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Overview

• The Simulation Process 
• Geometry Basics 
• The Mesh Generation 

Process 
• Meshing Algorithms 

– Tri/Tet Methods
– Quad/Hex Methods
– Hybrid Methods
– Surface Meshing

• Algorithm Characteristics 
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Simulation Process

3

2

1. Build CAD Model 2. Mesh 3. Apply Loads and 
Boundary Conditions

4. Computational Analysis 5. Visualization

2 kN
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Adaptive Simulation Process

3

2

1. Build CAD Model 2. Mesh 3. Apply Loads and Boundary Conditions

4. Computational Analysis

7. Visualization

2 kN

5. Error Estimation

Error?

6. Remesh/Refine/Improve

Adaptivity Loop

Error < ε

Error > ε

User 
supplies meshing  

parameters

Analysis Code 
supplies meshing  

parameters



Computational Modeling Sciences Department

5

Geometry

Mesh Generation

Geometry Engine
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Geometry

vertices: x,y,z 
location
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Geometry

vertices: x,y,z 
location

curves: bounded 
by two vertices
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Geometry
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curves: bounded 
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Geometry
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Geometry

body: collection 
of volumes
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location
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Geometry

body: collection 
of volumes

vertices: x,y,z 
location

volumes: closed 
set of surfaces

surfaces: closed 
set of curves

loops: ordered set 
of curves on 
surface

curves: bounded 
by two vertices
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Geometry

body: collection 
of volumes

vertices: x,y,z 
location

volumes: closed 
set of surfaces

loops: ordered set 
of curves on 
surface

surfaces: closed 
set of curves 
(loops)

coedges: orientation 
of curve w.r.t. loop

curves: bounded 
by two vertices
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Geometry

body: collection 
of volumes

vertices: x,y,z 
location

volumes: closed 
set of surfaces 
(shells)

surfaces: closed 
set of curves 
(loops)

loops: ordered set 
of curves on 
surface

coedges: orientation 
of curve w.r.t. loop

shell: 
oriented set of 
surfaces 
comprising a 
volume

curves: bounded 
by two vertices



Computational Modeling Sciences Department

14

Geometry

body: collection 
of volumes

vertices: x,y,z 
location

volumes: closed 
set of surfaces 
(shells)

surfaces: closed 
set of curves 
(loops)

loops: ordered set 
of curves on 
surface

coedges: orientation 
of curve w.r.t. loop

shell: 
oriented set of 
surfaces 
comprising a 
volume

curves: bounded 
by two vertices



Computational Modeling Sciences Department

15

Geometry

body: collection 
of volumes

vertices: x,y,z 
location

volumes: closed 
set of surfaces 
(shells)

surfaces: closed 
set of curves 
(loops)

loops: ordered set 
of curves on 
surface

coedges: orientation 
of curve w.r.t. loop

shell: 
oriented set of 
surfaces 
comprising a 
volume

coface: 
oriented 
surface w.r.t. 
shell

curves: bounded 
by two vertices
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Geometry

Volume 1

Surface 1 Surface 2 Surface 3 Surface 4 Surface 5 Surface 6

Volume 2

Surface 8 Surface 9 Surface 10 Surface 11

Surface 7

Volume 1

Volume 2

Surface 11

Surface 7

Manifold Geometry: 
Each volume maintains its 
own set of unique surfaces
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Geometry

Volume 1

Surface 1 Surface 2 Surface 3 Surface 4 Surface 5 Surface 6

Volume 2

Surface 8 Surface 9 Surface 10

Surface 7

Volume 1

Volume 2

Surface 7

Non-Manifold 
Geometry: Volumes share 
matching surfaces
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Mesh Generation Process

Mesh 
Vertices

Mesh 
Curves

Verify/correct for 
sizing criteria on 

curves

Set up sizing 
function for 

surface

Mesh 
surface

Set up sizing 
function for 

volume

Mesh 
volume

Smooth/Cleanup 
surface mesh

Verify 
Quality

Verify 
Quality

Smooth/Cleanup 
volume mesh

For each surface

For each volume

The Mesh Generation Process

Apply Manual 
Sizing, Match 

Intervals
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Meshing Algorithms
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Tri/Tet  
Methods

http://www.simulog.fr/mesh/gener2.htm

Octree 
Advancing Front 
Delaunay

http://www.ansys.com
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Octree/Quadtree

•Define intial bounding box (root of quadtree) 
•Recursively break into 4 leaves per root to resolve geometry 
•Find intersections of leaves with geometry boundary 
•Mesh each leaf using corners, side nodes and intersections with geometry 
•Delete Outside 
•(Yerry and Shephard, 84), (Shepherd and Georges, 91) 
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Octree/Quadtree

QMG,  
Cornell University
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Octree/Quadtree

QMG,  
Cornell University
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Advancing Front

A B

C

•Begin with boundary mesh - define as initial front 
•For each edge (face) on front, locate ideal node C based on front AB
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Advancing Front

