Humboldt-Universität zu Berlin

Institut für Mathematik
Advanced Topics in Optimization
Semismooth Newton Method
Winter semester 2023/24

Exercise Sheet 10

1) Let W, U, Y be reflexive Banach spaces, $J: Y \times U \rightarrow \mathbb{R}$ and $e: Y \times U \rightarrow W$ be continuously differentiable. Moreover let $D_{1} e(y, u): Y \rightarrow W$ be continuously invertible and let $e(y, u)=$ 0 have a single-valued and bounded solution operator $u \mapsto y(u)$ with $e(y(u), u)=0$. In addition assume that the mapping $e: Y \times U \rightarrow W$ is continuous under weak convergence. Consider the following general control problem

$$
\min _{(y, u) \in Y \times U} J(y, u) \text { s.t. } e(y, u)=0 \text { and } u \in U_{a d}
$$

where $U_{a d} \subset U$ is nonempty, bounded and convex in U.
(i) Show that the problem above has a solution.
(ii) Show that for any locally optimal solution $(y, u) \in Y \times U_{a d}$ there is a $p \in W^{*}$ such that

$$
\begin{aligned}
e(y, u) & =0, \\
D_{1} e(y, u)^{*} p & =-D_{1} J(y, u), \\
\left\langle D_{2} J(y, u)+D_{2} e(y, u)^{*} p, v-u\right\rangle_{U^{*}, U} & \geq 0 \quad \text { for all } v \in U_{a d} .
\end{aligned}
$$

(iii) Apply the abstract framework presented above to $n=2$, with $\alpha>0$

$$
\begin{aligned}
J(y, u) & =\frac{1}{2}\left\|y-y_{d}\right\|_{L^{2}(\Omega)}^{2}+\frac{\alpha}{2}\|u\|_{L^{2}(\Omega)}^{2} \\
e(y, u) & =-\Delta y+y^{3}-u \quad \text { in } H^{-1}(\Omega) \\
U_{a d} & =\left\{u \in L^{2}(\Omega): a \leq u(x) \leq b \text { for a.e. } x \in \Omega .\right\}
\end{aligned}
$$

where $y_{d} \in L^{2}(\Omega)$ and $a, b \in L^{\infty}(\Omega)$. Hint: For the weak-to-weak continuity consider compact embedding of $H_{0}^{1}(\Omega) \underset{c}{\hookrightarrow} L^{5}(\Omega)$ and analyse the convergence of y^{3} in $L^{5 / 3}(\Omega)$. For the differentiability of the superposition operator use $H_{0}^{1}(\Omega) \hookrightarrow L^{6}(\Omega)$.
2) Let $\Omega \subset \mathbb{R}^{n}, n=2,3$ be convex, bounded and Lipschitz. Moreover consider $f: \mathbb{R} \rightarrow \mathbb{R}$ of class C^{3}, with $f^{\prime} \geq 0, f(0)=0$ and assume the existence of constants $c_{1}, c_{2}>0$ with

$$
\left|f^{\prime \prime \prime}(u)\right| \leq c_{1}+c_{2}|u|^{\frac{p-6}{2}} \quad \text { for all } u \in \mathbb{R},
$$

where we fix $p \in[6,+\infty]$ for $n=2$ and $p=6$ for $n=3$. As in the lecture consider the semi-linear differential operator formally given by

$$
E: H_{0}^{1} \rightarrow H^{-1}(\Omega) \quad E(u)=-\Delta u+f(u)
$$

Please show the following:
(i) E is twice continuously Frechet-differentiable. Compute the 1st and 2nd derivatives.
(ii) The operator $E: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ is ν-strongly monotone and uniquely invertible.
(iv) The inverse $E: H^{-1}(\Omega) \rightarrow H_{0}^{1}(\Omega)$ is Lipschitz continuous with modulus ν^{-1}.
(iii) For every $u \in L^{2}(\Omega)$ the linear operator $E^{\prime}(u) \in \mathcal{L}\left(H_{0}^{1}(\Omega), H^{-1}(\Omega)\right)$ is continuously invertible with

$$
\left\|E^{\prime}(u)^{-1}\right\|_{\mathcal{L}\left(H^{-1}(\Omega), H_{0}^{1}(\Omega)\right)} \leq \nu^{-1}
$$

3) Let $\Omega \subset \mathbb{R}^{n}$ be a bounded Lipschitz domain. We consider a division of Ω into subdomains such that

$$
\bar{\Omega}=\bigcup_{T \in \mathcal{T}_{h}} T \quad T_{1}, T_{2} \in \mathcal{T}_{h} \text { with } T_{1} \neq T_{2} \Rightarrow T_{1} \cap T_{2} \subset \partial T_{1} \cap \partial T_{2}
$$

Here $h=\max _{T \in \mathcal{T}_{h}} \operatorname{diam}(T)>0$. Define the subspace $Y_{h}:=\operatorname{span}\left(\left\{\mathbf{1}_{T}: \Omega \rightarrow \mathbb{R}: T \in \mathcal{T}_{h}\right\}\right)$ and prove the following assertions:
(i) The projection $\Pi_{h}:=\operatorname{proj}_{Y_{h}}: L^{2}(\Omega) \rightarrow Y_{h}$ is given by

$$
\left.\Pi_{h}(u)\right|_{T}=\frac{1}{|T|} \int_{T} u(x) \mathrm{d} x .
$$

(ii) For every $q \in[0,+\infty]$ and every $v \in L^{q}(\Omega)$ we have $\left\|\Pi_{h} v\right\|_{L^{q}(\Omega)} \leq\|v\|_{L^{q}(\Omega)}$.

