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Abstract

This paper presents a new method for spatially adaptive local (constant) like-
lihood estimation which applies to a broad class of nonparametric models,
including the Gaussian, Poisson and binary response models. The main idea
of the method is given a sequence of local likelihood estimates ("weak” es-
timates), to construct a new aggregated estimate whose pointwise risk is of
order of the smallest risk among all “weak” estimates. We also propose a
new approach towards selecting the parameters of the procedure by provid-
ing the prescribed behavior of the resulting estimate in the simple parametric
situation. We establish a number of important theoretical results concerning
the optimality of the aggregated estimate. In particular, our “oracle” results
claims that its risk is up to some logarithmic multiplier equal to the smallest
risk for the given family of estimates. The performance of the procedure is
illustrated by application to the classification problem. A numerical study

demonstrates its nice performance in simulated and real life examples.
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1 Introduction

This paper presents a new method of spatially adaptive nonparametric estimation based
on the aggregation of a family of local likelihood estimates. As a main application of the
method we consider the problem of building a classifier on the base of the given family
of k-NN or kernel classifiers.

The local likelihood approach has been intensively discussed in recent years, see e.g.
Hastie and Tibshirani (1987), Staniswalis (1989), Loader (1996). We refer to Fan, Far-
men and Gijbels (1998) for a nice and detailed overview of local maximum likelihood
approach and related literature. Similarly to the nonparametric smoothing in regression
or density framework, an important issue for the local likelihood modeling is the choice of
localization (smoothing) parameters. Different types of model selection techniques based
on the asymptotic expansion of the local likelihood are mentioned in Fan, Farmen and
Gijbels (1998) which include global as well as variable bandwidth selection. However,
the finite sample performance of estimators based on bandwidth or model selection is
often rather unstable, see e.g. Breiman (1996). This point is particulary critical for
the local or pointwise model selection procedures like Lepski’s method (Lepski, 1990).
In spite of the nice theoretical properties, see Lepski, Mammen and Spokoiny (1997),
Lepski and Spokoiny (1997) or Spokoiny (1998), the resulting estimates suffer from a
high variability due to a pointwise model choice, especially for a large noise level. This
suggests that in some cases, the attempt to identify the true model is not necessarily the
right thing to do. One approach to reduce a variability in adaptive estimation is model
mixing or aggregation. Catoni (2001) and Yang (2004) among others have suggested
global aggregating procedures that achieve the minimal estimation risks over the family
of given “weak” estimates. In the regression setup Juditsky and Nemirovski (2000) have
developed aggregation procedures which have a risk within a multiple of the smallest risk
in the class of all convex combinations of “weak” estimates plus log(n)/n. Tsybakov
(2003) has discussed asymptotic minimax rates for the aggregation. The aggregation
for density estimation has been studied by Li and Barron (1999) and more recently by
Rigollet and Tsybakov (2005). To the best of our knowledge a pointwise aggregation has

not yet been considered.
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Our approach is based on the idea of the spatial (pointwise) aggregation of a family of
local likelihood estimates (“weak” estimates) 0%) . The main idea is, given the sequence
{g(k)} to construct in a data driven way for every point = the “optimal” aggregated
estimate g(w) “Optimality” means that this estimate satisfies some kind of “oracle”
inequality, that is, its pointwise risk does not exceed the smallest pointwise risk among
all “weak” estimates up to a logarithmic multiple.

Our algorithm can be roughly described as follows. Let {g(k’)(:v)} ,k=1,...,K, be
a sequence of “weak” local likelihood estimates at a point x ordered according to their
variability which decreases with k. Starting with 5(1)(@ =0 (z), an aggregated esti-
mate 9 (z) at any step 1 < k < K is constructed by mixing the previously constructed

aggregated estimate §(*~1)(z) with the current “weak” estimate %) (z):
0 (@) = 8™ (2) + (1 — )8 (),

and 9(F) (z) is taken as a final estimate. The mixing parameter ~; (which may depend
on the point z) is defined using a measure of statistical difference between 1/9\(]“_1)(33)
and %) (z). In particular, v, is equal to zero if @\(k_l)(x) lies outside the confidence
set around 6*) (z). In view of the sequential and pointwise nature of the algorithm,
the suggested procedure is called Spatial Stagewise Aggregation (SSA). An important
features of the procedure proposed are its simplicity and applicability to a variety of
problems including Gaussian, binary, Poisson regression, density estimation, classification
etc. The procedure does not require any splitting of the sample as many other aggregation
procedures do, cf. Yang (2004). Besides that the theoretical properties of SSA can be
rigorously studied. In particular, we establish precise nonasymptotic “oracle” results
which are applicable under very mild conditions in a rather general set-up. We also
show that the oracle property automatically implies spatial adaptivity of the proposed
estimate.

Another important feature of the procedure is that it can be easily implemented and
the problem of selecting the tuning parameters can be carefully addressed.

Our simulation study confirms a nice finite sample performance of the procedure for
a broad class of different models and problems. We only show the results for the classi-

fication problem as the most interesting and difficult one. Some more examples for the
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univariate regression and density estimation can be found in our preprint Belomestny and
Spokoiny (2005). Section 4 shows how the SSA procedure can be applied to aggregating
kernel and k-NN classifiers in the classification problem. Although these two nonpara-
metric classifiers are rather popular, the problem of selecting the smoothing parameter
(the bandwidth for the kernel classifier or the number of neighbors for the k-NN method)
has not been yet satisfactorily addressed. Again, the SSA-based classifier demonstrates
the “oracle” quality in terms of the both pointwise and global misclassification errors.
This application clearly shows one more important feature of the SSA method: it can
be applied to an arbitrary design and arbitrary dimension of the design space. This is

illustrated by simulated and real life classification examples in dimensions up to 10.

The procedure proposed in this paper is limited to aggregating the kernel type es-
timates which are based on the local constant approximation. The modern statistical
literature usually considers the more general local linear (polynomial) approximation of
the underlying function. However, for this paper we have decided by several reasons to
restrict our attention to the local constant case. The most important one is that for the
examples and applications we consider in this paper, the use of the local linear methods
does not improve (and even degrade) the quality of estimation. Our experience strongly
confirms that for the problems like classification, the local constant smoothing combined

with the aggregation technique delivers a reasonable finite sample quality.

