
Primitives for the Manipulation of General
Subdivisions and the Computation of Voronoi
Diagrams

LEONIDAS GUIBAS and JORGE STOLFI
Xerox Palo Alto Research Center and Stanford University

The following problem is discussed: Given n points in the plane (the sites) and an arbitrary query
point 4, find the site that is closest to q. This problem can be solved by constructing the Voronoi
diagram of the given sites and then locating the query point in one of its regions. Two algorithms are
given, one that constructs the Voronoi diagram in O(n log n) time, and another that inserts a new
site in O(n) time. Both are based on the use of the Voronoi dual, or Delaunay triangulation, and are
simple enough to be of practical value. The simplicity of both algorithms can be attributed to the
separation of the geometrical and topological aspects of the problem and to the use of two simple but
powerful primitives, a geometric predicate and an operator for manipulating the topology of the
diagram. The topology is represented by a new data structure for generalized diagrams, that is,
embeddings of graphs in two-dimensional manifolds. This structure represents simultaneously an
embedding, its dual, and its mirror image. Furthermore, just two operators are sufficient for building
and modifying arbitrary diagrams.

Categories and Subject Descriptors: E.l [Data]: Data Structures-graphs; E.2 [Data]: Data Storage
Representations-linked representations; F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems-geometrical problems and computations; G.2.2 [Dis-
crete Mathematics]: Graph Theory-graph algorithms; 1.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling-curue, surface, solid, and object representations; geometric
algorithms, languages, and systems

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Voronoi and Delaunaydiagrams, closest point, nearest neighbors,
point location, triangulations, representation of polyhedra, planar graphs, convex hull, geometric
primitives, computational topology, Euler operators

INTRODUCTION

One of the fundamental data structures of computational geometry is the Voronoi
diagram. This diagram arises from consideration of the following natural problem.
Let n points in the plane be given, called sites. We wish to preprocess them into

One of the authors of this paper is an Associate Editor of Transactions on Graphics; he was not
involved in the editorial decision process that resulted in acceptance of this paper for publication.
The work of J. Stolfi, who is on leave from the University of Sio Paulo, Sio Paulo, Brazil, was
partially supported by a grant from Conselho National de Desenvolvimento Cientifico e Tecnologico.
Authors’ present address: Digital Equipment Corporation, Systems Research Center, 130 Lytton
Avenue, Palo Alto, CA 94301.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1985 ACM 0730-0301/85/0400-0074 $00.75

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985, Pages 74-123.

General Subdivisions and Voronoi Diagrams l 75

a data structure, so that given a new query point q, we can efficiently locate the
nearest neighbor of q among the sites. The n sites in fact partition the plane into
a collection of n regions, each associated with one of the sites. If region P is
associated with site p, then P is the locus of all points in the plane closer to p
than to any of the other n-l sites. This partition is known as the Voronoi
diagram (or the Dirichlet, or Thiessen, tesselation) determined by the given sites.

The closest site problem can therefore be solved by constructing the Voronoi
diagram and then locating the query point in it. Using the currently best available
algorithms, the Voronoi diagram of n points can be computed in 0(n log n) time
and stored in O(n) space; these bounds have been shown to be optimal in the
worst case [18]. Once we have the Voronoi diagram, we can construct in linear
further time a structure with which we can do point location in a planar
subdivision in O(log n) time [111.

Shamos [18] first pointed out that the Voronoi diagram can be used as a
powerful tool to give efficient algorithms for a wide variety of other geometric
problems. Given the Voronoi, we can compute in linear time the closest pair of
sites, or the closest neighbor of each site, or the Euclidean minimum spanning
tree of the n sites, or the largest point-free circle with center inside their convex
hull, etc. Several of these problems are known to require Q(n log n) time in the
worst case, so these Voronoi-based algorithms are asymptotically optimal.

Few of the previously published O(n log n) Voronoi algorithms [191 have been
amenable to a practical implementation. The reasons have been varied, ranging
from the complexity of the algorithms, to their insufficiently precise specification,
to their improper handling of degenerate cases. For example, many of those
algorithms may fail if the input includes four or more cocircular sites.

It turns out that the hardest part of constructing a Voronoi diagram is the
determination of its topological structure, that is, the incidence relation between
vertices, edges, and faces. Once the topological properties of the diagram are
known, its geometrical properties (coordinates, lengths, angles, etc.) can be
computed in time linear in the number of sites. Boots [2,20] was apparently the
first to observe that the computation of a Voronoi diagram can be greatly
simplified by working with its dual, which is known as the Delaunay diagram of
the given sites. This allows a cleaner separation between the topological and
geometrical aspects of the problem. In this paper we push further in this direction,
aiming for conciseness and completeness at the same time. The result is a one-
page description of an O(n log n) algorithm that can be translated almost
mechanically into any typical high-level language and correctly handles degen-
erate cases. For completeness, we apply the same methodology to a simpler (but
asymptotically slower) incremental algorithm due to Green and Sibson [7].

Our algorithms are built using essentially two primitives: a geometric predicate
and a topological operator for manipulating the structure of the diagrams. The
geometrical primitive, which we call the InCircle test, encapsulates the essential
geometric information that determines the topological structure of the Voronoi
diagram and is a powerful tool not only in the coding of the algorithms but also
in proving their correctness. As evidence for its importance, we show that it
possesses many interesting properties and can be defined in a number of equiv-
alent ways.

The topological structure of a Voronoi or Delaunay diagram is equivalent to
that of a particular embedding of some undirected graph in the Euclidean plane.

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

76 l L. Guibas and J. Stolfi

We have found it convenient to consider such diagrams as being drawn on the
sphere rather than on the plane; topologically that is equivalent to augmenting
the Euclidean plane by a dummy point at infinity. This allows us to represent
such things as infinite edges and faces in the same way as their finite counterparts.
In Sections 1-5 we will establish the mathematical properties of such embeddings,
define a notation for talking about them, and describe a data structure for their
representation.

It turns out that the data structure we propose is general enough to allow the
representation of undirected graphs embedded in arbitrary two-dimensional
manifolds. In fact, it may be seen as a variant of the “winged edge” representation
for polyhedral surfaces [11. We show that a single topological operator, which we
call Splice, together with a single primitive for the creation of isolated edges, is
sufficient for the construction and modification of arbitrary diagrams. Our data
structure has the ability to represent simultaneously and uniformly the primal,
the dual, and the mirror-image diagrams, and to switch arbitrarily from one of
these domains to another, in constant time. Finally, the design of the data
structure enables us to manipulate its geometrical and topological parameters
independently of each other. As it will become clear in the sequel, these properties
have the effect of producing programs that are at once simple, elegant, efficient
from a practical point of view, and asymptotically optimal in time and space.

Since this paper is quite long, some guidance to the forthcoming sections may
be advisable. Section 1 introduces the concept of a simple subdivision of a
manifold and discusses some of the conventions we adopt as compared to the
extant literature. Section 2 develops a notation for expressing relationships
between elements of a subdivision and explores its properties. Section 3 defines
the important concept of an edge algebra, a combinatorial structure on the edges
of the subdivision that we claim captures all topological properties of the latter.
We spend most of Section 3 proving this claim, by showing that isomorphism of
edge algebras is equivalent to topological homeomorphism between the corre-
sponding subdivisions. The proof is somewhat technical and may be omitted on
a first reading. In Section 4 we present a computer representation for an edge
algebra, which is our quad-edge data structure. Section 5 introduces the topolog-
ical primitives that we use to manipulate this structure and discusses their
properties and implementation. Section 6 tailors these primitives to the appli-
cation on hand, namely, the construction of Delaunay/Voronoi diagrams. Section
7 reviews some properties of such diagrams, and Section 8 presents our main
geometric for their computation, the InCircle test. Section 9 describes a divide-
and-conquer algorithm for Voronoi computations, and Section 10 presents an
incremental version that is slower but simpler.

1. SUBDIVISIONS

In this section we give a precise definition for the informal concept of an
embedding of an undirected graph on a surface. Special instances of this concept
are sometimes referred to as a subdivision of the plane, a generalized polyhedron,
a two-dimensional diagram, or by other similar names. They have been exten-
sively discussed in the solid modeling literature of computer graphics [l, 151. We
want a definition that accurately reflects the topological properties one would
ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

General Subdivisions and Voronoi Diagrams 77

intuitively expect of such embeddings (for instance, that every edge is on the
boundary of two faces, every face is bounded by a closed chain of edges and
vertices, every vertex is surrounded by a cyclical sequence of faces and edges,
etc.) and at the same time is as general as possible and leads to a clean theory
and data structure.

We assume the reader is familiar with a few basic concepts of point-set
topology, such as topological space, continuity, and homeomorphism [9]. Two
subsets A and B of a topological space M are said to be separable if some
neighborhood of A is disjoint from some neighborhood of B; otherwise, they are
said to be incident on each other. A line of M is a subspace of M homeomorphic
to the open interval B1 = (0 1) of the real line. A disk of M is a subspace
homeomorphic to the open circle of unit radius Bz = {x E R2:] x] < 1). Recall
that a two-dimensional manifold is a topological space with the property that
every point has an open neighborhood which is a disk (all manifolds in this paper
will be two dimensional).

Definition 1.1. A subdivision of a manifold M is a partition S of M into three
finite collections of disjoint parts, the vertices, the edges, and faces (denoted,
respectively, by 79, ZP, and FP), with the following properties:

Sl. Every vertex is a point of M.
S2. Every edge is a line of M.
S3. Every face is a disk of M.
S4. The boundary of every face is a closed path of edges and vertices.

The vertices, edges, and faces of a subdivision are called its elements. Figure 1
shows some examples of subdivisions.

Condition S4 needs some explanation. We denote by B,’ the closed circle of
unit radius, and by S, its circumference. Let us define a simple path in S1 as a
partition of S1 into a finite sequence of isolated points and open arcs. The precise
meaning of S4 is then the following: Every face F there is a simple path P in
S1 and a continuous mapping $F from BI onto the closure of F that (i) maps
homeomorphically BP onto F, (ii) maps homeomorphically each arc of 7~ into an
edge of S, and (iii) maps each isolated point of 7r to a vertex of S.

Condition S4 has a number of important implications. Clearly the points and
arcs of R must alternate as we go around S1; if 01 is the arc between two consecutive
points a and b of r, then its image $J((Y) is an edge incident to the points $F(a)
and 4F(b). Therefore, the images of the elements of 7r, taken in the order in
which they occur around S1, constitute a closed, connected path RF of edges and
vertices of S, whose union is the boundary of F. Notice that the bounding path
r.V need not be simple, since $F may take two or more distinct arcs or points of
x to the same element of S. Therefore the closure of a face may not be
homeomorphic to a disk, as Figure 1 shows.

Since it is impossible to cover a disk with only a finite number of edges and
vertices, every edge and every vertex in a subdivision of a manifold must be
incident to some face. Using condition S4 we conclude that every edge is entirely
contained in the boundary of some face, and that it is incident to two (not
necessarily distinct) vertices of S. These vertices are called the endpoints of the

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

78 l L. Guibas and J. Stolfi

Fig. 1. Examples of subdivisions.

edge; if they are the same, then the edge is a loop, and its closure is homeomorphic
to the circle Si.

Since every element of S is in the closure of some face, and since the closed
disk Bl is compact, the manifold M is the union of a finite number of compact
sets and therefore is itself compact. In fact, condition S4 can be replaced by the
requirement that h4 be compact, that the edges be pairwise separable, and that
every vertex is incident to some edge. Furthermore, every compact manifold has
a subdivision. We will not attempt to prove these statements, since they are too
technical for the scope of this paper.

Informally speaking, a compact two-dimensional manifold is a surface that
closes upon itself, has no boundary, and in which every infinite sequence has an
accumulation point. The sphere, the torus, and the projective plane are such
manifolds; the disk, the line segment, the whole plane, and the Mobius strip are
not. The compactness condition is not as restrictive as it may seem; most surfaces
of practical interest can be transformed into a compact manifold by the addition
of a finite number of dummy faces, edges, and vertices. In particular, the addition
of a single “point at infinity,” which by definition is an accumulation point of all
sequences with no other accumulation points, transforms the Euclidean plane R2
into the extended plane, which is homeomorphic to the sphere.

