Humboldt-Universität zu Berlin Institut für Mathematik Advanced Topics in Optimization Semismooth Newton Method Winter semester 2023/24

Exercise Sheet 1

- 1) (Isolated solutions) Let $F : \mathbf{R}^n \to \mathbf{R}^n$ be continuously differentiable with $DF(x^*) \in \mathcal{L}(\mathbf{R}^n)$ invertible and $F(x^*) = 0$. Is it possible to construct a sequence $(x_n)_{n \in \mathbb{N}}$ of solutions with $F(x_n) = 0$ for every $n \in \mathbf{N}, x_n \neq x^*$ and $x_n \to x^*$ as $n \to \infty$?
- 2) (Newton algorithm) Consider for continuously differentiable $F : \mathbf{R}^n \to \mathbf{R}^n$ the problem of finding $x^* \in \mathbf{R}^n$ such that $F(x^*) = 0$. Assume F has a γ -Hölder continuous derivative, i.e.

$$||DF(x) - DF(y)||_{\mathcal{L}(\mathbf{R}^n)} \le L ||x - y||^{\gamma}$$
 for every $x, y \in \mathbf{R}^n$

(i) Show that for $x, h \in \mathbf{R}^n$ the following bound holds true

$$||F(x+h) - F(x) - DF(x)[h]|| \le \frac{L||h||^{1+\gamma}}{2}$$

(ii) Let $x^* \in \mathbf{R}^n$ such that $F(x^*) = 0$ and $DF(x^*)$ invertible with $||DF(x^*)||^{-1} \leq \beta$. Show that for fixed $c \in (0, 1)$ and $0 < \eta \leq \left(\frac{c}{L\beta}\right)^{\frac{1}{\gamma}}$ the following holds: DF(x) is invertible and

$$||DF(x)^{-1}||_{\mathcal{L}(\mathbf{R}^n)} \le \frac{\beta}{1-c}$$
 for every $x \in B_\eta(x^*)$

(iii) Assume $F(x^*) = 0$ and $DF(x^*)$ invertible with $||DF(x^*)^{-1}|| \leq \beta$. Let again $c \in (0, 1)$ fixed. Show that there is r > 0 such that the Newton method when initialized from $x_0 \in B_r(x^*)$ is well defined and the following bound holds

$$||x_{k+1} - x^*|| \le \frac{\beta L}{2(1-c)} ||x_k - x^*||^{1+\gamma}$$

- **3)** (Example) Consider the function $f : \mathbf{R} \to \mathbf{R}$ defined by $f(x) = \sqrt{x^2 + 1}$.
 - (i) Write down the Newton algorithm to find first-order stationary points of f, i.e. points x where f'(x) = 0. Are the iterates well defined?
 - (ii) Which convergence rates can we expect? Hint: Distinguish the cases $|x_0| < 1$, $|x_0| = 1$ and $|x_0| > 1$.
- 4) (Newton for optimization) Let $f : \mathbf{R} \to \mathbf{R}$ defined by $f(x) = |x|^p$ for p > 2. Consider the Newton method for finding first-order stationary points of f. Initialize with $x_0 > 0$. Show that the method converges to the unique minimum of f with a q-linear rate, but not with a q-superlinear rate. Does this contradict the statement from exercise 2)?