Our theoretical study is split into two big parts. Section 2 introduces the considered
local parametric set-up and extends the parametric risk bounds to the local parametric
and nonparametric situation under the so called “small modelling bias” condition. The
main result (Corollary 2.6) claims that the parametric risk bounds continue to apply as
long as this condition is fulfilled. One possible interpretation of our adaptive procedure is
the search of the largest localizing scheme for which the ‘small modelling bias” condition
still holds. Theoretical properties of the aggregation procedure are presented in Section 5.
The main result states the “oracle” property of the SSA estimate: the risk of the aggre-
gated estimate is within a log-multiple as small as the risk of the best “weak” estimate
for the function at hand. The results are established in the precise nonasymptotic way

for a rather general likelihood set-up under mild regularity conditions. Moreover, our ap-



BELOMESTNY, D. AND SPOKOINY, V. )

proach allows to link the parametric and nonparametric theory. In particular, we show
that the proposed method delivers the root-n accuracy in the parametric situation. In
the nonparametric case, the quality corresponds to the best parametric approximation.
Both the theoretical study and the motivation of the procedure employ some exponen-
tial bounds for the likelihood which are given in Section 2.2. An important feature of
our theoretical study is that the problem of selecting the tuning parameters is also dis-
cussed in details. We offer a new approach in which the parameters of the procedure
are selected to provide the desirable performance of the method in the simple parametric
situation. This is similar to the hypothesis problem approach when the critical values
are selected using the performance of the test statistic under the simple null hypothesis,

see Section 3.3.1 for a detailed explanation.

2 Local constant modeling for exponential families

This section presents some results on local constant likelihood estimation. We begin by
describing the model under consideration. Suppose we are given independent random
data Zi,...,Z, of the form Z; = (X;,Y;). Here every X; means a vector of “features”
or explanatory variables which determines the distribution of the “observation” Y;. For
simplicity we assume that the X;’s are valued in the finite dimensional Euclidean space
X = R? and the Y;’s belong to IR. The vector X; can be viewed as a location and
Y, as the “observation at X;”. Our model assumes that the distribution of each Y; is
determined by a finite dimensional parameter # which may depend on the location X .

More precisely, let P = (Py, 0 € ©) be a parametric family of distributions dominated
by a measure P. In this paper we only consider the case when @ is a subset of the
real line. By p(-,0) we denote the corresponding density. We consider the regression-
like model in which every “response” Y; is, conditionally on X; = z, distributed with
the density p(-, f(z)) for some unknown function f(z) on X with values in ©. The

considered model can be written as

The aim of the data-analysis is to infer on the “regression” function f(z). For the related



6 SPATIAL AGGREGATION FOR CLASSIFICATION

models see Fan and Zhang (1999) and Cai, Fan and Li (2000).

In this paper we focus on the case when P is an exponential family. This means
that the density functions p(y,0) = %(y) are of the form p(y,0) = p(y)er“@-B0O)
Here C(0) and B(f) are some given nondecreasing functions on @ and p(y) is some

nonnegative function on IR.

A natural parametrization for this family means the equality EpY = [yp(y, 0)P(dy)
0 for all 8 € ©. This condition is useful because the weighted average of observations
is a natural unbiased estimate of 6. In what follows we assume that P also fulfills the

following regularity conditions:

(A1) P = (P,0 € © C IR) is an exponential family with a natural parametrization,

and the functions B(-) and C(:) are continuously differentiable.

(A2) O is compact and convex and the Fisher information 1(6) := Eg|0logp(Y,0)/00]?

fulfills for some 2 > 1
110/ IO))V? <,  0,0"co.

We illustrate this set-up with two examples relevant to the applications we consider
below. Some more examples can be found in Fan, Farmen and Gijbels (1998) and Polzehl

and Spokoiny (2005).

Example 2.1. (Inhomogeneous Bernoulli (Binary Response) model) Let Z; =
(X;,Y;) with X; € IR? and Y; being a Bernoulli r.v. with parameter f(X;), that is,
P(Yi=1|X;,=2)= f(z) and P(Y;=0|X; =2) =1— f(x). Such models arise in

many econometric applications and are widely used in classification and digital imaging.

Example 2.2. (Inhomogeneous Poisson model) Suppose that every Y; is valued in
the set N of nonnegative integer numbers and P(Y; = k | X; = ) = f*(x)e @) /!,
that is, Y; follows a Poisson distribution with parameter § = f(z). This model is
commonly used in the queueing theory, it occurs in positron emission tomography and

also serves as an approximation for the density model obtained by a binning procedure.

In the parametric setup with f(-) = 6 the distribution of every “observation” Y;

coincides with Py for some 6 € @ and the parameter 6 can be well estimated using the
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parametric maximum likelihood method:
0= argmaleogp Yi, 0).
beo
In the nonparametric framework, one usually applies the localization idea. In the local
constant set-up this means that the regression function f(-) can be well approximated
by a constant within some neighborhood of every point x in the “feature” space X.

This leads to the local model concentrated in some neighborhood of the point x.

2.1 Localization

We use the localization by weights as a general method to describe a local model. Let,
for a fixed z, a nonnegative weight w; = w;(x) < 1 be assigned to the observation Y; at
X;, i=1,...,n. The weights w;(z) determine a local model corresponding to the point
x in the sense that, when estimating the local parameter f(z), every observation Y;
is taken with the weight w;(z). This leads to the local (weighted) maximum likelihood
estimate 6 = 6(z) of f(z):
9( = argmaxZwZ logp(Y;,0) . (2.1)
be0 i
We mention now two possible ways of choosing the weights w;(x). Localization by
a bandwidth is defined by weights of the form w;(x) = Kioe(l;) with U; = p(x, X;)/h
where h is a bandwidth, p(z, X;) is the Euclidean distance between x and the design
point X; and K, is a location kernel. Localization by a window simply restricts the
model to a subset (window) U = U(z) of the design space which depends on =z, that
is, wi(xr) = 1(X; € U(z)). Observations Y; with X; outside the region U(x) are not
used for estimating f(x). This kind of localization arises e.g. in the classification with
k -nearest neighbors method or in the regression tree approach. Sometime it is convenient
to combine these two methods by defining w;(x) = Kjoc(l;)1(X; € U(x)). One example
is given by the boundary corrected kernels.
We do not assume any special structure for the weights w;(x), that is, any configu-

ration of weights is allowed. We also denote W = W (z) = {wi(x),...,wy(z)} and

sz Ing YVZ’Q)
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To keep the notation short, we do not show the dependence of the weights on x explicitly

in what follows.