1 .l Equivalence and Connectivity

Definition 1.2. Let S and S’ be two subdivisions of the manifolds M and M’.
An isomorphism from S to S ’ is a homeomorphism of M onto M’ that maps each
element of S onto an element of S’. When such a mapping exists, we say that S
and S’ are equivalent, and we write S - S’.

Such an isomorphism will perforce map vertices into vertices, faces into faces,
and edges into edges, and will preserve the incidence relationships among them.
ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

General Subdivisions and Voronoi Diagrams l 79

Fig. 2. A pair of noneqivalent sub-
divisions that have isomorphic
graphs.

A topological property of subdivisions is a property that is invariant under
equivalence. Our goal will be to develop a computer representation that fully
captures all topological properties of subdivisions.

The collection of all edges and vertices of a subdivision S constitutes an
undirected graph, the graph of S. The graphs of two equivalent subdivisions S
and S’ are obviously isomorphic. The converse is not always true: if S and S’
have isomorphic graphs, it does not follow that they are equivalent, or that M
and M’ are homeomorphic. Figure 2 shows an example. Note that the subdivisions
are not equivalent even though there also is a one-to-one correspondence between
the faces of S and S’ with the property that corresponding faces are incident to
corresponding edges and vertices. This example shows that the set of edges and
vertices on the boundary of a face is not enough information to characterize its
relationship to the rest of the manifold.

This fact is the main source of complexity in the theoretical treatment of
subdivisions, notably in the proof that our data structure is a consistent repre-
sentation of a general subdivision. It is possible to define subdivisions in such a
way that their topological structure is completely determined by that of their
graphs. For example, if the manifold is restricted to be a sphere and the graph is
triply connected [8], then the subdivision is determined up to equivalence.
However, any set of conditions strong enough to achieve this goal would probably
outlaw “degeneracies” such as loops, multiple edges with the same endpoints,
faces with nonsimple boundaries, and so forth. Subdivisions with such degener-
acies are much more common than it may seem: they inevitably arise as inter-
mediate objects in the transformation of a “well-behaved” subdivision into
another. An even stronger reason for adopting our liberal Definition 1.1 is that
it leads to more flexible data structures and simpler atomic operations with
weaker preconditions.

On the other hand, we depart from the common solid modeling tradition by
insisting that every face be a simple disk, without “handles” or “holes,” even
though the whole manifold is allowed to have arbitrary connectivity. The main
reason for this requirement is to enable a clean and unambiguous definition of
the dual subdivision (see Section 2.2). One important consequence of this restric-
tion is the following.

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

80 l L. Guibas and J. Stolfi

THEOREM 1.1. The graph of a simple subdivision is connected iff the manifold
is connected.

PROOF. Since every face is incident to some edge, if the graph is connected,
then the whole manifold is too. Now assume that the graph is not connected, but
the manifold is. Since the faces are pairwise separable and their addition to the
graph makes it connected, some face is incident to two distinct components of
the graph. By condition S4 the boundary of that face is connected, a contradic-
tion. 0

Therefore, the connected components of the manifold are in one-to-one cor-
respondence with the connected components of the underlying graph.

2. EDGE FUNCTIONS AND THEIR PROPERTIES

In this section we develop a convenient notation for describing relationships
among edges of a subdivision and a mathematical framework that will justify the
choice of our data structure. We first develop the theory and representation for
arbitrary compact manifolds, and then we show that certain important simplifi-
cations can be made in the particular case in which the manifold is orientable.
For many applications, including the computation of Voronoi diagrams, the only
relevant manifold will be the extended plane.

2.1 Basic Edge Functions

On any disk D of a manifold there are exactly two ways of defining a local
“clockwise” sense of rotation; these are called the two possible orientations on D.
An oriented element of a subdivision P is an element x of P together with an
orientation of a disk containing X. There are also exactly two consistent ways of
defining a linear order among the points of a line 1; each of these orderings is
called a direction along 1. A directed edge of a subdivision P is an edge of P
together with a direction along it. Since directions and orientations can be chosen
independently, for every edge of a subdivision there are four directed, oriented
edges. Observe that this is true even if the edge is a loop or is incident twice to
the same face of P.

For any oriented and directed edge e we can define unambiguously its vertex
of origin, e Org, its destination, e Dest, its left face, e Left, and its right face, e
Right. We define also the flipped version e Flip of an edge e as being the same
unoriented edge taken with opposite orientation and same direction, as well as
the symmetric of e, e Sym, as being the same undirected edge with the opposite
direction but the same orientation as e. We can picture the orientation and
direction of an edge e as a small bug sitting on the surface over the midpoint of
the edge and facing along it. Then the operation e Sym corresponds to the bug
making a half turn on the same spot, and e Flip corresponds to the bug hanging
upside down from the other side of the surface, but still at the same point of the
edge and facing the same way.

The elements e Org, e Left, e Right, and e Dest are taken by definition with the
orientation that agrees locally with that of e. More precisely, the orientation of e
Org agrees with that of some initial segment of e, and that of e Dest agrees with
some final segment of e. Note that for some loops e Org and e Dest may have
ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

General Subdivisions and Voronoi Diagrams 81

Fig. 3. The ring of edges out of a
vertex.

opposite orientations, in spite of being the same (unoriented) vertex. Similarly,
the orientation of e Left agrees with e along the “left margin” of e, and that of e
Right agrees along its “right margin.” If e is a bridge in the graph of P, it may be
the case that e Left and e Right have different orientations, in spite of being the
same (unoriented) face. By extending our previous notation, we denote by z/S,
8S, and 9-S the sets of directed and oriented elements of a subdivision S. In the
rest of this section, unless otherwise specified, all subdivision elements are
assumed to be oriented, and directed if edges.

Consider an edge e incident to an oriented vertex u. If the edge is not a loop,
then there is a natural way to extend the orientation of u into an orientation of
e. This may not be possible if e is a loop and the manifold is nonorientable.
However, given a sufficiently small disk D containing u, we can always extend
the orientation of u to each portion of e inside that disk. If small enough, D can
be mapped homeomorphically onto the unit disk Bz in such a way that IJ is
mapped to the origin, and the intersection of D with every edge incident to u is
a line of M that is mapped to a radius of Bz. These edge fragments can be
oriented consistently with v and directed away from u. Traversing the boundary
of D in the counterclockwise direction (as defined by the orientation of u)
establishes a cyclical ordering of the fragments. If for each fragment we take the
corresponding edge, with orientation and direction as specified by the fragment,
we obtain what is called the ring of edges out of u. Note that if e is a loop, it will
occur twice in the ring of edges out of U. To be precise, both e and an oppositely
directed version of it (either e Sym or e Sym Flip) will occur once each: since the
manifold around u is like a disk, e will appear only once in each circuit, and we
will never encounter e Flip.

We can define the next edge with same origin, e One&, as the one immediately
following e (counterclockwise) in this ring (see Figure 3). Similarly, given an edge
e we define the next counterclockwise edge with same left face, denoted by e Lnext,
as being the first edge we encounter after e when moving along the boundary of
the face F = e Left in the counterclockwise sense as determined by the orientation
of F. The edge e Lnext is oriented and directed so that e Lnext Left = F (including
orientation). The successive images of e under Lnert give precisely the edges of
the bounding path TF of condition S4 (in one of the two possible orders). As in
the case of Onext, the edge e appears exactly once in this list, and either e Sym
or e Flip (but not e Sym Flip) may appear once.

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

82 l L. Guibas and J. Stolfi

2.2 Duality

The dual of a planar graph G can be informally defined as a graph G* obtained
from G by interchanging vertices and faces while preserving the incidence
relationships. The definition below extends this intuitive concept to arbitrary
subdivisions.

Definition 2.1. Two subdivisions S and S* are said to be dual of each other if
for every directed and oriented edge e of either subdivision there is another edge
e Dual of the other such that

Dl. (e Dual) Dual = e.
D2. (e Sym) Dual = (e Dual) Sym.
D3. (e Flip) Dual = (e Dual) Flip Sym.
D4. (e Lnext) Dual = (e Dual) Onext-‘.

Equation D4 states that moving counterclockwise around the left face of e in
one subdivision is the same as moving clockwise around the origin of (e Dual) in
the other subdivision. To see why, note that the edges on the boundary of the
face F = e Left, in counterclockwise order, are

(e Lnext, e Lnext*, . . . , e Lnextm = e)

for some m 1 1. This path maps through Dual to the sequence

((e Dual) One&-‘, (e Dual) Onext-*, . . . , (e Dual) Onextmm = e Dual)

of all edges coming out of the vertex u = (e Dual) Org of S*, in clockwise order
around u.

We can therefore extend Dual to vertices and faces of the two subdivisions by
defining (e Left) Dual = (e Dual) Org and (e Org) Dual = (e Dual) Left. Equations
D2 and D3 imply that any two edges that differ only in orientation and direction
will be mapped to two versions of the same undirected edge. Combining this with
the preceding argument we conclude that Dual establishes a correspondence
between Z’Y and Z?L~*, between YP and 99*, and between 9-9 and YP*,
such that incident elements of S correspond to incident elements of S*, and vice
versa. It follows that two vertices of one subdivision are connected by an edge
whenever (and as many times as) the corresponding faces of the other are
incident to a common edge. So, in the particular case when S and S* are
subdivisions of the sphere, the graphs of S and S* are duals of each other in the
sense of graph theory.

Figure 4 shows a subdivision of the extended plane (solid lines) superimposed
on its dual (dotted lines). Note that the two subdivisions of Figure 4 have the
property that each undirected edge of one meets (and crosses) only the corre-
sponding dual edge of the other, and that each vertex of one is in the correspond-
ing dual face of the other. When this happens, we say that S and S* are strict
duals of each other. In that case, the dual of an oriented and directed edge e is
the edge of the dual subdivision that crosses e from left to right, but taken with
orientation opposite to that of e. That is, the dual subdivision should be looked
from the other side of the manifold, or the manifold should be turned inside out.
This reflects the correspondence between counterclockwise traversal of e Left to
clockwise traversal of (e Dual) Org.

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

General Subdivisions and Voronoi Diagrams l 83

Fig. 4. A subdivision of the
extended plane (solid lines)
and a strict dual (dashed
lines).

This implicit “flipping” of the manifold is unavoidable if S and S* are
superimposed as strict duals and we insist that Dual be its own inverse. It has
the serious drawback of making the calculus of the edge functions much less
intuitive. It is therefore preferable to relate the two dual subdivisions by means
of the function

e Rot = e Flip Dual = e Dual Flip Sym,

which maps ZY to 82’ without this implicit “flipping.” The edge e Rot is called
the rotated version of e; it is the dual of e, directed from e Right to e Left and
oriented so that moving counterclockwise around the right face of e corresponds
to moving counterclockwise around the origin of e Rot. If the two subdivisions
are superimposed as strict duals, as in Figure 4, then we may say that e Rot is e
“rotated 90” counterclockwise” around the crossing point. In fact, the only reason
for not defining duality in terms of Rot (rather than Dual) is that it falls short
of being its own inverse: (e Rot) Rot gives e Sym instead of e.

2.3 Properties of Edge Functions

The functions Flip, Rot, and Onext satisfy the following properties:

El. e Rot4 = e.
E2. e Rot Onext Rot Onext = e.
E3. e Rot2 # e.
E4. e E 8s iff e Rot E 8S*.
E5. e E 8s iff e Onext E BS.
Fl. e Flip2 = e.
F2. e Flip Onext Flip Onext = e.
F3. e Flip Onext” # e for any n.
F4. e Flip Rot Flip Rot = e.
F5. e E 8s iff e Flip E ZS.

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

a4 l L. Guibas and J. Stolfi

Fig. 5. The edge functions.

c-3 Ned

A number of useful properties can be deduced from these, as for example

e Flip-l = e Flip,
e Sym = e Rot2,

e Rot-’ = e Rot3 = e Flip Rot Flip, (1)
e Dual = e Flip Rot,

e One&-’ = e Rot Onext Rot = e Flip Onext Flip,

and so forth. For added convenience in talking about subdivisions, we introduce
some derived functions. By analogy with e Lnext and e Onext, for a given e we
define the next edge with same right face, e Rnext, and with same destination, e
Dnext, as the first edges that we encounter when moving counterclockwise from
e around e Right and e Dest, respectively. These functions satisfy also the
following equations:

e Lnext = e Rot-’ Onext Rot,
e Rnext = e Rot Onext Rot-‘, (2)
e Dnext = e Sym Onext Sym.

