Humboldt-Universität zu Berlin

Institut für Mathematik
Advanced Topics in Optimization
Semismooth Newton Method

Winter semester 2023/24

Exercise Sheet 2

1) (Globalized Newton for equations) Let $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be continuously differentiable with Lipschitz continuous differential $x \mapsto D F(x)$. Consider the globalized Newton method from the lecture notes, see equation (11). Assume that the sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ of Newton iterates is bounded and that $D F\left(x_{k}\right)^{-1}$ exists and satisfies $\left\|D F\left(x_{k}\right)^{-1}\right\| \leq M$ for every $k \in \mathbb{N}$. Show the following statements:
(i) For every $k \in \mathbb{N}, \omega, \nu \in(0,1)$ there is a smallest index $l=l(k, \nu) \in \mathbb{N}$ such that

$$
\left\|F\left(x_{k}+\omega^{l} d_{k}\right)\right\| \leq\left(1-\nu \omega^{l}\right)\left\|F\left(x_{k}\right)\right\|
$$

Moreover, the mapping $k \mapsto l(k)$ is uniformly bounded in k.
(ii) The sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ of Newton iterates converges to some x^{*} with $F\left(x^{*}\right)=0$.
(iii) There is an index k_{0} such that for every $k \geq k_{0}$ we have $l(k)=0$, i.e. the full Newton step is accepted. Determine also the convergence rate.
2) (Characterization of q-superlinear convergence) Consider continuously differentiable function $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$, an x^{*} with $D F\left(x^{*}\right)$ invertible and a sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ with $x_{k} \rightarrow x^{*}$. Show the equivalence of the following assertions:
(i) $\left(x_{k}\right)_{k}$ converges superlinearly to x^{*} and $F\left(x^{*}\right)=0$.
(ii) $\left\|F\left(x_{k}\right)+D F\left(x^{*}\right)\left[x_{k+1}-x_{k}\right]\right\|=o\left(\left\|x_{k+1}-x_{k}\right\|\right)$.
(iii) $\left\|F\left(x_{k}\right)+D F\left(x_{k}\right)\left[x_{k+1}-x_{k}\right]\right\|=o\left(\left\|x_{k+1}-x_{k}\right\|\right)$.
3) For continuously differentiable $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ consider the Newton-method to find x^{*} with $F\left(x^{*}\right)=0$. Instead of solving $D F\left(x_{k}\right)\left[x_{k+1}-x_{k}\right]=-F\left(x_{k}\right)$ in every iteration, we only assume

$$
\left\|D F\left(x_{k}\right)\left[x_{k+1}-x_{k}\right]+F\left(x_{k}\right)\right\| \leq \eta_{k}\left\|F\left(x_{k}\right)\right\|
$$

for some sequence $\eta_{k} \rightarrow 0$ with $\eta_{k} \in(0,1)$ in every iteration. Show the following:
(i) If $x_{n} \rightarrow x^{*}$ and $D F\left(x^{*}\right)$ is invertible, the convergence is even q -superlinear.
4) Give a rigorous proof of Theorem 2.2 in the lecture notes. For (c) only show the uppersemicontinuity of the Clarke generalized Jacobian $x \rightarrow \partial F(x)$. Moreover consider the following function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}\left(x_{1}, x_{2}\right)^{T} & \text { if } x_{1} \geq 0 . \\ \left(x_{1},-2 x_{1}-x_{2}\right)^{T} & \text { if } x_{1} \leq 0 \text { and } x_{2} \geq-x_{1} . \\ \left(-2 x_{1}-2 x_{2}, x_{2}\right)^{T} & \text { if } x_{1} \leq 0 \text { and } 0 \leq x_{2} \leq-x_{1} . \\ \left(-x_{1}+2 x_{2}, x_{2}\right)^{T} & \text { if } x_{1} \leq 0 \text { and } 0 \geq x_{2} \geq x_{1} . \\ \left(x_{1}, 2 x_{1}-x_{2}\right)^{T} & \text { if } x_{1} \leq 0 \text { and } x_{2} \leq x_{1} .\end{cases}
$$

Compute $\partial f(x)$ and $\partial_{C} f(x)$ for $x=0$. What do we learn from this example?
5) (Examples) Consider the following mappings $p_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$

$$
\begin{aligned}
& p_{1}(x)=\underset{u \in \mathbf{R}^{n}}{\arg \min } \frac{1}{2}\|u-x\|_{2}^{2}+\|u\|_{1} \\
& p_{2}(x)=\underset{u \in C}{\arg \min } \frac{1}{2}\|u-x\|_{2}^{2}
\end{aligned}
$$

where $C=[0,1]^{n}$ is the unit cube. Show that the functions are well-defined, i.e. the minimization problems have a unique solution. Moreover, compute the sets of Clarke generalized jacobians $\partial p_{i}(x)$.

Remark: For 4) and 5) you can assume that the mappings under consideration are sufficiently Lipschitz continuous.