2.2 Local likelihood estimation for an exponential family model

If P = (Py) is an exponential family with the natural parametrization, the local log-
likelihood and the local maximum likelihood estimates admit a simple closed form rep-

resentation. For a given set of weights W = {wy,...,w,} with w; € [0, 1], denote

n n
i=1 =1

Note that the both sums depend on the location z via the weights {w;} .

Lemma 2.1 (Polzehl and Spokoiny, 2005). It holds
L(W,0) =Y w;logp(V;,0) = SC(0) — NB(6) + R
i=1

where R =", w;logp(Y;). Moreover,

0=S/N = Zn:wy/ zn:wi (2.2)
=1 =1
and

L(W,0,6) :== L(W,0) — L(W,0) = NX(6, 6).

Now we present some exponential inequality for the “fitted log-likelihood” L(W, 5, 0)
which apply in the parametric situation f(-) = 6 for arbitrary weighting scheme and

arbitrary sample size.

Theorem 2.2 (Polzehl and Spokoiny, 2005). Let W = {w;} be a localizing scheme such

that max; w; < 1. If f(X;) =0* for all X; with w; >0 then for any z >0
Py-(L(W,0,0%) > 2) = Py (N:K(é,e*) > z) < 277,

Remark 2.1. Condition A2 ensures that the Kullback-Leibler divergence X fulfills

K(0',0%) < I*|¢" — 6*|> for any point # in a neighborhood of #*, where I* is the

maximum of the Fisher information over this neighborhood. Therefore, the result of

Theorem 2.2 guarantees that |§ — 6*| < CN~1/2 with a high probability. Theorem 2.2

can be used for constructing the confidence intervals for the parameter 6*.
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Theorem 2.3. If 3, satisfies 2e 3 < «, then
€o = {0 : NK(0,0) <30}
s an « -confidence set for the parameter 6* .

Theorem 2.2 claims that the estimation loss measured by K(#',6) is with high prob-
ability bounded by 3/N provided that j is sufficiently large. Similarly, one can establish

a risk bound for a power loss function.

Theorem 2.4. Assume Al and A2 and let Y; be i.i.d. from Py« . Then for any r >0
Eg-L"(0,0°) = N"Eg-X"(6,60) < 7,

where T, = 21"f

>0 37 le73dy = 2rI'(r). Moreover, for every A <1

Eg-exp{\L(0,6%)} = Eg- exp{ANK(6,6")} <2(1 -\ %
Proof. By Theorem 2.2
Byl 067) < - [ §dPyL@.67) > )
3>0

< r/ 3T_1P9*(L(§, 0) > 3)dz < 2r/ 5T_1€_3d5
320 320

and the first assertion is fulfilled. The last assertion is proved similarly. O

2.3 Risk of estimation in nonparametric situation. “Small modeling

bias” condition

This section extends the bound of Theorem 2.2 to the nonparametric situation when the
function f(-) is not any longer constant even in a vicinity of the reference point x. We,
however, suppose that the function f(:) can be well approximated by a constant 6 at
all points X; with positive weights w;. To measure the quality of the approximation,

define for every 6

AW,0) =3 _8(0, f(Xi))1(wi > 0), (2.3)
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where with ¢(y,6,6") = log P(.0)

, 2(y,0")
5(6,0') = log Ege 2009 = 10g 1,7 129).
(6,6") = log Ege T )

One can easily check that 6(6,0") < I*|0 — ¢'|*, where I* = maxgrcig gy 1(6").
Theorem 2.5. Let Fy be a o -field generated by the r.v. Y; for which w; >0 and let
AW, 0) < A. Then it holds for any random variable § measurable w.r.t. Fyy

E;y€< (eAEgéz) vz

Proof. Define Zy (0) = exp{— > 0(Yi, 0, f(Xi)) 1 (w; > 0)} . This value is nothing but
the likelihood ratio of the measure Py, w.r.t. Py upon restricting to the observations
Y; for which w; > 0. Then for any  ~ Fyy , it holds E.\§ = E¢§Zw (0). Independence

of the Y;’s implies
log EgZ3,(0) = Zlog Ege 2i0.1(X0)q (1, > 0)

- Z(S(avf(Xi))l(wi >0) < A

The result now follows from the Cauchy-Schwartz inequality E¢éZw (0) < {Eo&2E¢Z%,(0) }1/2 .
O

This result implies that the bound for the risk of estimation E.)L" 6,60) = NTEf(,)iK”(g, 6)
under the parametric hypothesis can be extended to the nonparametric situation provided

that the value A(W,0) is sufficiently small.

Corollary 2.6. For any r >0 and any A <1, it holds

eA(VV,@) T2r,

IN

NTEf(.) \fK(@, 9)‘r

N{Ej(,[%(. 9)\r}1/r %{log

2
— + AW,0) +2(r - 1)+}.

IA

Proof. The first bound follows directly from Theorems 2.4 and 2.5. The proof of the
second one utilizes the fact that for r > 0 the function h(z) = log"(z + ¢,) with
¢ = e"D+ is concave on (0,00) because

rlog" 2 (m + cr)

h//(.%') = (37 T CT)Q

{r—l—log(m—i—cr)} <0
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for £ > 0. This implies with ¢ = )\L(g, 0)/2 by monotonicity of log and Jensen’s
inequality that E ;)¢ < Eyyh(e) < h(Ef(.)eC) and hence,

E}{T)U < log(Ef(,)eC + ¢) < log E]c(,)eC +(r—1)4 < log(eA(W’e)EeeQC) +(r—1)4

DN | =

and the assertion follows. O

Corollary 2.6 presents two bounds for the risk of estimation in the nonparametric
situation which extend the similar parametric bounds by Theorem 2.5. The risk bound in
the parametric situation can be interpreted as the bound for the variance of the estimate
6 while the term A(W,8) controls the bias of estimation, see the next section for more
details. The both bounds formally apply whatever the “modeling bias” A(W,0) is.
However, the results are meaningful only if this bias is not too large. The first bound could
be preferable for small values of A(W,#), however, the multiplicative factor eAW0)/2
makes this bound useless for large A(W,6). The advantage of the second bound is that
the “modeling bias” enters in the additive form.

