ent tissues. Random errors 
anbe modeled as additive white Gaussian noise, see e.g. Sebastiani and Barone (1995).************ put Figure 4 around here ************Our �rst example is based on a MR image re
orded at the MR 
enter at Trondheim,kindly provided to us by F. Godtliebsen. The same data were analyzed e.g in Barone and15



Sebastiani (1992), Chu et al. (1998), and Godtliebsen et al. (1997). Re
onstru
tions of thesame image using Markov random �eld methods 
an be found in Godtliebsen and Sebastiani(1994). The upper left plot of Figure 4 shows the 
entral part of the image. The upper rightplot gives the estimate obtained by AWS. Parameters are sele
ted by the pro
edure des
ribedin Subse
tion 3.4 using  (t) = jtj .To illustrate the quality of re
onstru
tion we present the result of another well establishedmethod to redu
e the noise level by averaging several MR-Images re
orded from the same sli
eof the brain, see the lower left plot. Images, re
orded su

essively, 
an not be assumed to haveexa
tly the same lo
ation. This leads to some 
onvolution in the averaged image. In the lowerright plot we show gray level densities for both the averaged image and the AWS estimate.Sin
e gray levels 
orrespond to 
ertain tissues in the brain, a density with spikes is more whatone would expe
t. By averaging images this property is lost. AWS allows to preserve thestru
ture, although at the given noise level there is no de�nite de
ision whether peaks of thegray level density are due to the stru
ture or introdu
ed by the pro
edure.5.2 An example from satellite imagingIn our last example, suggested by a referee, we use a log-transformed C-band, HH-polarization,syntheti
 aperture radar (SAR) image re
orded by Dr. E. Attema at the European Spa
e Re-sear
h and Te
hnology Centre in Noordwijk, Netherlands. The example is also used in Glasbeyand Horgan (1995). The data 
an be obtained from ftp://peipa.essex.a
.uk/ipa/pix/books/glasbey-horgan/ . The image shows an area near Thetford forest, England.************ put Figure 5 around here ************In Figure 5 we show the noisy original, the re
onstru
tion obtained by AWS and a residualimage. Parameters for AWS are sele
ted a

ording to Subse
tion 3.4 using  (t) = jtj .6 Con
lusionsThe simulated results and the examples demonstrate a reasonable performan
e of the proposedpro
edure espe
ially in situations where the underlying image is pie
ewise 
onstant or 
an beapproximated by su
h images. In su
h 
ases the pro
edure outperforms most other methods.The ni
e visual quality of restoration for su
h examples is due to the two most importantfeatures of the method: the estimated image is homogeneous within every large homogeneousregions independently of its shape and, simultaneously the pro
edure provides a reasonablequality of estimation near image edges. The pro
edure is very stable w.r.t. in
reasing noiselevel. All these issues are in agreement with theoreti
al properties of the pro
edure whi
h surelyshould be investigated further. The algorithm 
an be easely applied to higher dimensional16
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tion in k . First we 
onsider the weightsw1(Xi;Xj) . Sin
e every initial neighborhood U0(Xi) 
ontains exa
tly N0 design points, ea
hestimate bf0(Xi) is normal with the mean a and the varian
e s20(Xi) = �2=N0 . First weevaluate the probability of the eventfj bf0(Xi)� bf0(Xj)j > ��N�1=20 for some i 6= jg:By (1), bf0(Xi)� bf0(Xj) = 1N0 XU0(Xi) "` � 1N0 XU0(Xj) "`and this is a linear 
ombination of Gaussian errors. Therefore this di�eren
e itself is a Gaussianzero mean random variable withEj bf0(Xi)� bf0(Xj)j2 = �2N0(Xi;Xj)=N20where N0(Xi;Xj) is the number of design points lying either in U0(Xi) or in U0(Xj) but notin their interse
tion,N0(Xi;Xj) = # fU0(Xi) [ U0(Xj) nU0(Xi) \ U0(Xj)g :Obviously N0(Xi;Xj) � 2N0 . Therefore,P �j bf0(Xi)� bf0(Xj)j > ��N�1=20 �� exp�� �2�2N�102�2N0(Xi;Xj)N�20 �� exp�� �2N02N0(Xi;Xj)�� expf��2=4g:In the adaptation step we 
ompute the weights w1(Xi;Xj) for all Xi and for every Xj fromU1(Xi) . This involves about nN1=2 
omparisons for di�erent pairs (Xi;Xj) . ThereforeP �fj bf0(Xi)� bf0(Xj)j > ��N�1=20 for some i 6= jg�17