A B

C
r

•Determine if any other nodes on current front are within search 
radius r of ideal location C (Choose D instead of C)

D
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Advancing Front

•Book-Keeping:  New front edges added and deleted from front as 
triangles are formed 
•Continue until no front edges remain on front

D
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Advancing Front

•Book-Keeping:  New front edges added and deleted from front as 
triangles are formed 
•Continue until no front edges remain on front
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Advancing Front

•Book-Keeping:  New front edges added and deleted from front as 
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•Continue until no front edges remain on front
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Advancing Front

•Book-Keeping:  New front edges added and deleted from front as 
triangles are formed 
•Continue until no front edges remain on front
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Advancing Front

A

B

C

•Where multiple choices are available, use best quality (closest 
shape to equilateral) 
•Reject any that would intersect existing front 
•Reject any inverted triangles (|AB X AC| > 0) 
•(Lohner,88;96)(Lo,91)

r
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Advancing Front

Ansys, Inc. 
www.ansys.com
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Delaunay

Triangle 
Jonathon Shewchuk 
http://www-2.cs.cmu.edu/~quake/triangle.html

Tetmesh-GHS3D 
INRIA, France 
http://www.simulog.fr/tetmesh/
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Delaunay

circumcircle

Empty Circle (Sphere) Property:  
No other vertex is contained within the circumcircle 
(circumsphere) of any triangle (tetrahedron)
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Delaunay Triangulation:  
Obeys empty-circle (sphere) property

Delaunay
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Non-Delaunay Triangulation 

Delaunay
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Lawson Algorithm 
•Locate triangle containing X 
•Subdivide triangle 
•Recursively check adjoining 
triangles to ensure empty-
circle property.  Swap diagonal 
if needed 
•(Lawson,77)

X

Given a Delaunay 
Triangulation of n nodes, 
How do I insert node n+1 ?

Delaunay
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X

Lawson Algorithm 
•Locate triangle containing X 
•Subdivide triangle 
•Recursively check adjoining 
triangles to ensure empty-
circle property.  Swap diagonal 
if needed 
•(Lawson,77)

Delaunay
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Bowyer-Watson Algorithm 
•Locate triangle that contains 
the point 
•Search for all triangles whose 
circumcircle contain the point 
(d<r) 
•Delete the triangles (creating a 
void in the mesh) 
•Form new triangles from the 
new point and the void 
boundary 
•(Watson,81) 

X

r c
d

Given a Delaunay 
Triangulation of n nodes, 
How do I insert node n+1 ?

Delaunay
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X

Bowyer-Watson Algorithm 
•Locate triangle that contains 
the point 
•Search for all triangles whose 
circumcircle contain the point 
(d<r) 
•Delete the triangles (creating a 
void in the mesh) 
•Form new triangles from the 
new point and the void 
boundary 
•(Watson,81) 

Given a Delaunay 
Triangulation of n nodes, 
How do I insert node n+1 ?

Delaunay
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•Begin with Bounding Triangles (or Tetrahedra)

Delaunay
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Delaunay

•Insert boundary nodes using Delaunay method 
(Lawson or Bowyer-Watson)
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Delaunay

•Insert boundary nodes using Delaunay method 
(Lawson or Bowyer-Watson)
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Delaunay

•Insert boundary nodes using Delaunay method 
(Lawson or Bowyer-Watson)
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Delaunay

•Insert boundary nodes using Delaunay method 
(Lawson or Bowyer-Watson)
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Delaunay

•Insert boundary nodes using Delaunay method 
(Lawson or Bowyer-Watson)
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Delaunay

•Recover boundary 
•Delete outside triangles 
•Insert internal nodes
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Delaunay

Node Insertion

Grid Based 
•Nodes introduced based on a regular lattice 
•Lattice could be rectangular, triangular, quadtree, etc… 
•Outside nodes ignored

h
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Delaunay

Node Insertion

Grid Based 
•Nodes introduced based on a regular lattice 
•Lattice could be rectangular, triangular, quadtree, etc… 
•Outside nodes ignored
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Delaunay

Node Insertion

Centroid 
•Nodes introduced at triangle centroids 
•Continues until edge length, hl ≈
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Delaunay

Node Insertion

Centroid 
•Nodes introduced at triangle centroids 
•Continues until edge length, hl ≈

l
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Delaunay

Node Insertion

Circumcenter (“Guaranteed Quality”) 
•Nodes introduced at triangle circumcenters 
•Order of insertion based on minimum angle of any triangle 
•Continues until minimum angle > predefined minimum  

α

)30( !≈α
(Chew,Ruppert,Shewchuk)
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Delaunay

Circumcenter (“Guaranteed Quality”) 
•Nodes introduced at triangle circumcenters 
•Order of insertion based on minimum angle of any triangle 
•Continues until minimum angle > predefined minimum  )30( !≈α

Node Insertion (Chew,Ruppert,Shewchuk)
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Delaunay