In the rest of this section we briefly comment on relations between the results of
Section 2.3 and the usual rate results under smoothness conditions on the function f(-)
and the regularity conditions on the design Xi,..., X,,. More precisely, we assume that
the weights w; are supported on the ball of a radius h > 0 with the center at x and

the function f(-) is smooth within this ball in the sense that for 0* = f(x)
SV2(0%, f(x +t)) < Lh,  V[t| <h. (2.4)

In view of the inequality &(6,0") < I*|6 — 0'|? this condition is equivalent to the usual
Lipschitz property. Obviously, (2.4) implies with N = >, 1(w; > 0)

A(W,0%) < L?h*N.
Combined with the result of Corollary 2.6 these bounds lead to the following rate results.

Theorem 2.7. Assume (A1) and (A2) and let §Y/2(0*, f(z +t)) < Lh for and all
[t| < h. Select h = c(L*n)~ @t for some ¢ > 0 and let the localizing scheme

W be such that w; = 0 for all X; with |X; —x| > h, N = w; > o9nhd and
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N = > L(w; >0) < anh® with some constants 91 < 02 . Then
e\ |T/2 2+d 1/2
By [NK(0.0)]7? < {exp(ct )} 2.
Moreover, with co = ¢"%/? exp(02+d02/2)01_r/2 , it holds
Ef(.)‘nl/(%-d)x(g’ 0*) ’7"/2 < 02L7-d/(2+d)7_r1/2‘

This corresponds to the classical accuracy of nonparametric estimation for the Lips-

chitz functions, cf. Fan, Farmen and Gijbels (1998).

3 Description of the method

We start by describing the considered set-up. Let a point of interest x be fixed and the
target of estimation is the value f(x) of the regression function at z. The local para-
metric approach described in Section 2 and based on the local constant approximation
of the regression function in a vicinity of the point x strongly relies on the choice of
the local neighborhood, or more generally, of the set of weights (w;). The problem of
selecting such weights and constructing an adaptive (data-driven) estimate is one of the

main issues for practical applications and we focus on this problem in this section.

3.1 Local adaptive estimation. General setup

For a fixed x, we assume to be given an ordered set of localizing schemes W) = (wgk))

for k =1,..., K. The ordering condition means that wl(-k) > wgk,) forall 4 and all k > &',
)

that is, the degree of locality given by Wi(k is weakened as k grows. See Section 3.3 for
some examples. For the popular example of kernel weights wl(-k) =K ((XZ —x)/ h,k) , this
condition means that the bandwidth hj grows with k. Let also {5(’“), k=1,..,K} be
the corresponding set of local likelihood estimates for 6 = f(z):

0" (z) = argmax L(W, §) = ngk)Yi/ Z wgk).
96 i=1 i=1

Due to Theorem 2.2 the value 1/Nj can be used to measure the variability of the estimate
9%) . The ordering condition particularly means that N, grows and hence, the variability

of 0 decreases with k.
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Given the estimates (%) , we consider a larger class of their convex combinations:
é\: 0415(1)—1—...4—04;(5([(), ar+....+tag =1, ap >0,
where the mixing coefficients «p may depend on the point x. We aim at constructing
a new estimate # in this class which performs at least as good as the best one in the

original family {#(®)} .

3.2 Stagewise aggregation procedure

~

The adaptive estimate 6 of § = f(x) is computed sequentially via the following algo-
rithm.

1. Initialization: ) — p(1),

2. Stagewise aggregation: For k. =2,..., K
0 = 0™ 4 (1 — )0,
with the mixing parameter -, being defined for some 3, > 0 and a kernel K,4(-) as
e = Kag (m™ /31.), m® .= N (W, g1y

3. Loop: If £ < K, then increase k£ by one and continue with step 2. Otherwise
terminate and set 6 = ) |

The idea behind the procedure is quite simple. We start with the first estimate 8]
having the smallest degree of locality but the largest variability of order 1/N;. Next
we consider estimates with larger values Nj. Every current estimate o) is compared
with the previously constructed estimate 9 —1) | If the difference is not significant then
the new estimate 9% basically coincides with 0%) . Otherwise the procedure essentially
keeps the previous value 9=1) | For measuring the difference between the estimates
0" and 0%V we use m®) = NkK(g(k),g(k_l)) which is motivated by the results
of Theorems 2.2 and 2.3. In particular, a large value of m*) means that 8= does
not belong to the confidence set corresponding to 9%) and hence indicates a significant
difference between these two estimates. To quantify this significance, the procedure

utilizes the parameters (critical values) 3. Their choice is discussed in Section 3.3.1.
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Remark 3.1. If K,z(-) is the uniform kernel on [0,1] then ~; is either zero or one
depending on the value of m(®) . This yields by induction arguments that the final
estimate coincides with one of the “weak” estimates #*) . In this case our method can
be considered as a pointwise model selection method.

If the kernel K,y is such that K,.(t) =1 for ¢ < b with some positive b, then the
small values of the “test statistic’ m®*) lead to the aggregated estimate otk = gk
This is an important feature of the procedure which will be used in our implementation

and the theoretical study.

3.3 Parameter choice and implementation details

The implementation of the SSA procedure requires fixing a sequence of local likelihood
estimates, the kernel K,, and the parameters 3;. The next section gives some examples
how the set of localizing schemes W) can be selected. The only important parame-
ters of the method are “critical values” 3, which normalize the “test statistics” m(*) .
Section 3.3.1 describes in details how they can be selected in practice.

The kernel K, should satisfy 0 < K,.(t) < 1, should be monotonously decreasing
and have support on [0, 1]. Besides that, there is a positive number b such that K,.(t) =
1 for t <b. Our default choice is a piecewise linear kernel with b =1/6 and K,,(t) =

(1—(t—1b)y) + - Our numerical results (not shown here) indicate that the particular

choice of the kernel K,, has only a minor effect on the final results.