� nXi=1 XU1(Xi)P �j bf0(Xi)� bf0(Xj)j > ��N�1=20 �� 0:5nN1 expf��2=4g:We see that all the weights w1(Xi;Xj) = 1 with a probability greater than1 � 0:5nN1 expf��2=4g . Therefore, assuming that an event of type fw1(Xi;Xj) = 0g doesnot o

ur, all estimates bf1(Xi) are simply mean values of the observations Yj over U1(Xi) .All these arguments apply to the next iteration with bf1 in pla
e of bf0 and so on.Now suppose that we have got the equal weights wk0(Xi;Xj) = 1 for all k0 � k witha probability of at least 1 � 
k with some number 
k . We intend to estimate the similarprobability to the next iteration. First we note that by the previous arguments wk+1(Xi;Xj) =1 for all i 6= j with a probability of at least 1�
k�0:5nNk+1 expf��2=4g . It remains only to
he
k that the 
ontrol step does not reje
t the estimate bfk+1(Xi) . Let k0 � k . Then obviouslybfk+1(Xi)� bfk0(Xi) = N�1k+1 XUk+1(Xi)Yj �N�1k0 XUk0(Xi) Yj = N�1k+1 XUk+1(Xi) "j �N�1k0 XUk0(Xi) "j :Sin
e all errors "j are independent N (0; �2) r.v.'s, this di�eren
e is also a normal zero meanr.v. with the varian
eE � bfk+1(Xi)� bfk0(Xi)�2 = �2(N�1k0 �N�1k+1) � �2N�1k0 :Therefore, using s2k0(Xi) = �2N�1k0P �j bfk+1(Xi)� bfk0(Xi)j > ��Nk0� � P (j�j > �) � expf��2=2gwhere � denotes a standard normal r.v. The total number of su
h 
ontrol tests is not greaterthan nk and the probability that at least one su
h event o

urs at the (k + 1) -th iteration
an be bounded by expf��2=2gnk . Therefore, if
k+1 = 
k + 0:5nNk+1 expf��2=4g + expf��2=2gnk;then, with a probability greater or equal to 1� 
k+1 , we get all wk+1(Xi;Xj) = 1 .Summing over all iterations we get the following upper bound for 
k�
k� � 0:5n expf��2=4g k�Xk=1Nk + expf��2=2gn k�Xk=1 k� C n2 expf��2=4g=2 + expf��2=2gnk�(k� + 1)=2as required. 2Proof of Proposition 3.2. Let us �x one pair (Xi1 ;Xi2) with Xim 2 AÆm , m = 1; 2 .First we note that bf0(Xim) � N (am; �2N�10 ) and we may represent these estimates in the18



