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The following problem is discussed: Given n points in the plane (the sites) and an arbitrary query 
point 4, find the site that is closest to q. This problem can be solved by constructing the Voronoi 
diagram of the given sites and then locating the query point in one of its regions. Two algorithms are 
given, one that constructs the Voronoi diagram in O(n log n) time, and another that inserts a new 
site in O(n) time. Both are based on the use of the Voronoi dual, or Delaunay triangulation, and are 
simple enough to be of practical value. The simplicity of both algorithms can be attributed to the 
separation of the geometrical and topological aspects of the problem and to the use of two simple but 
powerful primitives, a geometric predicate and an operator for manipulating the topology of the 
diagram. The topology is represented by a new data structure for generalized diagrams, that is, 
embeddings of graphs in two-dimensional manifolds. This structure represents simultaneously an 
embedding, its dual, and its mirror image. Furthermore, just two operators are sufficient for building 
and modifying arbitrary diagrams. 

Categories and Subject Descriptors: E.l [Data]: Data Structures-graphs; E.2 [Data]: Data Storage 
Representations-linked representations; F.2.2 [Analysis of Algorithms and Problem Complex- 
ity]: Nonnumerical Algorithms and Problems-geometrical problems and computations; G.2.2 [Dis- 
crete Mathematics]: Graph Theory-graph algorithms; 1.3.5 [Computer Graphics]: Computa- 
tional Geometry and Object Modeling-curue, surface, solid, and object representations; geometric 
algorithms, languages, and systems 

General Terms: Algorithms, Theory 

Additional Key Words and Phrases: Voronoi and Delaunaydiagrams, closest point, nearest neighbors, 
point location, triangulations, representation of polyhedra, planar graphs, convex hull, geometric 
primitives, computational topology, Euler operators 

INTRODUCTION 

One of the fundamental data structures of computational geometry is the Voronoi 
diagram. This diagram arises from consideration of the following natural problem. 
Let n points in the plane be given, called sites. We wish to preprocess them into 
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a data structure, so that given a new query point q, we can efficiently locate the 
nearest neighbor of q among the sites. The n sites in fact partition the plane into 
a collection of n regions, each associated with one of the sites. If region P is 
associated with site p, then P is the locus of all points in the plane closer to p 
than to any of the other n-l sites. This partition is known as the Voronoi 
diagram (or the Dirichlet, or Thiessen, tesselation) determined by the given sites. 

The closest site problem can therefore be solved by constructing the Voronoi 
diagram and then locating the query point in it. Using the currently best available 
algorithms, the Voronoi diagram of n points can be computed in 0( n log n) time 
and stored in O(n) space; these bounds have been shown to be optimal in the 
worst case [18]. Once we have the Voronoi diagram, we can construct in linear 
further time a structure with which we can do point location in a planar 
subdivision in O(log n) time [ 111. 

Shamos [18] first pointed out that the Voronoi diagram can be used as a 
powerful tool to give efficient algorithms for a wide variety of other geometric 
problems. Given the Voronoi, we can compute in linear time the closest pair of 
sites, or the closest neighbor of each site, or the Euclidean minimum spanning 
tree of the n sites, or the largest point-free circle with center inside their convex 
hull, etc. Several of these problems are known to require Q(n log n) time in the 
worst case, so these Voronoi-based algorithms are asymptotically optimal. 

Few of the previously published O( n log n) Voronoi algorithms [ 191 have been 
amenable to a practical implementation. The reasons have been varied, ranging 
from the complexity of the algorithms, to their insufficiently precise specification, 
to their improper handling of degenerate cases. For example, many of those 
algorithms may fail if the input includes four or more cocircular sites. 

It turns out that the hardest part of constructing a Voronoi diagram is the 
determination of its topological structure, that is, the incidence relation between 
vertices, edges, and faces. Once the topological properties of the diagram are 
known, its geometrical properties (coordinates, lengths, angles, etc.) can be 
computed in time linear in the number of sites. Boots [2,20] was apparently the 
first to observe that the computation of a Voronoi diagram can be greatly 
simplified by working with its dual, which is known as the Delaunay diagram of 
the given sites. This allows a cleaner separation between the topological and 
geometrical aspects of the problem. In this paper we push further in this direction, 
aiming for conciseness and completeness at the same time. The result is a one- 
page description of an O(n log n) algorithm that can be translated almost 
mechanically into any typical high-level language and correctly handles degen- 
erate cases. For completeness, we apply the same methodology to a simpler (but 
asymptotically slower) incremental algorithm due to Green and Sibson [7]. 

Our algorithms are built using essentially two primitives: a geometric predicate 
and a topological operator for manipulating the structure of the diagrams. The 
geometrical primitive, which we call the InCircle test, encapsulates the essential 
geometric information that determines the topological structure of the Voronoi 
diagram and is a powerful tool not only in the coding of the algorithms but also 
in proving their correctness. As evidence for its importance, we show that it 
possesses many interesting properties and can be defined in a number of equiv- 
alent ways. 

The topological structure of a Voronoi or Delaunay diagram is equivalent to 
that of a particular embedding of some undirected graph in the Euclidean plane. 
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We have found it convenient to consider such diagrams as being drawn on the 
sphere rather than on the plane; topologically that is equivalent to augmenting 
the Euclidean plane by a dummy point at infinity. This allows us to represent 
such things as infinite edges and faces in the same way as their finite counterparts. 
In Sections 1-5 we will establish the mathematical properties of such embeddings, 
define a notation for talking about them, and describe a data structure for their 
representation. 

It turns out that the data structure we propose is general enough to allow the 
representation of undirected graphs embedded in arbitrary two-dimensional 
manifolds. In fact, it may be seen as a variant of the “winged edge” representation 
for polyhedral surfaces [ 11. We show that a single topological operator, which we 
call Splice, together with a single primitive for the creation of isolated edges, is 
sufficient for the construction and modification of arbitrary diagrams. Our data 
structure has the ability to represent simultaneously and uniformly the primal, 
the dual, and the mirror-image diagrams, and to switch arbitrarily from one of 
these domains to another, in constant time. Finally, the design of the data 
structure enables us to manipulate its geometrical and topological parameters 
independently of each other. As it will become clear in the sequel, these properties 
have the effect of producing programs that are at once simple, elegant, efficient 
from a practical point of view, and asymptotically optimal in time and space. 

Since this paper is quite long, some guidance to the forthcoming sections may 
be advisable. Section 1 introduces the concept of a simple subdivision of a 
manifold and discusses some of the conventions we adopt as compared to the 
extant literature. Section 2 develops a notation for expressing relationships 
between elements of a subdivision and explores its properties. Section 3 defines 
the important concept of an edge algebra, a combinatorial structure on the edges 
of the subdivision that we claim captures all topological properties of the latter. 
We spend most of Section 3 proving this claim, by showing that isomorphism of 
edge algebras is equivalent to topological homeomorphism between the corre- 
sponding subdivisions. The proof is somewhat technical and may be omitted on 
a first reading. In Section 4 we present a computer representation for an edge 
algebra, which is our quad-edge data structure. Section 5 introduces the topolog- 
ical primitives that we use to manipulate this structure and discusses their 
properties and implementation. Section 6 tailors these primitives to the appli- 
cation on hand, namely, the construction of Delaunay/Voronoi diagrams. Section 
7 reviews some properties of such diagrams, and Section 8 presents our main 
geometric for their computation, the InCircle test. Section 9 describes a divide- 
and-conquer algorithm for Voronoi computations, and Section 10 presents an 
incremental version that is slower but simpler. 

1. SUBDIVISIONS 

In this section we give a precise definition for the informal concept of an 
embedding of an undirected graph on a surface. Special instances of this concept 
are sometimes referred to as a subdivision of the plane, a generalized polyhedron, 
a two-dimensional diagram, or by other similar names. They have been exten- 
sively discussed in the solid modeling literature of computer graphics [l, 151. We 
want a definition that accurately reflects the topological properties one would 
ACM Transactions on Graphics, Vol. 4, No. 2, April 1985. 



General Subdivisions and Voronoi Diagrams 77 

intuitively expect of such embeddings (for instance, that every edge is on the 
boundary of two faces, every face is bounded by a closed chain of edges and 
vertices, every vertex is surrounded by a cyclical sequence of faces and edges, 
etc.) and at the same time is as general as possible and leads to a clean theory 
and data structure. 

We assume the reader is familiar with a few basic concepts of point-set 
topology, such as topological space, continuity, and homeomorphism [9]. Two 
subsets A and B of a topological space M are said to be separable if some 
neighborhood of A is disjoint from some neighborhood of B; otherwise, they are 
said to be incident on each other. A line of M is a subspace of M homeomorphic 
to the open interval B1 = (0 1) of the real line. A disk of M is a subspace 
homeomorphic to the open circle of unit radius Bz = {x E R2: ] x ] < 1). Recall 
that a two-dimensional manifold is a topological space with the property that 
every point has an open neighborhood which is a disk (all manifolds in this paper 
will be two dimensional). 

Definition 1.1. A subdivision of a manifold M is a partition S of M into three 
finite collections of disjoint parts, the vertices, the edges, and faces (denoted, 
respectively, by 79, ZP, and FP), with the following properties: 

Sl. Every vertex is a point of M. 
S2. Every edge is a line of M. 
S3. Every face is a disk of M. 
S4. The boundary of every face is a closed path of edges and vertices. 

The vertices, edges, and faces of a subdivision are called its elements. Figure 1 
shows some examples of subdivisions. 

Condition S4 needs some explanation. We denote by B,’ the closed circle of 
unit radius, and by S, its circumference. Let us define a simple path in S1 as a 
partition of S1 into a finite sequence of isolated points and open arcs. The precise 
meaning of S4 is then the following: Every face F there is a simple path P in 
S1 and a continuous mapping $F from BI onto the closure of F that (i) maps 
homeomorphically BP onto F, (ii) maps homeomorphically each arc of 7~ into an 
edge of S, and (iii) maps each isolated point of 7r to a vertex of S. 

Condition S4 has a number of important implications. Clearly the points and 
arcs of R must alternate as we go around S1; if 01 is the arc between two consecutive 
points a and b of r, then its image $J((Y) is an edge incident to the points $F(a) 
and 4F(b). Therefore, the images of the elements of 7r, taken in the order in 
which they occur around S1, constitute a closed, connected path RF of edges and 
vertices of S, whose union is the boundary of F. Notice that the bounding path 
r.V need not be simple, since $F may take two or more distinct arcs or points of 
x to the same element of S. Therefore the closure of a face may not be 
homeomorphic to a disk, as Figure 1 shows. 

Since it is impossible to cover a disk with only a finite number of edges and 
vertices, every edge and every vertex in a subdivision of a manifold must be 
incident to some face. Using condition S4 we conclude that every edge is entirely 
contained in the boundary of some face, and that it is incident to two (not 
necessarily distinct) vertices of S. These vertices are called the endpoints of the 
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Fig. 1. Examples of subdivisions. 

edge; if they are the same, then the edge is a loop, and its closure is homeomorphic 
to the circle Si. 

Since every element of S is in the closure of some face, and since the closed 
disk Bl is compact, the manifold M is the union of a finite number of compact 
sets and therefore is itself compact. In fact, condition S4 can be replaced by the 
requirement that h4 be compact, that the edges be pairwise separable, and that 
every vertex is incident to some edge. Furthermore, every compact manifold has 
a subdivision. We will not attempt to prove these statements, since they are too 
technical for the scope of this paper. 

Informally speaking, a compact two-dimensional manifold is a surface that 
closes upon itself, has no boundary, and in which every infinite sequence has an 
accumulation point. The sphere, the torus, and the projective plane are such 
manifolds; the disk, the line segment, the whole plane, and the Mobius strip are 
not. The compactness condition is not as restrictive as it may seem; most surfaces 
of practical interest can be transformed into a compact manifold by the addition 
of a finite number of dummy faces, edges, and vertices. In particular, the addition 
of a single “point at infinity,” which by definition is an accumulation point of all 
sequences with no other accumulation points, transforms the Euclidean plane R2 
into the extended plane, which is homeomorphic to the sphere. 

1 .l Equivalence and Connectivity 

Definition 1.2. Let S and S’ be two subdivisions of the manifolds M and M’. 
An isomorphism from S to S ’ is a homeomorphism of M onto M’ that maps each 
element of S onto an element of S’. When such a mapping exists, we say that S 
and S’ are equivalent, and we write S - S’. 

Such an isomorphism will perforce map vertices into vertices, faces into faces, 
and edges into edges, and will preserve the incidence relationships among them. 
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Fig. 2. A pair of noneqivalent sub- 
divisions that have isomorphic 
graphs. 

A topological property of subdivisions is a property that is invariant under 
equivalence. Our goal will be to develop a computer representation that fully 
captures all topological properties of subdivisions. 

The collection of all edges and vertices of a subdivision S constitutes an 
undirected graph, the graph of S. The graphs of two equivalent subdivisions S 
and S’ are obviously isomorphic. The converse is not always true: if S and S’ 
have isomorphic graphs, it does not follow that they are equivalent, or that M 
and M’ are homeomorphic. Figure 2 shows an example. Note that the subdivisions 
are not equivalent even though there also is a one-to-one correspondence between 
the faces of S and S’ with the property that corresponding faces are incident to 
corresponding edges and vertices. This example shows that the set of edges and 
vertices on the boundary of a face is not enough information to characterize its 
relationship to the rest of the manifold. 