3.3.1 Choice of the parameters j3;

The “critical values” 3; define the level of significance for the test statistics m®) . A
proper choice of these parameters is crucial for the performance of the procedure. We
propose in this section one general approach for selecting them which is similar to the
bootstrap idea in the hypothesis testing problem. Namely, we select these values to
provide the prescribed performance of the procedure in the parametric situation (under
the null hypothesis). For every step k, we require that the estimate o) is sufficiently

close to the “oracle” estimate 6*) in the parametric situation f(-) =6 in the sense that

ka(ﬁ(k),@k>)]r < ar, (3.1)

sup Ey=
0*co
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forall k =2,..., K with 7, from Theorem 2.4. In some cases the risk Fg« N;ﬂ((g(k), §(k)) ‘T

does not depend on 6*. This is, for example, the case when 6 is a shift or scale param-
eter, as for Gaussian shift, exponential and volatility families. Then it sufficient to check

N (6F) g "

(3.1) for any single point #*. In the general situation, the risk Ey«
depends on the parameter value 6*. However, our numerical results (not reported here)
indicate that this dependence is minor and usually it suffices to check these conditions
for one parameter 6*. In particular, for the Bernoulli model considered in Section 4 we
recommend to only check the condition (3.1) for the “least favorable” value 6* = 1/2

corresponding to the largest variance of the estimate 9.

The values a and 7 in (3.1) are two global parameters. The role of « is similar to
the level of the test in the hypothesis testing problem while r describes the power of the
loss function. A specific choice is subjective and depends on the particular application at
hand. Taking a large r and small a would result in an increase of the critical values and
therefore, improves the performance of the method in the parametric situation at cost of
some loss of sensitivity to parameter changes. Theorem 5.1 presents some upper bounds
for the critical values 3 as functions of a and r in the form ag+aq loga™! +aor(K —k)
with some coefficients ag, a; and as. We see that these bounds linearly depend on r
and on loga~!. For our applications to classification, we apply a relatively small value
r = 1/2 because the misclassification error corresponds to the bounded loss function.
We also apply « =1 although the other values in the range [0.5,1] lead to very similar
results. Note that in general the such defined parameters 3; depend on the model
considered, design X1, ..., X, and the localizing schemes W), ... W) which in turn
can differ from point to point. Therefore, an implementation of the suggested rule would
require to compute the parameters separately for every point of estimation. However,
in many situations, e.g. for the regular design, this variation from point to point is
negligible, and a universal set of parameters can be used. Important is only that the

conditions (3.1) are fulfilled for all the points.
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3.3.2 Simplified parameter choice

The proposal (3.1) is not constructive: we have just K — 1 conditions for choosing
K — 1 parameters. Here we present a simplified procedure which is rather simple for the
implementation and based on the Monte Carlo simulations. It suggests to first identify the
last value 3x using the reduced aggregation procedure with only two estimates gE-1)

and 95 .

sup Eg- [N (099,0Gx))|" < ar/(K —1)

0*co

where 0(3) = 105 + (1 —7)dE-D | 4 = Kag(m/3K) and m = NKfK(g(K),g(K_I)) .
The other values 3; are found in the form 3, = 3x + ¢«(K — k) to provide (3.1). This
suggestion is justified by the result of Theorem 5.1 from Section 5.1.

3.3.3 Examples of sequences of local likelihood estimates

This section presents some examples and recommendations for the choice of the localizing
schemes W®) which we also use in our simulation study. Note, however, that the choice
of W) s is not a part of the SSA procedure. The procedure applies with any choice
under some rather mild growth conditions.

Below we assume that the design Xi,..., X, is supported on the unit cube [—1, 1]d.
This condition can be easily provided by rescaling the design components. We mention
two approaches for choosing the localizing scheme which are usually used in applications.
One is based on a given sequence of bandwidths, one more is based on the nearest neighbor
structure of the design. In both situations we assume that a location kernel K, is a
nonnegative function on the unit cube in [~1,1]?. In general we only assume that this
kernel is decreasing alone any radial line, that is, Kioc(pz) > Kioc(z) for any = € [—1,1]%
and p <1, and Kjpe(z) =0 for || > 1. In the most of applications, one applies an
isotropic kernel Kj,. which only depends on the norm of z. The recommended choice
is the Epanechnikov kernel Kjo(z) = (1 — |z|?); .

Bandwidth-based localizing schemes: This way can be recommended for the
univariate or bivariate equidistant design. Let {hx}X, be a finite set of bandwidth-

candidates. We assume that this set is ordered, that is, hy < ho < ... < hg . Every
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such bandwidth determines the collection of kernel weights wgk) = Kloc((XZ- —x)/ hk) ,
i =1,...,n. This definition assumes that the same localizing bandwidth is applied for
all the directions in the feature space. In all the examples below we apply a geometrically
increasing sequence of “bandwidths” hy, that is, hgxi1 = ahg for some a > 1. This
sequence is uniquely determined by the starting value hp, the factor a and the total
number K of local schemes. The recommended choice of a is (1.25)'/¢ although our
numerical results (not reported here) indicate no significant change in the results when
the other value of a in the range 1.1 to 1.3 is used. The value hj is to be selected in a
way that the starting estimate 0 is well defined for all the points of estimation. In the
case of a local constant approximation, this value can be taken very small because even
one point can be sufficient for a preliminary estimation. In the case of a regular design,
the value h; is of order n=1/¢. The number K of local schemes W®*) or, equivalently,
of the “weak” estimates 0 is mostly determined by the values h; and a in such a
way that hg = hia®~1 is about one, that is, the last estimate behaves like a global
parametric estimate from the whole sample. The formula K = alog(hg/h1) suggests

that K is at most logarithmic in the sample size n.

k-NN based local schemes: If the design is irregular or the design space is high
dimensional (d > 2) then it is useful to apply the local schemes based on the k-nearest
neighbor structure of the design. For this approach, an increasing sequence {Ny} of
integers has to be fixed. For a fixed = and every k > 1, the bandwidth h; is the
minimal one for which the ball of radius hi contains at least N design points. The
weights are defined again by wgk) = Kioc((Xi — 2)/hi) . The sequence {Ny} is selected
similarly to the sequence {hx} in the bandwidth-based approach. One starts with a
fixed N; and then multiplies it at every step with some factor @ > 1: Ngi1 = alVg.