Advancing Front 
•“Front” structure maintained throughout 
•Nodes introduced at ideal location from current front edge 

Node Insertion

A B

C

(Marcum,95)
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Delaunay

Advancing Front 
•“Front” structure maintained throughout 
•Nodes introduced at ideal location from current front edge 

Node Insertion
(Marcum,95)
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Delaunay

Voronoi-Segment 
•Nodes introduced at midpoint of segment connecting the 
circumcircle centers of two adjacent triangles 

Node Insertion
(Rebay,93)
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Delaunay

Voronoi-Segment 
•Nodes introduced at midpoint of segment connecting the 
circumcircle centers of two adjacent triangles 

Node Insertion
(Rebay,93)
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Delaunay

Edges 
•Nodes introduced at along existing edges at l=h 
•Check to ensure nodes on nearby edges are not too close 

Node Insertion

h

h

h

(George,91)
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Delaunay

Edges 
•Nodes introduced at along existing edges at l=h 
•Check to ensure nodes on nearby edges are not too close 

Node Insertion
(George,91)
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Delaunay

Boundary Constrained

Boundary Intersection 
•Nodes and edges introduced where Delaunay edges 
intersect boundary 
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Delaunay

Boundary Constrained

Boundary Intersection 
•Nodes and edges introduced where Delaunay edges 
intersect boundary 
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Delaunay

Boundary Constrained

Local Swapping 
•Edges swapped between adjacent pairs of triangles until 
boundary is maintained 
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Delaunay

Boundary Constrained

Local Swapping 
•Edges swapped between adjacent pairs of triangles until 
boundary is maintained 
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Delaunay

Boundary Constrained

Local Swapping 
•Edges swapped between adjacent pairs of triangles until 
boundary is maintained 
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Delaunay

Boundary Constrained

Local Swapping 
•Edges swapped between adjacent pairs of triangles until 
boundary is maintained 
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Delaunay

Boundary Constrained

Local Swapping 
•Edges swapped between adjacent pairs of triangles until 
boundary is maintained 

(George,91)(Owen,99)
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D C

VS

Delaunay

Local Swapping Example 
•Recover edge CD at vector Vs 

Boundary Constrained
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D C

E1

E2

E3

E4E5

E6
E7

E8

Local Swapping Example 
•Make a list (queue) of all edges Ei, that intersect Vs 

Delaunay

Boundary Constrained
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D C
E1

E2

E3

E4E5

E6
E7

E8

Delaunay

Local Swapping Example 
•Swap the diagonal of adjacent triangle pairs for each edge 
in the list 

Boundary Constrained
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D C

E2

E3

E4E5

E6
E7

E8

Delaunay

Local Swapping Example 
•Check that resulting swaps do not cause overlapping 
triangles.  I they do, then place edge at the back of the 
queue and try again later 
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D C

E3

E4E5

E6
E7

E8

Delaunay

Local Swapping Example 
•Check that resulting swaps do not cause overlapping 
triangles.  If they do, then place edge at the back of the 
queue and try again later 



Computational Modeling Sciences Department

71

D C

E6

Delaunay

Local Swapping Example 
•Final swap will recover the desired edge. 
•Resulting triangle quality may be poor if multiple swaps 
were necessary 
•Does not maintain Delaunay criterion! 
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Delaunay

A

C

D E

B

Boundary Constrained

3D Local Swapping 
•Requires both boundary edge recovery and boundary face 
recovery 

Edge Recovery 
•Force edges into triangulation by 
performing 2-3 swap transformation  

ABC = non-conforming face

DE = edge to be recovered

(George,91;99)(Owen,00)
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Delaunay

A

B

C

D E

Boundary Constrained

3D Local Swapping 
•Requires both boundary edge recovery and boundary face 
recovery 

Edge Recovery 
•Force edges into triangulation by 
performing 2-3 swap transformation  

ABC = non-conforming face

DE = edge to be recovered

ABCE 
ACBD

2-3 Swap

(George,91;99)(Owen,00)
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Delaunay

A

B

C

D E

Boundary Constrained

3D Local Swapping 
•Requires both boundary edge recovery and boundary face 
recovery 

Edge Recovery 
•Force edges into triangulation by 
performing 2-3 swap transformation  

ABCE 
ACBD

2-3 Swap
BAED 
CBED 
ACED

DE = edge recovered

(George,91;99)(Owen,00)
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Delaunay

A

C

D E

B

Boundary Constrained

3D Local Swapping 
•Requires both boundary edge recovery and boundary face 
recovery 

Edge Recovery 
•Force edges into triangulation by 
performing 2-3 swap transformation  

DE = edge recovered

ABCE 
ACBD

2-3 Swap
BAED 
CBED 
ECED

(George,91;99)(Owen,00)
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Delaunay

A B

A B
S

S

3D Edge Recovery 
•Form queue of faces through which edge AB will pass 
•Perform 2-3 swap transformations on all faces in the list 
•If overlapping tets result, place back on queue and try again later 
•If still cannot recover edge, then insert “steiner” point  

