Humboldt-Universität zu Berlin
Institut für Mathematik
Advanced Topics in Optimization
Semismooth Newton Method

Winter semester 2023/24

Exercise Sheet 8

1) Let X be a Hilbert space and let $F: X \rightarrow \overline{\mathbb{R}}$ be convex, proper and lower semi-continuous. Consider again the function

$$
F_{\gamma}(u)=\inf _{v \in X} J_{\gamma}(u, v)=F(v)+\frac{1}{2 \gamma}\|u-v\|_{X}^{2}
$$

from sheet 6 , together with its unique minimizer $P_{\gamma}: X \rightarrow X$ defined by

$$
P_{\gamma}(u)=\underset{v \in X}{\arg \min } J(u, v) .
$$

Show the following properties:
(i) $F_{\gamma}(u) \uparrow F(u)$ as $\gamma \downarrow 0$.
(ii) $P_{\gamma}(u) \rightarrow u$ as $\gamma \rightarrow 0$ for all $u \in \overline{\operatorname{dom}(F)}$ and $P_{\gamma}(u) \rightarrow \operatorname{Proj}_{\overline{\operatorname{dom}(F)}}(u)$ as $\gamma \rightarrow 0$ for $u \in X$.
(iii) For $u \in \operatorname{dom}(F)$ we have $\nabla P_{\gamma}(u) \rightarrow p^{*} \in X$ as $\gamma \rightarrow 0$ where

$$
p^{*} \in \underset{p \in \partial F(u)}{\arg \min }\|p\|_{X}^{2}
$$

2) For $n \leq 3$ and $\Omega \subset \mathbb{R}^{n}$ open, bounded with C^{2} boundary consider the following state constrained optimal control problem. Here $b \in H^{2}(\Omega), b>0, \alpha>0$ and $y_{d} \in L^{2}(\Omega)$.

$$
\begin{align*}
\min _{(y, u) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)} J(y, u) & :=\frac{1}{2}\left\|y-y_{d}\right\|_{L^{2}(\Omega)}^{2}+\frac{\alpha}{2}\|u\|_{L^{2}(\Omega)}^{2} \tag{P}\\
\text { subject to }-\Delta y & =u \text { on } \Omega, \\
y & =0 \text { on } \partial \Omega, \\
y & \leq b \text { a.e. on } \Omega,
\end{align*}
$$

(i) Show that (P) has a unique solution in $\left[H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right] \times L^{2}(\Omega)$.
(ii) Show that if $(\bar{y}, \bar{u}) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ solves (P) there is a $\bar{\mu} \in \mathcal{M}(\Omega):=C_{0}(\Omega)^{\prime}$ and $p \in L^{2}(\Omega)$ such that

$$
\begin{array}{rlrl}
-\Delta \bar{y} & =\bar{u} & \text { in } H_{0}^{1}(\Omega) \\
\langle\bar{p},-\Delta v\rangle_{L^{2}(\Omega)}+\langle\bar{\mu}, v\rangle_{\mathcal{M}(\Omega)} & =-\left\langle\bar{y}-y_{d}, v\right\rangle_{L^{2}(\Omega)} & \text { for every } v \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \\
\alpha \bar{u}-\bar{p} & =0 & & \text { in } \Omega \\
\bar{y} \leq b\langle\bar{\mu}, v-\bar{y}\rangle_{\mathcal{M}(\Omega)} & \leq 0 & \text { for all } v \in C(\bar{\Omega}), v \leq b
\end{array}
$$

3) Consider for the same assumptions as in exercise 2) the regularized problem with $\gamma>0$:
$\left(\mathrm{P}_{\gamma}\right) \min _{(y, u) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)} J_{\gamma}(y, u):=\frac{1}{2}\left\|y-y_{d}\right\|_{L^{2}(\Omega)}^{2}+\frac{\alpha}{2}\|u\|_{L^{2}(\Omega)}^{2}+\frac{1}{2 \gamma}\|\max (0, \hat{\mu}+\gamma(y-b))\|_{L^{2}(\Omega)}^{2}$
subject to $\quad-\Delta y=u$ on Ω,
$y=0$ on $\partial \Omega$.

Here $\hat{\mu} \in L^{2}(\Omega), \hat{\mu} \geq 0$ is a fixed, optional shift-parameter.
(i) Show that $\left(\mathrm{P}_{\gamma}\right)$ has a unique solution $\left(\bar{y}_{\gamma}, \bar{u}_{\gamma}\right) \in\left[H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right] \times L^{2}(\Omega)$, which satisfies the first order system

$$
\begin{aligned}
-\Delta \bar{y}_{\gamma} & =\bar{u}_{\gamma} & & \text { in } H_{0}^{1}(\Omega) \\
-\Delta \bar{p}_{\gamma} & =\left(\bar{y}_{\gamma}-y_{d}\right)-\max \left(0, \hat{\mu}+\gamma\left(\bar{y}_{\gamma}-b\right)\right) & & \text { in } H_{0}^{1}(\Omega) \\
\alpha \bar{u}_{\gamma}-\bar{p}_{\gamma} & =0 & & \text { in } \Omega
\end{aligned}
$$

(Opt_{γ})
(ii) Define $\bar{\mu}_{\gamma}=\max \left(0, \hat{\mu}+\gamma\left(\bar{y}_{\gamma}-b\right)\right)$ and show that given $\gamma_{0} \geq 0$ the path $\left(\bar{y}_{\gamma}, \bar{u}_{\gamma}, \bar{p}_{\gamma}, \bar{\mu}_{\gamma}\right)_{\gamma \geq \gamma_{0}}$ is bounded in the space $Y \times L^{2}(\Omega) \times L^{2}(\Omega) \times Y^{\prime}$. Here the space Y is defined as

$$
Y:=H_{0}^{1}(\Omega) \cap H^{2}(\Omega) .
$$

Moreover $\left(\bar{y}_{\gamma}, \bar{u}_{\gamma}, \bar{p}_{\gamma}, \bar{\mu}_{\gamma}\right) \rightharpoonup(\bar{y}, \bar{u}, \bar{p}, \bar{\mu})$ in $Y \times L^{2}(\Omega) \times L^{2}(\Omega) \times Y^{\prime}$ as $\gamma \rightarrow \infty$ where $(\bar{y}, \bar{u}, \bar{p}, \bar{\mu})$ solves (P).
(iii) Bonus: Show that for any $\gamma_{0}>0$ the mapping

$$
\left[\gamma_{0},+\infty\right) \rightarrow Y \times L^{2}(\Omega) \times L^{2}(\Omega) \times Y^{\prime} \quad \gamma \mapsto\left(\bar{y}_{\gamma}, \bar{u}_{\gamma}, \bar{p}_{\gamma}, \bar{\mu}_{\gamma}\right)
$$

is Lipschitz continuous.