The number of steps K 1is such that Ng is of order n.

One can easily check that the kernel and k-NN based local schemes coincide in the

case of univariate regular design.
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4 Application to classification

One observes a training sample (X;,Y;), i = 1,...,n, with X; valued in a Euclidean
space X = IR? with known class assignment Y; € {0,1}. Our objective is to construct
a discrimination rule assigning every point = € X to one of the two classes. The clas-
sification problem can be naturally treated in the context of a binary response model.
It is assumed that each observation Y; at X; is a Bernoulli r.v. with the parameter
0; = f(X;), that is, P(Y; =0|X;) =1— f(X;) and P(Y; = 1|X;) = f(X;). The “ideal”
Bayes discrimination rule is 1 (f(x) > 1/2). Since the function f(x) is usually unknown
it is replaced by its estimate 9. If the distribution of X,; within the class k£ has density
pr then

0; = m1p1(Xi)/(mopo(Xs) + m1p1(X3)).

where 7 is the prior probability of kth population £ =0,1.

Nonparametric methods of estimating the function 6 are typically based on local
averaging. Two typical examples are given by the k-nearest neighbor (k-NN) estimate
and the kernel estimate. For a given k and every point z in X, denote by Dg(z) the
subset of the design Xi,...,X,, containing the k nearest neighbors of x. Then the
k-NN estimate of f(x) is defined by averaging the observations Y; over Dy(z):

@)=k Y V.
X, € Dy(x)
The definition of the kernel estimate of f(x) involves a univariate kernel function K(-)

and the bandwidth h:

. g XD\ o /s o (P2, Xs)
o(h) — K p(x,il Yz/ K[ B2ty
R A .
Both methods require the choice of a smoothing parameter (the value k for k£-NN and

the bandwidth A for the kernel estimate).

Example 4.1. In this example we consider the binary classification problem with the

corresponding class densities po(x) and pi(z) given by two component normal mixtures

po(x) = 0.2¢(x;(—1,0),0.5I3) + 0.8¢(z;(1,0),0.519)
pi(x) = 0.5¢(x;(0,1),0.5I3) + 0.5¢(x; (0, —1),0.519)
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Figure 4.1: Sample from the binary response model with the normal mixture class den-

sities (left) and results of applying the Bayes discrimination rule for this model (right).

where ¢(+;u, X) is the density of the multivariate normal distribution with the mean
vector p and the covariance matrix X' and I is 2 X 2 unit matrix.

Figure 4.1 shows one typical realization of the training sample with 100 observations
in each class (left) and the optimal Bayes classification for a testing sample with 1000
observations in each class (right). First, in order to illustrate the “oracle” property of
the SSA we compute the pointwise misclassification errors for all week estimate and SSA
estimate at four boundary points. They are obtained using training sample of size 400,
k-NN weighting scheme with N; = 5, Ng = 300, K = 30 and o = 0.5. Further, we
have done 500 simulations runs generating each time 100 training points and 100 testing
points. The rates of misclassification on testing sets have been averaged thereafter to
give the mean misclassification error which is shown as a reference dotted line in Figure

4.3. We note here that the critical values
3k = 0.0031 +0.007« (K — k), k=1,...,K

have been computed only once for one design realization and least favorable parameter
value 6* = 0.5 and then used in all runs. The same strategy is used in other examples

as well. Next, two “weak” classification methods, k-NN and kernel classifiers, with
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Figure 4.2: Pointwise misclassification errors (black dots) at four points for all weak
estimates used in the example 4.1. The solid reference lines correspond to the SSA

misclassification errors.

varying smoothing parameters are applied to the same data set Figure 4.3 (top) shows
the dependence of the misclassification error on the bandwidth for kernel classifiers and
on the number of nearest neighbors for the k£-NN classifier.

One can observe that a careful choice of the smoothing parameter is crucial for getting
a reasonable quality of the classification. A wrong choice leads to a significant increase
of the misclassification rate, especially for the kernel classifiers. At the same time, the
optimal choice can lead to a reasonable quality of the classification which is only slightly

worse than one of the Bayes decision rule.

Example 4.2. Now we consider the example 4.1 with additional 8 independent N (0, 1)
distributed nuisance components. So, now X; = (X}, .., X!9) where
(lev X’L2) ™~ Dclass(i)> (Xzsv ) Xz'lo) ~ N((07 ceey 0)7 IS)

8

The SSA procedure is implemented now again using k-NN weights with the number of
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Figure 4.3: Misclassification errors as a functions of the main smoothing parameter for
k-NN (right) and kernel (left) classifiers. SSA and Bayes misclassification errors are given
as reference lines. Top: Example 4.1 (dimension 2). Bottom: Example 4.2 (dimension
10).

nearest neighbors exponentially increasing from 5 to 100. The results are shown in the
bottom row of Figure 4.3. We observe again that the quality of the both standard classi-
fiers depends significantly on the choice of the smoothing parameters. In the considered
high dimensional situation, even under the optimal choice the quality of the dimension
independent Bayes classifier is not attained. However, the SSA procedure performs again

nearly as good as the best k-NN or kernel classifier.

Example 4.3. [BUPA liver disorders] We consider the dataset sampled by BUPA Med-
ical Research Ltd. It consists of 7 variables and 345 observed vectors. The subjects
are single male individuals. The first 5 variables are measurements taken by blood tests
that are thought to be sensitive to liver disorders and might arise from excessive alcohol

consumption. The sixth variable is a sort of selector variable. The seventh variable is
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the label indicating the class identity. Among all the observations, there are 145 peo-
ple belonging to the liver-disorder group (corresponding to selector number 2) and 200
people belonging to the liver-normal group. The BUPA liver disorder data set is noto-
riously difficult for classifying with the usual error rates about 30%. We apply SSA,
k-NN and kernel classifiers to tackle this problem. In SSA procedure the kNN weighting
scheme was employed with number of k-NN ranging from 2 to 100. Figure 4.4 shows
the corresponding one-leave-out cross-validation errors for the above methods. One can

see that the SSA method is uniformly better than kernel or k£-NN classifiers.

o o
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Figure 4.4: One-leave-out cross-validation errors as a functions of the main smoothing
parameters for k-NN (right) and kernel (left) classifiers. The dotted line describes the

error of SSA classifier.