Edge AB to be recovered

Exploded view of tets 
intersected by AB
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Quad/Hex 
Methods

Structured
•Requires geometry to conform to 
specific characteristics 
•Regular patterns of quads/hexes 
formed based on characteristics of 
geometry 

Unstructured
•No specific requirements for geometry 
•quads/hexes placed to conform to 
geometry. 
•No connectivity requirement (although 
optimization of connectivity is beneficial)

•Internal 
nodes always 
attached to 
same number 
of elements
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Structured

6

6

3

3
Mapped Meshing

•4 topological sides 
•opposite sides must 
have similar intervals

Geometry 
Requirements

Algorithm

•Trans-finite 
Interpolation (TFI) 
•maps a regular 
lattice of quads 
onto polygon 

(Thompson,88;99)
(Cook,82)
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Structured

3D Mapped Meshing

•6 topological 
surfaces 
•opposite surfaces 
must have similar 
mapped meshes

Geometry 
Requirements
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Structured

http://www.gridpro.com/gridgallery/tmachinery.html http://www.pointwise.com/case/747.htm

Mapped Meshing

Block-Structured
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Structured

i
j

+3i

+3i

+2j

q -1j

Sub-Mapping

•Blocky-type surfaces (principally 90 
degree angles) 

Geometry Requirements

∑ = 0iInterval

∑ = 0jInterval

(White,95)
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Structured

Sub-Mapping

•Automatically decomposes surface 
into mappable regions based on 
assigned intervals

(White,95)
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Structured

Sweeping

Geometry Requirements 
•source and target surfaces 
topologicaly similar 
•linking surfaces mapable 
or submapable
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Structured

source

target

Sweeping

Geometry Requirements 
•source and target surfaces 
topologicaly similar 
•linking surfaces mapable 
or submapable

linking 
surfaces
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Structured

Sweeping

Geometry Requirements 
•source and target surfaces 
topologicaly similar 
•linking surfaces mapable 
or submapable
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Structured

Sweeping

Geometry Requirements 
•source and target surfaces 
topologicaly similar 
•linking surfaces mapable 
or submapable
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Structured

Sweeping

Geometry Requirements 
•source and target surfaces 
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•linking surfaces mapable 
or submapable
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Structured

Sweeping

Geometry Requirements 
•source and target surfaces 
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•linking surfaces mapable 
or submapable
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Structured

Sweeping

Geometry Requirements 
•source and target surfaces 
topologicaly similar 
•linking surfaces mapable 
or submapable
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Structured

Sweeping

Geometry Requirements 
•source and target surfaces 
topologicaly similar 
•linking surfaces mapable 
or submapable
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Structured

Cubit, Sandia National Labs

Gambit, Fluent Inc.

Sweeping
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Sweeping

Sweep Direction

1-to-1 sweepable
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Sweeping

n-to-1 sweepable

Sweep Direction
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Sweeping

n-to-m sweepable 

Multi-Sweep

Sweep Direction
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Sweeping

Sweep 
Direction

The fundamental strategy of multi-
sweep is to convert an n-to-m 

sweepable volume into a number of n-
to-1 sweepable volumes.
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Sweeping
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to-1 sweepable volumes.
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Sweeping

Sweep 
Direction
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to-1 sweepable volumes.
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Sweeping

Sweep 
Direction

The fundamental strategy of multi-
sweep is to convert an n-to-m 

sweepable volume into a number of n-
to-1 sweepable volumes.
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Sweeping

Sweep 
Direction

The fundamental strategy of multi-
sweep is to convert an n-to-m 

sweepable volume into a number of n-
to-1 sweepable volumes.
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Sweeping

Sweep 
Direction

The fundamental strategy of multi-
sweep is to convert an n-to-m 

sweepable volume into a number of n-
to-1 sweepable volumes.
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Sweeping

Sweep 
Direction

The fundamental strategy of multi-
sweep is to convert an n-to-m 

sweepable volume into a number of n-
to-1 sweepable volumes.
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     Sweeping

Sweep 
Direction

The fundamental strategy of multi-
sweep is to convert an n-to-m 

sweepable volume into a number of n-
to-1 sweepable volumes.
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Decomp Sweep Overview

Sweep 
Direction
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Decomp Sweep Overview

Sweep 
Direction
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Sweeping

(White, 2004)
CCSweep
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Medial Axis

Medial Axis

(Price, 95;97)(Tam,91)

•Medial Object - Roll a Maximal circle or sphere through the model.  The 
center traces the medial object  
•Medial Object used as a tool to automatically decompose model into simpler 
mapable or sweepable parts



Computational Modeling Sciences Department

108

Medial Axis

Medial Axis
•Medial Object - Roll a Maximal circle or sphere through the model.  The 
center traces the medial object  
•Medial Object used as a tool to automatically decompose model into simpler 
mapable or sweepable parts (Price, 95;97)(Tam,91)
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Medial Axis

