Humboldt-Universität zu Berlin

Institut für Mathematik
Advanced Topics in Optimization
Semismooth Newton Method

Winter semester 2023/24

Exercise Sheet 9

1) Let X be a Hilbert space and let $F: X \rightarrow \overline{\mathbb{R}}$ be convex, proper and lower semi-continuous. Let again the Moreau-Yosida regularization $F_{\gamma}: X \rightarrow \mathbb{R}$ and the prox-operator $P_{\gamma}: X \rightarrow X$ be defined as on the last sheets. Show the following properties:
(i) For every real sequence $\gamma_{n} \downarrow 0$:

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} F_{n}\left(u_{n}\right) \geq F(u) & \text { whenever } u_{n} \rightarrow u \text { in } X . \\
\limsup _{n \rightarrow \infty} F_{n}\left(v_{n}\right) \leq F(u) & \text { for at least one sequence }\left(v_{n}\right)_{n} \text { with } v_{n} \rightarrow u \text { in } X .
\end{aligned}
$$

Here we used the abbreviation $F_{n}:=F_{\gamma_{n}}$.
(ii) Construct a sequence of functions $f_{n}: X \rightarrow \overline{\mathbb{R}}$ that satisfy (0.1) and (0.2) but does not satisfy $f_{n}(x) \rightarrow f(x)$ for every $x \in X$.
(iii) Consider a continuous function that is bounded from below $J: L^{2}(\Omega) \rightarrow \mathbb{R}$ for some bounded domain $\Omega \subset \mathbb{R}^{n}$ and the problems

$$
\begin{equation*}
\min _{u \in X} F_{n}(u):=J(u)+\frac{1}{2 \gamma_{n}}\|\max (0, u-1)\|_{L^{2}}^{2} \tag{0.3}
\end{equation*}
$$

where $K=\left\{u \in L^{2}(\Omega): u(x) \leq 1\right.$ for a.e. $\left.x \in \Omega\right\}$. Prove that every bounded sequence $\left(u_{n}\right)_{n}$ of minimizers of F_{n} in (0.3) converges (up to a subsequence) to a solution of (0.4).
2) For and $\Omega \subset \mathbb{R}^{n}$ open, bounded with Lipschitz-boundary consider the following optimal control problem. Here $\alpha, \beta>0$ and $y_{d} \in L^{2}(\Omega)$.

$$
\left.\begin{array}{l}
\min _{(y, u) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)} J(y, u) \tag{1}\\
\text { subject to }
\end{array} \quad=\frac{1}{2}\left\|y-y_{d}\right\|_{L^{2}(\Omega)}^{2}+\frac{\alpha}{2}\|u\|_{L^{2}(\Omega)}^{2}+\frac{\beta}{2}\|u\|_{L^{1}(\Omega)}\right)
$$

(i) Show that $\left(P_{1}\right)$ has a unique solution in $H_{0}^{1}(\Omega) \times L^{2}(\Omega)$.
(ii) Show that if $(\bar{y}, \bar{u}) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ solves $\left(P_{1}\right)$ there is a $\bar{\mu} \in L^{2}(\Omega)$ and $p \in H_{0}^{1}(\Omega)$ such that
$\left(\mathrm{Opt}_{1}\right)$

$$
\begin{aligned}
-\Delta \bar{y} & =\bar{u} & & \text { in } H_{0}^{1}(\Omega) \\
-\Delta \bar{p} & =\left(\bar{y}-y_{d}\right) & & \text { in } H_{0}^{1}(\Omega) \\
\alpha \bar{u}-\bar{p}+\bar{\mu} & =0 & & \text { in } \Omega \\
\bar{\mu} & =\beta & & \text { on }\{x \in \Omega: \bar{u}>0\} . \\
|\bar{\mu}| & \leq \beta & & \text { on }\{x \in \Omega: \bar{u}=0\} . \\
\bar{\mu} & =-\beta & & \text { on }\{x \in \Omega: \bar{u}<0\} .
\end{aligned}
$$

(iii) How could a Semismooth Newton method be applied here?
3) (Still from the last sheet) For $n \leq 3$ and $\Omega \subset \mathbb{R}^{n}$ open, bounded with C^{2} boundary consider the following state constrained optimal control problem. Here $b \in H^{2}(\Omega), b>0, \alpha>0$ and $y_{d} \in L^{2}(\Omega)$.