This fact is the main source of complexity in the theoretical treatment of 
subdivisions, notably in the proof that our data structure is a consistent repre- 
sentation of a general subdivision. It is possible to define subdivisions in such a 
way that their topological structure is completely determined by that of their 
graphs. For example, if the manifold is restricted to be a sphere and the graph is 
triply connected [8], then the subdivision is determined up to equivalence. 
However, any set of conditions strong enough to achieve this goal would probably 
outlaw “degeneracies” such as loops, multiple edges with the same endpoints, 
faces with nonsimple boundaries, and so forth. Subdivisions with such degener- 
acies are much more common than it may seem: they inevitably arise as inter- 
mediate objects in the transformation of a “well-behaved” subdivision into 
another. An even stronger reason for adopting our liberal Definition 1.1 is that 
it leads to more flexible data structures and simpler atomic operations with 
weaker preconditions. 

On the other hand, we depart from the common solid modeling tradition by 
insisting that every face be a simple disk, without “handles” or “holes,” even 
though the whole manifold is allowed to have arbitrary connectivity. The main 
reason for this requirement is to enable a clean and unambiguous definition of 
the dual subdivision (see Section 2.2). One important consequence of this restric- 
tion is the following. 
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THEOREM 1.1. The graph of a simple subdivision is connected iff the manifold 
is connected. 

PROOF. Since every face is incident to some edge, if the graph is connected, 
then the whole manifold is too. Now assume that the graph is not connected, but 
the manifold is. Since the faces are pairwise separable and their addition to the 
graph makes it connected, some face is incident to two distinct components of 
the graph. By condition S4 the boundary of that face is connected, a contradic- 
tion. 0 

Therefore, the connected components of the manifold are in one-to-one cor- 
respondence with the connected components of the underlying graph. 

2. EDGE FUNCTIONS AND THEIR PROPERTIES 

In this section we develop a convenient notation for describing relationships 
among edges of a subdivision and a mathematical framework that will justify the 
choice of our data structure. We first develop the theory and representation for 
arbitrary compact manifolds, and then we show that certain important simplifi- 
cations can be made in the particular case in which the manifold is orientable. 
For many applications, including the computation of Voronoi diagrams, the only 
relevant manifold will be the extended plane. 

2.1 Basic Edge Functions 

On any disk D of a manifold there are exactly two ways of defining a local 
“clockwise” sense of rotation; these are called the two possible orientations on D. 
An oriented element of a subdivision P is an element x of P together with an 
orientation of a disk containing X. There are also exactly two consistent ways of 
defining a linear order among the points of a line 1; each of these orderings is 
called a direction along 1. A directed edge of a subdivision P is an edge of P 
together with a direction along it. Since directions and orientations can be chosen 
independently, for every edge of a subdivision there are four directed, oriented 
edges. Observe that this is true even if the edge is a loop or is incident twice to 
the same face of P. 

For any oriented and directed edge e we can define unambiguously its vertex 
of origin, e Org, its destination, e Dest, its left face, e Left, and its right face, e 
Right. We define also the flipped version e Flip of an edge e as being the same 
unoriented edge taken with opposite orientation and same direction, as well as 
the symmetric of e, e Sym, as being the same undirected edge with the opposite 
direction but the same orientation as e. We can picture the orientation and 
direction of an edge e as a small bug sitting on the surface over the midpoint of 
the edge and facing along it. Then the operation e Sym corresponds to the bug 
making a half turn on the same spot, and e Flip corresponds to the bug hanging 
upside down from the other side of the surface, but still at the same point of the 
edge and facing the same way. 

The elements e Org, e Left, e Right, and e Dest are taken by definition with the 
orientation that agrees locally with that of e. More precisely, the orientation of e 
Org agrees with that of some initial segment of e, and that of e Dest agrees with 
some final segment of e. Note that for some loops e Org and e Dest may have 
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Fig. 3. The ring of edges out of a 
vertex. 

opposite orientations, in spite of being the same (unoriented) vertex. Similarly, 
the orientation of e Left agrees with e along the “left margin” of e, and that of e 
Right agrees along its “right margin.” If e is a bridge in the graph of P, it may be 
the case that e Left and e Right have different orientations, in spite of being the 
same (unoriented) face. By extending our previous notation, we denote by z/S, 
8S, and 9-S the sets of directed and oriented elements of a subdivision S. In the 
rest of this section, unless otherwise specified, all subdivision elements are 
assumed to be oriented, and directed if edges. 

Consider an edge e incident to an oriented vertex u. If the edge is not a loop, 
then there is a natural way to extend the orientation of u into an orientation of 
e. This may not be possible if e is a loop and the manifold is nonorientable. 
However, given a sufficiently small disk D containing u, we can always extend 
the orientation of u to each portion of e inside that disk. If small enough, D can 
be mapped homeomorphically onto the unit disk Bz in such a way that IJ is 
mapped to the origin, and the intersection of D with every edge incident to u is 
a line of M that is mapped to a radius of Bz. These edge fragments can be 
oriented consistently with v and directed away from u. Traversing the boundary 
of D in the counterclockwise direction (as defined by the orientation of u) 
establishes a cyclical ordering of the fragments. If for each fragment we take the 
corresponding edge, with orientation and direction as specified by the fragment, 
we obtain what is called the ring of edges out of u. Note that if e is a loop, it will 
occur twice in the ring of edges out of U. To be precise, both e and an oppositely 
directed version of it (either e Sym or e Sym Flip) will occur once each: since the 
manifold around u is like a disk, e will appear only once in each circuit, and we 
will never encounter e Flip. 

We can define the next edge with same origin, e One&, as the one immediately 
following e (counterclockwise) in this ring (see Figure 3). Similarly, given an edge 
e we define the next counterclockwise edge with same left face, denoted by e Lnext, 
as being the first edge we encounter after e when moving along the boundary of 
the face F = e Left in the counterclockwise sense as determined by the orientation 
of F. The edge e Lnext is oriented and directed so that e Lnext Left = F (including 
orientation). The successive images of e under Lnert give precisely the edges of 
the bounding path TF of condition S4 (in one of the two possible orders). As in 
the case of Onext, the edge e appears exactly once in this list, and either e Sym 
or e Flip (but not e Sym Flip) may appear once. 
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2.2 Duality 

The dual of a planar graph G can be informally defined as a graph G* obtained 
from G by interchanging vertices and faces while preserving the incidence 
relationships. The definition below extends this intuitive concept to arbitrary 
subdivisions. 

Definition 2.1. Two subdivisions S and S* are said to be dual of each other if 
for every directed and oriented edge e of either subdivision there is another edge 
e Dual of the other such that 

Dl. (e Dual) Dual = e. 
D2. (e Sym) Dual = (e Dual) Sym. 
D3. (e Flip) Dual = (e Dual) Flip Sym. 
D4. (e Lnext) Dual = (e Dual) Onext-‘. 

Equation D4 states that moving counterclockwise around the left face of e in 
one subdivision is the same as moving clockwise around the origin of (e Dual) in 
the other subdivision. To see why, note that the edges on the boundary of the 
face F = e Left, in counterclockwise order, are 

(e Lnext, e Lnext*, . . . , e Lnextm = e) 

for some m 1 1. This path maps through Dual to the sequence 

((e Dual) One&-‘, (e Dual) Onext-*, . . . , (e Dual) Onextmm = e Dual) 

of all edges coming out of the vertex u = (e Dual) Org of S*, in clockwise order 
around u. 

We can therefore extend Dual to vertices and faces of the two subdivisions by 
defining (e Left) Dual = (e Dual) Org and (e Org) Dual = (e Dual) Left. Equations 
D2 and D3 imply that any two edges that differ only in orientation and direction 
will be mapped to two versions of the same undirected edge. Combining this with 
the preceding argument we conclude that Dual establishes a correspondence 
between Z’Y and Z?L~*, between YP and 99*, and between 9-9 and YP*, 
such that incident elements of S correspond to incident elements of S*, and vice 
versa. It follows that two vertices of one subdivision are connected by an edge 
whenever (and as many times as) the corresponding faces of the other are 
incident to a common edge. So, in the particular case when S and S* are 
subdivisions of the sphere, the graphs of S and S* are duals of each other in the 
sense of graph theory. 

Figure 4 shows a subdivision of the extended plane (solid lines) superimposed 
on its dual (dotted lines). Note that the two subdivisions of Figure 4 have the 
property that each undirected edge of one meets (and crosses) only the corre- 
sponding dual edge of the other, and that each vertex of one is in the correspond- 
ing dual face of the other. When this happens, we say that S and S* are strict 
duals of each other. In that case, the dual of an oriented and directed edge e is 
the edge of the dual subdivision that crosses e from left to right, but taken with 
orientation opposite to that of e. That is, the dual subdivision should be looked 
from the other side of the manifold, or the manifold should be turned inside out. 
This reflects the correspondence between counterclockwise traversal of e Left to 
clockwise traversal of (e Dual) Org. 
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Fig. 4. A subdivision of the 
extended plane (solid lines) 
and a strict dual (dashed 
lines). 

This implicit “flipping” of the manifold is unavoidable if S and S* are 
superimposed as strict duals and we insist that Dual be its own inverse. It has 
the serious drawback of making the calculus of the edge functions much less 
intuitive. It is therefore preferable to relate the two dual subdivisions by means 
of the function 

e Rot = e Flip Dual = e Dual Flip Sym, 

which maps ZY to 82’ without this implicit “flipping.” The edge e Rot is called 
the rotated version of e; it is the dual of e, directed from e Right to e Left and 
oriented so that moving counterclockwise around the right face of e corresponds 
to moving counterclockwise around the origin of e Rot. If the two subdivisions 
are superimposed as strict duals, as in Figure 4, then we may say that e Rot is e 
“rotated 90” counterclockwise” around the crossing point. In fact, the only reason 
for not defining duality in terms of Rot (rather than Dual) is that it falls short 
of being its own inverse: (e Rot) Rot gives e Sym instead of e. 

2.3 Properties of Edge Functions 

The functions Flip, Rot, and Onext satisfy the following properties: 

El. e Rot4 = e. 
E2. e Rot Onext Rot Onext = e. 
E3. e Rot2 # e. 
E4. e E 8s iff e Rot E 8S*. 
E5. e E 8s iff e Onext E BS. 
Fl. e Flip2 = e. 
F2. e Flip Onext Flip Onext = e. 
F3. e Flip Onext” # e for any n. 
F4. e Flip Rot Flip Rot = e. 
F5. e E 8s iff e Flip E ZS. 
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Fig. 5. The edge functions. 

c-3 Ned 

A number of useful properties can be deduced from these, as for example 

e Flip-l = e Flip, 
e Sym = e Rot2, 

e Rot-’ = e Rot3 = e Flip Rot Flip, (1) 
e Dual = e Flip Rot, 

e One&-’ = e Rot Onext Rot = e Flip Onext Flip, 

and so forth. For added convenience in talking about subdivisions, we introduce 
some derived functions. By analogy with e Lnext and e Onext, for a given e we 
define the next edge with same right face, e Rnext, and with same destination, e 
Dnext, as the first edges that we encounter when moving counterclockwise from 
e around e Right and e Dest, respectively. These functions satisfy also the 
following equations: 

e Lnext = e Rot-’ Onext Rot, 
e Rnext = e Rot Onext Rot-‘, (2) 
e Dnext = e Sym Onext Sym. 

The orientation and direction of these edges is defined so that e Lnext Left = 
e Left, e Rnext Right = e Right, and e Dnext Dest = e Dest. Note that e Rnext 
Dest = e Org, rather than vice versa. By moving clockwise around a fixed endpoint 
or face, we get the inverse functions, defined by 

e Oprev = e Onext-l = e Rot Onext Rot, 
e Lprev = e Lnext-’ = e Onext Sym, 
e Rprev = e Rnext-l = e Sym Onext, 
e Dprev = e Dnext-’ = e Rot-l Onext Rot-‘. 

(3) 

It is important to notice that every function defined so far (except Flip) can 
be expressed as the composition of a constant number of Rot and Onext opera- 
tions, independently of the size or complexity of the subdivision. Figure 5 
illustrates these various functions. 
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3. EDGE ALGEBRAS 

In this section we develop the notion of an edge algebra, a finite combinatorial 
object that we prove accurately captures all the topological properties of a 
subdivision. Edge algebras will be the basis of our data structure for representing 
subdivisions. 

Definition 3.1. An edge algebra is an abstract algebra (E, E*, Onext, Rot, Flip) 
where E and E* are arbitrary finite sets and Onext, Rot, and Flip are functions 
on E and E* satisfying properties El-E5 and Fl-F5. 

An edge algebra represents simultaneously a pair of dual subdivisions; as we 
remarked before, this allows us to express all our edge functions in terms of only 
three basic primitives, Flip, Rot, and Onext. Other advantages of this primal/dual 
representation will be encountered later on, and we will see that they are obtained 
at a negligible cost in storage and time. 

Axioms El-F5 imply that Rot is a bijection from E to E* and from E* to E. 
Also, Flip and Onext each define permutations acting on E and E* separately. 
We define eOrg in an edge algebra as the orbit of e under Onext, that is, the 
cyclic sequence of edges 

( . . . ) e, eOnext, e Onext’, . . . , eOnext-‘, e, . . . ). 

Note that e FlipOrg is the sequence obtained by Flipping each element of eOrg 
and listing them in reverse order, that is, 

eFlipOrg=(..., e Flip, e Flip Onext, e Flip One&, . . . , 
e Flip Onext-‘, e . . .) 

= . . . . ( e Flip, e Onext-l Flip, e Onext-’ Flip, . . . , 
e Onext Flip, e Flip, . . . ) . 

Similarly, we define e Left = e Rot-‘Org, eRight = e Rot Org, and eDest = 
e Sym Org. We also take eqs. (2) as the definition of the functions Lnext, Rnext, 
and Dnext for arbitrary edge algebras. From the axioms it follows that Onext and 
these derived functions have inverses, which we denote by Lprev, Rprev, Dprev, 
and Oprev and which can be shown to satisfy eqs. (3). 