The orientation and direction of these edges is defined so that e Lnext Left =
e Left, e Rnext Right = e Right, and e Dnext Dest = e Dest. Note that e Rnext
Dest = e Org, rather than vice versa. By moving clockwise around a fixed endpoint
or face, we get the inverse functions, defined by

e Oprev = e Onext-l = e Rot Onext Rot,
e Lprev = e Lnext-’ = e Onext Sym,
e Rprev = e Rnext-l = e Sym Onext,
e Dprev = e Dnext-’ = e Rot-l Onext Rot-‘.

(3)

It is important to notice that every function defined so far (except Flip) can
be expressed as the composition of a constant number of Rot and Onext opera-
tions, independently of the size or complexity of the subdivision. Figure 5
illustrates these various functions.

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

General Subdivisions and Voronoi Diagrams 85

3. EDGE ALGEBRAS

In this section we develop the notion of an edge algebra, a finite combinatorial
object that we prove accurately captures all the topological properties of a
subdivision. Edge algebras will be the basis of our data structure for representing
subdivisions.

Definition 3.1. An edge algebra is an abstract algebra (E, E*, Onext, Rot, Flip)
where E and E* are arbitrary finite sets and Onext, Rot, and Flip are functions
on E and E* satisfying properties El-E5 and Fl-F5.

An edge algebra represents simultaneously a pair of dual subdivisions; as we
remarked before, this allows us to express all our edge functions in terms of only
three basic primitives, Flip, Rot, and Onext. Other advantages of this primal/dual
representation will be encountered later on, and we will see that they are obtained
at a negligible cost in storage and time.

Axioms El-F5 imply that Rot is a bijection from E to E* and from E* to E.
Also, Flip and Onext each define permutations acting on E and E* separately.
We define eOrg in an edge algebra as the orbit of e under Onext, that is, the
cyclic sequence of edges

(. . .) e, eOnext, e Onext’, . . . , eOnext-‘, e, . . .).

Note that e FlipOrg is the sequence obtained by Flipping each element of eOrg
and listing them in reverse order, that is,

eFlipOrg=(..., e Flip, e Flip Onext, e Flip One&, . . . ,
e Flip Onext-‘, e . . .)

= (e Flip, e Onext-l Flip, e Onext-’ Flip, . . . ,
e Onext Flip, e Flip, . . .) .

Similarly, we define e Left = e Rot-‘Org, eRight = e Rot Org, and eDest =
e Sym Org. We also take eqs. (2) as the definition of the functions Lnext, Rnext,
and Dnext for arbitrary edge algebras. From the axioms it follows that Onext and
these derived functions have inverses, which we denote by Lprev, Rprev, Dprev,
and Oprev and which can be shown to satisfy eqs. (3).

3.1 Completions

We now proceed to show that the topology of a subdivision is completely
determined by its edge algebra, and vice versa. To prove this thesis, we will show
that a general subdivision S can be fully characterized by the graph of a standard
refinement of S, which in turn is closely related to the edge algebra of S. The
concepts and theorems developed in the rest of Section 3 are essential for showing
the consistency and completeness of our proposed data structure but are not used
in the rest of the paper. The reader whose interest is mostly practical may skip
to Section 4.

Definition 3.2 Let S and Z be subdivisions of a manifold M. We say that Z is
a completion of S if it is a refinement of S obtained by adding one vertex c, on
each edge e and one vertex VF in each face F and then connecting VF by new edges
to every vertex (old or new) on the boundary of F.

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

86 l L. Guibas and J. Stolfi

Fig. 6. A completion of the
extended plane showing pri-
mal links (solid), dual links
(dashed), and skew links (dot-
ted).

The vertices of z1 are called primal, crossing, or dual, depenamg on whether they
lie on vertices, edges, or faces of S; they are denoted by TX, GY?, and Y9,
respectively. Every edge of S is split by its crossing vertex in two primal links of
Z; the new edges added in each face are called dual links if they connect a dual
vertex to a crossing point and skew links if they connect a dual vertex to a primal
one. These links are denoted 5?Z, P*Z, and XZ, in that order. Figure 6 shows
a completion of a subdivision of the extended plane.

Definition 3.2 must be understood appropriately in the case of a face F whose
bounding path irF is not simple. If KF passes k times through a vertex or crossing
point p, then p is to be connected to UF by exactly k new links, and their order
around VF should be the same as the order of the crossings on HF. To describe
this process precisely, let 4~ be any continuous function from B; to the closure
of F that establishes condition S4. Let ?r = (ul, (Ye, u2, (Ye, . . . , u,, (Y”, u,,+~ = ul)
be the path in the circle S1 that is mapped to 7F.P by (PF; in each arc ai there is a
point ci that is mapped to the crossing vertex of the edge SdF(ai). Take (PF((O, 0))
to be the dual vertex vi; connect in B; the origin (0, 0) to each ui and to each ci
by a straight line segment, and let the images of these segments under PF be
respectively the dual and skew links for the face F. Note that the restriction of
faces to simple disks is essential for a simple and unambiguous definition of the
completion.

From the definition, it is clear that every subdivision has at least one refinement
which is a completion. Every face of Z consists of three vertices and three links,
one of each kind, and therefore all distinct. An important consequence is that
the closure of each face is homeomorphic to (not just the continuous image of)
the sector of B; bounded by two rays and an arc Uici or ciUi+l, which in turn is
homeomorphic to a disk. In fact, the closure of a face of Z is homeomorphic to
any planar triangle, with each corner mapping to a vertex and each side to a link.
ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

General Subdivisions and Voronoi Diagrams l 87

For this reason, we will refer to the faces of Z: as triangles and denote them by
9-Z.

It is also apparent from the definition that every edge of Z has two distinct
endpoints and is incident to exactly two triangles (which may or may not lie in
the same face of S). A completion may have more than one link connecting any
given pair of vertices, but it has no loops. Every crossing vertex c, is incident to
exactly four links, two primal and two dual, and to four distinct triangles. The
vertex ce and these eight elements constitute a disk of M that contains the edge
e. It can be seen also that, given a primal link 1 and a dual link I* that are incident
to the same (crossing) vertex, there is exactly one triangle that is incident to
both 1 and P.

We consider the distinction among primal, dual, and crossing vertices to be an
integral part of the description of 2, so S is uniquely determined by it. We call S
the primal subdivision of Z, denoted by SZ. In the same spirit, we say that two
completions Z1 and .& are equivalent only if there is a homeomorphism that
maps each element of Zi to an element of &, takes Y& to Y+&, and takes Y*Zi
to Y*&. Such an homeomorphism will clearly take %Zi, Y&, 2*X1, and X&
to the corresponding components of Z2.

3.2 Existence of Duals and Algebras

As it was defined, the edge algebra of a subdivision S seems to depend not only
on S itself, but also on the choice of a dual subdivision S*, and of the function
Dual(or Rot) that connects the two. The first part of our theoretical justification
is the proof that such S* and Dual always exist and that the edge functions of S
and S* satisfy axioms El-E5 and Fl-F5.

Let L: be a completion on a manifold M. For every crossing c, of 2, define the
dual of the (unoriented and undirected) edge e of SE as the set e* = l1 U (c,] U
12, where 1i, l2 are the two dual links incident to c,. Denote by 8*2 the set of all
such objects. Define the dual F: of a primal vertex v as the union of (v) and all
elements of Z incident to v. Let F*Z be the set of all those objects.

LEMMA 3.1. The triplet S*Z = (Y?Z, Z??Z, 92) is a subdivision of M.

PROOF. Besides v itself, the dual FZ of a vertex v contains only triangles,
primal links, and skew links incident to v. Each link of F: is incident to exactly
two distinct triangles of F:, and conversely each triangle is incident to two
distinct links of F:, one primal and one skew. Therefore, these links and triangles
can be arranged in one or more sequences (without repetitions) (dl, tl, 12, t2, . . . ,
L, t,, lntl = Zl), where the ti are triangles, the li are alternately primal and skew
links, and each ti is incident to li and to Zi+l. Each such sequence plus v is a disk
containing v; since M is a manifold, there can be only one such disk.

We conclude that F,* is a disk of M. Furthermore, it is clear that we can
construct a continuous function 4 from the closed ball onto the closure F: that
establishes condition S4. Since a triangle or primal link cannot be incident to
two distinct primal vertices, the elements of F*Z are pairwise disjoint. Clearly
the elements of g*Z are lines of M that are pairwise disjoint and also disjoint
from the members of 9*Z and Y*Z. Therefore, S*Z is a subdivision of M. Cl

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

88 - L. Guibas and J. Stolfi

Definition 3.3. Let 2 be a completion. Let Rot be the function from 8SZ U
&S*Z into itself defined as follows. For every edge e E &SZ;, let eRot be the dual
edge e* of S*& directed so as to cross e from right to left and oriented so as to
agree with the orientation of e at the crossing point. Similarly, for each element
e E &!PZ let e Rot be the edge of SZ of which e is the dual, directed and oriented
according to the same rules with respect to e. The standard edge algebra of 2; is
by definition AZ = (ZSZ, 2%S*Z, Onent, Rot, Flip).

THEOREM 3.2. The standard edge algebra AZ of any completion Z satisfies
axioms El-E5 and FI-F5, and S*Z is a (strict) dual of SE.

PROOF. Each oriented and directed edge e of 8SZ (or ZS*Z) can be repre-
sented unambiguously by a pair of links (e,, e,), where e, is the origin half of e,
and e, is the dual (or primal) link of L: that is incident to the crossing vertex of
e and lies to its right. Conversely, any pair (x, y) of adjacent links (one primal
and one dual) corresponds to a unique edge of ZSZ or Z’S%

For any link pair (x, y) of this kind there is a unique triangle T of Z incident
to x and y, and a unique triangle T’ sharing a skew link with T. Let us call the
opposite of the pair (x, y) the link pair (r, s) such that r and s are on the boundary
of T’ and are of the same sort (primal/dual) as x and y, respectively. Let x’
denote the link of the same sort (primal/dual) as x and incident to the same
crossing.

According to this notation, we have (a, b)FZip = (a, b’), (a, b)Rot = (b, a’),
and (a, b) Onext = (x, y), where (x, y) is opposite to (a, b’). Now it is easy to
check that the algebra AZ satisfies El-E5 and Fl-F5. For example, let (x, y) be
the opposite of (b, a); then (a, b) is the opposite of (y, x), and we have

(a, b) Rot Onext Rot Onext = (b, a’) Onext Rot Onext
= (x, y) Rot Onext
= (y, x’) Onext
= (a, b),

and so forth. The function e Dual = eFlip Rot satisfies Dl-D4, since these
conditions can be proved from El-E5 and Fl-F5. We conclude that S2 and S*Z
are (strict) duals of each other. 0

For any subdivision S there is a completion 22 such that S = S2, and therefore
a dual S*Z and a valid edge algebra A I? that describes S (and S*Z).

3.3 Equivalence and lsomorphism

The second part of our argument shows that the edge algebra of a subdivision is
determined up to isomorphism, and conversely the subdivision of an edge algebra
is unique up to equivalence.

THEOREM 3.3. Let Ai(i = 1,2) be an edge algebra for apair of dual subdivisions
Si and Sf . If S1 is equivalent to Ss, then A, and A2 are isomorphic algebras.

PROOF. Let Ai = (8Si, ES:, Onexti, Rot:, Flipi), and let h be the homeomorph-
ism between the manifolds of S, and Ss that establishes SI - Sp. An orientation
or direction for an element of S1 determines via h a unique orientation or
ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

General Subdivisions and Voronoi Diagrams l 89

direction for the corresponding element in Sz and therefore defines also a one-
to-one correspondence 17 between 8S1 and 2?S2. From the definition of Onext we
can conclude that v(e One&) = q(e) One& for all e E 8S1; the same holds for
Sym and Flip.

Let us now define the function C; from 8S, U t2YSf to Z?& U %S’$ as

4(e) = i;~:~ot;l)Rot,
if e E ES1,
if e E 8s:.