Medial Axis
•Medial Object - Roll a Maximal circle or sphere through the model.  The 
center traces the medial object  
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mapable or sweepable parts (Price, 95;97)(Tam,91)
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Medial Axis
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Medial Axis

Medial Axis
•Medial Object - Roll a Maximal circle or sphere through the model.  The 
center traces the medial object  
•Medial Object used as a tool to automatically decompose model into simpler 
mapable or sweepable parts (Price, 95;97)(Tam,91)
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Medial Axis

Medial Axis
•Medial Object - Roll a Maximal circle or sphere through the model.  The 
center traces the medial object  
•Medial Object used as a tool to automatically decompose model into simpler 
mapable or sweepable parts (Price, 95;97)(Tam,91)
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Medial Axis

Medial Axis
•Medial Object - Roll a Maximal circle or sphere through the model.  The 
center traces the medial object  
•Medial Object used as a tool to automatically decompose model into simpler 
mapable or sweepable parts (Price, 95;97)(Tam,91)
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Medial Axis

Medial Axis + Midpoint Subdivision  
(Price, 95) (Sheffer, 98)

Embedded Voronoi Graph
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Meshing Algorithms
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Indirect Quad

Triangle splitting 
•Each triangle split into 3 quads 
•Typically results in poor angles
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Indirect Hex

Tetrahedra splitting 
•Each tetrahedtra split into 4 hexahedra 
•Typically results in poor angles
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Indirect Hex

Tetrahedra splitting 
•Each tetrahedtra split into 4 hexahedra 
•Typically results in poor angles
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Indirect Hex

Tetrahedra splitting 
•Each tetrahedtra split into 4 hexahedra 
•Typically results in poor angles

(Taniguchi, 96)
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Indirect Hex

Example of geometry meshed by tetrahedra splitting
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Indirect

Triangle Merge 
•Two adjacent triangles combined into a single quad  
•Test for best local choice for combination 
•Triangles can remain if attention is not paid to order of 
combination 
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Indirect

Triangle Merge 
•Two adjacent triangles combined into a single quad  
•Test for best local choice for combination 
•Triangles can remain if attention is not paid to order of 
combination 
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Indirect

Triangle Merge 
•Two adjacent triangles combined into a single quad  
•Test for best local choice for combination 
•Triangles can remain if attention is not paid to order of 
combination 
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Indirect

Directed Triangle Merge 
•Merging begins at a boundary 
•Advances from one set of triangles to the 
next 
•Attempts to maintain even number of 
intervals on any loop 
•Can produce all-quad mesh 
•Can also incorporate triangle splitting 
•(Lee and Lo, 94)
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Indirect

A B

NB

e e
NA

e e C

D

Triangle Merge w/ local 
transformations (“Q-
Morph) 
•Uses an advancing front 
approach 
•Local swaps applied to 
improve resulting quad 
•Any number of triangles 
merged to create a quad 
•Attempts to maintain 
even number of intervals 
on any loop 
•Produces all-quad mesh 
from even intervals 
•(Owen, 99) 
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Q-Morph

Unstructured-Quad
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Q-Morph

Unstructured-Quad
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Q-Morph

Unstructured-Quad
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Q-Morph

Unstructured-Quad
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Q-Morph

Unstructured-Quad
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Q-Morph

Unstructured-Quad
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Indirect

Q-Morph Lee,Lo Method
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Indirect

A B

C
D

A B

C
D

E

A B

C
D

EF

A B

C
D

EF

G

A B

C
D

EF

GH

A B

C
D

E
F

GH

Tetrahedral Merge w/ local transformations (“H-Morph”)
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Unstructured-Hex

H-Morph
“Hex-Dominant Meshing”

(Owen and Saigal, 00)
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Unstructured-Hex

(Owen and Saigal, 00)
H-Morph

“Hex-Dominant Meshing”
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Unstructured-Hex
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Meshing Algorithms
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Unstructured-Hex

Grid-Based
•Generate regular grid of quads/hexes on the interior of model 
•Fit elements to the boundary by projecting interior faces towards 
the surfaces 
•Lower quality elements near boundary 
•Non-boundary conforming 
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Unstructured-Hex

Grid-Based
•Generate regular grid of quads/hexes on the interior of model 
•Fit elements to the boundary by projecting interior faces towards 
the surfaces 
•Lower quality elements near boundary 
•Non-boundary conforming 
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Unstructured-Hex

Grid-Based
•Generate regular grid of quads/hexes on the interior of model 
•Fit elements to the boundary by projecting interior faces towards 
the surfaces 
•Lower quality elements near boundary 
•Non-boundary conforming 
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Unstructured-Hex

Grid-Based

(Schneiders,96)
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Unstructured-Hex

http://www.numeca.be/hexpress_home.html

Grid-Based

Gambit, Fluent, Inc.
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Direct Quad

Paving
•Advancing Front: Begins with front at boundary 
•Forms rows of elements based on front angles 
•Must have even number of intervals for all-quad mesh