$$
\begin{align*}
\min _{(y, u) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)} J(y, u) & :=\frac{1}{2}\left\|y-y_{d}\right\|_{L^{2}(\Omega)}^{2}+\frac{\alpha}{2}\|u\|_{L^{2}(\Omega)}^{2} \tag{2}\\
\text { subject to }-\Delta y & =u \text { on } \Omega \\
y & =0 \text { on } \partial \Omega \\
y & \leq b \text { a.e. on } \Omega
\end{align*}
$$

and the associated first order optimality system: $(\bar{y}, \bar{u}) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ solves $\left(P_{2}\right)$ iff there is a $\bar{\mu} \in \mathcal{M}(\Omega):=C_{0}(\Omega)^{\prime}$ and $p \in L^{2}(\Omega)$ such that

$$
\begin{aligned}
-\Delta \bar{y} & =\bar{u} & \text { in } H_{0}^{1}(\Omega) \\
\langle\bar{p},-\Delta v\rangle_{L^{2}(\Omega)}+\langle\bar{\mu}, v\rangle_{\mathcal{M}(\Omega)} & =-\left\langle\bar{y}-y_{d}, v\right\rangle_{L^{2}(\Omega)} & \text { for every } v \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \\
\alpha \bar{u}-\bar{p} & =0 & \text { in } \Omega \\
\bar{y} \leq b \quad\langle\bar{\mu}, v-\bar{y}\rangle_{\mathcal{M}(\Omega)} & \leq 0 & \text { for all } v \in C(\bar{\Omega}), v \leq b
\end{aligned}
$$

Consider also the regularized problem with $\gamma>0$:
$\left(\mathrm{P}_{\gamma}\right) \min _{(y, u) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)} J_{\gamma}(y, u):=\frac{1}{2}\left\|y-y_{d}\right\|_{L^{2}(\Omega)}^{2}+\frac{\alpha}{2}\|u\|_{L^{2}(\Omega)}^{2}+\frac{1}{2 \gamma}\|\max (0, \hat{\mu}+\gamma(y-b))\|_{L^{2}(\Omega)}^{2}$
subject to

$$
\begin{aligned}
-\Delta y & =u \text { on } \Omega \\
y & =0 \text { on } \partial \Omega
\end{aligned}
$$

Here $\hat{\mu} \in L^{2}(\Omega), \hat{\mu} \geq 0$ is a fixed, optional shift-parameter.
(i) Show that $\left(\mathrm{P}_{\gamma}\right)$ has a unique solution $\left(\bar{y}_{\gamma}, \bar{u}_{\gamma}\right) \in\left[H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right] \times L^{2}(\Omega)$, which satisfies the first order system
$\left(\mathrm{Opt}_{\gamma}\right)$

$$
\begin{array}{rlr}
-\Delta \bar{y}_{\gamma} & =\bar{u}_{\gamma} & \\
\text { in } H_{0}^{1}(\Omega) \\
-\Delta \bar{p}_{\gamma} & =\left(\bar{y}_{\gamma}-y_{d}\right)-\max \left(0, \hat{\mu}+\gamma\left(\bar{y}_{\gamma}-b\right)\right) & \\
\text { in } H_{0}^{1}(\Omega) \\
\alpha \bar{u}_{\gamma}-\bar{p}_{\gamma} & =0 &
\end{array}
$$

(ii) Define $\bar{\mu}_{\gamma}=\max \left(0, \hat{\mu}+\gamma\left(\bar{y}_{\gamma}-b\right)\right)$ and show that given $\gamma_{0} \geq 0$ the path $\left(\bar{y}_{\gamma}, \bar{u}_{\gamma}, \bar{p}_{\gamma}, \bar{\mu}_{\gamma}\right)_{\gamma \geq \gamma_{0}}$ is bounded in the space $Y \times L^{2}(\Omega) \times L^{2}(\Omega) \times Y^{\prime}$. Here the space Y is defined as

$$
Y:=H_{0}^{1}(\Omega) \cap H^{2}(\Omega)
$$

Moreover $\left(\bar{y}_{\gamma}, \bar{u}_{\gamma}, \bar{p}_{\gamma}, \bar{\mu}_{\gamma}\right) \rightharpoonup(\bar{y}, \bar{u}, \bar{p}, \bar{\mu})$ in $Y \times L^{2}(\Omega) \times L^{2}(\Omega) \times Y^{\prime}$ as $\gamma \rightarrow \infty$ where $(\bar{y}, \bar{u}, \bar{p}, \bar{\mu})$ solves $\left(P_{2}\right)$.
(iii) Bonus: Show that for any $\gamma_{0}>0$ the mapping

$$
\left[\gamma_{0},+\infty\right) \rightarrow Y \times L^{2}(\Omega) \times L^{2}(\Omega) \times Y^{\prime} \quad \gamma \mapsto\left(\bar{y}_{\gamma}, \bar{u}_{\gamma}, \bar{p}_{\gamma}, \bar{\mu}_{\gamma}\right)
$$

is Lipschitz continuous.