Clearly C; is one-to-one, for Roti is one-to-one from 8Si to Z?St.
We prove that 4(eRotl) = t(e) Rot:! as follows. If e E 8S1, we have eRotl E

c%s;, so

[(eRotl) = v(eRotl Rot;‘) Rot2 = q(e) Rot2 = t(e) Rot*.

If e E &5’:, then eRotl E 8S1, and so

[(eRotl) = v(eRotJ = v(e Rot;’ Syml)
= q(e Rot;‘) Symz = q(e Rot;‘) Rot2 Rot2
= t(e) RotZ.

Let us now show that [(e Onextl) = C;(e) One&. If e E 2~9, the proof is trivial.
If e E Z!ST, then eOnextl E as:, and

[(e Onexh) = v(e Oned Rot;‘) Rot2
= q(e Rot;’ 0next;‘Rot;’ Rot;‘) Rot2
= q(e Rot;’ Onext;l Syml) Rot2
= q(e Rot;‘) Onext;’ Symz Rot2 (since e Rot;’ E 8s)
= q(e Rot;‘) Rot2 One&
= t(e) One&.

The proof for [(e Flipl) = t(e) Flip2 is entirely similar, using e Flip1 = e Rot;’
Flip, Rotl. Cl

We say that two completions are similar if there is an isomorphism of the
graph of X1 to that of Zz that takes primal vertices to primal vertices and dual
vertices to dual vertices.

LEMMA 3.4. Let & and 2& be two completions. If their edge algebras AZ1 and
A& are isomorphic algebras, then Z1 and Zz are similar.

PROOF. For any completion Z, we establish one-to-one mappings between
certain subsets of oriented and directed edges of the algebra AZ and the primal
links, dual links, and vertices of 2 in the following way. To each primal (or dual)
link 1 of Z there corresponds a unique pair of primal (or dual) elements of AZ of
the form {e, eFlipJ; these elements are the directed and oriented edges of SZ (or
S*Z) of which I is the “origin” half. To each primal vertex of Z there corresponds
an orbit of AZ under Onext and Flip (i.e., a set of the form e Org U e Flip Org for
some edge e); similarly, to each crossing of Zi there corresponds an orbit of AZ
under Rot and Flip. These mappings are one-to-one, and a primal or dual link of
L: is incident to a vertex if and only if the corresponding orbits in AZ intersect.

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

90 l L. Guibas and J. Stolfi

We also associate each skew link of Z to a set of the form

{e, e Flip, e Rot-‘, e Rot-l Flip, f, f Flip, f Rot, f Rot Flip],

where f = eOnext, in the following way. There are exactly two triangles of Z
incident to s, each incident also to a primal and to a dual link. We take s’ to be
the union of the four subsets of AZ: that correspond to those four links. It is easy
to check that these subsets have the form above, and that s is incident to a primal
or dual vertex of 2: if and only if an element of s’ intersects the orbit corresponding
to that vertex. Conversely, every set of the form above determines a unique skew
link by this rule.

The isomorphism between AZ, and A& maps those representative subsets of
AZ, to subsets of AZ2 having the same form, and therefore it establishes a one-
to-one correspondence [between the primal (or dual) links and vertices of 2,
and those of &. Since intersecting subsets are mapped to intersecting subsets, [
preserves incidence. We conclude that Zi and Zz are similar. 0

LEMMA 3.5. If two completions & and & are similar, then they are equivalent.

PROOF. Let [be the isomorphism between the graphs of Z1 and Zz that
establishes their similarity. We will construct from it an homeomorphism 77
between the manifolds of the two completions that establishes their equivalence.
First, we define 17 on the vertices of Zi as being the same as 4. For every link r of
2, with endpoints u and v, we can always find an homeomorphism vr from the
closure of r to that of E(r) that takes u to t(u) and v to C;(v); we define q(p) =
v,(p) for all points p of r. Clearly, 11 is an homeomorphism of the graph of Z1
onto that of &.

Since any pair of adjacent links of which one is primal and the other dual
determines a unique triangle, the similarity of the two completions gives also a
one-to-one correspondence between their triangles that preserves incidence. For
each pair of corresponding triangles T and T’ there is a homeomorphism VT from
the closure of T onto the closure of T’ that agrees with 7 on the boundary of T;
this follows readily from the fact that both closures are homeomorphic to closed
disks. So v and all VT constitute a finite collection of continuous maps of closed
subsets of M into M’, with the property that any two of them agree in the
intersection of their domains. Their union q* is therefore a continuous map from
M into M’. Clearly, v* is one-to-one and onto, so it is an homeomorphism. By
construction, it maps elements of Zi to elements of &. •i

LEMMA 3.6. If two completions Z1 and & are equivalent, then so are SZ, and
S&.

PROOF. Each face of SZi is the union of a dual vertex and all elements of Zi
that are incident to it. Each edge of SZi is the union of a crossing and all (two)
primal links of Zi incident to it. The homeomorphism 11 that establishes the
equivalence of the two completions preserves incidence and the primal/dual
character of links and vertices, so it maps elements of SZ, to SZZ, establishing
their equivalence. 0
ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

General Subdivisions and Voronoi Diagrams l 91

THEOREM 3.7. Let A, and A2 be edge algebras for two subdivisions S1 and Sz.
If A, and AZ are isomorphic, then S1 and Sp are equivalent.

PROOF. Let & and & be any two completions of S1 and Sz. By Theorem 3.3
we have A, - AZ, and A2 - A&, and therefore AZ1 - A&. Then by Lemmas
3.4 and 3.5, the subdivisions Z1 and & are equivalent; by Lemma 3.6 the same is
true of S, and Sz. q

Therefore, the topological structure of a subdivision is completely and uniquely
characterized by its edge algebra. An analogous theorem seems to have been
discovered independently by Damphousse [5]. Theorems 3.3 and 3.7 also imply
that all completions of a subdivision are equivalent and that two subdivisions are
equivalent if and only if their duals are equivalent. Therefore, the dual of a simple
subdivision is unique up to equivalence.

3.4 Realizability of Algebras

To conclude our theoretical justification, we will show that every edge algebra
corresponds to a subdivision of some manifold. This fact is of great practical
importance, for it guarantees that any modification to the data structure that
preserves axioms El-E5 and Fl-F5 corresponds to a valid operation on mani-
folds.

THEOREM 3.8. Every edge algebra can be realized by some subdivision.

PROOF. Let A = (E, E*, Flip, Rot, Onext) be an edge algebra. We will prove
this by constructing a completion Z such that AZ is isomorphic to A. The
manifold of I; is constructed by taking a collection of disjoint closed triangles
(that will become the triangles of a completion) and “pasting” their edges together
as specified by A.

Let then U be the set of all unoriented edges of A, that is, the set of all
unordered pairs (e, e Flip), where e E E. Similarly, let U* denote the unoriented
edges of E*. We define a corner of the algebra as being a pair of unoriented edges
of the form ((e, e Flip), (e Rot, e Rot Flip)), where e is an edge. Notice that there
are] E] distinct corners in the algebra and that every unoriented edge belongs
to exactly two corners. Let 7 be a collection of] E] disjoint closed triangles on
the plane, each triangle T, associated to a unique and distinct corner r of the
algebra. Label the three vertices of each triangle with the symbols V, E, F.

For each unoriented edge u E U, take the two corners r and s to which u
belongs, and identify homeomorphically the VE sides of the two triangles T, and
T, (matching V with V and E with E). That common side minus its two endpoints
is the primal link corresponding to u. In the same manner, for every u* E U*
take the two corners r and s containing u* and identify the FE sides of T, and
T,; the common side will become the dual link corresponding to u*.

Finally, for every corner

r = ((e, eFlip), (eRot, eRotFlipj),

there is exactly one opposite corner,

s = IIf, fFW, ifRot, fRotFh41,
ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

92 l L. Guibas and J. Stolfi

such that f = e Rot Onext and e = f Rot Onext. Identify the VF sides of T, and T,.
Call the seam segment a vertex-face link.

Clearly any point interior to a triangle has a neighborhood homeomorphic to
a disk. Every side of every triangle is joined with exactly one side of a distinct,
triangle, so a point on a link also has a disklike neighborhood. Now consider a
vertex v of some triangle and all other points that have been identified with it;
they have all the same label by construction. An E type vertex u belongs to
exactly four triangles, corresponding to the corners

((eRotk, eRotkFlipj, (eRotkRot, eRotkRotFlipj}

for 0 5 k < 4 and some edge e. Each triangle is pasted to the next one by a primal
or dual link incident at v, so as to form a quadrilateral with center v. A V- or F-
type vertex v is common to 2n triangles (for some n 2 1) corresponding to the
corners

((ek, ekFlipj, (QROt, e,RotFlip}]

and

{{ekFlip, ek), (ekFlip Rot, ek Flip Rot Flip!},

where ek = eOnextk for some edge e and 0 5 k < n. These triangles are pasted
alternately by vertex-face links and primal or dual links, so as to form a 2n-
sided polygon around v. In all cases, the vertex v has a disklike neighborhood.

We conclude that the triangles 7 pasted as above constitute a manifold. The
links, the triangle interiors, and the identified vertices obviously define a com-
pletion Z of this manifold, and A L: is isomorphic to A. Cl

4. THE QUAD-EDGE DATA STRUCTURE

We represent a subdivision S (and simultaneously a dual subdivision S*) by
means of the quad-edge data structure, which is a natural computer implemen-
tation of the corresponding edge algebra. The edges of the algebra can be
partitioned in groups of eight: each group consists of the four oriented and
directed versions of an undirected edge of S plus the four versions of its dual
edge. The group containing a particular edge e is therefore the orbit of e under
the subalgebra generated by Rot and Flip. To build the data structure, we select
arbitrarily a canonical representative in each group, Then any edge e can be
written as eORot’Flipf, where r E (0, 1, 2, 3), f E (0, 11, and e. is the canonical
representative of the group to which e belongs.

The group of edges containing e is represented in the data structure by one
edge record e, divided into four parts e [0] through e [3]. Part e [r] corresponds
to the edge e. Rot’. See Figure 7a. A generic edge e = e. Rot’Flipf is represented
by the triplet (e r, f), called an edge reference. We may think of this triplet as a
pointer to the “quarter-record” e[r] plus a bit f that tells whether we should look
at it from “above” or from “below.”

Each part e [r] of an edge record contains two fields, Data and Next. The
Data field is used to hold geometrical and other nontopological information
about the edge e. Rot’. This field neither affects nor is affected by the topological

ACM Transactions on Graphics, Vol. 4, NO. 2, April 1985.

General Subdivisions and Voronoi Diagrams l 93

Fig. 7. (a) Edge record show-
ing Next links. (b) A subdivi-
sion of the sphere. (c) The data
structure for the subdivision
lb).

operations that we will describe, so its contents and format are entirely dependent
on the application.

The Next field of e [r] contains a reference to the edge e0 Rot’Onext. Given an
arbitrary edge reference (e, r, f), the three basic edge functions Rot, Flip, and
Onent are given by the formulas

(e, r, f) Rot = (e, r- + 1 + 2f, f),
(e, r, f 1 Flip = (e, r, f + U,

(e, r, f)Onext = (e[r + f].Next) RotfFlipf,
(4)

where the r and f components are computed modulo 4 and modulo 2, respectively.
In the first expression above, note that r + 1 + 2f is congruent modulo 4 to
r + 1 if f = 0, and r - 1 if f = 1; this corresponds to saying that rotating e 90”
counterclockwise, as seen from one side of the manifold, is the same as rotating
it 90” clockwise as seen from the other side. Similarly, the third expression

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

94 l L. Guibas and J. Stolfi

Fig.& An Onext ring with
canonical representatives on
both sides of the manifold.

implies that

and

(e,r, 0)Onert = e[r + f].Next

(e, r, 1)Onext = (e[r + l].Next)Rot&I
= (e, r, 0) Rot Onext Rot Flip
= (e, r, 0) Onext-‘Flip,

that is, moving counterclockwise around a vertex is the same as moving clockwise
on the other side of the manifold. From these formulas it follows also that

(e, r, f)Sym = (e, r + 2, f),
(e, r, f) Rot-’ = (e, r + 3 + 2f, f),
(e, r, f)Oprev = (e[r + 1 - f).Next) Rot’-‘Flip!

and so forth.
Figure 7 illustrates a portion of a subdivision and its quad-edge data structure.