3.1 Completions 

We now proceed to show that the topology of a subdivision is completely 
determined by its edge algebra, and vice versa. To prove this thesis, we will show 
that a general subdivision S can be fully characterized by the graph of a standard 
refinement of S, which in turn is closely related to the edge algebra of S. The 
concepts and theorems developed in the rest of Section 3 are essential for showing 
the consistency and completeness of our proposed data structure but are not used 
in the rest of the paper. The reader whose interest is mostly practical may skip 
to Section 4. 

Definition 3.2 Let S and Z be subdivisions of a manifold M. We say that Z is 
a completion of S if it is a refinement of S obtained by adding one vertex c, on 
each edge e and one vertex VF in each face F and then connecting VF by new edges 
to every vertex (old or new) on the boundary of F. 
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Fig. 6. A completion of the 
extended plane showing pri- 
mal links (solid), dual links 
(dashed), and skew links (dot- 
ted). 

The vertices of z1 are called primal, crossing, or dual, depenamg on whether they 
lie on vertices, edges, or faces of S; they are denoted by TX, GY?, and Y9, 
respectively. Every edge of S is split by its crossing vertex in two primal links of 
Z; the new edges added in each face are called dual links if they connect a dual 
vertex to a crossing point and skew links if they connect a dual vertex to a primal 
one. These links are denoted 5?Z, P*Z, and XZ, in that order. Figure 6 shows 
a completion of a subdivision of the extended plane. 

Definition 3.2 must be understood appropriately in the case of a face F whose 
bounding path irF is not simple. If KF passes k times through a vertex or crossing 
point p, then p is to be connected to UF by exactly k new links, and their order 
around VF should be the same as the order of the crossings on HF. To describe 
this process precisely, let 4~ be any continuous function from B; to the closure 
of F that establishes condition S4. Let ?r = (ul, (Ye, u2, (Ye, . . . , u,, (Y”, u,,+~ = ul) 
be the path in the circle S1 that is mapped to 7F.P by (PF; in each arc ai there is a 
point ci that is mapped to the crossing vertex of the edge SdF(ai). Take (PF((O, 0)) 
to be the dual vertex vi; connect in B; the origin (0, 0) to each ui and to each ci 
by a straight line segment, and let the images of these segments under PF be 
respectively the dual and skew links for the face F. Note that the restriction of 
faces to simple disks is essential for a simple and unambiguous definition of the 
completion. 

From the definition, it is clear that every subdivision has at least one refinement 
which is a completion. Every face of Z consists of three vertices and three links, 
one of each kind, and therefore all distinct. An important consequence is that 
the closure of each face is homeomorphic to (not just the continuous image of) 
the sector of B; bounded by two rays and an arc Uici or ciUi+l, which in turn is 
homeomorphic to a disk. In fact, the closure of a face of Z is homeomorphic to 
any planar triangle, with each corner mapping to a vertex and each side to a link. 
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For this reason, we will refer to the faces of Z: as triangles and denote them by 
9-Z. 

It is also apparent from the definition that every edge of Z has two distinct 
endpoints and is incident to exactly two triangles (which may or may not lie in 
the same face of S). A completion may have more than one link connecting any 
given pair of vertices, but it has no loops. Every crossing vertex c, is incident to 
exactly four links, two primal and two dual, and to four distinct triangles. The 
vertex ce and these eight elements constitute a disk of M that contains the edge 
e. It can be seen also that, given a primal link 1 and a dual link I* that are incident 
to the same (crossing) vertex, there is exactly one triangle that is incident to 
both 1 and P. 

We consider the distinction among primal, dual, and crossing vertices to be an 
integral part of the description of 2, so S is uniquely determined by it. We call S 
the primal subdivision of Z, denoted by SZ. In the same spirit, we say that two 
completions Z1 and .& are equivalent only if there is a homeomorphism that 
maps each element of Zi to an element of &, takes Y& to Y+&, and takes Y*Zi 
to Y*&. Such an homeomorphism will clearly take %Zi, Y&, 2*X1, and X& 
to the corresponding components of Z2. 

3.2 Existence of Duals and Algebras 

As it was defined, the edge algebra of a subdivision S seems to depend not only 
on S itself, but also on the choice of a dual subdivision S*, and of the function 
Dual(or Rot) that connects the two. The first part of our theoretical justification 
is the proof that such S* and Dual always exist and that the edge functions of S 
and S* satisfy axioms El-E5 and Fl-F5. 

Let L: be a completion on a manifold M. For every crossing c, of 2, define the 
dual of the (unoriented and undirected) edge e of SE as the set e* = l1 U (c,] U 
12, where 1i, l2 are the two dual links incident to c,. Denote by 8*2 the set of all 
such objects. Define the dual F: of a primal vertex v as the union of (v) and all 
elements of Z incident to v. Let F*Z be the set of all those objects. 

LEMMA 3.1. The triplet S*Z = (Y?Z, Z??Z, 92) is a subdivision of M. 

PROOF. Besides v itself, the dual FZ of a vertex v contains only triangles, 
primal links, and skew links incident to v. Each link of F: is incident to exactly 
two distinct triangles of F:, and conversely each triangle is incident to two 
distinct links of F:, one primal and one skew. Therefore, these links and triangles 
can be arranged in one or more sequences (without repetitions) ( dl, tl, 12, t2, . . . , 
L, t,, lntl = Zl), where the ti are triangles, the li are alternately primal and skew 
links, and each ti is incident to li and to Zi+l. Each such sequence plus v is a disk 
containing v; since M is a manifold, there can be only one such disk. 

We conclude that F,* is a disk of M. Furthermore, it is clear that we can 
construct a continuous function 4 from the closed ball onto the closure F: that 
establishes condition S4. Since a triangle or primal link cannot be incident to 
two distinct primal vertices, the elements of F*Z are pairwise disjoint. Clearly 
the elements of g*Z are lines of M that are pairwise disjoint and also disjoint 
from the members of 9*Z and Y*Z. Therefore, S*Z is a subdivision of M. Cl 
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Definition 3.3. Let 2 be a completion. Let Rot be the function from 8SZ U 
&S*Z into itself defined as follows. For every edge e E &SZ;, let eRot be the dual 
edge e* of S*& directed so as to cross e from right to left and oriented so as to 
agree with the orientation of e at the crossing point. Similarly, for each element 
e E &!PZ let e Rot be the edge of SZ of which e is the dual, directed and oriented 
according to the same rules with respect to e. The standard edge algebra of 2; is 
by definition AZ = (ZSZ, 2%S*Z, Onent, Rot, Flip). 

THEOREM 3.2. The standard edge algebra AZ of any completion Z satisfies 
axioms El-E5 and FI-F5, and S*Z is a (strict) dual of SE. 

PROOF. Each oriented and directed edge e of 8SZ (or ZS*Z) can be repre- 
sented unambiguously by a pair of links (e,, e,), where e, is the origin half of e, 
and e, is the dual (or primal) link of L: that is incident to the crossing vertex of 
e and lies to its right. Conversely, any pair (x, y) of adjacent links (one primal 
and one dual) corresponds to a unique edge of ZSZ or Z’S% 

For any link pair (x, y) of this kind there is a unique triangle T of Z incident 
to x and y, and a unique triangle T’ sharing a skew link with T. Let us call the 
opposite of the pair (x, y) the link pair (r, s) such that r and s are on the boundary 
of T’ and are of the same sort (primal/dual) as x and y, respectively. Let x’ 
denote the link of the same sort (primal/dual) as x and incident to the same 
crossing. 

According to this notation, we have (a, b)FZip = (a, b’), (a, b)Rot = (b, a’), 
and (a, b) Onext = (x, y), where (x, y) is opposite to (a, b’). Now it is easy to 
check that the algebra AZ satisfies El-E5 and Fl-F5. For example, let (x, y) be 
the opposite of (b, a); then (a, b) is the opposite of (y, x), and we have 

(a, b) Rot Onext Rot Onext = (b, a’ ) Onext Rot Onext 
= (x, y) Rot Onext 
= (y, x’) Onext 
= (a, b), 

and so forth. The function e Dual = eFlip Rot satisfies Dl-D4, since these 
conditions can be proved from El-E5 and Fl-F5. We conclude that S2 and S*Z 
are (strict) duals of each other. 0 

For any subdivision S there is a completion 22 such that S = S2, and therefore 
a dual S*Z and a valid edge algebra A I? that describes S (and S*Z). 

3.3 Equivalence and lsomorphism 

The second part of our argument shows that the edge algebra of a subdivision is 
determined up to isomorphism, and conversely the subdivision of an edge algebra 
is unique up to equivalence. 

THEOREM 3.3. Let Ai(i = 1,2) be an edge algebra for apair of dual subdivisions 
Si and Sf . If S1 is equivalent to Ss, then A, and A2 are isomorphic algebras. 

PROOF. Let Ai = (8Si, ES:, Onexti, Rot:, Flipi), and let h be the homeomorph- 
ism between the manifolds of S, and Ss that establishes SI - Sp. An orientation 
or direction for an element of S1 determines via h a unique orientation or 
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direction for the corresponding element in Sz and therefore defines also a one- 
to-one correspondence 17 between 8S1 and 2?S2. From the definition of Onext we 
can conclude that v(e One&) = q(e) One& for all e E 8S1; the same holds for 
Sym and Flip. 

Let us now define the function C; from 8S, U t2YSf to Z?& U %S’$ as 

4(e) = i;~:~ot;l)Rot, 
if e E ES1, 
if e E 8s:. 

Clearly C; is one-to-one, for Roti is one-to-one from 8Si to Z?St. 
We prove that 4(eRotl) = t(e) Rot:! as follows. If e E 8S1, we have eRotl E 

c%s;, so 

[(eRotl) = v(eRotl Rot;‘) Rot2 = q(e) Rot2 = t(e) Rot*. 

If e E &5’:, then eRotl E 8S1, and so 

[(eRotl) = v(eRotJ = v(e Rot;’ Syml) 
= q(e Rot;‘) Symz = q(e Rot;‘) Rot2 Rot2 
= t(e) RotZ. 

Let us now show that [(e Onextl) = C;(e) One&. If e E 2~9, the proof is trivial. 
If e E Z!ST, then eOnextl E as:, and 

[(e Onexh) = v(e Oned Rot;‘) Rot2 
= q(e Rot;’ 0next;‘Rot;’ Rot;‘) Rot2 
= q(e Rot;’ Onext;l Syml) Rot2 
= q(e Rot;‘) Onext;’ Symz Rot2 (since e Rot;’ E 8s) 
= q(e Rot;‘) Rot2 One& 
= t(e) One&. 

The proof for [(e Flipl) = t(e) Flip2 is entirely similar, using e Flip1 = e Rot;’ 
Flip, Rotl. Cl 

We say that two completions are similar if there is an isomorphism of the 
graph of X1 to that of Zz that takes primal vertices to primal vertices and dual 
vertices to dual vertices. 

LEMMA 3.4. Let & and 2& be two completions. If their edge algebras AZ1 and 
A& are isomorphic algebras, then Z1 and Zz are similar. 

PROOF. For any completion Z, we establish one-to-one mappings between 
certain subsets of oriented and directed edges of the algebra AZ and the primal 
links, dual links, and vertices of 2 in the following way. To each primal (or dual) 
link 1 of Z there corresponds a unique pair of primal (or dual) elements of AZ of 
the form {e, eFlipJ; these elements are the directed and oriented edges of SZ (or 
S*Z) of which I is the “origin” half. To each primal vertex of Z there corresponds 
an orbit of AZ under Onext and Flip (i.e., a set of the form e Org U e Flip Org for 
some edge e); similarly, to each crossing of Zi there corresponds an orbit of AZ 
under Rot and Flip. These mappings are one-to-one, and a primal or dual link of 
L: is incident to a vertex if and only if the corresponding orbits in AZ intersect. 
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We also associate each skew link of Z to a set of the form 

{e, e Flip, e Rot-‘, e Rot-l Flip, f, f Flip, f Rot, f Rot Flip], 

where f = eOnext, in the following way. There are exactly two triangles of Z 
incident to s, each incident also to a primal and to a dual link. We take s’ to be 
the union of the four subsets of AZ: that correspond to those four links. It is easy 
to check that these subsets have the form above, and that s is incident to a primal 
or dual vertex of 2: if and only if an element of s’ intersects the orbit corresponding 
to that vertex. Conversely, every set of the form above determines a unique skew 
link by this rule. 

The isomorphism between AZ, and A& maps those representative subsets of 
AZ, to subsets of AZ2 having the same form, and therefore it establishes a one- 
to-one correspondence [ between the primal (or dual) links and vertices of 2, 
and those of &. Since intersecting subsets are mapped to intersecting subsets, [ 
preserves incidence. We conclude that Zi and Zz are similar. 0 

LEMMA 3.5. If two completions & and & are similar, then they are equivalent. 

PROOF. Let [ be the isomorphism between the graphs of Z1 and Zz that 
establishes their similarity. We will construct from it an homeomorphism 77 
between the manifolds of the two completions that establishes their equivalence. 
First, we define 17 on the vertices of Zi as being the same as 4. For every link r of 
2, with endpoints u and v, we can always find an homeomorphism vr from the 
closure of r to that of E(r) that takes u to t(u) and v to C;(v); we define q(p) = 
v,(p) for all points p of r. Clearly, 11 is an homeomorphism of the graph of Z1 
onto that of &. 

Since any pair of adjacent links of which one is primal and the other dual 
determines a unique triangle, the similarity of the two completions gives also a 
one-to-one correspondence between their triangles that preserves incidence. For 
each pair of corresponding triangles T and T’ there is a homeomorphism VT from 
the closure of T onto the closure of T’ that agrees with 7 on the boundary of T; 
this follows readily from the fact that both closures are homeomorphic to closed 
disks. So v and all VT constitute a finite collection of continuous maps of closed 
subsets of M into M’, with the property that any two of them agree in the 
intersection of their domains. Their union q* is therefore a continuous map from 
M into M’. Clearly, v* is one-to-one and onto, so it is an homeomorphism. By 
construction, it maps elements of Zi to elements of &. •i 

LEMMA 3.6. If two completions Z1 and & are equivalent, then so are SZ, and 
S&. 

