Humboldt-Universität zu Berlin Institut für Mathematik Advanced Topics in Optimization Semismooth Newton Method Winter semester 2023/24

Exercise Sheet 11 (sample questions for the exam)

- 1) Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be a Lipschitz continuous function and let $x \in \mathbb{R}^n$.
 - (i) Define the *B*-Subdifferential $\partial_B F(x)$ and the set of Clarke generalized Jacobians $\partial F(x)$ and show that the set $\partial F(x)$ is compact.
 - (ii) Define the notion of semismoothness of F at $x \in \mathbb{R}^n$ and define the directional derivative F'(x, d) for a direction $d \in \mathbb{R}^n$.
 - (iii) Show the following statement: IF $F : \mathbb{R}^n \to \mathbb{R}^n$ is directionally differentiable at x and

$$\sup_{Y \in \partial F(x+h)} \|Vh - F'(x,h)\| = o(\|h\|) \text{ as } h \to 0.$$

then F is semismooth at x.

V

- **2)** Let X, Y be Banach spaces and let $F : X \to Y$.
 - (i) State the definition of Newton differentiability of F at a point $x \in X$ in infinite dimensions and write down the semismooth Newton method to solve F(x) = 0.
 - (ii) Assume that $x^* \in X$ with $F(x^*) = 0$ with Newton derivative $D_N F(x^*)$. Assume further that there exist $\delta > 0$ and C > 0 with $\|D_N F(x)^{-1}\|_{\mathcal{L}(Y,X)} \leq C$ for all $x \in B_{\delta}(x^*)$. Then the semismooth method method converges superlinearly to x^* for all initializations $x_0 \in X$ sufficiently close to x^* .
 - (iii) Write down a Newton derivative of the operator

$$\Phi: L^p(\Omega) \to L^q(\Omega), \quad \Phi(u)(x) = \max(u(x), 0)$$

for $\Omega \subset \mathbb{R}^n$ a bounded domain. For which p, q does the Newton differentiability hold?

- (iv) Use (iii) to prove the Newton differentiability of the function $\operatorname{proj}_{U_{ad}} : L^2(\Omega) \to L^q(\Omega)$ where $U_{ad} := \{u \in L^p(\Omega) : a \leq u(x) \leq b \text{ for a.e. } x \in \Omega\}$ for some scalars $a \leq b$ and appropriate choice of q.
- 3) Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with smooth boundary. Consider the following bilevel optimization problem for $y_d \in L^2(\Omega)$ and $\alpha, \beta > 0$

$$\min_{(u,y)\in U_{ad}\times H_0^1(\Omega)} \frac{1}{2} \|y-y^d\|_{L^2(\Omega)}^2 + \frac{\alpha}{2} \|u\|_{L^2(\Omega)}^2 \quad \text{s.t.} \ y \in \underset{v\in H_0^1(\Omega)}{\arg\min} \frac{1}{2} \|v-u\|_{L^2(\Omega)}^2 + \frac{\beta}{2} \|\nabla v\|_{L^2(\Omega)}^2$$

Here $U_{ad} = \{ u \in L^2(\Omega) : u \leq \psi \}$ for some $\psi \in L^{\infty}(\Omega)$.

- (i) Show that the problem has a unique solution $(y, u) \in U_{ad} \times H^1_0(\Omega)$.
- (ii) Provide the first order optimality system for the problem above using the adjoint approach.
- (iii) Write the optimality system in the form F(x) = 0, where $F : X \to Y$ is a suitable mapping between function spaces. Specify the function spaces such that the operator $F : X \to Y$ is Newton differentiable.
- (iv) Write down the semismooth Newton-method in infinite dimensions for solving the system F(x) = 0.

4) Consider for a bounded Lipschitz-domain $\Omega \subset \mathbb{R}^n$, $f \in L^2(\Omega)$, a continuous linear operator $A: L^2(\Omega) \to L^2(\Omega)$ and a scalar parameter $\alpha > 0$ the following optimization problem

(P₁)
$$\min_{u \in U_{ad}} J(u) := \frac{1}{2} \|Au - f\|_{L^2(\Omega)}^2 + \frac{\alpha}{2} \|u\|_{H^1(\Omega)}^2 \quad \text{over } H^1_0(\Omega),$$

where $U_{ad} \subset L^2(\Omega)$ is given by $U_{ad} := \{u \in L^2(\Omega) : a \leq u(x) \leq b \text{ for a.e. } x \in \Omega\}$ for some scalars $a \leq b$.

- (i) Show that the problem has a unique solution $u \in H_0^1(\Omega)$.
- (ii) Define for a general function $F: X \to \overline{\mathbb{R}} := \mathbb{R} \cup \{+\infty\}$ the Moreau-Yosida regularization $F_{\gamma}: X \to \mathbb{R}$.
- (iii) Consider the (unconstrained) regularized problem

(

$$P_2) \qquad \qquad \min_{u \in H^1_0(\Omega)} J_{\gamma}(u) := J(u) + (\mathcal{I}_{U_{ad}})_{\gamma}(u)$$

and show that for $\mathcal{I}_{U_{ad}}: L^2(\Omega) \to L^2(\Omega)$ the Moreau-Yosida regularization is given by

$$(\mathcal{I}_{U_{ad}})_{\gamma}(u) = \frac{1}{2\gamma} \left(\|\min(0, u - a)\|_{L^{2}(\Omega)}^{2} + \|\max(u - b, 0)\|_{L^{2}(\Omega)}^{2} \right)$$

- (iv) Show that any sequence of solutions $(u_{\gamma})_{\gamma>0}$ of (P_2) converges weakly in $H_0^1(\Omega)$ to the solution of (P_1) for $\gamma \downarrow 0$.
- (v) Show that the first order optimality system for (P_2) can be written as F(u) = 0 where

$$F: H_0^1(\Omega) \to H^{-1}(\Omega) \quad F(u) := \alpha \Delta u + \alpha u - A^*(Au - f) + \frac{1}{2\gamma} P(a, b, u),$$
$$P(a, b, u) := \min(0, u - a) + \max(u - b, 0)$$

and discuss Newton differentiablity of F.