We may think of each record as belonging to four circular lists, corresponding to
the two vertices and two faces incident to the edge. Note however that to traverse
those lists we have to use the Onext function, not just the Next pointers.
Consider for example the situation depicted in Figure 8, where the canonical
representative of edge a has orientation opposite to that of the others.

The quad-edge data structure contains no separate records for vertice or faces;
a vertex is implicitly defined as a ring of edges, and the standard way to refer to
it is to specify one of its outgoing edges. This has the added advantage of
specifying a reference point on its edge ring, which is frequently necessary when
the vertex is used as a parameter to topological operations. Similarly, the standard
way of referring to a connected component of the edge structure is by giving one
of its directed edges. In this way, we are also specifying one of the two dual
subdivisions and a “starting place” and “starting direction” on it. Therefore a
subdivision referred to by the edge e can be “instantaneously” transformed into
its dual by taking e Rot.
ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

General Subdivisions and Voronoi Diagrams 95

4.1 Simplifications for Orientable Manifolds

In many applications, including the Voronoi and Delaunay algorithms that we
are going to discuss, all manifolds to be handled are orientable. This means we
can assign a specific orientation to each edge, vertex, and face of the subdivision
so that any two incident elements have compatible orientations. This happens if
and only if the elements of the edge algebra can be partitioned in two sets, each
closed under Rot and Onext, and each the image of the other under Flip. Then
we don’t need the f bit in edge references, and the formulas simplify to

(e, r) Rot = (e, r + l),
(e, r)Onext = e[r].Next,

(e, r)Sym = (e, r + 2),
(e, r) Rot-’ = (e, r + 3),
(e, r) Opreu = (e[r + l).Next) Rot,

and so forth.
We can represent a simple subdivision (without its dual) by a “simple edge

algebra” that has only Onext and Sym as the primitive operators. Then we can
get Dnext, Lprev, and Rprev in constant time, but not their inverses. However,
this may be adequate for some applications. We save two pointers (and perhaps
two data fields) in each edge record. Note that this optimization cannot be used
with Flip.

4.2 Additional Comments on the Data Structure

The storage space required by the quad-edge data structure, including the Data
fields, is] ZS] x (8 record pointers + 12 bits). The simplification for orientable
manifolds reduces those 12 bits to 8. This compares favorably with the winged-
edge representation [l] and with the Muller-Preparata variant [16]. Indeed, all
three representations use essentially the same pointers: each edge is connected
to the four “immediately adjacent” ones (One&, Oprev, Dnext, Dprev), and the
four Data fields of our structure may be seen as corresponding to the vertex and
face links of theirs.

Compared with the two versions mentioned above, the quad-edge data structure
has the advantage of allowing uniform access to the dual and mirror-image
subdivisions. As we shall see, this capability allows us to cut in half the number
of primitive and derived operations, since these usually come in pairs whose
members are “dual” of each other. As an illustration of the flexibility of the quad-
edge structure, consider the problem of constructing a diagram which is a cube
joined to an octahedron: we can construct two cubes (calling twice the same
procedure) and join one to the dual of the other.

The systematic enumeration of all edges in a (connected) subdivision is a
straightforward programming exercise, given an auxiliary stack of size O(] J&S’ ()
and a Boolean mark bit on each directed edge [12]. With a few more bits per
edge, we can do away with the stack entirely [6]. A slight modification of those
algorithms can be used to enumerate the vertices of the subdivision, in the sense
of visiting exactly one edge out of every vertex. If we take the dual subdivision,
we get an enumeration of the faces. In all cases the running time is linear in the

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

96 l L. Guibas and J. Stolfi

number of edges. Recall also that from Euler’s relation it follows that the number
of vertices, edges, and faces of a subdivision are linearly related.

5. BASIC TOPOLOGICAL OPERATORS

Perhaps the main advantage of the quad-edge data structure is that the construc-
tion and modification of arbitrary diagrams can be effected by as few as two basic
topological operators, in contrast to the half-dozen or more required by the
previous versions [3, 151.

The first operator is denoted by e t MakeEdge[1. It takes no parameters,
and returns an edge e of a newly created data structure representing a subdivision
of the sphere (see Figure 9). Apart from orientation and direction, e will be the
only edge of the subdivision and will not be a loop; we have e Org # e Dest, eLeft
= e Right, e Lnext = e Rnext = e Sym, and e Onext = e Oprev = e. To construct a
loop, we may use et MakeEdge[].Rot; then we will have e&g = eDe.st, eLeft
e Right, e Lnext = e Rnext = e, and e Onext = e Oprev = e Sym.

The second operator is denoted by Splice[a, b] and takes as parameters two
edges a and b, returning no value. This operation affects the two edge rings a Org
and b Org and, independently, the two edge rings a Left and b Left. In each case,

(a) if the two rings are distinct, Splice will combine them into one;
(b) if the two are exactly the same ring, Splice will break it in two separate

pieces;
(c) if the two are the same ring taken with opposite orientations, Splice will

Flip (and reverse the order) of a segment of that ring.

The parameters a and b determine the place where the edge rings will be cut
and joined. For the rings a Org and b Org, the cuts will occur immediately after a
and b (in counterclockwise order); for the rings aLeft and bLeft, the cut will
occur immediately before a Rot and b Rot. Figure 10 illustrates this process for
one of the simplest cases, when a and b have the same origin and distinct left
faces. In this case Spl ice[a, b] splits the common origin of a and b in two
separate vertices and joins their left faces. If the origins are distinct and the left
faces are the same, the effect will be precisely the opposite: the vertices are joined
and the left faces are split. Indeed, Splice is its own inverse: if we perform
Spl ice[a, b] twice in a row we Will get back the same subdivision.

Figure 11 illustrates the effect of Splice[a, b] in the case where a and b have
distinct left faces and distinct origins. In this case, Splice will either join two
components in a single one or add an extra “handle” to the manifold, depending
on whether a and b are in the same component or not. Figure 11 also illustrates
the case when both left faces and origins are distinct.

In the edge algebra, the Org and Left rings of an edge e are the orbits under
Onext of e and e Onext Rot, respectively. The effect of Splice can be described
as the construction of a new edge algebra A’ = (E, E*, Rot, Flip) from an existing
algebra A = (E, E*, Onext, Rot, Flip), where One&’ is obtained from Onext by
redefining some of its values. The modifications needed to obtain the effect
described above are actually quite simple. If we let CY = aOnext Rot and p =
bOnext Rot, basically all we have to do is to interchange the values of aOnext
ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

General Subdivisions and Voronoi Diagrams l 97

Fig. 9. The result of MakeEdge.

Fig. 10. The effect of spl ice: Trading a vertex for a face. (a) a Org = b Org, a Left
b Left. (b) a Org # b Org, a Left = b Left.

F’g.ll The effect of Splice

1 .
Changing the connectivity of the
manifold. (a) o Org # b Org, a Left
b Left. (b) a Org = b Org, a Left
= b Left.

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

98 l L. Guibas and J. Stolfi

(5)

with bOnext and (Y Onext with POnext. The apparently complex behavior of
Splice now can be recognized as the familiar effect of interchanging the next
links of two circular list nodes [12].

As one may well expect, to preserve the validity of the axioms Fl-F5 and
El-E5 we may have to make some additional changes to the Onext function. For
example, whenever we redefine e Onext ’ to be some edge f, we must also redefine
eFlip (Onext ‘)-I to be fFlip, or, equivalently, f Flip One& to be e Flip. So,
Splice[a, b] must perform at least the following changes in the function Onext:

a Onext ’ = b Onext
b Onext ’ = a Onexti

a Onext ’ = /3 One&,
0 Onext ’ = ff Onext ;

(b Onext Flip) Onext ’ = a Flip,
(a Onext Flip) Onext ’ = b Flip;

(@ Onext Flip) Onext ’ = CY Flip,
(CY Onext Flip) Onext ’ = p Flip.

Note that these equations reduce to Onext ’ = Onext if b = a. Since a Onext ’ =
b Onext, to satisfy axiom E5 we must have a E E iff bOnset E E, which is
equivalent to a E E iff b E E. We will take this as a precondition for the validity
of ~plice[a, b]: the effect of this operation is not defined if a is a primal edge
and b is dual, or vice-versa.’ Another problematic situation is when
b = a Onext Flip: according to eqs. (5) we would have a Onext ’ = a Onext Flip Onext
= a Flip, which contradicts F3. In this particular case, it is more convenient to
define the effect of Splice[a, b] as being null, that is, Onext’ = Onext. It turns
out that with only these two exceptions, the equations above always define a
valid edge algebra.

THEOREM 5.1. If A is an edge algebra, a and b are both primal or both dual,
and b # a Onext Flip, then the algebra A ’ obtained by performing the operation
~plice[a, b] on A is also an edge algebra.

PROOF. Since splice does not affect Flip and Rot, all axioms except F2, F3,
E2, and E5 are automatically satisfied by A’. Since a and b are both primal or
both dual, the same is true of CY and p, aOnext Flip and b OnextFlip, and
CY Onext Flip and p Onext Flip. Thus the assignments corresponding to the opera-
tion Splice[a, b] will not destroy E5.

Now let us show that E4 holds in A’, that is, e Rot One&’ Rot One&’ = e. Let
X be the set of edges whose Onext has been changed, that is,

a,
x= ;

kext Flip, bbnext Flip, *
(Y Onext Flip, @ Onext Flip

’ Note that if (I and b lie in distinct subalgebras A. and Ab of A, then the union of A, and the dual of
A* is also a ‘valid edge algebra. So, in practice we can always perform Splice [a, b] when a and b lie
in disjoint data structures.

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

General Subdivisions and Voronoi Diagrams l 99

First, if e Rot 4 X, then e Rot Onex Rot & XOnext Rot = X, and SO

e Rot Onext’ Rot Onext’ = e Rot Onext Rot Onext’
= (e Rot Onext Rot) Onext
= e.

Now assume e Rot E X. Notice that ~plice[a, b] does exactly the same thing as
Splice[b, a], splice[a, p], and splice[aOnextFlip, bone&Flip], SO without
loss of generality we can assume eRot = a. Then

e Rot Onext’ Rot Onext’ = a One& Rot Onext ’ = b Onext Rot Onext’
= @ Onext ’ = cy Onext
= a Onext Rot Onext = e Rot Onent Rot Onext
= e.

In a similar way we can prove F2. To conclude, let US prove F3: eFlip
(Onext’)” # e for all n. In other words, we have to show that Flip always takes
an Onext’ orbit to a different Onext’ orbit. It suffices to show this for the orbits
of elements of X; in fact the symmetry of Splice implies it is sufficient to show
this for the orbit of a.

Let aOrg = (~21~22 ... a,-ia, (= a)) be the orbit of a under the original Onext.
The orbit of a Flip under Onext is then uFlip0rg = (uLu,LI . . . ada;), where
a,! = ai Flip for all i. These two orbits are disjoint; and cannot contain any of the
edges 01, p, (Y Onext Flip, or /3 OnextFlip, which lie in the dual subdivision. Fur-
thermore, one contains b if and only if the other contains bFlip. There are then
only three cases to consider (see Figure 12):

Case 1. The edge b is neither in a&g nor in aFlipOrg. Then let bOrg =
(blbz ... bn--lbn(= b)) and bFlipOrg = (bAbLl . . . bib;). According to eqs. (5),
we will have a,Onext’ = bl, b,Onext’ = aI, u;Onext’ = bk, b{Onext = ah.
Therefore, the orbits of a and a Flip under Onext ’ will be

a0rg’ = (ala2 . . . u~-~u~(= a)blbz ... bneIbn(= b)),
uFlipOrg’ = (bAb;-, . . . b~b;uLu~-l . . ’ uiui).