PROOF. Each face of SZi is the union of a dual vertex and all elements of Zi 
that are incident to it. Each edge of SZi is the union of a crossing and all (two) 
primal links of Zi incident to it. The homeomorphism 11 that establishes the 
equivalence of the two completions preserves incidence and the primal/dual 
character of links and vertices, so it maps elements of SZ, to SZZ, establishing 
their equivalence. 0 
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THEOREM 3.7. Let A, and A2 be edge algebras for two subdivisions S1 and Sz. 
If A, and AZ are isomorphic, then S1 and Sp are equivalent. 

PROOF. Let & and & be any two completions of S1 and Sz. By Theorem 3.3 
we have A, - AZ, and A2 - A&, and therefore AZ1 - A&. Then by Lemmas 
3.4 and 3.5, the subdivisions Z1 and & are equivalent; by Lemma 3.6 the same is 
true of S, and Sz. q 

Therefore, the topological structure of a subdivision is completely and uniquely 
characterized by its edge algebra. An analogous theorem seems to have been 
discovered independently by Damphousse [5]. Theorems 3.3 and 3.7 also imply 
that all completions of a subdivision are equivalent and that two subdivisions are 
equivalent if and only if their duals are equivalent. Therefore, the dual of a simple 
subdivision is unique up to equivalence. 

3.4 Realizability of Algebras 

To conclude our theoretical justification, we will show that every edge algebra 
corresponds to a subdivision of some manifold. This fact is of great practical 
importance, for it guarantees that any modification to the data structure that 
preserves axioms El-E5 and Fl-F5 corresponds to a valid operation on mani- 
folds. 

THEOREM 3.8. Every edge algebra can be realized by some subdivision. 

PROOF. Let A = (E, E*, Flip, Rot, Onext) be an edge algebra. We will prove 
this by constructing a completion Z such that AZ is isomorphic to A. The 
manifold of I; is constructed by taking a collection of disjoint closed triangles 
(that will become the triangles of a completion) and “pasting” their edges together 
as specified by A. 

Let then U be the set of all unoriented edges of A, that is, the set of all 
unordered pairs (e, e Flip ), where e E E. Similarly, let U* denote the unoriented 
edges of E*. We define a corner of the algebra as being a pair of unoriented edges 
of the form ( (e, e Flip), (e Rot, e Rot Flip)), where e is an edge. Notice that there 
are ] E ] distinct corners in the algebra and that every unoriented edge belongs 
to exactly two corners. Let 7 be a collection of ] E ] disjoint closed triangles on 
the plane, each triangle T, associated to a unique and distinct corner r of the 
algebra. Label the three vertices of each triangle with the symbols V, E, F. 

For each unoriented edge u E U, take the two corners r and s to which u 
belongs, and identify homeomorphically the VE sides of the two triangles T, and 
T, (matching V with V and E with E). That common side minus its two endpoints 
is the primal link corresponding to u. In the same manner, for every u* E U* 
take the two corners r and s containing u* and identify the FE sides of T, and 
T,; the common side will become the dual link corresponding to u*. 

Finally, for every corner 

r = ((e, eFlip), (eRot, eRotFlipj), 

there is exactly one opposite corner, 

s = IIf, fFW, ifRot, fRotFh41, 
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such that f = e Rot Onext and e = f Rot Onext. Identify the VF sides of T, and T,. 
Call the seam segment a vertex-face link. 

Clearly any point interior to a triangle has a neighborhood homeomorphic to 
a disk. Every side of every triangle is joined with exactly one side of a distinct, 
triangle, so a point on a link also has a disklike neighborhood. Now consider a 
vertex v of some triangle and all other points that have been identified with it; 
they have all the same label by construction. An E type vertex u belongs to 
exactly four triangles, corresponding to the corners 

((eRotk, eRotkFlipj, (eRotkRot, eRotkRotFlipj} 

for 0 5 k < 4 and some edge e. Each triangle is pasted to the next one by a primal 
or dual link incident at v, so as to form a quadrilateral with center v. A V- or F- 
type vertex v is common to 2n triangles (for some n 2 1) corresponding to the 
corners 

((ek, ekFlipj, (QROt, e,RotFlip}] 

and 

{{ekFlip, ek), (ekFlip Rot, ek Flip Rot Flip!}, 

where ek = eOnextk for some edge e and 0 5 k < n. These triangles are pasted 
alternately by vertex-face links and primal or dual links, so as to form a 2n- 
sided polygon around v. In all cases, the vertex v has a disklike neighborhood. 

We conclude that the triangles 7 pasted as above constitute a manifold. The 
links, the triangle interiors, and the identified vertices obviously define a com- 
pletion Z of this manifold, and A L: is isomorphic to A. Cl 

4. THE QUAD-EDGE DATA STRUCTURE 

We represent a subdivision S (and simultaneously a dual subdivision S*) by 
means of the quad-edge data structure, which is a natural computer implemen- 
tation of the corresponding edge algebra. The edges of the algebra can be 
partitioned in groups of eight: each group consists of the four oriented and 
directed versions of an undirected edge of S plus the four versions of its dual 
edge. The group containing a particular edge e is therefore the orbit of e under 
the subalgebra generated by Rot and Flip. To build the data structure, we select 
arbitrarily a canonical representative in each group, Then any edge e can be 
written as eORot’Flipf, where r E (0, 1, 2, 3), f E (0, 11, and e. is the canonical 
representative of the group to which e belongs. 

The group of edges containing e is represented in the data structure by one 
edge record e, divided into four parts e [0] through e [3]. Part e [r] corresponds 
to the edge e. Rot’. See Figure 7a. A generic edge e = e. Rot’Flipf is represented 
by the triplet (e r, f ), called an edge reference. We may think of this triplet as a 
pointer to the “quarter-record” e[r] plus a bit f that tells whether we should look 
at it from “above” or from “below.” 

Each part e [r] of an edge record contains two fields, Data and Next. The 
Data field is used to hold geometrical and other nontopological information 
about the edge e. Rot’. This field neither affects nor is affected by the topological 
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Fig. 7. (a) Edge record show- 
ing Next links. (b) A subdivi- 
sion of the sphere. (c) The data 
structure for the subdivision 
lb). 

operations that we will describe, so its contents and format are entirely dependent 
on the application. 

The Next field of e [r] contains a reference to the edge e0 Rot’Onext. Given an 
arbitrary edge reference (e, r, f ), the three basic edge functions Rot, Flip, and 
Onent are given by the formulas 

(e, r, f) Rot = (e, r- + 1 + 2f, f), 
(e, r, f 1 Flip = (e, r, f + U, 

(e, r, f)Onext = (e[r + f].Next) RotfFlipf, 
(4) 

where the r and f components are computed modulo 4 and modulo 2, respectively. 
In the first expression above, note that r + 1 + 2f is congruent modulo 4 to 
r + 1 if f = 0, and r - 1 if f = 1; this corresponds to saying that rotating e 90” 
counterclockwise, as seen from one side of the manifold, is the same as rotating 
it 90” clockwise as seen from the other side. Similarly, the third expression 
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Fig.& An Onext ring with 
canonical representatives on 
both sides of the manifold. 

implies that 

and 

(e,r, 0)Onert = e[r + f].Next 

(e, r, 1)Onext = (e[r + l].Next)Rot&I 
= (e, r, 0) Rot Onext Rot Flip 
= (e, r, 0) Onext-‘Flip, 

that is, moving counterclockwise around a vertex is the same as moving clockwise 
on the other side of the manifold. From these formulas it follows also that 

(e, r, f)Sym = (e, r + 2, f), 
(e, r, f) Rot-’ = (e, r + 3 + 2f, f), 
(e, r, f)Oprev = (e[r + 1 - f).Next) Rot’-‘Flip! 

and so forth. 
Figure 7 illustrates a portion of a subdivision and its quad-edge data structure. 

We may think of each record as belonging to four circular lists, corresponding to 
the two vertices and two faces incident to the edge. Note however that to traverse 
those lists we have to use the Onext function, not just the Next pointers. 
Consider for example the situation depicted in Figure 8, where the canonical 
representative of edge a has orientation opposite to that of the others. 

The quad-edge data structure contains no separate records for vertice or faces; 
a vertex is implicitly defined as a ring of edges, and the standard way to refer to 
it is to specify one of its outgoing edges. This has the added advantage of 
specifying a reference point on its edge ring, which is frequently necessary when 
the vertex is used as a parameter to topological operations. Similarly, the standard 
way of referring to a connected component of the edge structure is by giving one 
of its directed edges. In this way, we are also specifying one of the two dual 
subdivisions and a “starting place” and “starting direction” on it. Therefore a 
subdivision referred to by the edge e can be “instantaneously” transformed into 
its dual by taking e Rot. 
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4.1 Simplifications for Orientable Manifolds 

In many applications, including the Voronoi and Delaunay algorithms that we 
are going to discuss, all manifolds to be handled are orientable. This means we 
can assign a specific orientation to each edge, vertex, and face of the subdivision 
so that any two incident elements have compatible orientations. This happens if 
and only if the elements of the edge algebra can be partitioned in two sets, each 
closed under Rot and Onext, and each the image of the other under Flip. Then 
we don’t need the f bit in edge references, and the formulas simplify to 

(e, r) Rot = (e, r + l), 
(e, r)Onext = e[r].Next, 

(e, r)Sym = (e, r + 2), 
(e, r) Rot-’ = (e, r + 3), 
(e, r) Opreu = (e[r + l).Next) Rot, 

and so forth. 
We can represent a simple subdivision (without its dual) by a “simple edge 

algebra” that has only Onext and Sym as the primitive operators. Then we can 
get Dnext, Lprev, and Rprev in constant time, but not their inverses. However, 
this may be adequate for some applications. We save two pointers (and perhaps 
two data fields) in each edge record. Note that this optimization cannot be used 
with Flip. 

4.2 Additional Comments on the Data Structure 

The storage space required by the quad-edge data structure, including the Data 
fields, is ] ZS ] x (8 record pointers + 12 bits). The simplification for orientable 
manifolds reduces those 12 bits to 8. This compares favorably with the winged- 
edge representation [l] and with the Muller-Preparata variant [16]. Indeed, all 
three representations use essentially the same pointers: each edge is connected 
to the four “immediately adjacent” ones (One&, Oprev, Dnext, Dprev), and the 
four Data fields of our structure may be seen as corresponding to the vertex and 
face links of theirs. 

Compared with the two versions mentioned above, the quad-edge data structure 
has the advantage of allowing uniform access to the dual and mirror-image 
subdivisions. As we shall see, this capability allows us to cut in half the number 
of primitive and derived operations, since these usually come in pairs whose 
members are “dual” of each other. As an illustration of the flexibility of the quad- 
edge structure, consider the problem of constructing a diagram which is a cube 
joined to an octahedron: we can construct two cubes (calling twice the same 
procedure) and join one to the dual of the other. 

The systematic enumeration of all edges in a (connected) subdivision is a 
straightforward programming exercise, given an auxiliary stack of size O( ] J&S’ ( ) 
and a Boolean mark bit on each directed edge [12]. With a few more bits per 
edge, we can do away with the stack entirely [6]. A slight modification of those 
algorithms can be used to enumerate the vertices of the subdivision, in the sense 
of visiting exactly one edge out of every vertex. If we take the dual subdivision, 
we get an enumeration of the faces. In all cases the running time is linear in the 
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number of edges. Recall also that from Euler’s relation it follows that the number 
of vertices, edges, and faces of a subdivision are linearly related. 

5. BASIC TOPOLOGICAL OPERATORS 

Perhaps the main advantage of the quad-edge data structure is that the construc- 
tion and modification of arbitrary diagrams can be effected by as few as two basic 
topological operators, in contrast to the half-dozen or more required by the 
previous versions [3, 151. 

The first operator is denoted by e t MakeEdge[ 1. It takes no parameters, 
and returns an edge e of a newly created data structure representing a subdivision 
of the sphere (see Figure 9). Apart from orientation and direction, e will be the 
only edge of the subdivision and will not be a loop; we have e Org # e Dest, eLeft 
= e Right, e Lnext = e Rnext = e Sym, and e Onext = e Oprev = e. To construct a 
loop, we may use et MakeEdge[ ].Rot; then we will have e&g = eDe.st, eLeft 
# e Right, e Lnext = e Rnext = e, and e Onext = e Oprev = e Sym. 

The second operator is denoted by Splice[a, b] and takes as parameters two 
edges a and b, returning no value. This operation affects the two edge rings a Org 
and b Org and, independently, the two edge rings a Left and b Left. In each case, 

(a) if the two rings are distinct, Splice will combine them into one; 
(b) if the two are exactly the same ring, Splice will break it in two separate 

pieces; 
(c) if the two are the same ring taken with opposite orientations, Splice will 

Flip (and reverse the order) of a segment of that ring. 

The parameters a and b determine the place where the edge rings will be cut 
and joined. For the rings a Org and b Org, the cuts will occur immediately after a 
and b (in counterclockwise order); for the rings aLeft and bLeft, the cut will 
occur immediately before a Rot and b Rot. Figure 10 illustrates this process for 
one of the simplest cases, when a and b have the same origin and distinct left 
faces. In this case Spl ice[a, b] splits the common origin of a and b in two 
separate vertices and joins their left faces. If the origins are distinct and the left 
faces are the same, the effect will be precisely the opposite: the vertices are joined 
and the left faces are split. Indeed, Splice is its own inverse: if we perform 
Spl ice[a, b] twice in a row we Will get back the same subdivision. 

Figure 11 illustrates the effect of Splice[a, b] in the case where a and b have 
distinct left faces and distinct origins. In this case, Splice will either join two 
components in a single one or add an extra “handle” to the manifold, depending 
on whether a and b are in the same component or not. Figure 11 also illustrates 
the case when both left faces and origins are distinct. 

