Humboldt-Universität zu Berlin Institut für Mathematik Advanced Topics in Optimization Semismooth Newton Method Winter semester 2023/24

Exercise Sheet 9

- 1) Let X be a Hilbert space and let $F: X \to \overline{\mathbb{R}}$ be convex, proper and lower semi-continuous. Let again the Moreau-Yosida regularization $F_{\gamma}: X \to \mathbb{R}$ and the prox-operator $P_{\gamma}: X \to X$ be defined as on the last sheets. Show the following properties:
 - (i) For every real sequence $\gamma_n \downarrow 0$:
- (0.1) $\liminf_{n \to \infty} F_n(u_n) \ge F(u) \quad \text{whenever } u_n \to u \text{ in } X.$
- (0.2) $\limsup_{n \to \infty} F_n(v_n) \le F(u) \quad \text{for at least one sequence } (v_n)_n \text{ with } v_n \to u \text{ in } X.$

Here we used the abbreviation $F_n := F_{\gamma_n}$.

- (ii) Construct a sequence of functions $f_n : X \to \overline{\mathbb{R}}$ that satisfy (0.1) and (0.2) but does not satisfy $f_n(x) \to f(x)$ for every $x \in X$.
- (iii) Consider a continuous function that is bounded from below $J: L^2(\Omega) \to \mathbb{R}$ for some bounded domain $\Omega \subset \mathbb{R}^n$ and the problems

(0.3)
$$\min_{u \in X} F_n(u) := J(u) + \frac{1}{2\gamma_n} \|\max(0, u-1)\|_{L^2}^2$$

(0.4)
$$\min_{u \in K} J(u)$$

where $K = \{u \in L^2(\Omega) : u(x) \leq 1 \text{ for a.e. } x \in \Omega \}$. Prove that every bounded sequence $(u_n)_n$ of minimizers of F_n in (0.3) converges (up to a subsequence) to a solution of (0.4).

2) For and $\Omega \subset \mathbb{R}^n$ open, bounded with Lipschitz-boundary consider the following optimal control problem. Here $\alpha, \beta > 0$ and $y_d \in L^2(\Omega)$.

(P₁)
$$\min_{\substack{(y,u)\in H_0^1(\Omega)\times L^2(\Omega)\\ \text{ subject to}}} J(y,u) := \frac{1}{2} \|y - y_d\|_{L^2(\Omega)}^2 + \frac{\alpha}{2} \|u\|_{L^2(\Omega)}^2 + \frac{\beta}{2} \|u\|_{L^1(\Omega)}$$
$$-\Delta y = u \text{ on } \Omega,$$
$$y = 0 \text{ on } \partial\Omega$$

- (i) Show that (P_1) has a unique solution in $H_0^1(\Omega) \times L^2(\Omega)$.
- (ii) Show that if $(\bar{y}, \bar{u}) \in H_0^1(\Omega) \times L^2(\Omega)$ solves (P_1) there is a $\bar{\mu} \in L^2(\Omega)$ and $p \in H_0^1(\Omega)$ such that

$$(Opt_1) -\Delta \bar{y} = \bar{u} \qquad \text{in } H_0^1(\Omega) \\ -\Delta \bar{p} = (\bar{y} - y_d) \qquad \text{in } H_0^1(\Omega) \\ \alpha \bar{u} - \bar{p} + \bar{\mu} = 0 \qquad \text{in } \Omega \\ \bar{\mu} = \beta \qquad \text{on } \{x \in \Omega : \bar{u} > 0\}. \\ |\bar{\mu}| \le \beta \qquad \text{on } \{x \in \Omega : \bar{u} = 0\}. \\ \bar{\mu} = -\beta \qquad \text{on } \{x \in \Omega : \bar{u} < 0\}.$$

(iii) How could a Semismooth Newton method be applied here?

3) (Still from the last sheet) For $n \leq 3$ and $\Omega \subset \mathbb{R}^n$ open, bounded with C^2 boundary consider the following state constrained optimal control problem. Here $b \in H^2(\Omega), b > 0, \alpha > 0$ and $y_d \in L^2(\Omega)$.