Case 2. The edge b occurs in uOrg. Then b = ai for some i, 1 I i 5 m. After
splice is executed we will have u,Onext’ = ai+,, uiOnext’ = aI, a;Onext’ =
al, and ai’,I One&’ = ah. If i = m (i.e., if a = b), then Onext’ = Onext and we are
done. If i # m, then under Onext’ the elements of a Org and a Flip Org will be
split in the four orbits,

bOrg’ = (~1~2 --* Ui), aOrg’ = (Ui+lUi+2 *** U,),

a Flip Org’ = (a&a,&-1 . . . a:+~), bFlipOrg’ = (u(a[-l . . . aI).

Case 3. The edge b occurs in a Flip Org. Since b # a Onext Flip = a;, we have
b = af for some i, 2 I i 5 m. After Splice is executed we will have a, Onext' =
ai-1, a,! Onext’ = ai, a; Onext’ = ai, and ai-lOnext’ = a,&. Then the orbits of
Onext’ containing those elements will be

aOrg’ = (a[-laiv2 of* U;UjUi+l --- Cl,-la,),

aFlipOrg’ = (aLaA- . . * U~+IU~U~U~ . * * ui-lui).

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

100 ’ L. Guibas and J. Stolfi

(4

(b)

Fig. 12. The effect of Splice on the Onext orbits. (a) Case 1. (b) Case 2.
(12) Case 3.

In all three cases, the orbits of e and e Flip under Onext’ will be disjoint for all
edges e. 0

The proof of Theorem 5.1 gives a precise description of the effect of Splice
on the edge rings. In particular, the discussion for case 3 helps in the understand-
ing of Figure 13. In that case the effect of splice is to add or remove a “cross
cap” to the manifold.

In terms of the data structure, the Splice operation is even simpler. The
identities

and

a Onext Flip = a Onext Rot Flip Rot = 01 Flip Rot

(Y Onext Flip = a Onext Rot Onext Flip = a Flip Rot

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

General Subdivisions and Voronoi Diagrams l 101

(a)

(b)

(cl

Fig. 13. The effect of Splice: Adding or removing a cross-cap. (a) a Org = b Flip
Org, a Left = b Left. (b) a Org = b Flip Org, a Left= b Left; c Left = b Flip Left, c Org
= b Org. (c) c Left = b Flip Left, c Org # b Org.

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

102 l L. Guibas and J. Stolfi

allow us to rewrite (5) as

aOnext t b0nent; (aFlip Rot) Onext t PFlip;
b One& t a One&; (b Flip Rot) Onext t cy Flip;
CY Onext t p Onext; (01 Flip Rot) Onext c b Flip; (6)

BOnext t 01 One&; (@FlipRot) Onext c aFlip.

Only one of the two assignments in each line of (6) is meaningful. The reason is
that only one of the receiving Onext fields actually exists in the structure; the
value of the other is determined implicitly from existing links by (4). If the f bit
of a is 0, then a Onext exists, and Splice writes b Onext into it. Otherwise
a Flip Rot has f = 0, and we can assign b Flip Rot Onext to a Flip Rot Onext. The
same applies to b,cy, and p. Note that these assignments are simultaneous,
that is, all right-hand sides are computed before any value is assigned to the left-
hand sides. In addition, these assignments should be preceded by a test of whether
b = aOnextFlip, in which case they should not be executed at all. Note however
that there is no need to check for a = b.

Further reductions in the code of Splice occur in the case of orientable
manifolds, when we can use the simplified data structure without Flip and the f
bits. In that case, the meaningful assignments are precisely those in the left
column of (6), and the test for b = a Onext Flip is meaningless.

THEOREM 5.2 An arbitrary subdivision S can be transformed into a collection
of 1 BP) isolated edges by the application of at most 2 1 BS 1 Splice operations.

PROOF. Let e be an arbitrary edge of S. The operations

Splice[e, eOprev]; Splice[eSym, eSymOprev]

will remove e from S and place it as an isolated edge on a separate manifold
homeomorphic to the sphere. By repeating this for every edge the theorem
follows. 0

From this theorem and from the fact that Splice is its own inverse, we can
conclude that any simple subdivision S can be constructed, in O() 8.3 I) time and
space by using only the Splice and MakeEdge operations.

The Data links are not affected by (and do not affect) the MakeEdge and
Splice operations; if used at all, they can be set and updated at any time after
the edge is created by plain assignment statements. Since they carry no topolog-
ical information, there is no need to forbid or restrict assignments to them.
Usually each application imposes geometrical or other constraints on the Data
fields that may be affected by changes in the topology. Some care is required
when enforcing those constraints; for example, the operation of joining two
vertices may change the geometrical parameters of a large number of edges and
faces, and updating all the corresponding Data fields every time may be too
expensive. However, even in such applications it is frequently the case that we
can defer those updates until they are really needed (so that their cost can be
amortized over a large number of Splices) or initialize the Data links right
from the beginning with the values they must have in the final structure.
ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

General Subdivisions and Voronoi Diagrams l 103

Like its predecessors, the quad-edge data structure contains no mechanism to
keep track automatically of the components and connectivity of the manifold.
There seems to be no general way of doing this at a bounded cost per operation;
on the other hand, in many applications this problem is trivial or straightforward,
so it is best to solve this problem independently for each case.

6. TOPOLOGICAL OPERATORS FOR DELAUNAY DIAGRAMS

In the Voronoi/Delaunay algorithms described further on, all edge variables refer
to edges of the Delaunay diagram. The Data field for a Delaunay edge e points
to a record containing the coordinates of its origin e Or-g, which is one of the sites;
accordingly, we will use e.Crg as a synonym of e.Data in those algorithms. For
convenience, we will also use e.Dest instead of e.Sym . Org . We emphasize again
that these Des t and Or g fields carry no topological meaning and are not updated
by the Splice operation per se. The endpoints of the dual edges (Voronoi
vertices) are neither computed nor used by the algorithms; if desired, they can
be easily added to the structure, either during its construction or after it. The
fields e.Rot.Data and e.Rot-'.Data are not used.

Most topological manipulations performed by our algorithms on the Delaunay/
Voronoi diagrams can be reduced to three higher-level topological operators,
defined here in terms of Splice and MakeEdge. The operation e t Con-
net t[a, b] will add a new edge e connecting the destination of a to the origin of
b, in such a way that a Left = e Left = b Left after the connection is complete. For
added convenience it will also set the Crg and Dest fields of the new edge to
a.Des t and b.Org, respectively.

PROCEDURE Connect[a, b, side] RETURNS [e]
e + MakeEdge[1;
e.Org + a.Dest;
e.Dest +- b.Org;
Splice[e, a.Lnext);
Splice[e.Sym, b]

END Connect.

The operation Dele teEdge[e] will disconnect the edge e from the rest of the
structure (this may cause the rest of the structure to fall apart in two separate
components). In a sense, DeleteEdge is the inverse of Connect. It is equivalent
to

PROCEDURE DeleteEdge[e]:
Splice(e, e.Oprev];
Splice[e.Sym, e.Sym.Oprev]

END DeleteEdge.

The operation Swap[e] below is used in the incremental algorithm described in
Section 10. Given an edge e whose left and right faces are triangles, the problem
is to delete e and connect the other two vertices of the quadrilateral thus formed
(see Figure 14).

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

104 - L. Guibas and J. Stolfi

Fig. 14. The effect of swap [e].

PROCEDURE Swap[e] :
a c e.Oprev;
b c e.Sym.Oprev;
Splice[e, a]; Splice[e.Sym, b];
Splice[e, a.Lnext]; Splice[e.Sym, b.Lnext];
e.Org +- a.Dest; e.Dest+ b.Dest

END Swap.

The first pair of splices disconnects e from the edge structure, and leaves it
as the single edge of a separate spherical component. The last two Splices
connect e again at the required position.

7. VORONOI AND DELAUNAY DIAGRAMS

In this section we recapitulate some of the most important properties of Voronoi
diagrams and their duals, with an emphasis on the results we will need later on.
For a fuller treatment of these topics the reader should consult refs. [13], [18],
or [19].

If we are given only two sites, then the associated Voronoi regions are simply
the two (open) half-planes delimited by the bisector of the two sites. More
generally, when n sites are given, the region associated with a particular site p
will be the intersection of all half-planes containing p and delimited by the
bisectors between p and the other sites. It follows that the Voronoi regions are
(possibly unbounded) convex polygons whose edges are portions of intersite
bisectors and whose vertices (except, the point at infinity) are circumcenters of
triangles defined by three of the sites. An example Voronoi diagram for a small
collection of sites is shown in Figure 15.

As mentioned in Section 1, most of the time we will be dealing with a dual of
the Voronoi subdivision, commonly called the Delaunay diagram. This is a planar
subdivision whose vertices are the given sites and whose edges are straight-line
segments that connect every pair of sites having Voronoi regions sharing a
common edge. It can be shown that Delaunay such edges do not cross each other.

We say that a circle is point-free if none of the given sites is contained in its
interior. It follows readily from the definitions that two sites are connected by
an edge in the Delaunay diagram if and only if there is a point-free circle passing
through them and through no other site. In particular, every convex hull edge is
in the Delaunay diagram. It can be shown also that three or more sites are the
vertices of an interior face of the Delaunay diagram if and only if there is a point-
free circle passing through them and through no other site. For a discussion of
ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

General Subdivisions and Voronoi Diagrams l 105

Fig. 15. The Voronoi diagram (solid) and the Delaunay diagram
(dashed).

these facts see Lee’s thesis [13]. The following obvious lemma will be important
in the sequel.

LEMMA 7.1. Let L and R be two sets of points. Any edge of the Delaunay
diagram of L U R whose endpoints are both in L is in the Delaunay diagram of L.

In other words, the addition of new points does not introduce new edges
between the old points.

7.1 Delaunay Triangulations

A triangulation of n 1 2 sites is a straight-line subdivision of the extended plane
whose vertices are the given sites and whose faces are all triangular except for
one, which is the complement of the convex hull of the sites. It is easily shown
that any triangulation of n sites, of which k lie on the convex hull, has 2(n - 1)
- k triangles and 3(n - 1) - k edges.

If no four of the sites happen to be cocircular, then their Delaunay diagram is
a triangulation; in any case, it can be made into one by introducing zero or more
additional edges. The subdivisions obtained in this way are called Delaunay
triangulations of the given sites. They are characterized by either of the following
properties.

LEMMA 7.2. A triangulation of n 2 2 sites is Delaunay if and only if every edge
has a point-free circle passing through its endpoints.

LEMMA 7.3. A triangulation of n 2 2 sites is Delaunay if and only if the
circumcircle of every interior face (triangle) is point -free.

We will say that an edge or triangle is Delaunay when there is a point-free
circle passing through its vertices. We speak of that circle as being witness to the

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

106 . L. Guibas and J. Stolfi

Fig. 16. Triangulating a face of the Delaunay.

Delaunayhood of the edge or triangle. Note that the circle may pass through
other sites as well, so a Delaunay edge or triangle is not necessarily an element
of the Delaunay diagram. In the few places where this distinction is relevant, we
will refer to the edges and faces of the latter as being strictly Delaunay.

Lemma 7.1 can be extended to Delaunay triangulations, provided their non-
uniqueness is taken into account:

LEMMA 7.4 Let Tr. and Ts be Delaunay triangulations with vertex sets L and
R. Then we can always construct a Delaunay triangulation T for the set L U R
such that every edge of T that is not in TL or in TR has one endpoint in L and one
in R.

PROOF. This assertion holds for the edges of the Delaunay diagram D of
L U R. We have only to show that we can triangulate every face of D without
violating the above assertion, that is, by using only old edges from TL and TR, or
new L-R edges.

Consider any face F of D with four or more vertices, and its circumcircle C.
Note that any edge connecting two L (respectively, R) vertices that are adjacent
along C is in fact an edge of the L (respectively, R) diagram and therefore in TL
(respectively, TR). So all boundary edges of F are appropriate for our triangulation
T. To complete the triangulation, we now add in all diagonals of F that are in TL
and finally connect each R vertex to the previous L vertex counterclockwise along
C by an L-R edge. See Figure 16. Cl

8. THE INCIRCLE TEST

We now proceed to define the main geometric primitive we will use for Delaunay
computations. This test is applied to four distinct points in the plane A, B, C,
and D. See Figure 17.

Definition 8.1. The predicate InCircle(A, B, C, D) is defined to be true if and
only if point D is interior to the region of the plane that is bounded by the
oriented circle ABC and lies to the left of it.