(Blacker,92)(Cass,96)
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Unstructured-Quad

Paving
•Advancing Front: Begins with front at boundary 
•Forms rows of elements based on front angles 
•Must have even number of intervals for all-quad mesh

(Blacker,92)(Cass,96)
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Unstructured-Quad

Paving
•Advancing Front: Begins with front at boundary 
•Forms rows of elements based on front angles 
•Must have even number of intervals for all-quad mesh

(Blacker,92)(Cass,96)
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Unstructured-Quad

Paving
•Advancing Front: Begins with front at boundary 
•Forms rows of elements based on front angles 
•Must have even number of intervals for all-quad mesh

Form new row 
and check for 

overlap

(Blacker,92)(Cass,96)
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Unstructured-Quad

Paving
•Advancing Front: Begins with front at boundary 
•Forms rows of elements based on front angles 
•Must have even number of intervals for all-quad mesh

Insert 
“Wedge”

(Blacker,92)(Cass,96)
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Unstructured-Quad

Paving
•Advancing Front: Begins with front at boundary 
•Forms rows of elements based on front angles 
•Must have even number of intervals for all-quad mesh

Seams

(Blacker,92)(Cass,96)
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Unstructured-Quad

Paving
•Advancing Front: Begins with front at boundary 
•Forms rows of elements based on front angles 
•Must have even number of intervals for all-quad mesh

Close Loops 
and smooth

(Blacker,92)(Cass,96)
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Unstructured-Hex

Plastering
(Blacker, 93)•3D extension of “paving” 

•Row-by row or element-by-element
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Unstructured-Hex

Plastering
•3D extension of “paving” 
•Row-by row or element-by-element

(Blacker, 93)
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Unstructured-Hex

Plastering
•3D extension of “paving” 
•Row-by row or element-by-element

(Blacker, 93)



Computational Modeling Sciences Department

154

Unstructured-Hex

Plastering
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(Blacker, 93)
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Unstructured-Hex

Plastering
•3D extension of “paving” 
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(Blacker, 93)
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Unstructured-Hex

Plastering
•3D extension of “paving” 
•Row-by row or element-by-element

(Blacker, 93)



Computational Modeling Sciences Department

157

Unstructured-Hex

Plastering
•3D extension of “paving” 
•Row-by row or element-by-element

(Blacker, 93)
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Unstructured-Hex

Exterior Hex mesh Remaining Void

Ford Crankshaft

Plastering+Tet Meshing
“Hex-Dominant Meshing”
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Direct

Whisker Weaving
•First constructs dual of the quad/hex mesh 
•Inserts quad/hex at the intersections of the dual chords  
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Direct

Whisker Weaving
•Spatial Twist Continuum - Dual of 
a 3D hex mesh (Murdoch, 96) 
•Hexes formed at intersection of 
twist planes
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Direct

Whisker Weaving
•Spatial Twist Continuum - Dual of 
a 3D hex mesh (Murdoch, 96) 
•Hexes formed at intersection of 
twist planes

Twist Plane
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Direct

Whisker Weaving
•Spatial Twist Continuum - Dual of 
a 3D hex mesh (Murdoch, 96) 
•Hexes formed at intersection of 
twist planes

Twist Plane
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Direct

Whisker Weaving
•Spatial Twist Continuum - Dual of 
a 3D hex mesh (Murdoch, 96) 
•Hexes formed at intersection of 
twist planes

Twist Planes
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Direct

Whisker Weaving

•Define the topology of 
the twist planes using 
whisker diagrams 
•Each whisker diagram 
represents a closed loop 
of the surface dual 
•Each boundary vertex on 
the diagram represents a 
quad face on the surface 
•Objective is to resolve 
internal connectivity by 
“weaving” the chords 
following a set of basic 
rules

(Tautges,95;96)Whisker diagrams used to resolve hex mesh above
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Hex Meshing Research

Unconstrained Paving

Remove constraint that we must define 
number of quad when row is advanced.  

This constrains only 1 DOF.

Remove constraint of pre-meshed 
boundary.
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Hex Meshing Research

Unconstrained Paving
Each Row Advancement Constrains Only 1 DOF

Quads are only completely defined when 2 
unconstrained rows cross

Quad Elements
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Hex Meshing Research

Unconstrained Paving
Each Row Advancement Constrains Only 1 DOF
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Hex Meshing Research

Unconstrained Plastering
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Hex Meshing Research

Unconstrained Plastering
(DOF = 2)
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Hex Meshing Research

Unconstrained Plastering
(DOF = 1)
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Hex Meshing Research

Unconstrained Plastering

(DOF = 0)
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Hex Meshing Research

Unconstrained Plastering
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Hex Meshing Research

Unconstrained Plastering
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Hex Meshing Research

Unconstrained Plastering
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Hex Meshing Research

Unconstrained Plastering
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Hex Meshing Research

Unconstrained Plastering
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Hex Meshing Research