In the edge algebra, the Org and Left rings of an edge e are the orbits under 
Onext of e and e Onext Rot, respectively. The effect of Splice can be described 
as the construction of a new edge algebra A’ = (E, E*, Rot, Flip) from an existing 
algebra A = (E, E*, Onext, Rot, Flip), where One&’ is obtained from Onext by 
redefining some of its values. The modifications needed to obtain the effect 
described above are actually quite simple. If we let CY = aOnext Rot and p = 
bOnext Rot, basically all we have to do is to interchange the values of aOnext 
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Fig. 9. The result of MakeEdge. 

Fig. 10. The effect of spl ice: Trading a vertex for a face. (a) a Org = b Org, a Left 
# b Left. (b) a Org # b Org, a Left = b Left. 

F’g.ll The effect of Splice 

1 . 
Changing the connectivity of the 
manifold. (a) o Org # b Org, a Left 
# b Left. (b) a Org = b Org, a Left 
= b Left. 
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(5) 

with bOnext and (Y Onext with POnext. The apparently complex behavior of 
Splice now can be recognized as the familiar effect of interchanging the next 
links of two circular list nodes [12]. 

As one may well expect, to preserve the validity of the axioms Fl-F5 and 
El-E5 we may have to make some additional changes to the Onext function. For 
example, whenever we redefine e Onext ’ to be some edge f, we must also redefine 
eFlip (Onext ‘)-I to be fFlip, or, equivalently, f Flip One& to be e Flip. So, 
Splice[a, b] must perform at least the following changes in the function Onext: 

a Onext ’ = b Onext 
b Onext ’ = a Onexti 

a Onext ’ = /3 One&, 
0 Onext ’ = ff Onext ; 

(b Onext Flip) Onext ’ = a Flip, 
(a Onext Flip) Onext ’ = b Flip; 

(@ Onext Flip) Onext ’ = CY Flip, 
(CY Onext Flip) Onext ’ = p Flip. 

Note that these equations reduce to Onext ’ = Onext if b = a. Since a Onext ’ = 
b Onext, to satisfy axiom E5 we must have a E E iff bOnset E E, which is 
equivalent to a E E iff b E E. We will take this as a precondition for the validity 
of ~plice[a, b]: the effect of this operation is not defined if a is a primal edge 
and b is dual, or vice-versa.’ Another problematic situation is when 
b = a Onext Flip: according to eqs. (5) we would have a Onext ’ = a Onext Flip Onext 
= a Flip, which contradicts F3. In this particular case, it is more convenient to 
define the effect of Splice[a, b] as being null, that is, Onext’ = Onext. It turns 
out that with only these two exceptions, the equations above always define a 
valid edge algebra. 

THEOREM 5.1. If A is an edge algebra, a and b are both primal or both dual, 
and b # a Onext Flip, then the algebra A ’ obtained by performing the operation 
~plice[a, b] on A is also an edge algebra. 

PROOF. Since splice does not affect Flip and Rot, all axioms except F2, F3, 
E2, and E5 are automatically satisfied by A’. Since a and b are both primal or 
both dual, the same is true of CY and p, aOnext Flip and b OnextFlip, and 
CY Onext Flip and p Onext Flip. Thus the assignments corresponding to the opera- 
tion Splice[a, b] will not destroy E5. 

Now let us show that E4 holds in A’, that is, e Rot One&’ Rot One&’ = e. Let 
X be the set of edges whose Onext has been changed, that is, 

a, 
x= ; 

kext Flip, bbnext Flip, * 
(Y Onext Flip, @ Onext Flip 

’ Note that if (I and b lie in distinct subalgebras A. and Ab of A, then the union of A, and the dual of 
A* is also a ‘valid edge algebra. So, in practice we can always perform Splice [a, b] when a and b lie 
in disjoint data structures. 
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First, if e Rot 4 X, then e Rot Onex Rot & XOnext Rot = X, and SO 

e Rot Onext’ Rot Onext’ = e Rot Onext Rot Onext’ 
= (e Rot Onext Rot) Onext 
= e. 

Now assume e Rot E X. Notice that ~plice[a, b] does exactly the same thing as 
Splice[b, a], splice[a, p], and splice[aOnextFlip, bone&Flip], SO without 
loss of generality we can assume eRot = a. Then 

e Rot Onext’ Rot Onext’ = a One& Rot Onext ’ = b Onext Rot Onext’ 
= @ Onext ’ = cy Onext 
= a Onext Rot Onext = e Rot Onent Rot Onext 
= e. 

In a similar way we can prove F2. To conclude, let US prove F3: eFlip 
(Onext’)” # e for all n. In other words, we have to show that Flip always takes 
an Onext’ orbit to a different Onext’ orbit. It suffices to show this for the orbits 
of elements of X; in fact the symmetry of Splice implies it is sufficient to show 
this for the orbit of a. 

Let aOrg = (~21~22 ... a,-ia, (= a)) be the orbit of a under the original Onext. 
The orbit of a Flip under Onext is then uFlip0rg = (uLu,LI . . . ada;), where 
a,! = ai Flip for all i. These two orbits are disjoint; and cannot contain any of the 
edges 01, p, (Y Onext Flip, or /3 OnextFlip, which lie in the dual subdivision. Fur- 
thermore, one contains b if and only if the other contains bFlip. There are then 
only three cases to consider (see Figure 12): 

Case 1. The edge b is neither in a&g nor in aFlipOrg. Then let bOrg = 
(blbz ... bn--lbn(= b)) and bFlipOrg = (bAbLl . . . bib;). According to eqs. (5), 
we will have a,Onext’ = bl, b,Onext’ = aI, u;Onext’ = bk, b{Onext = ah. 
Therefore, the orbits of a and a Flip under Onext ’ will be 

a0rg’ = (ala2 . . . u~-~u~(= a)blbz ... bneIbn(= b)), 
uFlipOrg’ = (bAb;-, . . . b~b;uLu~-l . . ’ uiui). 

Case 2. The edge b occurs in uOrg. Then b = ai for some i, 1 I i 5 m. After 
splice is executed we will have u,Onext’ = ai+,, uiOnext’ = aI, a;Onext’ = 
al, and ai’,I One&’ = ah. If i = m (i.e., if a = b), then Onext’ = Onext and we are 
done. If i # m, then under Onext’ the elements of a Org and a Flip Org will be 
split in the four orbits, 

bOrg’ = (~1~2 --* Ui), aOrg’ = (Ui+lUi+2 *** U,), 

a Flip Org’ = (a&a,&-1 . . . a:+~), bFlipOrg’ = (u(a[-l . . . aI). 

Case 3. The edge b occurs in a Flip Org. Since b # a Onext Flip = a;, we have 
b = af for some i, 2 I i 5 m. After Splice is executed we will have a, Onext' = 
ai-1, a,! Onext’ = ai, a; Onext’ = ai, and ai-lOnext’ = a,&. Then the orbits of 
Onext’ containing those elements will be 

aOrg’ = (a[-laiv2 of* U;UjUi+l --- Cl,-la,), 

aFlipOrg’ = (aLaA- . . * U~+IU~U~U~ . * * ui-lui). 
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(4 

(b) 

Fig. 12. The effect of Splice on the Onext orbits. (a) Case 1. (b) Case 2. 
(12) Case 3. 

In all three cases, the orbits of e and e Flip under Onext’ will be disjoint for all 
edges e. 0 

The proof of Theorem 5.1 gives a precise description of the effect of Splice 
on the edge rings. In particular, the discussion for case 3 helps in the understand- 
ing of Figure 13. In that case the effect of splice is to add or remove a “cross 
cap” to the manifold. 

In terms of the data structure, the Splice operation is even simpler. The 
identities 

and 

a Onext Flip = a Onext Rot Flip Rot = 01 Flip Rot 

(Y Onext Flip = a Onext Rot Onext Flip = a Flip Rot 
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(a) 

(b) 

(cl 

Fig. 13. The effect of Splice: Adding or removing a cross-cap. (a) a Org = b Flip 
Org, a Left = b Left. (b) a Org = b Flip Org, a Left= b Left; c Left = b Flip Left, c Org 
= b Org. (c) c Left = b Flip Left, c Org # b Org. 

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985. 



102 l L. Guibas and J. Stolfi 

allow us to rewrite (5) as 

aOnext t b0nent; (aFlip Rot) Onext t PFlip; 
b One& t a One&; (b Flip Rot) Onext t cy Flip; 
CY Onext t p Onext; (01 Flip Rot) Onext c b Flip; (6) 

BOnext t 01 One&; (@FlipRot) Onext c aFlip. 

Only one of the two assignments in each line of (6) is meaningful. The reason is 
that only one of the receiving Onext fields actually exists in the structure; the 
value of the other is determined implicitly from existing links by (4). If the f bit 
of a is 0, then a Onext exists, and Splice writes b Onext into it. Otherwise 
a Flip Rot has f = 0, and we can assign b Flip Rot Onext to a Flip Rot Onext. The 
same applies to b,cy, and p. Note that these assignments are simultaneous, 
that is, all right-hand sides are computed before any value is assigned to the left- 
hand sides. In addition, these assignments should be preceded by a test of whether 
b = aOnextFlip, in which case they should not be executed at all. Note however 
that there is no need to check for a = b. 

Further reductions in the code of Splice occur in the case of orientable 
manifolds, when we can use the simplified data structure without Flip and the f 
bits. In that case, the meaningful assignments are precisely those in the left 
column of (6), and the test for b = a Onext Flip is meaningless. 

THEOREM 5.2 An arbitrary subdivision S can be transformed into a collection 
of 1 BP ) isolated edges by the application of at most 2 1 BS 1 Splice operations. 

PROOF. Let e be an arbitrary edge of S. The operations 

Splice[e, eOprev]; Splice[eSym, eSymOprev] 

will remove e from S and place it as an isolated edge on a separate manifold 
homeomorphic to the sphere. By repeating this for every edge the theorem 
follows. 0 

From this theorem and from the fact that Splice is its own inverse, we can 
conclude that any simple subdivision S can be constructed, in O( ) 8.3 I ) time and 
space by using only the Splice and MakeEdge operations. 

The Data links are not affected by (and do not affect) the MakeEdge and 
Splice operations; if used at all, they can be set and updated at any time after 
the edge is created by plain assignment statements. Since they carry no topolog- 
ical information, there is no need to forbid or restrict assignments to them. 
Usually each application imposes geometrical or other constraints on the Data 
fields that may be affected by changes in the topology. Some care is required 
when enforcing those constraints; for example, the operation of joining two 
vertices may change the geometrical parameters of a large number of edges and 
faces, and updating all the corresponding Data fields every time may be too 
expensive. However, even in such applications it is frequently the case that we 
can defer those updates until they are really needed (so that their cost can be 
amortized over a large number of Splices) or initialize the Data links right 
from the beginning with the values they must have in the final structure. 
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Like its predecessors, the quad-edge data structure contains no mechanism to 
keep track automatically of the components and connectivity of the manifold. 
There seems to be no general way of doing this at a bounded cost per operation; 
on the other hand, in many applications this problem is trivial or straightforward, 
so it is best to solve this problem independently for each case. 

6. TOPOLOGICAL OPERATORS FOR DELAUNAY DIAGRAMS 

In the Voronoi/Delaunay algorithms described further on, all edge variables refer 
to edges of the Delaunay diagram. The Data field for a Delaunay edge e points 
to a record containing the coordinates of its origin e Or-g, which is one of the sites; 
accordingly, we will use e.Crg as a synonym of e.Data in those algorithms. For 
convenience, we will also use e.Dest instead of e.Sym . Org . We emphasize again 
that these Des t and Or g fields carry no topological meaning and are not updated 
by the Splice operation per se. The endpoints of the dual edges (Voronoi 
vertices) are neither computed nor used by the algorithms; if desired, they can 
be easily added to the structure, either during its construction or after it. The 
fields e.Rot.Data and e.Rot-'.Data are not used. 

Most topological manipulations performed by our algorithms on the Delaunay/ 
Voronoi diagrams can be reduced to three higher-level topological operators, 
defined here in terms of Splice and MakeEdge. The operation e t Con- 
net t[a, b] will add a new edge e connecting the destination of a to the origin of 
b, in such a way that a Left = e Left = b Left after the connection is complete. For 
added convenience it will also set the Crg and Dest fields of the new edge to 
a.Des t and b.Org, respectively. 

PROCEDURE Connect[a, b, side] RETURNS [e] 
e + MakeEdge[ 1; 
e.Org + a.Dest; 
e.Dest +- b.Org; 
Splice[e, a.Lnext); 
Splice[e.Sym, b] 

END Connect. 

The operation Dele teEdge[e] will disconnect the edge e from the rest of the 
structure (this may cause the rest of the structure to fall apart in two separate 
components). In a sense, DeleteEdge is the inverse of Connect. It is equivalent 
to 

PROCEDURE DeleteEdge[e]: 
Splice(e, e.Oprev]; 
Splice[e.Sym, e.Sym.Oprev] 

END DeleteEdge. 

The operation Swap[e] below is used in the incremental algorithm described in 
Section 10. Given an edge e whose left and right faces are triangles, the problem 
is to delete e and connect the other two vertices of the quadrilateral thus formed 
(see Figure 14). 
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Fig. 14. The effect of swap [e]. 

PROCEDURE Swap[e] : 
a c e.Oprev; 
b c e.Sym.Oprev; 
Splice[e, a]; Splice[e.Sym, b]; 
Splice[e, a.Lnext]; Splice[e.Sym, b.Lnext]; 
e.Org +- a.Dest; e.Dest+ b.Dest 

END Swap. 

The first pair of splices disconnects e from the edge structure, and leaves it 
as the single edge of a separate spherical component. The last two Splices 
connect e again at the required position. 