In particular this implies that D should be inside the circle ABC if the points
A, B, and C define a counterclockwise oriented triangle, and outside if they define
a clockwise oriented one. (In case A, B, and C are collinear we interpret the line
ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

General Subdivisions and Voronoi Diagrams l 107

Fig. 17. The InCircle test.

as a circle by adding a point at infinity.) If A, B, C, and D are cocircular, then
our predicate returns false. Notice that the test is equivalent to asking whether
LABC + LCDA > LBCD + LDAB. Another equivalent form of it is given below,
based on the coordinates of the points.

LEMMA 8.1. The test Incircle(A, B, C, D) is equivalent to

XA YA xi + Yi 1 (

2 1
9(A, B, C, D) = ” YE ;; 1;; 1 > 0.

xc Yc

%I YD & + Yi 1

PROOF. We consider the following mapping from points in the plane to points
in space:

A: 6% Y) - (x9 Y, x2 + Y2L

which lifts each point on the x, y-plane onto the paraboloid of revolution x =
x2 + y2. See Figure 18 for an illustration. We first show that A, B, C, and D are
cocircular if and only if X(A), X(B), X(C), and X(D) are coplanar, a rather
amazing fact.

Suppose first that A, B, C, and D are cocircular. If we have the degenerate case
where they are collinear, then 9 (A, B, C, D) is zero, as we can see by expanding
it by the third column. But Q(A, B, C, D) is also the (signed) volume of the
tetrahedron defined by X(A), X(B), X(C), and X(D). Since the volume is zero, the
points must be coplanar. Otherwise let (p, q) denote the center and r the radius
of the circle passing through the points A, B, C, D. We must have

(xA - pJ2 + bA - qJ2 = r2,

or equivalently,

-2p . xA - 2q ’ yA + 1 . (xi + y;) + (p2 + q2 - r2) - 1 = 0. (7)

This relation also holds for points B, C, and D, and therefore we have a linear
dependence among the columns of the determinant 9 (A, B, C, D), which implies
that its value is zero. So again we can conclude that X(A), X(B), X(C), and X(D)
are coplanar.

Now conversely, suppose that X(A), X(B), X(C), and X(D) are coplanar. If all
of A, B, C, and D are collinear, then we are done. So suppose, without loss of
generality, that A, B, and C are not collinear. As above, let (p, q) denote the

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

108 l L. Guibas and J. Stolfi

Fig. 18. The quadratic map for computing InCircle.

center and r the radius of the circumcircle of triangle ABC. Then A, B, and C
satisfy eq. (7) above. Since A, B, and C are not collinear, the corresponding three
rows of 9(A, B, C, D) are linearly independent. But all four rows are linearly
dependent, since the determinant is zero. So the last row can be expressed as a
linear combination of the first three, and therefore point D satisfies (7) as well,
that is, it is on the circle ABC.

The above result shows that planar sections of the paraboloid of revolution
z = x2 + y* project onto circles in the X, y-plane. The paraboloid is a surface that
is convex upward, and therefore, in a section of it with a plane, the part below
the plane projects to the interior of the corresponding circle in the X, y-plane,
and the part above the plane to the exterior. From this and the standard right-
handed orientation convention for the sign of volumes, the lemma follows. Notice
that this establishes an interesting correspondence between circular queries in
the plane and half-space queries in 3-space. 0

As a side note we remark that Ptolemy’s theorem in Euclidean plane geometry
does not lead to a useful implementation of the InCircle test, as we always have

ABxCD+BCxADzBDxAC,

with equality only when the four points are cocircular. In fact, the quantity one
obtains by rendering AB x CD + BC x AD - BD x AC radical-free is essentially
the square of the determinant 9(A, B, C, D) above.

The following property of the InCircle test is an obvious consequence of Lemma
8.1.

LEMMA 8.2. If A, B, C, D are any four noncocircular points in the plane, then
transposing any adjacent pair in the predicate InCircle(A, B, C, D) will change the
ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

General Subdivisions and Voronoi Diagrams l 109

value of the predicate from true to false or vice versa. In particular, the Boolean
sequence

InCircle(A, B, C, D), InCircle(B, C, D, A),
InCircle(C, D, A, B), InCircle(D, A, B, C)

is either T (rue), F(alse), T, F, or F, T, F, T.

In particular, if InCircle(A, B, C, D) is true, then InCircle(C, B, A, D) is false,
so reversing the orientation flips the value of the predicate. Note however that
InCircle is always false if the four points are cocircular, irrespective of their
order. The last two lemmas show that in InCircle(A, B, C, D) all four points play
a symmetric role, even though from the definition D seems to be special.

What use is the InCircle test in the construction of Delaunay diagrams?
Consider for example the case of four sites that are the vertices of a convex
quadrilateral ABCD. The sides AB, BC, CD, and DA are on the convex hull and
therefore must be included. To complete the triangulation, we must add either
diagonal AC or diagonal BD. We can decide between the two by evaluating
InCircle(A, B, C, D). If it is false, then the circle ABC is point-free, and AC is
Delaunay. Conversely, if InCircle(A, B, C, D) is true, then AC is not Delaunay.
However, by Lemma 8.2, InCircle(B, C, D, A) must in that case be true. Thus
the circle BCD is point-free, and BD is Delaunay.

This rule can be extended to more than four points, thanks to the following
observation. Given two points X and Y on the plane, the set of circles passing
through X and Y form a one-parameter family (C,), where the parameter t may
be taken as the position of the center along the bisector of XY, measured from
the midpoint of XY. Thus C-, denotes the half-plane to the left of the line XY,
CO denotes the circle with diameter XY, and C, denotes the half-plane to the
right of XY. Note that the portion of these circles to the left of XY strictly
decreases (by proper inclusion) as t increases, while the portion to the right of
XY strictly increases. See Figure 19.

Now let X, Y be any pair of sites. The edge XY will be Delaunay if and only if
there is a point-free circle passing through both sites. But this is possible if and
only if every circle AXY with site A on the left side of the line XY corresponds
to a value of t less than or equal to that of any circle YXB with B on the right
side. This observation proves the following result:

LEMMA 8.3. An edge XY is Delaunay if and only if InCircle(A, X, Y, B) is
false for every pair of sites A and B, respectively, to the left and to the right of the
line XY.

In fact, to check whether a triangulation is Delaunay it is sufficient to consider
just one pair of sites per edge, as shown below.

Definition 8.2. Let T be an arbitrary triangulation of the given sites, and XY
be one of its edges. We say that XY passes the circle test if it is the boundary
between two counterclockwise triangles AXY and YXB of T, and InCircle(A, X,
Y, B) is false.

The counterclockwise-oriented (but not necessarily convex) polygon AXBY is
called the edge quadrilateral of XY. An edge that passes the circle test is not

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

110

Fig. 19. The circles
through two given points.

. L. Guibas and J. Stolfi

passing

necessarily Delaunay, since the test considers just one pair of sites A,.B. However,
Lee [13] has proved the following result.

LEMMA 8.4. A triangulation T is Delaunay if and only if all its edges pass the
circle test.

PROOF. If an edge XY fails the circle test, the two other vertices A and B of
its edge quadrilateral establish its non-Delaunayhood, by Lemma 8.3. Conversely,
if T is not Delaunay, there must be some edge XY of T and some pair of sites A
and B, respectively, to the left and to the right of XY, for which InCircle(A, X,
Y, B) is true. Among all such quadruplets X, Y, A, and B, choose one for which
the sum of the angles LYAX and LXBY is maximum. It is easy to see that no
other vertex or edge of T can enter the triangles AXY or YXB. Therefore, these
triangles are the two faces of T incident to XY, and XY fails the circle test. Cl

9. THE DIVIDE-AND-CONQUER ALGORITHM

In this section we use the tools we have developed so far to describe, analyze,
and prove correct a divide-and-conquer algorithm for computing the Delaunay
triangulation of n points in the plane. Topologically the quad-edge data structure
gives us the dual for free, so by associating some relevant geometric information
with our face nodes, for example, the coordinates of the corresponding Voronoi
vertices, we are simultaneously computing the Voronoi diagram as well. An
advantage of working with the dual of the Voronoi diagram is that we need not
compute straight-line intersections unless the coordinates of Voronoi vertices are
needed. Our algorithm follows closely the one proposed by Lee and Schachter
[14] and is the dual of that described by Shamos and Hoey [19]. Like theirs, it
runs in time 0 (n log n) and uses linear storage. The reasons for including it here
are twofold. First of all we wanted to illustrate the use of the quad-edge data
structure on a concrete and important application. Secondly, our presentation is
significantly more complete in both the details of the algorithm-which can be
subtle-and its proof.

As one might expect, in the divide-and-conquer-algorithm we start by parti-
tioning our points into two halves, the left half (L) and the right half (R), which
are separated in the x-coordinate. We next recursively compute the Delaunay
ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

General Subdivisions and Voronoi Diagrams l 111

Fig. 20. The structure of the L-R edges.

triangulation of each half. Finally, we need to marry the two half triangulations
into the Delaunay triangulation of the whole set. This recursive decomposition
cannot be used if the number of sites is less than four, since in that case one or
both of L and R would end up with a single site (recall that any subdivision, and
hence any Delaunay diagram, must have at least one edge). Therefore, the two-
and three-site cases must be handled separately.

We now elaborate on this brief description in stages. First of all it is advanta-
geous to start out by sorting our points in increasing x-coordinate. When there
are ties we resolve them by sorting in increasing y-coordinate and throwing away
duplicate points. This makes all future splittings constant time operations. After
splitting in the middle and recursively triangulating L and R, we must consider
the merge step. Note that this may involve deleting some L-L or R-R edges and
will certainly require adding some L-R (or so called cross) edges. By Lemma 7.3,
however, no new L-L or R-R edges will be added.

What is the structure of the cross edges? All these edges must cross a line
parallel to the y-axis and placed at the splitting x value. This establishes a linear
ordering of the cross edges, so we can talk about successive cross edges, the
bottom-most cross edge, etc. The algorithm we are about to present will produce
the cross edges incrementally, in ascending y-order. See Figure 20.

LEMMA 9.1. Any two cross edges adjacent in the y-ordering share a common
vertex. The third side of the triangle they define is either an L-L or an R-R edge.

PROOF. Any two consecutive intersections of a triangulation with a straight
line must belong to the same triangular face. Therefore the two cross edges in
question have one endpoint in common, and the third side of the triangle is fully
to one side or the other of the vertical divider. q

Lemma 9.1 has the following important consequence. Let us call the current
cross edge the base and write its directed variant going from right to left as
bas el. The successor to base 1 will either be an edge going from the left end-
point of base1 to one of the R-neighbors of the right endpoint lying above
base 1, or, symmetrically, it will be an edge from the right endpoint of base 1
to one of the L-neighbors of the left endpoint lying above base 1. In the program
below edges from the left endpoint of base 1 to its candidate L-neighbors will be

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

112 l L. Guibas and J. Stolfi

Fig. 21. The variables lcand,
rcand, and basel.

. j

.

I

Fig. 22. The rising bubble.

held in the variable lcand, and their symmetric counterparts in r cand (see
Figure 21).

We can intuitively view what happens by imagining that a circular bubble
weaves its way in the space between L and R and in so doing gives US the cross
edges. Inductively we have a point-free circle circumscribing the triangle defined
by base1 and the previous cross edge. Consider continuously transforming this
circle into other circles having base1 as a chord but lying further into the half-
plane above bas el. As-we remarked, there is only a single degree of freedom, as
the center of the circle is constrained to lie on the bisector of base1 (see Figure
22). Our circles will be point free for a while, but unless base1 is the upper
ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

General Subdivisions and Voronoi Diagrams l 113

common tangent of L and R, at some point the circumference of our transforming
circle will encounter a new point, belonging either to L or R, giving rise to a new
triangle with a point-free circumcircle. The new L-R edge of this triangle is the
next cross edge determined by the body of the main loop below.

In more detail, edge lcand is computed so as to have as destination the first
L point to be encountered in this process, and rcand the first R point. A final
test chooses the point among these two that would be encountered first. We start
the cross edge iteration by computing the lower common tangent of L and R,
which defines the first cross edge.