Unconstrained Plastering
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Hybrid Methods

CFD Meshing

Image courtesy of acelab, University of Texas, Austin, http://
acelab.ae.utexas.edu

Image courtesy of Roy P. Koomullil, Engineering Research Center, 
Mississippi State University, http://www.erc.msstate.edu/~roy/
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Hybrid Methods

Advancing Layers Method
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Hybrid Methods

Advancing Layers Method

Discretize Boundary
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Hybrid Methods

Advancing Layers Method

Define Normals at boundary nodes

(Pirzadeh, 1994)
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Hybrid Methods

Advancing Layers Method

Generate nodes along normals according to distribution function 
Form layer

Distance from wall

El
em

en
t s

iz
e

distribution 
function
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Hybrid Methods

Advancing Layers Method

Generate nodes along normals according to distribution function 
Form layer

Distance from wall

El
em

en
t s

iz
e

distribution 
function
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Hybrid Methods

Advancing Layers Method

Generate nodes along normals according to distribution function 
Form layer

Distance from wall

El
em

en
t s

iz
e

distribution 
function
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Hybrid Methods

Advancing Layers Method

Define new boundary for 
triangle mesher
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Hybrid Methods

Mesh with triangles
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Hybrid Methods

Convex Corner Concave Corner
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Hybrid Methods

Convex Corner Concave Corner
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Hybrid Methods

Convex Corner Concave Corner
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Hybrid Methods

Convex Corner Concave Corner

Blend Regions
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Hybrid Meshes

Convex Corner Concave Corner

Blend Regions
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Hybrid Methods

Convex Corner Concave Corner

Blend Regions



Computational Modeling Sciences Department

193

Hybrid Methods

Convex Corner Concave Corner

Smoothed Normals
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Hybrid Methods

Convex Corner Concave Corner

Smoothed Normals
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Hybrid Methods

Convex Corner Concave Corner

Smoothed Normals
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Hybrid Methods

Multiple Normals

α
Define Normals 
every α degrees



Computational Modeling Sciences Department

197

Hybrid Methods

Multiple Normals
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Hybrid Methods

Intersecting Boundary Layers
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Hybrid Methods

Intersecting Boundary Layers
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Hybrid Methods

Intersecting Boundary Layers

Delete 
overalppaing 
elements
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Hybrid Methods

Intersecting Boundary Layers
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Hybrid Methods

Image courtesy of SCOREC, Rensselaer Polytechnic Institute, 
http://www.scorec.rpi.edu/

(Garimella, 
Shephard, 2000)
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Hex-Tet Interface

Conforming quad-triangle Conforming hex-tet?

Non-Conforming 
Diagonal Edge

Non-Conforming Node
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Hex-Tet Interface

Solutions 
•Free Edge (Non-conforming) 
•Multi-point Constraint 
•Pyramid 
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Hex-Tet Interface

Heat sink meshed with hexes, tets and pyramids
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Hex-Tet Interface

Pyramid Elements for maintaining compatibility between hex and tet elements (Owen,00)
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Hex-Tet Interface

Tetrahedral transformations to form Pyramids 
•Use 2-3 swaps to obtain 2 tets at diagonal 
•combine 2 tets to form pyramid

A,B N1

N2

N3N4

N5 A,B N1

N2

N3N4

N5

A,B N1

N3N4

N5 A,B N1

N3

N5

(a) (b)

(c) A

B

N5 N1

N4 N3

N2

(d)
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Hex-Tet Interface

Tetrahedral transformations to form Pyramids 
•Use 2-3 swaps to obtain 2 tets at diagonal 
•combine 2 tets to form pyramid

A,B N1

N2

N3N4

N5 A,B N1

N2

N3N4

N5

A,B N1

N3N4

N5 A,B N1

N3

N5

(a) (b)

(c) A

B

N5 N1

N4 N3

N2

(d)
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Hex-Tet Interface

Tetrahedral transformations to form Pyramids 
•Use 2-3 swaps to obtain 2 tets at diagonal 
•combine 2 tets to form pyramid

A,B N1

N2

N3N4

N5 A,B N1

N2

N3N4

N5

A,B N1

N3N4

N5 A,B N1

N3

N5

(a) (b)

(c) A

B

N5 N1

N4 N3

(d)
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Hex-Tet Interface

(d)

Tetrahedral transformations to form Pyramids 
•Use 2-3 swaps to obtain 2 tets at diagonal 
•combine 2 tets to form pyramid

A,B N1

N2

N3N4

N5 A,B N1

N2

N3N4

N5

A,B N1

N3N4

N5 A,B N1

N3

N5

(a) (b)

(c) A

B

N5

N3

N1
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Hex-Tet Interface

(d)

Tetrahedral transformations to form Pyramids 
•Use 2-3 swaps to obtain 2 tets at diagonal 
•combine 2 tets to form pyramid

A,B N1

N2

N3N4

N5 A,B N1

N2

N3N4

N5

A,B N1

N3N4

N5 A,B N1

N3

N5

(a) (b)