7. VORONOI AND DELAUNAY DIAGRAMS 

In this section we recapitulate some of the most important properties of Voronoi 
diagrams and their duals, with an emphasis on the results we will need later on. 
For a fuller treatment of these topics the reader should consult refs. [13], [18], 
or [19]. 

If we are given only two sites, then the associated Voronoi regions are simply 
the two (open) half-planes delimited by the bisector of the two sites. More 
generally, when n sites are given, the region associated with a particular site p 
will be the intersection of all half-planes containing p and delimited by the 
bisectors between p and the other sites. It follows that the Voronoi regions are 
(possibly unbounded) convex polygons whose edges are portions of intersite 
bisectors and whose vertices (except, the point at infinity) are circumcenters of 
triangles defined by three of the sites. An example Voronoi diagram for a small 
collection of sites is shown in Figure 15. 

As mentioned in Section 1, most of the time we will be dealing with a dual of 
the Voronoi subdivision, commonly called the Delaunay diagram. This is a planar 
subdivision whose vertices are the given sites and whose edges are straight-line 
segments that connect every pair of sites having Voronoi regions sharing a 
common edge. It can be shown that Delaunay such edges do not cross each other. 

We say that a circle is point-free if none of the given sites is contained in its 
interior. It follows readily from the definitions that two sites are connected by 
an edge in the Delaunay diagram if and only if there is a point-free circle passing 
through them and through no other site. In particular, every convex hull edge is 
in the Delaunay diagram. It can be shown also that three or more sites are the 
vertices of an interior face of the Delaunay diagram if and only if there is a point- 
free circle passing through them and through no other site. For a discussion of 
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Fig. 15. The Voronoi diagram (solid) and the Delaunay diagram 
(dashed). 

these facts see Lee’s thesis [13]. The following obvious lemma will be important 
in the sequel. 

LEMMA 7.1. Let L and R be two sets of points. Any edge of the Delaunay 
diagram of L U R whose endpoints are both in L is in the Delaunay diagram of L. 

In other words, the addition of new points does not introduce new edges 
between the old points. 

7.1 Delaunay Triangulations 

A triangulation of n 1 2 sites is a straight-line subdivision of the extended plane 
whose vertices are the given sites and whose faces are all triangular except for 
one, which is the complement of the convex hull of the sites. It is easily shown 
that any triangulation of n sites, of which k lie on the convex hull, has 2(n - 1) 
- k triangles and 3(n - 1) - k edges. 

If no four of the sites happen to be cocircular, then their Delaunay diagram is 
a triangulation; in any case, it can be made into one by introducing zero or more 
additional edges. The subdivisions obtained in this way are called Delaunay 
triangulations of the given sites. They are characterized by either of the following 
properties. 

LEMMA 7.2. A triangulation of n 2 2 sites is Delaunay if and only if every edge 
has a point-free circle passing through its endpoints. 

LEMMA 7.3. A triangulation of n 2 2 sites is Delaunay if and only if the 
circumcircle of every interior face (triangle) is point -free. 

We will say that an edge or triangle is Delaunay when there is a point-free 
circle passing through its vertices. We speak of that circle as being witness to the 
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Fig. 16. Triangulating a face of the Delaunay. 

Delaunayhood of the edge or triangle. Note that the circle may pass through 
other sites as well, so a Delaunay edge or triangle is not necessarily an element 
of the Delaunay diagram. In the few places where this distinction is relevant, we 
will refer to the edges and faces of the latter as being strictly Delaunay. 

Lemma 7.1 can be extended to Delaunay triangulations, provided their non- 
uniqueness is taken into account: 

LEMMA 7.4 Let Tr. and Ts be Delaunay triangulations with vertex sets L and 
R. Then we can always construct a Delaunay triangulation T for the set L U R 
such that every edge of T that is not in TL or in TR has one endpoint in L and one 
in R. 

PROOF. This assertion holds for the edges of the Delaunay diagram D of 
L U R. We have only to show that we can triangulate every face of D without 
violating the above assertion, that is, by using only old edges from TL and TR, or 
new L-R edges. 

Consider any face F of D with four or more vertices, and its circumcircle C. 
Note that any edge connecting two L (respectively, R) vertices that are adjacent 
along C is in fact an edge of the L (respectively, R) diagram and therefore in TL 
(respectively, TR). So all boundary edges of F are appropriate for our triangulation 
T. To complete the triangulation, we now add in all diagonals of F that are in TL 
and finally connect each R vertex to the previous L vertex counterclockwise along 
C by an L-R edge. See Figure 16. Cl 

8. THE INCIRCLE TEST 

We now proceed to define the main geometric primitive we will use for Delaunay 
computations. This test is applied to four distinct points in the plane A, B, C, 
and D. See Figure 17. 

Definition 8.1. The predicate InCircle(A, B, C, D) is defined to be true if and 
only if point D is interior to the region of the plane that is bounded by the 
oriented circle ABC and lies to the left of it. 

In particular this implies that D should be inside the circle ABC if the points 
A, B, and C define a counterclockwise oriented triangle, and outside if they define 
a clockwise oriented one. (In case A, B, and C are collinear we interpret the line 
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Fig. 17. The InCircle test. 

as a circle by adding a point at infinity.) If A, B, C, and D are cocircular, then 
our predicate returns false. Notice that the test is equivalent to asking whether 
LABC + LCDA > LBCD + LDAB. Another equivalent form of it is given below, 
based on the coordinates of the points. 

LEMMA 8.1. The test Incircle(A, B, C, D) is equivalent to 

XA YA xi + Yi 1 ( 

2 1 
9(A, B, C, D) = ” YE ;; 1;; 1 > 0. 

xc Yc 

%I YD & + Yi 1 

PROOF. We consider the following mapping from points in the plane to points 
in space: 

A: 6% Y) - (x9 Y, x2 + Y2L 

which lifts each point on the x, y-plane onto the paraboloid of revolution x = 
x2 + y2. See Figure 18 for an illustration. We first show that A, B, C, and D are 
cocircular if and only if X(A), X(B), X(C), and X(D) are coplanar, a rather 
amazing fact. 

Suppose first that A, B, C, and D are cocircular. If we have the degenerate case 
where they are collinear, then 9 (A, B, C, D) is zero, as we can see by expanding 
it by the third column. But Q(A, B, C, D) is also the (signed) volume of the 
tetrahedron defined by X(A), X(B), X(C), and X(D). Since the volume is zero, the 
points must be coplanar. Otherwise let (p, q) denote the center and r the radius 
of the circle passing through the points A, B, C, D. We must have 

(xA - pJ2 + bA - qJ2 = r2, 

or equivalently, 

-2p . xA - 2q ’ yA + 1 . (xi + y;) + (p2 + q2 - r2) - 1 = 0. (7) 

This relation also holds for points B, C, and D, and therefore we have a linear 
dependence among the columns of the determinant 9 (A, B, C, D), which implies 
that its value is zero. So again we can conclude that X(A), X(B), X(C), and X(D) 
are coplanar. 

Now conversely, suppose that X(A), X(B), X(C), and X(D) are coplanar. If all 
of A, B, C, and D are collinear, then we are done. So suppose, without loss of 
generality, that A, B, and C are not collinear. As above, let (p, q) denote the 
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Fig. 18. The quadratic map for computing InCircle. 

center and r the radius of the circumcircle of triangle ABC. Then A, B, and C 
satisfy eq. (7) above. Since A, B, and C are not collinear, the corresponding three 
rows of 9(A, B, C, D) are linearly independent. But all four rows are linearly 
dependent, since the determinant is zero. So the last row can be expressed as a 
linear combination of the first three, and therefore point D satisfies (7) as well, 
that is, it is on the circle ABC. 

The above result shows that planar sections of the paraboloid of revolution 
z = x2 + y* project onto circles in the X, y-plane. The paraboloid is a surface that 
is convex upward, and therefore, in a section of it with a plane, the part below 
the plane projects to the interior of the corresponding circle in the X, y-plane, 
and the part above the plane to the exterior. From this and the standard right- 
handed orientation convention for the sign of volumes, the lemma follows. Notice 
that this establishes an interesting correspondence between circular queries in 
the plane and half-space queries in 3-space. 0 

As a side note we remark that Ptolemy’s theorem in Euclidean plane geometry 
does not lead to a useful implementation of the InCircle test, as we always have 

ABxCD+BCxADzBDxAC, 

with equality only when the four points are cocircular. In fact, the quantity one 
obtains by rendering AB x CD + BC x AD - BD x AC radical-free is essentially 
the square of the determinant 9(A, B, C, D) above. 

The following property of the InCircle test is an obvious consequence of Lemma 
8.1. 

LEMMA 8.2. If A, B, C, D are any four noncocircular points in the plane, then 
transposing any adjacent pair in the predicate InCircle(A, B, C, D) will change the 
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value of the predicate from true to false or vice versa. In particular, the Boolean 
sequence 

InCircle(A, B, C, D), InCircle(B, C, D, A), 
InCircle(C, D, A, B), InCircle(D, A, B, C) 

is either T (rue), F(alse), T, F, or F, T, F, T. 

In particular, if InCircle(A, B, C, D) is true, then InCircle(C, B, A, D) is false, 
so reversing the orientation flips the value of the predicate. Note however that 
InCircle is always false if the four points are cocircular, irrespective of their 
order. The last two lemmas show that in InCircle(A, B, C, D) all four points play 
a symmetric role, even though from the definition D seems to be special. 

What use is the InCircle test in the construction of Delaunay diagrams? 
Consider for example the case of four sites that are the vertices of a convex 
quadrilateral ABCD. The sides AB, BC, CD, and DA are on the convex hull and 
therefore must be included. To complete the triangulation, we must add either 
diagonal AC or diagonal BD. We can decide between the two by evaluating 
InCircle(A, B, C, D). If it is false, then the circle ABC is point-free, and AC is 
Delaunay. Conversely, if InCircle(A, B, C, D) is true, then AC is not Delaunay. 
However, by Lemma 8.2, InCircle(B, C, D, A) must in that case be true. Thus 
the circle BCD is point-free, and BD is Delaunay. 

This rule can be extended to more than four points, thanks to the following 
observation. Given two points X and Y on the plane, the set of circles passing 
through X and Y form a one-parameter family (C,), where the parameter t may 
be taken as the position of the center along the bisector of XY, measured from 
the midpoint of XY. Thus C-, denotes the half-plane to the left of the line XY, 
CO denotes the circle with diameter XY, and C, denotes the half-plane to the 
right of XY. Note that the portion of these circles to the left of XY strictly 
decreases (by proper inclusion) as t increases, while the portion to the right of 
XY strictly increases. See Figure 19. 

Now let X, Y be any pair of sites. The edge XY will be Delaunay if and only if 
there is a point-free circle passing through both sites. But this is possible if and 
only if every circle AXY with site A on the left side of the line XY corresponds 
to a value of t less than or equal to that of any circle YXB with B on the right 
side. This observation proves the following result: 

LEMMA 8.3. An edge XY is Delaunay if and only if InCircle(A, X, Y, B) is 
false for every pair of sites A and B, respectively, to the left and to the right of the 
line XY. 

In fact, to check whether a triangulation is Delaunay it is sufficient to consider 
just one pair of sites per edge, as shown below. 

Definition 8.2. Let T be an arbitrary triangulation of the given sites, and XY 
be one of its edges. We say that XY passes the circle test if it is the boundary 
between two counterclockwise triangles AXY and YXB of T, and InCircle(A, X, 
Y, B) is false. 

The counterclockwise-oriented (but not necessarily convex) polygon AXBY is 
called the edge quadrilateral of XY. An edge that passes the circle test is not 
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Fig. 19. The circles 
through two given points. 
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passing 

necessarily Delaunay, since the test considers just one pair of sites A,.B. However, 
Lee [13] has proved the following result. 

LEMMA 8.4. A triangulation T is Delaunay if and only if all its edges pass the 
circle test. 

PROOF. If an edge XY fails the circle test, the two other vertices A and B of 
its edge quadrilateral establish its non-Delaunayhood, by Lemma 8.3. Conversely, 
if T is not Delaunay, there must be some edge XY of T and some pair of sites A 
and B, respectively, to the left and to the right of XY, for which InCircle(A, X, 
Y, B) is true. Among all such quadruplets X, Y, A, and B, choose one for which 
the sum of the angles LYAX and LXBY is maximum. It is easy to see that no 
other vertex or edge of T can enter the triangles AXY or YXB. Therefore, these 
triangles are the two faces of T incident to XY, and XY fails the circle test. Cl 

9. THE DIVIDE-AND-CONQUER ALGORITHM 

In this section we use the tools we have developed so far to describe, analyze, 
and prove correct a divide-and-conquer algorithm for computing the Delaunay 
triangulation of n points in the plane. Topologically the quad-edge data structure 
gives us the dual for free, so by associating some relevant geometric information 
with our face nodes, for example, the coordinates of the corresponding Voronoi 
vertices, we are simultaneously computing the Voronoi diagram as well. An 
advantage of working with the dual of the Voronoi diagram is that we need not 
compute straight-line intersections unless the coordinates of Voronoi vertices are 
needed. Our algorithm follows closely the one proposed by Lee and Schachter 
[14] and is the dual of that described by Shamos and Hoey [19]. Like theirs, it 
runs in time 0 (n log n) and uses linear storage. The reasons for including it here 
are twofold. First of all we wanted to illustrate the use of the quad-edge data 
structure on a concrete and important application. Secondly, our presentation is 
significantly more complete in both the details of the algorithm-which can be 
subtle-and its proof. 