form bf0(Xim) = am + �N�1=20 �im where m = 1; 2 and �i1 and �i2 are independent standardGaussian r.v.'s.Next, in view of the 
ontrol step, we have for every k � 1j bfk(Xim)� bf0(Xim)j � ��N�1=20 ; m = 1; 2:Therefore j bfk(Xi1)� bfk(Xi2)j � j bf0(Xi1)� bf0(Xi2)j� j bfk(Xi1)� bf0(Xi1)j � j bfk(Xi2)� bf0(Xi2)j� ja1 � a2j � 2��N�1=20 � �N�1=20 j�i1 � �i2 j:The di�eren
e �i1 � �i2 is a zero mean Gaussian r.v. with the varian
e 2 and hen
eP �j bfk(Xi1)� bfk(Xi2)j < ��N�1=20 �� P �j�i1 � �i2 j > ��1N1=20 ja1 � a2j � 2��� exp�����1N1=20 ja1 � a2j � 2��2 =4� :The number of su
h pairs 
an be very roughly bounded by nNk=2 and therefore the probabilityto meet by k -th iteration at least one su
h event is smaller than0:5nNk exp�����1N1=20 ja1 � a2j � 2��2 =4� :Summing up over all k � k� and using (7), we obtain the required assertion. 2Referen
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MISE LDP� = :25 � = :5 � = 1 � = :25 � = :5 � = 1AWS 0.003 0.023 0.123 0.002 0.026 0.243Gauss �ltering 0.019 0.039 0.081 0.069 0.182 0.368Nonlinear gauss 0.013 0.040 0.089 0.038 0.189 0.394Modal regression 0.008 0.040 0.084 0.015 0.179 0.378Change point 0.014 0.043 0.095 0.047 0.196 0.388CART 0.006 0.031 0.149 0.008 0.066 0.414Wavelets 0.009 0.038 0.097 0.008 0.146 0.379MRF 0.010 0.044 0.112 0.021 0.191 0.422
Table 1: Estimated mean integrated squared error (MISE) and large deviation probability (LDP) in theunivariate simulation experiment

MISE LDP� = :25 � = :5 � = 1 � = :25 � = :5 � = 1AWS 0.0021 0.0109 0.0328 0.007 0.032 0.119Gauss �ltering 0.0138 0.0243 0.0396 0.212 0.313 0.452Nonlinear gauss 0.0096 0.0262 0.0454 0.151 0.334 0.491Modal regression 0.0068 0.0254 0.0426 0.078 0.290 0.479Wavelets 0.0079 0.0147 0.0468 0.073 0.172 0.437MRF 0.0050 0.0204 0.0475 0.048 0.248 0.497
Table 2: Estimated mean integrated squared error (MISE) and large deviation probability (LDP) in thebivariate simulation experiment
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Figure 1: Data generated in the univariate experiment (left 
olumn), true fun
tion (dashed line), AWSestimate (solid line) (
entral 
olumn), wavelet estimate (best hard thresholding,solid line) and CARTestimate (dashed line) (right 
olumn) for standard deviations � = :25, :5 and 1.
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ial test image
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Figure 3: Image plus noise (left), AWS-re
onstru
tions (se
ond), modal regression (third), wavelet(fourth) and MRF estimate (right 
olumn) for di�erent values of �.
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Figure 4: Central part of Original Magneti
 Resonan
e image and AWS estimate (upper row); averageof eight images of the same sli
e and estimated densities of gray levels (lower row)26
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Figure 5: Syntheti
 aperture radar (SAR) data: original image (left), AWS Re
onstru
tion (
entral)and residuals (right).
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Figure 1: Data generated in the univariate experiment (left 
olumn), true fun
tion (dashedline), AWS estimate (solid line) (
entral 
olumn), wavelet estimate (best hard thresholding,solidline) and CART estimate (dashed line) (right 
olumn) for standard deviations � = :25, :5 and1.Figure 2: Arti�
ial test imageFigure 3: Image plus noise (left), AWS-re
onstru
tions (se
ond), modal regression (third),wavelet (fourth) and MRF estimate (right 
olumn) for di�erent values of �.Figure 4: Central part of Original Magneti
 Resonan
e image and AWS estimate (upper row);average of eight images of the same sli
e and estimated densities of gray levels (lower row)Figure 5: Syntheti
 aperture radar (SAR) data: original image (left), AWS Re
onstru
tion(
entral) and residuals (right).Table 1: Estimated mean integrated squared error (MISE) and large deviation probability(LDP) in the univariate simulation experimentTable 2: Estimated mean integrated squared error (MISE) and large deviation probability(LDP) in the bivariate simulation experiment
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