Example 4.4. [Bankruptcy Data] The data set from the Compustat repository contains
the statistics about bankruptcies (defaults) in private sector of USA economy during the
period 2000-2005. There are 14 explanatory variables including different financial ra-
tios, industry indicators and so on. First, the preliminary analysis is conducted and two
most informative variables (equity/total assets ratio and net income/total assets ratio
(profitability)) are selected. The projection of the default statistics on the corresponding
plane is shown in Figure 4.5. Further, the performance of SSA procedure is compared to
the performance of k-NN classifier with different numbers of nearest neighbors. Namely,

the one-leave-out cross-validation errors are computed for both SSA and k-NN classifica-
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tion methods and the last one is presented in Figure 4.5 as a function of the number of
nearest neighbors. Again as in previous examples, the quality of classification strongly
depends on the choice of the parameter k. The adaptive SSA procedure provides the

performance corresponding to the best possible choice of this parameter.
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Figure 4.5: Left: Default events (crosses indicate defaulted firms and circles operating ones) are
shown in dependence on the two characteristics of a firm. Right: One-leave-out cross-validation
error for k-NN classifier as a function of the number of nearest neighbors. The CV error for SSA

classifier is given as a red reference line.

5 Some theoretical properties of the SSA method

This section discusses some important theoretical properties of the proposed aggregating
procedure. In particular we establish the “oracle” result which claims that the aggregated
estimate is up to a log-factor as good as the best one among the considered family {5(’“)}
of local constant estimates.

The majority of the results in the modern statistical literature are stated as asymp-
totic rate results. It is however well known that the rate optimality of an estimation
procedure does not automatically imply its good finite sample properties and cannot
be used for comparing different procedures. The rate results are also almost useless for

selecting the parameters of the procedure. In our theoretical study we apply another
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approach which aims to link parametric and nonparametric inference with the focus on
the adaptive behaviour of the proposed method. This means in particular that the SSA
procedure attains the parametric accuracy if the parametric assumption is fulfilled. In
the general situation the procedure attains (up to a unavoidable price for adaptation)
the quality corresponding to the best possible local parametric approximation for the

underlying model near the point of interest .

The “oracle” result is in its turn a consequence of two important properties of the
aggregated estimate 9: “propagation” and “stability”. “Propagation” can be viewed
as the oracle result in the parametric situation with f(-) = 6*. In this case the oracle
choice would be the estimate with the largest value N, that is, the last estimate oK)
in the family {5(’“)}. The “propagation” property means that at every step k of the
procedure the “aggregated” estimate 9™ is close to the “oracle” estimate §() . In other
words, the “propagation” property ensures that at every step the degree of locality is
relaxed and the local model applied for estimation is extended to a larger neighborhood
described by the weights W*) . The “propagation” property can be naturally extended to
a nearly parametric case when A(W ), 6) is small for some fixed 6 and all k < k*. The
“propagation” feature of the procedure ensures that the quality of estimation improves
and confidence bounds for %) become tighter as the number of iterations increases
provided that the “small modeling bias” condition still holds. Finally, the “stability”
property secures that the quality gained in the “propagation” stage will be kept for the

final estimate.

Our theoretical study is done under assumptions A1l and A2 on the parametric family
P . Additionally we impose an assumption on the sequence of localizing schemes W ()

which was already mentioned in Section 3.

(A3) the set W) is ordered in the sense that wgk) > w,gk,) for all ¢ and all k& > k.
(k)

Moreover, for some constants ug,u with 0 < wuy <wu < 1, values N, = Z?Zl w,

satisfy for every 2 < k < K

uy < Np—1/Nj, < u.
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5.1 Behavior in the parametric situation

First we consider the homogeneous situation with the constant parameter value f(z) =
0* . Our first result claims that in this situation under condition A3 the parameters 3
can be chosen in the form 3 = 3x + (K —k) to fulfill the “propagation” condition (3.1).
The proof is given in the Appendix.

Theorem 5.1. Assume Al, A2 and A3. Let f(X;) = 6* for all i. Then there are

three constants ag,a1 and as depending on r and ug, u only such that the choice
3k = ag + aj log a4+ asr log Ny

ensures (3.1) for all k < K . Particularly, Eg- NKfK(g(K),éNT < ar,.

5.2 “Propagation” under “small modelling bias”

Now we extend the “propagation” result to the situation when the parametric assumption
is not fulfilled any more but the deviation from the parametric structure within the
considered local model is sufficiently small. This deviation can be measured for the
localizing scheme W) by A(W®) 6) from (2.3).

We suppose that there is a number k* such that the modeling bias A(W®), 6) is
small for some 6 and all k£ < k*. Consider the corresponding estimate 6") obtained
after the first k* steps of the algorithm. Theorem 2.5 implies in this situation the

following result.

Theorem 5.2. Assume Al, A2 and A3. Let 0 and k* be such that AWK ) < A
for some A>0 and all k < k*. Then

E ()| N3 (647, §) /2

Var.e4,
r/2

Ef()|Nk*j<(5(k*),9)‘ < v TT€A.

IN

5.3 “Stability after propagation” and “oracle” results

Due to the “propagation” result, the procedure performs well as long as the “small
modeling bias” condition A(W®*) #) < A is fulfilled. To establish the accuracy result

for the final estimate 5, we have to check that the aggregated estimate 8%) does not
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vary much at the steps “after propagation” when the divergence A(W(k), 0) from the

parametric model becomes large.

Theorem 5.3. Under Al, A2 and A3, it holds for every k < K
N (W 5D < 54 (5.1)
Moreover, under A3, it holds for every k' with k <k < K
ka(é\(k/),g(k)) < 2ty (5.2)
with ¢, = (u_1/2 —1)7! and 3, = max;>k 31 -

Remark 5.1. An interesting feature of this result is that it is fulfilled with probability
one, that is, the control of stability “works” not only with a high probability, it always

applies. This property follows directly from the construction of the procedure.