As one might expect, in the divide-and-conquer-algorithm we start by parti- 
tioning our points into two halves, the left half (L) and the right half (R), which 
are separated in the x-coordinate. We next recursively compute the Delaunay 
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Fig. 20. The structure of the L-R edges. 

triangulation of each half. Finally, we need to marry the two half triangulations 
into the Delaunay triangulation of the whole set. This recursive decomposition 
cannot be used if the number of sites is less than four, since in that case one or 
both of L and R would end up with a single site (recall that any subdivision, and 
hence any Delaunay diagram, must have at least one edge). Therefore, the two- 
and three-site cases must be handled separately. 

We now elaborate on this brief description in stages. First of all it is advanta- 
geous to start out by sorting our points in increasing x-coordinate. When there 
are ties we resolve them by sorting in increasing y-coordinate and throwing away 
duplicate points. This makes all future splittings constant time operations. After 
splitting in the middle and recursively triangulating L and R, we must consider 
the merge step. Note that this may involve deleting some L-L or R-R edges and 
will certainly require adding some L-R (or so called cross) edges. By Lemma 7.3, 
however, no new L-L or R-R edges will be added. 

What is the structure of the cross edges? All these edges must cross a line 
parallel to the y-axis and placed at the splitting x value. This establishes a linear 
ordering of the cross edges, so we can talk about successive cross edges, the 
bottom-most cross edge, etc. The algorithm we are about to present will produce 
the cross edges incrementally, in ascending y-order. See Figure 20. 

LEMMA 9.1. Any two cross edges adjacent in the y-ordering share a common 
vertex. The third side of the triangle they define is either an L-L or an R-R edge. 

PROOF. Any two consecutive intersections of a triangulation with a straight 
line must belong to the same triangular face. Therefore the two cross edges in 
question have one endpoint in common, and the third side of the triangle is fully 
to one side or the other of the vertical divider. q 

Lemma 9.1 has the following important consequence. Let us call the current 
cross edge the base and write its directed variant going from right to left as 
bas el. The successor to base 1 will either be an edge going from the left end- 
point of base1 to one of the R-neighbors of the right endpoint lying above 
base 1, or, symmetrically, it will be an edge from the right endpoint of base 1 
to one of the L-neighbors of the left endpoint lying above base 1. In the program 
below edges from the left endpoint of base 1 to its candidate L-neighbors will be 
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Fig. 21. The variables lcand, 
rcand, and basel. 

. j 

. 

I 

Fig. 22. The rising bubble. 

held in the variable lcand, and their symmetric counterparts in r cand (see 
Figure 21). 

We can intuitively view what happens by imagining that a circular bubble 
weaves its way in the space between L and R and in so doing gives US the cross 
edges. Inductively we have a point-free circle circumscribing the triangle defined 
by base1 and the previous cross edge. Consider continuously transforming this 
circle into other circles having base1 as a chord but lying further into the half- 
plane above bas el. As-we remarked, there is only a single degree of freedom, as 
the center of the circle is constrained to lie on the bisector of base1 (see Figure 
22). Our circles will be point free for a while, but unless base1 is the upper 
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common tangent of L and R, at some point the circumference of our transforming 
circle will encounter a new point, belonging either to L or R, giving rise to a new 
triangle with a point-free circumcircle. The new L-R edge of this triangle is the 
next cross edge determined by the body of the main loop below. 

In more detail, edge lcand is computed so as to have as destination the first 
L point to be encountered in this process, and rcand the first R point. A final 
test chooses the point among these two that would be encountered first. We start 
the cross edge iteration by computing the lower common tangent of L and R, 
which defines the first cross edge. 

The divide-and-conquer algorithm is coded in Figure 9.5. Prose within ( ) is 
comments. The program computes the Delaunay triangulation of a point set S 
and returns two edges, le and re, which are the counterclockwise convex hull 
edge out of the leftmost vertex and the clockwise convex hull edge out of the 
rightmost vertex, respectively. 

The only geometric primitives we use are the InCircle test and the predicate 
CCW(A, B, C), which is true if the points A, B, and C form a counterclockwise- 
oriented triangle.’ The CCW test is frequently used to test whether a point X 
lies to the right or to the left of the line of a given edge e. These tests are 
conveniently expressed by the procedures 

PROCEDURE RightOf(X, e]: 
RETURN CCW[X, e.Dest, e.Org] 

END RightOf. 

PROCEDURE LeftOf[X, e]: 
RETURN CCW[X, e.Org, e.Dest] 

END LeftOf. 

The procedure Valid [e] tests whether the edge e is above basel: 

Valid[e] = RightOf[e.Dest, base11 
= CCW[e.Dest, basel.Dest, basel.Org]. 

We now elaborate on the program in Figure 23. Recall first that the number 
of vertices, edges, and faces in a triangulation are all linearly related. Also, the 
lower common tangent computation takes linear time as either ldi or rdi 
advances at each step. What about the cost of the lcand computation? We can 
account for this loop by charging every iteration to the edge being deleted. 
Similarly, iterations of the rcand loop can be charged to deleted edges. The rest 
of the body of the main loop requires constant time and may be charged to the 

’ The predicate CCW(A, B, C) can be implemented as the test 

x.4 Ya 1 

I I 
x.3 YE 1 4 0 
xc Yc 1 

and tells us on which side of the line AB the point C lies. It is equivalent to InCircle(A, B, C, D), for 

D chosen as the barycenter of triangle ABC. 
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PROCEDURE Delaunay [s] RETURNS [le, re]: 
IF ISI = 2 THEN 

[Let sl, a2 be the two sites, in sorted order. Create an edge a from s I to ~2 : ) 
a -MakeEdge[ ]; a.Org + sl; a.Dest+. s2; RETURN [a, a.Sym] 

ELSIF ISI = 3 THEN 
(Let sl, s2, s 3 be the three sites, in sorted order.) 
[Create edges a connecting s 1 to s2 and b connecting a2 to s3 : ) 
a + MakeEdge [ 1; b + MakeEdge; Splice [a.Sym, b]; 
a.Org - sl; a.Dest+ b.Org t ~2; b.Destt ~3; 
(Now close the triangle:) 
IF CCW[sl, s2, s3] THEN c - Connect(b, a]; RETURN [a, b.Sym] 
ELSIF CCW[sl, ~3, s2] THEN c c Connect [b, a]; RETURN [c.Sym, c] 
ELSE (The three points are collinear:] RETURN [a, b.Sym] FI 

ELSE {(S 1 2 4. Let L and R be the left and right halues of S .) 
[Ido, Idi] c Delaunay[L]; [rdi, rdo] t Deldufldy[R]; 
{Compute the lower common tangent of L and R: ) 
DO 

IF LeftOf[rdi.Org, ldi] THEN ldit ldi.Lnext 
ELSIF RightOf[ldi.Org, rdi] THEN rdit rdi.Rprev 
ELSE EXIT FI 

OD; 
ICreate a first cross edge base1 from rdi.Org to ldi.Org:) 
base1 +- Connect[rdi.Sym, ldi]; 
IF ldi.Org = ldo.Org THEN ldo c basel.Sym FI; 
IF rdi.Org = rdo.Org THEN rdo t base1 FI; 
DO I This is the merge loop.] 

{Locate the first L point (lcand.Dest) to be encountered by the rising bubble,) 
{and delete L edges out of base 1. Des t that fail the circle test. 1 
lcand +- basel.Sym.Onext; 
IF Valid[lcand] THEN 

WHILE InCircle 
[basel.Dest, basel.Org, lcand.Dest, lcand.Onext.Dest] 
DO t c lcand.Onext; DeleteEdge[lcand]; lcand t t OD 

FI; 
{Symmetrically, locate the first R point to be hit, and delete R edges:} 
rcand - basel.Oprev; 
IF Valid[rcand] THEN 

WHILE InCircle 
[basel.Dest, basel.Org, rcand.Dest, rcand.Oprev.Dest] 
DO t + rcand.Oprev; DeleteEdge[rcand]; rcand c t OD 

FI; 
IIf both lcand and rcand are inualid, then base1 is the upper common tangent:) 
IF NOT Valid[lcand] AND NOT Valid[rcand] THEN EXIT FI; 
{The next cross edge is to be connected to either lcand.Dest or rcand.Dest _) 
{Zf both are valid, then choose the appropriate one using the InCircle test:) 
IF NOT Valid[lcand] OR 

(Valid[rcand] AND 
InCircle[lcand.Dest, lcand.Org, rcand.Org, rcand.Dest]) 

THEN {Add cross edge base1 from rcand.Dest to basel.Dest:) 
basel- Connect[rcand, basel.Sym] 

ELSE [Add cross edge base1 from basel.Org to lcand. Dest:} 
base1 c Connect[basel.Sym, lcand.Sym] 

FI 
OD; 
RETURN [ldo, rdo] 

FI 
END Delaunay. 

Fig.23. The divide-and-conquer algorithm. 
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Fig. 24. A property of the neighbors of 
A. 

L-L or R-R edge closing the next triangle. This shows that the overall cost of 
the merge pass is linear in the size of L and R. 

We now formally state the lemmas that prove the correctness of the algorithm. 

LEMMA 9.2. Let % be any collection of sites, and consider a particular site A 
and a line 1 passing through A. For convenience of terminology, assume that 1 is 
horizontal. Let NI, N2, . . . , Nk (k I 1) be some Delaunay neighbors of A in %, 
occurring in counterclockwise order from 1 and lying above 1. If X is any point of 1 
to the right of A, let I’i denote the portion of the circumcircle (disk) AXNi that is 
above 1. Then the sequence (I’i] is unimodal, in the sense that there is some 
j, 1 5 j I k, such that for 1 I i < j we have Ti 2 ri+l, while for j 5 i < k we 
have I’i C I’i+l. 

PROOF. We first show that if Xi denotes the rightmost intersection of the 
circumcircle of triangle ANiNi+l, i = 1, 2, . . . , k - 1, with 1, then the sequence of 
points X1, X2, . . . , X,-r moves monotonically to the left. 

Consider, as in Figure 24, three consecutive Delaunay neighbors Ni, Ni+r, and 
Ni+2 of A. The point Ni+2 is not inside the circle ANiNi+l, and points Ni and 
Ni+2 are on opposite sides of ANi+l. SO to get to the circle ANi+lNi+z from 
ANiN,+, while always passing through A and Ni+,, we must expand on the side 
of Ni+27 and therefore we must contract on the side of Ni, where Xi and Xi+1 also 
lie. This proves that the Xi move toward A. 

To prove the lemma now, note that as long as the Xi are to the right of X, then 
X is inside the circumcircle of ANiNi+l, or equivalently, Ni+1 is inside the 
circumcircle of ANiX. After the Xi move to the left of X, then Ni+1 is outside the 
circumcircle of ANiX. Thus the ri behave as stated. q 

LEMMA 9.3. Assume that basel, as computed by the above algorithm, is a 
Delaunay edge for L U R, and that the lcand iteration stops with a valid edge. 
Then the circumcircle of the triangle defined by 1 c a nd and base 1 is free of other 
L points. 

PROOF. Recall that the edge lcand is valid if and only if its destination N 
lies above base 1. Let X and Y be the origin and destination of base 1. Consider 
the point-free circle C that established the Delaunayhood of basel. As in our 
earlier discussion, suppose that we “push” this circle upward while constraining 
it to pass through X and Y, until it encounters a new point M E L for the first 
time (if it encounters two or more such points at the same time, we let M be the 
one for which the angle XYM is smallest). The edge YM is then an L Delaunay 
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edge, and in fact a Delaunay edge of L together with any R sites encountered so 
far. This implies that YN has not been deleted previously by the algorithm. 

We wish to show that M is the same as N, the destination of lcand when the 
iteration stops. If there is only one Delaunay neighbor of Y above base 1, then 
the iteration will stop right away. To see this, consider N’, defined as the 
destination of the edge (YN) Onext. The site N’ is below base1 and outside C, 
and therefore outside the circle YXN, so InCircle( Y, X, N, N’) fails. 

If there are several Delaunay neighbors of Y above basel, then the lcand 
iteration proceeds until the first time that InCircle( Y, X, N, N’) becomes false. 
So at this point we know that all current Delaunay neighbors of Y in L that are 
above bas el and counterclockwise before N lie outside the circle YXN. The 
same is true of the neighbor N’. By the unimodality lemma, Lemma 9.2, this will 
also hold for any subsequent neighbors after N’. Therefore the circle YXN has 
the smallest extent above base1 among all circles passing through Y, X, and 
some L Delaunay neighbor of Y above base 1. This proves that N is the same as 
M. III 

LEMMA 9.4. Assume that base1 is a Delaunay edge of L U R. The edges 
deleted during the lcand iteration are not Delaunay edges of L U R. 

PROOF. Let X and Y be the origin and destination of basel. When the 
lcand loop starts, we know that lcand (1) is above the line of basel, and (2) 
is also the first edge out of Y after base1 . Sym. Therefore, the next edge 
lcand. Onext out of Y is either to the left of lcand or below the line XY (or 
both). As in the previous lemma, let N and N’ respectively denote the destina- 
tions of lcand and lcand. Onext. If the text InCircle(Y, X, N, N’)) succeeds, 
then N’ is strictly inside the circle YXN. Now suppose N’ were below basel; 
by Lemma 8.3 the pair N, N’ would be a witness to the non-Delaunayhood of 
basel, contradicting the assumption. Therefore, N’ too is above basel, and to 
the left of lcand. The sites N’ and X lie on the opposite sides of lcand, and 
by Lemma 8.3 they establish the non-Delaunayhood of lcand. After lcand is 
deleted, it is set to the next edge YN ‘, and properties (1) and (2) are restored; 
by induction, the argument applies to each iteration. A symmetric argument 
works for the edges deleted in the rcand loop. 0 

LEMMA 9.5. After the merge pass is complete, the subdivision is a Delaunay 
triangulation for L u R. 