(c) A

B

N5

N3

N1
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Hex-Tet Interface

N1N4

B

A

N2N3

Non-Conforming Condition: 
Tets at quad diagonal A-B

Pyramid Open Method

N

N

N1
4

B

A

C

N2
3

•Insert C at midpoint AB: 
•Split all tets at edge AB

B

N1
A

C

N2N3

N4

•Move C to average 
N1,N2…Nn 
•Create New Pyramid 
A,Nn,B,N1,C
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Surface Meshing

Direct 3D Meshing Parametric Space Meshing

u

v

•Elements formed in 3D using 
actual x-y-z representation of 
surface

•Elements formed in 2D using parametric 
representation of surface 
•Node locations later mapped to 3D
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Surface Meshing

A

B

3D Surface Advancing Front 
•form triangle from front edge AB
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A

B

Surface Meshing

C

NC

3D Surface Advancing Front 
•Define tangent plane at front by 
averaging normals at A and B

Tangent plane
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Surface Meshing

A

B

C

NC

D

3D Surface Advancing Front 
•define D to create ideal triangle on 
tangent plane
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A

B

C

NC

D

3D Surface Advancing Front 
•project D to surface (find closest 
point on surface)

Surface Meshing
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Surface Meshing

3D Surface Advancing Front 
•Must determine overlapping or intersecting 
triangles in 3D.  (Floating point robustness 
issues) 
•Extensive use of geometry evaluators (for 
normals and projections) 
•Typically slower than parametric 
implementations 
•Generally higher quality elements 
•Avoids problems with poor parametric 
representations (typical in many CAD 
environments) 
•(Lo,96;97); (Cass,96)  
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Surface Meshing

Parametric Space Mesh Generation
•Parameterization of the NURBS provided by the CAD model can be used to 
reduce the mesh generation to 2D 

u

v

u

v
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Surface Meshing

Parametric Space Mesh Generation
•Isotropic: Target element shapes are 
equilateral triangles 

•Equilateral elements in parametric space 
may be distorted when mapped to 3D 
space. 
•If parametric space resembles 3D space 
without too much distortion from u-v 
space to x-y-z space, then isotropic 
methods can be used. 

u

v

u

v
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Surface Meshing

•Parametric space can be “customized” or warped so that isotropic methods can be used. 
•Works well for many cases. 
•In general, isotropic mesh generation does not work well for parametric meshing

u

v

u

v

Parametric Space Mesh Generation

Warped parametric space
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Surface Meshing

u

v

u

v

•Anisotropic: Triangles are stretched based on a 
specified vector field 

•Triangles appear stretched in 2d 
(parametric space), but are near equilateral 
in 3D

Parametric Space Mesh Generation
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Surface Meshing

•Stretching is based on field of surface derivatives

Parametric Space Mesh Generation
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•Metric, M can be defined at every location on 
surface.  Metric at location X is:
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Surface Meshing

•Distances in parametric space can now be measured as a function of direction and 
location on the surface.  Distance from point X to Q is defined as:

XQXQXQl T )()( XM≈

u

v

x
y

z

Parametric Space Mesh Generation

X

Q

)(XQl

u

v

X Q
)(XQl

M(X)
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Surface Meshing

Parametric Space Mesh Generation
•Use essentially the same isotropic methods for 2D mesh generation, except distances 
and angles are now measured with respect to the local metric tensor M(X). 
•Can use Delaunay (George, 99) or Advancing Front Methods (Tristano,98)
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Surface Meshing

Parametric Space Mesh Generation
•Is generally faster than 3D methods 
•Is generally more robust (No 3D 
intersection calculations) 
•Poor parameterization can cause 
problems 
•Not possible if no parameterization is 
provided 

•Can generate your own 
parametric space (Flatten 3D 
surface into 2D) (Marcum, 99) 
(Sheffer,00)
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Algorithm Characteristics

1. Conforming Mesh
•Elements conform to a prescribed surface mesh

2. Boundary Sensitive
•Rows/layers of elements roughly conform to the contours of the boundary

3. Orientation Insensitive
•Rotating/Scaling geometry will not change the resulting mesh

4. Regular Node Valence
•Inherent in the algorithm is the ability to maintain (nearly) the same number of 
elements adjacent each node)

5. Arbitrary Geometry
•The algorithm does not rely on a specific class/shape of geometry

6. Commercial Viability (Robustness/Speed)
•The algorithm has been used in a commercial setting
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Tris Hexes
Q

ua
dt

re
e 

D
el

au
na

y 
A

dv
. F

ro
nt

O
ct

re
e 

D
el

au
na

y 
A

dv
. F

ro
nt

QuadsTets

Conforming 
Mesh

Boundary 
Sensitive

Orientation 
Insensitive

Commercially 
Viability

Regular Node 
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Arbitrary 
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More Info

http://www.andrew.cmu.edu/~sowen/mesh.html

Meshing 
Research 
Corner
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