 (P_2)

$$\begin{split} \min_{\substack{(y,u)\in H_0^1(\Omega)\times L^2(\Omega)}} J(y,u) &:= \frac{1}{2} \|y - y_d\|_{L^2(\Omega)}^2 + \frac{\alpha}{2} \|u\|_{L^2(\Omega)}^2 \\ \text{subject to} & -\Delta y = u \text{ on } \Omega, \\ & y = 0 \text{ on } \partial\Omega, \\ & y \leq b \text{ a.e. on } \Omega, \end{split}$$

and the associated first order optimality system: $(\bar{y}, \bar{u}) \in H_0^1(\Omega) \times L^2(\Omega)$ solves (P_2) iff there is a $\bar{\mu} \in \mathcal{M}(\Omega) := C_0(\Omega)'$ and $p \in L^2(\Omega)$ such that

$$(\text{Opt}) \qquad \begin{array}{l} -\Delta \bar{y} = \bar{u} & \text{in } H_0^1(\Omega) \\ \langle \bar{p}, -\Delta v \rangle_{L^2(\Omega)} + \langle \bar{\mu}, v \rangle_{\mathcal{M}(\Omega)} = -\langle \bar{y} - y_d, v \rangle_{L^2(\Omega)} & \text{for every } v \in H^2(\Omega) \cap H_0^1(\Omega) \\ \alpha \bar{u} - \bar{p} = 0 & \text{in } \Omega \\ \bar{y} \leq b \quad \langle \overline{\mu}, v - \bar{y} \rangle_{\mathcal{M}(\Omega)} \leq 0 & \text{for all } v \in C(\overline{\Omega}), v \leq b \end{array}$$

Consider also the regularized problem with $\gamma > 0$:

$$\begin{aligned} (\mathbf{P}_{\gamma}) & \min_{\substack{(y,u) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega) \\ \text{ subject to }}} J_{\gamma}(y,u) &:= \frac{1}{2} \|y - y_{d}\|_{L^{2}(\Omega)}^{2} + \frac{\alpha}{2} \|u\|_{L^{2}(\Omega)}^{2} + \frac{1}{2\gamma} \|\max(0,\hat{\mu} + \gamma(y - b))\|_{L^{2}(\Omega)}^{2} \\ & \text{ subject to } & -\Delta y = u \text{ on } \Omega, \\ & y = 0 \text{ on } \partial\Omega. \end{aligned}$$

Here $\hat{\mu} \in L^2(\Omega), \hat{\mu} \ge 0$ is a fixed, optional shift-parameter. (i) Show that (\mathbb{P}_{γ}) has a unique solution $(\bar{y}_{\gamma}, \bar{u}_{\gamma}) \in [H_0^1(\Omega) \cap H^2(\Omega)] \times L^2(\Omega)$, which satisfies the first order system

$$(\operatorname{Opt}_{\gamma}) \qquad \begin{aligned} -\Delta \bar{y}_{\gamma} &= \bar{u}_{\gamma} & \text{in } H_0^1(\Omega) \\ -\Delta \bar{p}_{\gamma} &= (\bar{y}_{\gamma} - y_d) - \max(0, \hat{\mu} + \gamma(\bar{y}_{\gamma} - b)) & \text{in } H_0^1(\Omega) \\ \alpha \bar{u}_{\gamma} - \bar{p}_{\gamma} &= 0 & \text{in } \Omega \end{aligned}$$

(ii) Define $\bar{\mu}_{\gamma} = \max(0, \hat{\mu} + \gamma(\bar{y}_{\gamma} - b))$ and show that given $\gamma_0 \ge 0$ the path $(\bar{y}_{\gamma}, \bar{u}_{\gamma}, \bar{p}_{\gamma}, \bar{\mu}_{\gamma})_{\gamma \ge \gamma_0}$ is bounded in the space $Y \times L^2(\Omega) \times L^2(\Omega) \times Y'$. Here the space Y is defined as

$$Y := H^1_0(\Omega) \cap H^2(\Omega)$$

Moreover $(\bar{y}_{\gamma}, \bar{u}_{\gamma}, \bar{p}_{\gamma}, \bar{\mu}_{\gamma}) \rightarrow (\bar{y}, \bar{u}, \bar{p}, \bar{\mu})$ in $Y \times L^2(\Omega) \times L^2(\Omega) \times Y'$ as $\gamma \to \infty$ where $(\bar{y}, \bar{u}, \bar{p}, \bar{\mu})$ solves (P_2) .

(iii) Bonus: Show that for any $\gamma_0 > 0$ the mapping

$$(\gamma_0, +\infty) \to Y \times L^2(\Omega) \times L^2(\Omega) \times Y' \quad \gamma \mapsto (\bar{y}_\gamma, \bar{u}_\gamma, \bar{p}_\gamma, \bar{\mu}_\gamma)$$

is Lipschitz continuous.