PROOF. First, let us show that the subdivision will be a triangulation of 
L U R. The cross edge base1 starts with the lower common tangent of 
L and R, and at each major iteration it will intersect the separating line at a 
higher point. The loop will end with base1 being the upper common tangent of 
L and R. The edges on the outer parts of the convex hulls of L and R will never 
be deleted and, together with the first and last cross edges, they will constitute 
the convex hull of L U R. The interior faces of the subdivision will be either 
original faces (triangles) of the Delaunay triangulations of L and R or will be 
new triangles delimited by two new L-R edges and an old L-L or R-R edge. 

Now we have to show that the triangulation is Delaunay. Edges that are on 
the convex hull or are incident to two old triangles all pass the circle test. This 
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includes the first cross edge base 1. At each major iteration, we determine 1 c a nd 
such that the circumcircle of the triangle determined by base 1 and lcand is 
free from L points, and similarly for rcand (Lemma 9.3). The final choice 
between 1 cand and r cand ensures that the corresponding circle is free of both 
L and R points. This circle is a witness to the Delaunayhood of the triangle 
determined by basel, the winner, and the new cross edge. We conclude that all 
edges pass the circle test; by Lemma 8.4, the triangulation is Delaunay. 0 

These lemmas complete the proof that the algorithm correctly computes the 
Delaunay triangulation. The algorithm will work with cocircular sites and other 
degenerate cases. When both 1 cand and r cand are equally good, it arbitrarily 
favors r cand. In practice, floating-point errors in the computation of the InCircle 
test usually interfere with any effort to handle degenerate cases in a consistent 
way. 

It is worthwhile to comment on a way to view this algorithm as operating in 
three-dimensional space, on the lifted images of our sites under the map h 
discussed in the proof of Lemma 8.1. These lifted images are points on a convex 
surface, and therefore they define a convex polyhedron, corresponding to their 
convex hull. The discussion in the proof of Lemma 8.1 has also established that 
the “downward” looking faces of this polyhedron are in a one-to-one correspond- 
ence with the Delaunay faces of the sites. The upward looking faces of the 
polyhedron correspond to triangles of our collection of sites whose circumcircles 
enclose all the sites. These are of course the faces of the dual of the furthest point 
Voronoi diagram [18] for our collection of sites. Note that when our cross edge 
iteration ends, the ascending circle is the half-plane above the upper common 
tangent of L and R. The half-plane below this tangent is a circle containing all 
the sites. If we now let this circle contract until it hits the first site while always 
having as chord the last cross edge, we will have produced the next cross edge of 
the dual of the furthest point Voronoi. In fact, if our cross edge iteration is left 
to continue, but by using the furthest point versions of L and R and reversing 
the sense of the InCircle test, it will compute all the cross edges of this dual and 
will cycle back to the lower common tangent of L and R. 

From the above discussion it is apparent that our divide-and-conquer algorithm 
is computing the convex hull of the lifted images of the sites. It is in fact exactly 
the Preparata-Hong [17] agorithm for computing the convex hull of n points in 
three dimensions. If the InCircle test is replaced by a “positive volume” test, as 
obtained by substituting in .%i (A, B, C, D) the third column by the z coordinates 
of the points, then the code given above implements the Preparata-Hong algo- 
rithm! The reader may have fun verifying that our expanding circles passing 
through a chord become rotating supporting planes around the lifted image of 
the chord. Thus we are computing the “sleeve” discussed in [17]. Brown [4] has 
observed that a similar correspondence can be obtained by lifting the sites 
stereographically onto a sphere. 

10. AN INCREMENTAL ALGORITHM 

The algorithm of the previous section assumes that all points are known at the 
beginning of time. For many applications we are interested in dynamic algo- 
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rithms, which allow us to update our diagrams as new points are added or deleted. 
A simple algorithm of this sort was proposed by Green and Sibson 171. We now 
proceed to describe this algorithm in detail, with the purpose of further illustrat- 
ing the power of our tools. 

10.1 Overview of the Algorithm 

It will simplify our discussion to assume that our points are known to be strictly 
inside some large convex polygon (say a triangle) whose vertices are considered 
to be among the given sites. The Delaunay diagram of the sites inserted so far is 
thus a triangulation of the interior of this bounding polygon. When a new site X 
is given, our first step is to locate the interior triangle of the subdivision 
containing X, and add three new edges connecting its vertices to X. The new site 
X may happen to fall on some existing edge e; in that case, we delete e, and 
connect X to the four vertices of the quadrangular “hole” thus created. If the 
new site coincides with a previous one, we ignore it. See Figure 25. 

Below we prove that the three or four new edges now incident to X are 
guaranteed to be Delaunay edges. However, some of the old edges may now be 
incorrect and might have to be replaced. In general, we will be in a situation 
where our new point X is surrounded by a collection of triangles defining a star- 
shaped polygon around X. The spokes connecting X to this polygon will be 
known to be Delaunay edges. The edges on the boundary, however, will be of two 
kinds. Some will be confirmed Delaunay edges, while others will be marked as 
“suspect.” A suspect edge is one which is not known to pass the circle test defined 
in Section 8. 

The incremental algorithm proceeds by choosing a suspect edge and applying 
the circle test to it. We prove below that if the edge passes the test, it is 
guaranteed to be a Delaunay edge and need not be considered further. If it fails, 
however, it is swapped, that is, replaced by the other diagonal of its quadrilateral. 
In that case the new diagonal can be shown to be Delaunay while the two sides 
opposite X become suspect, thus reestablishing the initial situation (see Figure 
26). The algorithm terminates when no suspect edges remain. 

In order to prove the correctness of the algorithm described above we need a 
few lemmas. 

LEMMA 10.1. The edges initially made incident to X are Delaunay. 

PROOF. Consider the circumcircle C of a Delaunay triangle that contains the 
new site (or is adjacent to the edge containing it). For each vertex Y of that 
triangle, consider the circle C’ that passes through X and is tangent to C and Y. 
That circle is point-free, and it establishes the “Delaunayhood” of the edge 
XY. 0 

LEMMA 10.2. Any edge made incident to X by swapping is Delaunay. So is any 
suspect edge that passes the circle text. 

PROOF. Suppose that the edge LN with quadrilateral XLMN was swapped 
with the opposite diagonal XM, as in Figure 26. Then X must be the only site 
interior to the circle C = LMN. As in Lemma 10.1, we can find a circle contained 
in C and passing through X and M; this circle is point-free and proves XM is a 
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Fig. 25. Preliminary insertion of a new site. 

Fig. 26. Swapping a suspect edge. 

Delaunay edge. If the edge LN passed the circle test, then X is outside C; C is 
still point-free and proves LN to be a Delaunay edge. 0 

LEMMA 10.3. No edge is tested more than once (for each new site). 

PROOF. An edge e becomes suspect if and only if there is exactly one edge e’ 
between it and the point X, and e’ is swapped. Since the edges introduced by the 
swapping rule are always incident to X, this situation can occur at most once for 
each site insertion. 0 

In fact, the same argument shows that if a suspect edge e passes the circle test, 
the algorithm will never consider again any edge in the angular sector with vertex 
X and spanned by e. 

LEMMA 10.4. Once all suspect edges have been checked, all edges in the 
triangulation pass the circle test. 

PROOF. From Lemma 10.2 we know that all new edges incident to X are 
Delaunay edges and therefore they pass the circle test. Any old edge either 
became suspect and passed the test at some later time or never became suspect 
and was known to pass the test just before X was inserted. In either case, its 
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quadrilateral did not change (otherwise it. would have become suspect) since that 
time, and therefore it still satisfies the edge test. 0 

The above lemmas imply that the incremental algorithm terminates and 
correctly computes the updated Delaunay triangulation. 

10.2 Coding the Algorithm 

If at each iteration the next, edge to be tested is chosen in a consistent way, the 
suspect edges will always form a continuous chain on the perimeter of the star- 
shaped polygon surrounding X. Therefore, if we know the first edge in that chain, 
we can get all the others by following the pointers of the quad-edge data structure. 
The following code implements this idea in more detail. We assume the procedure 
coca t e returns an edge e of the current Delaunay diagram such that the given 
point X is either on e or strictly inside the left face of e. 

PROCEDURE InsertSite[X]: 
e t Locate[X]; 
IF X = e.Org OR X = e.Dest THEN IIgmre it:) RETURN 
ELSIF X is on e THEN t- e.Oprev; DeleteEdge[e]; e +-t FI; 
{Connect X to vertices around it.] 
base t MakeEdge[ ]; 
first- e.Org; base.Org +- first; base.Dest+ X; 
Splice[base, e]; 
REPEAT 

base +- Connect[e, base.Sym]; e c- base.Oprev 
UNTIL e.Dest = first; 
e t base.Oprev; 
{The suspect edges (from top to bottom) are e ( . Onext _ Lprev)k for k = 0, 1, . . . .) 
(Thebottomedgehas .Org = first.} 
DO 

t +- e.Oprev; 
IF RightOf [t.Dest, e] AND InCircle[e.Org, t.Dest, e.Dest, X] 
THEN Swap[e]; e t t 
ELSIF e.Org = first THEN (No moresuspectedges.) RETURN 
ELSE {Pop a suspect edge:) e +- e. Onext . Lprev FI 

OD 
END InsertSite. 

The main loop of this algorithm is in some aspects similar to the merge step 
of the one given in Section 9. Consider the set L as being reduced to the single 
point X, and R as including all the previous sites. The “cross edges” then are the 
“spokes,” the new edges incident to X; instead of being linearly ordered along 
the separating line, they are cyclically ordered around X. The edge e here plays 
a role similar to that of rcand, and lcand is always invalid (nonexistent, in 
fact). The equivalent of base1 is the last spoke added, that is, e . Onext. The 
successively found rcands, as we proceed counterclockwise around the new 
point, will correspond to the forgotten edges of the previous algorithm. Note, 
however, that the incremental algorithm “connects ahead” after each deletion, 
while the algorithm of the previous section would connect all cross edges in strict 
counterclockwise order. 
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Something quite general is happening here. We have a method with which, 
given any two Delaunay triangulations L and R (not necessarily linearly sepa- 
rated) and a cross edge between them, we are able to find the next cross edge (if 
one exists) on a specified side of the original one. Thus we have another way to 
look at Kirkpatrick’s [lo] linear time merge of two arbitrary Voronoi subdivisions. 

The above arguments show that it is possible to insert a new site into the 
Delaunay structure in total time O(k), if h updates need to be made. Unfortunately 
we know of no O(k) algorithm for handling the deletion of a site that leaves an 
untriangulated face of k sides. Our best algorithm has asymptotic complexity 
O(k logk), which in the worst case k = e(n) is as bad as rebuilding the subdivision 
from scratch. We do not know of a linear algorithm even if we assume that the 
deletion of the site leaves a convex face. We regard the handling of deletions as 
the major open problem in this area. 

10.3 Locating a Point in the Delaunay 

A suitable algorithm to use for the Locate procedure is the “walking” method 
described by Green and Sibson [7]. The idea is to start at some arbitrary place 
on the subdivision and then move one edge at a time in the general direction of 
the point X. More precisely, we have 

PROCEDURE Locate[X] RETURNS [e]: 
e t some edge; 
DO 

IF X = e.Org OR X = e.Dest THEN RETURN e 
ELSIF RightOf[X, e] THEN e c e.Sym 
ELSIF NOT RightOf[X, e.Onext] THEN e t e.Onext 
ELSIF NOT RightOf[X, e.Dprev] THEN e t e.Dprev 
ELSE RETURN e FI 

OD 
END Locate. 

10.4 Analysis 

The Lot ate procedure given above terminates in 0 (n) time for a triangulation 
with n vertices. From this and Lemma 10.4 we derive an O(n) worst-case bound 
for the cost of the insertion of the nth site. Point location methods that are 
asymptotically faster (in the worst case) have been described in the literature 
[ll], but they would not improve the worst-case cost of site insertion and are 
probably too complex to be of practical use here. Moreover, those methods 
generally assume that subdivision is fixed, so the O(n) cost of building the 
associated data structures can be spread out over many queries. 

A more careful analysis shows that except for point location, the algorithm 
only does the work that needs to be done: it deletes only edges that have to be 
deleted and inserts only the edges that have to be inserted. If the updated 
Delaunay has k edges incident to the new site X, then the running time (exclusive 
of point location) will be 8(k). The algorithm is therefore asymptotically optimal 
for the Delaunay update problem. 

It is possible to select n sites in such a way that the incremental algorithm 
does 8(k) work to insert the kth site in the diagram of the preceding k - 1 ones, 
for all k. The total time for the insertion of all n sites is therefore 8(n2) in the 
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worst case. In spite of this, the simplicity of the incremental algorithm may make 
it competitive with the divide-and-conquer method even in the cases where the 
sites are all given in advance, and in most practical situations its performance 
can be quite acceptable. In particular, if the sites are independently sampled 
from a reasonably uniform probability distribution, the expected time for each 
insertion is small and roughly independent of n. The running time is then 
dominated by point location. For the simple walking algorithm, the expected 
time in this case will be roughly O(n’/‘) per site, or O(n3”) in total. Furthermore, 
in many practical applications successive sites tend to be close to each other; 
therefore, if the Locate procedure uses as its starting point the edge returned 
in the previous call, each insertion may take roughly constant time, on the 
average. In such cases the incremental method may beat the divide-and-conquer 
one even for thousands of sites [7, 141. 

11. CONCLUSIONS 

In this paper we have presented a new data structure for planar subdivisions that 
simultaneously represents the subdivision, its dual, and its mirror image. Our 
quad-edge structure is both general (it works for subdivisions on any two- 
dimensional manifold) and space efficient. We have shown that two topological 
operations, both simple to implement, suffice to build and dismantle any such 
structure. 

We have also shown how by using the quad-edge structure and the InCircle 
primitive, we can get compact and efficient Voronoi/Delaunay algorithms. The 
InCircle test is shown to be of value both for implementing and reasoning about 
such algorithms. The code for these algorithms is sufficiently simple that we 
have practically given all of it in this paper. 
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