Proof. By convexity of the Kullback-Leibler divergence X(u,v) w.r.t. the first argument
g((@\(k’)’ @\(k—l)) < ’kaK(g(k), §(k’—1))'

If 5((5(’“),5(]“*1)) > 3k/Nk, then 7, = 0 and (5.1) follows. Now, Assumption A2 and
Lemma 6.1 yield

K2R, 00) < 2 S K2ED,000) <0 B (5u/N)

I=k+1 I=k+1

The use of Assumption A3 leads to the bound

/

K2 (OF),90) < o3 /Ne) PN w2 <sefu(t - u) T G/ Ne)
I=k+1

which proves (5.2). O

Combination of the “propagation” and “stability” statements implies the main result
propag Yy p

concerning the properties of the adaptive estimate 6.

Theorem 5.4. Assume Al, A2 and A3. Let k* be a “good” choice in the sense that

max A(W®) 9) < A
k<k*
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for some 0 and some value A. Then
E ()| N % (657,0) |7 < 20D [ ared + (2 5.) ")
where ¢, 1is the constant from Theorem 5.85.

Proof. Just observe that by Lemma 6.1

k
J<1/2(§,9~(k*)) S%{j{l/Q(g(k*)’é\(k*))_{_ Z g<1/2(§(l)’§(l—1))}
I=k*+1

and follow the proof of Theorem 5.3. Ul

We also present a corollary of the “oracle” result concerning the risk of the adaptive
estimate @ for the special case with r = 1. The other values of r can be considered as

well, one only has to update the constants depending on r. We also assume that o < 1.
Corollary 5.5. Let maxp<p AWK 0) < A for some 6 and some A. Then
N;!2Ef(.)j<1/2 (é\, «9) < %(2 7'1€A =+ 1/ Cigk*) .

Remark 5.2. Recall that in the parametric situation, the risk FEg« Nk*fK(ta(k*), 0*) ‘1/2

of 0" is bounded by 713, cf. Theorem 2.2. In the nonparametric situation, the result
is only slightly worse: the value 7/, is replaced by \/7'1? which takes into account
the modeling bias. There is also an additional term proportional to \/3; which can be
considered as the payment for adaptation. Due to Theorem 5.1, 33+ is bounded from
above by 3x + (K — k*). By Theorem 5.1 K is only logarithmic in the sample size n .

Therefore, the risk of the aggregated estimate corresponds to the best possible risk
among the family {g(k)} for the choice kK = k* up to a logarithmic factor. Lepski,
Mammen and Spokoiny (1997) established a similar result in the regression setup for
the pointwise adaptive Lepski procedure. Combining the result of Corollary 5.5 with

Theorem 2.7 yields the rate of adaptive estimation (n_l log n) 1/(2+d)

under Lipschitz
smoothness of the function f and the usual design regularity, see Polzehl and Spokoiny
(2005) for more details. It was shown by Lepski (1990) that in the problem of point-
wise adaptive estimation this rate is optimal and cannot be improved by any estimation

method. This gives an indirect proof of the optimality of our procedure: the factor 3«
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in the accuracy of estimation cannot be removed or reduced in the rate because otherwise

the similar improvement would appear in the rate of estimation.

6 Appendix: Proof of Theorem 5.1
The proof utilizes the following simple “metric like” property of K/2(-,-).

Lemma 6.1 (Polzehl and Spokoiny, 2005, Lemma 5.2). Under condition A2 it holds for

every sequence 0g,01,...,0,, that

K1/2(91,92) < %{5{1/2(91,90)+g<1/2(92,(90)},
KY2(00,0m) < #{KY2(00,01) + ... + K2 (O0-1,600m) ).

With the given constants 3, define for k > 1 the random sets
A = {N, KO 061y < bzl AW = AN N A,

where b enters in the construction of Kag: Kag(t) =1 for t <b.

Note first that 8%) = ) on A® for all & < K. This fact can be proved by
induction in k. For k = 1, the assertion is trivial because 0 = gV Now sup-
pose that 1) = k=1 Then it holds on Ay that m® = Nka(g(k),a(k_l)) =
NK(O®) 6=DY < b3, and thus, yj, = Kag(m®) /31) > Kag(b) = 1 yielding o) = gk

Therefore, it remains to bound the risk of 6% on the complement ﬁ(k) of A®) .
Define By, = Ak-1 \A(k) . On the event By, the index k is the first one for which the
condition Nj, K(9*®), 9(=1)) < b3, is violated. It is obvious that AW = Ui Bi . First
we bound the probability Pg- (Bl) . Applying assumption A3 and Lemma 6.1 yields for

every |

N, K (6O, 90-D)

IN

22N {K OV, %) + K (6", 6%)}

AN

252 { N, KOV, 0%) + ug ' N K (60, 6%)}.
Therefore, by Theorem 2.2,

Py (B)) < Po- (N KOV, 00-) > b)) < Qexp(—zol;g,l).

Ve
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On the set B;, it holds pl-1 = gi-1) and thus, for every k > [ the aggregated
estimate %) by construction is a convex combination of g(l_l), cee ok . Convexity of
the Kullback-Leibler divergence w.r.t. the second argument, the definition of 0*) and

Lemma 6.1 ensure that

Kl/g(g(k),g(k))l(i%l) < y_ ex 19C1/2(§(k),§(l/))
< x, max 1{{]{1/2(5(’“)’9*)_|_g<1/2(§(l’)79*)}
< 2 max K261 ¢%).
UV=l-1,..k

This and Theorem 2.4 imply for every r

k
Eg- X" (00, 00)1(B) < (207 Ep Y K01, 0%)1(B))
U'=l-1

k
(2%)27“ Z Eé£23<27"(§(l')’9*)P;£2 (BZ)

<
'=l-1
2'r 1/2 r upb
< Tor Z N, Zexp< Y 3)
'=l-1
< ClNl_rTglr/Zexp(—C%z)

for some fixed constants C7; and cy. Therefore,

k k
Ey K" (§<’f), 5(k)) < ZEQ*KT (5(k), é\(k))l(Bl) < Z ClNl_r7'21T/2 exp(—czg,l).
=2 =2

It remains to check that the choice 3 = ag + a1 loga™! 4 asrlog(Ng /Ni) with properly
ka(g(k), HA(’“)) }r < oty .

selected ag,a; and as provide the required bound FEy-«
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