The divide-and-conquer algorithm is coded in Figure 9.5. Prose within () is
comments. The program computes the Delaunay triangulation of a point set S
and returns two edges, le and re, which are the counterclockwise convex hull
edge out of the leftmost vertex and the clockwise convex hull edge out of the
rightmost vertex, respectively.

The only geometric primitives we use are the InCircle test and the predicate
CCW(A, B, C), which is true if the points A, B, and C form a counterclockwise-
oriented triangle.’ The CCW test is frequently used to test whether a point X
lies to the right or to the left of the line of a given edge e. These tests are
conveniently expressed by the procedures

PROCEDURE RightOf(X, e]:
RETURN CCW[X, e.Dest, e.Org]

END RightOf.

PROCEDURE LeftOf[X, e]:
RETURN CCW[X, e.Org, e.Dest]

END LeftOf.

The procedure Valid [e] tests whether the edge e is above basel:

Valid[e] = RightOf[e.Dest, base11
= CCW[e.Dest, basel.Dest, basel.Org].

We now elaborate on the program in Figure 23. Recall first that the number
of vertices, edges, and faces in a triangulation are all linearly related. Also, the
lower common tangent computation takes linear time as either ldi or rdi
advances at each step. What about the cost of the lcand computation? We can
account for this loop by charging every iteration to the edge being deleted.
Similarly, iterations of the rcand loop can be charged to deleted edges. The rest
of the body of the main loop requires constant time and may be charged to the

’ The predicate CCW(A, B, C) can be implemented as the test

x.4 Ya 1

I I
x.3 YE 1 4 0
xc Yc 1

and tells us on which side of the line AB the point C lies. It is equivalent to InCircle(A, B, C, D), for

D chosen as the barycenter of triangle ABC.

ACM Transactions o @raphics, Vol. 4, No. 2, April 1985.

114 - L. Guibas and J. Stolfi

PROCEDURE Delaunay [s] RETURNS [le, re]:
IF ISI = 2 THEN

[Let sl, a2 be the two sites, in sorted order. Create an edge a from s I to ~2 :)
a -MakeEdge[]; a.Org + sl; a.Dest+. s2; RETURN [a, a.Sym]

ELSIF ISI = 3 THEN
(Let sl, s2, s 3 be the three sites, in sorted order.)
[Create edges a connecting s 1 to s2 and b connecting a2 to s3 :)
a + MakeEdge [1; b + MakeEdge; Splice [a.Sym, b];
a.Org - sl; a.Dest+ b.Org t ~2; b.Destt ~3;
(Now close the triangle:)
IF CCW[sl, s2, s3] THEN c - Connect(b, a]; RETURN [a, b.Sym]
ELSIF CCW[sl, ~3, s2] THEN c c Connect [b, a]; RETURN [c.Sym, c]
ELSE (The three points are collinear:] RETURN [a, b.Sym] FI

ELSE {(S 1 2 4. Let L and R be the left and right halues of S .)
[Ido, Idi] c Delaunay[L]; [rdi, rdo] t Deldufldy[R];
{Compute the lower common tangent of L and R:)
DO

IF LeftOf[rdi.Org, ldi] THEN ldit ldi.Lnext
ELSIF RightOf[ldi.Org, rdi] THEN rdit rdi.Rprev
ELSE EXIT FI

OD;
ICreate a first cross edge base1 from rdi.Org to ldi.Org:)
base1 +- Connect[rdi.Sym, ldi];
IF ldi.Org = ldo.Org THEN ldo c basel.Sym FI;
IF rdi.Org = rdo.Org THEN rdo t base1 FI;
DO I This is the merge loop.]

{Locate the first L point (lcand.Dest) to be encountered by the rising bubble,)
{and delete L edges out of base 1. Des t that fail the circle test. 1
lcand +- basel.Sym.Onext;
IF Valid[lcand] THEN

WHILE InCircle
[basel.Dest, basel.Org, lcand.Dest, lcand.Onext.Dest]
DO t c lcand.Onext; DeleteEdge[lcand]; lcand t t OD

FI;
{Symmetrically, locate the first R point to be hit, and delete R edges:}
rcand - basel.Oprev;
IF Valid[rcand] THEN

WHILE InCircle
[basel.Dest, basel.Org, rcand.Dest, rcand.Oprev.Dest]
DO t + rcand.Oprev; DeleteEdge[rcand]; rcand c t OD

FI;
IIf both lcand and rcand are inualid, then base1 is the upper common tangent:)
IF NOT Valid[lcand] AND NOT Valid[rcand] THEN EXIT FI;
{The next cross edge is to be connected to either lcand.Dest or rcand.Dest _)
{Zf both are valid, then choose the appropriate one using the InCircle test:)
IF NOT Valid[lcand] OR

(Valid[rcand] AND
InCircle[lcand.Dest, lcand.Org, rcand.Org, rcand.Dest])

THEN {Add cross edge base1 from rcand.Dest to basel.Dest:)
basel- Connect[rcand, basel.Sym]

ELSE [Add cross edge base1 from basel.Org to lcand. Dest:}
base1 c Connect[basel.Sym, lcand.Sym]

FI
OD;
RETURN [ldo, rdo]

FI
END Delaunay.

Fig.23. The divide-and-conquer algorithm.

ACM Transactions on Graphics,Vol. 4, No. 2, Apri11985.

General Subdivisions and Voronoi Diagrams l 115

Fig. 24. A property of the neighbors of
A.

L-L or R-R edge closing the next triangle. This shows that the overall cost of
the merge pass is linear in the size of L and R.

We now formally state the lemmas that prove the correctness of the algorithm.

LEMMA 9.2. Let % be any collection of sites, and consider a particular site A
and a line 1 passing through A. For convenience of terminology, assume that 1 is
horizontal. Let NI, N2, . . . , Nk (k I 1) be some Delaunay neighbors of A in %,
occurring in counterclockwise order from 1 and lying above 1. If X is any point of 1
to the right of A, let I’i denote the portion of the circumcircle (disk) AXNi that is
above 1. Then the sequence (I’i] is unimodal, in the sense that there is some
j, 1 5 j I k, such that for 1 I i < j we have Ti 2 ri+l, while for j 5 i < k we
have I’i C I’i+l.

PROOF. We first show that if Xi denotes the rightmost intersection of the
circumcircle of triangle ANiNi+l, i = 1, 2, . . . , k - 1, with 1, then the sequence of
points X1, X2, . . . , X,-r moves monotonically to the left.

Consider, as in Figure 24, three consecutive Delaunay neighbors Ni, Ni+r, and
Ni+2 of A. The point Ni+2 is not inside the circle ANiNi+l, and points Ni and
Ni+2 are on opposite sides of ANi+l. SO to get to the circle ANi+lNi+z from
ANiN,+, while always passing through A and Ni+,, we must expand on the side
of Ni+27 and therefore we must contract on the side of Ni, where Xi and Xi+1 also
lie. This proves that the Xi move toward A.

To prove the lemma now, note that as long as the Xi are to the right of X, then
X is inside the circumcircle of ANiNi+l, or equivalently, Ni+1 is inside the
circumcircle of ANiX. After the Xi move to the left of X, then Ni+1 is outside the
circumcircle of ANiX. Thus the ri behave as stated. q

LEMMA 9.3. Assume that basel, as computed by the above algorithm, is a
Delaunay edge for L U R, and that the lcand iteration stops with a valid edge.
Then the circumcircle of the triangle defined by 1 c a nd and base 1 is free of other
L points.

PROOF. Recall that the edge lcand is valid if and only if its destination N
lies above base 1. Let X and Y be the origin and destination of base 1. Consider
the point-free circle C that established the Delaunayhood of basel. As in our
earlier discussion, suppose that we “push” this circle upward while constraining
it to pass through X and Y, until it encounters a new point M E L for the first
time (if it encounters two or more such points at the same time, we let M be the
one for which the angle XYM is smallest). The edge YM is then an L Delaunay

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

116 - L. Guibas and J. Stolfi

edge, and in fact a Delaunay edge of L together with any R sites encountered so
far. This implies that YN has not been deleted previously by the algorithm.

We wish to show that M is the same as N, the destination of lcand when the
iteration stops. If there is only one Delaunay neighbor of Y above base 1, then
the iteration will stop right away. To see this, consider N’, defined as the
destination of the edge (YN) Onext. The site N’ is below base1 and outside C,
and therefore outside the circle YXN, so InCircle(Y, X, N, N’) fails.

If there are several Delaunay neighbors of Y above basel, then the lcand
iteration proceeds until the first time that InCircle(Y, X, N, N’) becomes false.
So at this point we know that all current Delaunay neighbors of Y in L that are
above bas el and counterclockwise before N lie outside the circle YXN. The
same is true of the neighbor N’. By the unimodality lemma, Lemma 9.2, this will
also hold for any subsequent neighbors after N’. Therefore the circle YXN has
the smallest extent above base1 among all circles passing through Y, X, and
some L Delaunay neighbor of Y above base 1. This proves that N is the same as
M. III

LEMMA 9.4. Assume that base1 is a Delaunay edge of L U R. The edges
deleted during the lcand iteration are not Delaunay edges of L U R.

PROOF. Let X and Y be the origin and destination of basel. When the
lcand loop starts, we know that lcand (1) is above the line of basel, and (2)
is also the first edge out of Y after base1 . Sym. Therefore, the next edge
lcand. Onext out of Y is either to the left of lcand or below the line XY (or
both). As in the previous lemma, let N and N’ respectively denote the destina-
tions of lcand and lcand. Onext. If the text InCircle(Y, X, N, N’)) succeeds,
then N’ is strictly inside the circle YXN. Now suppose N’ were below basel;
by Lemma 8.3 the pair N, N’ would be a witness to the non-Delaunayhood of
basel, contradicting the assumption. Therefore, N’ too is above basel, and to
the left of lcand. The sites N’ and X lie on the opposite sides of lcand, and
by Lemma 8.3 they establish the non-Delaunayhood of lcand. After lcand is
deleted, it is set to the next edge YN ‘, and properties (1) and (2) are restored;
by induction, the argument applies to each iteration. A symmetric argument
works for the edges deleted in the rcand loop. 0

LEMMA 9.5. After the merge pass is complete, the subdivision is a Delaunay
triangulation for L u R.

PROOF. First, let us show that the subdivision will be a triangulation of
L U R. The cross edge base1 starts with the lower common tangent of
L and R, and at each major iteration it will intersect the separating line at a
higher point. The loop will end with base1 being the upper common tangent of
L and R. The edges on the outer parts of the convex hulls of L and R will never
be deleted and, together with the first and last cross edges, they will constitute
the convex hull of L U R. The interior faces of the subdivision will be either
original faces (triangles) of the Delaunay triangulations of L and R or will be
new triangles delimited by two new L-R edges and an old L-L or R-R edge.

Now we have to show that the triangulation is Delaunay. Edges that are on
the convex hull or are incident to two old triangles all pass the circle test. This
ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

General Subdivisions and Voronoi Diagrams - 117

includes the first cross edge base 1. At each major iteration, we determine 1 c a nd
such that the circumcircle of the triangle determined by base 1 and lcand is
free from L points, and similarly for rcand (Lemma 9.3). The final choice
between 1 cand and r cand ensures that the corresponding circle is free of both
L and R points. This circle is a witness to the Delaunayhood of the triangle
determined by basel, the winner, and the new cross edge. We conclude that all
edges pass the circle test; by Lemma 8.4, the triangulation is Delaunay. 0

These lemmas complete the proof that the algorithm correctly computes the
Delaunay triangulation. The algorithm will work with cocircular sites and other
degenerate cases. When both 1 cand and r cand are equally good, it arbitrarily
favors r cand. In practice, floating-point errors in the computation of the InCircle
test usually interfere with any effort to handle degenerate cases in a consistent
way.

It is worthwhile to comment on a way to view this algorithm as operating in
three-dimensional space, on the lifted images of our sites under the map h
discussed in the proof of Lemma 8.1. These lifted images are points on a convex
surface, and therefore they define a convex polyhedron, corresponding to their
convex hull. The discussion in the proof of Lemma 8.1 has also established that
the “downward” looking faces of this polyhedron are in a one-to-one correspond-
ence with the Delaunay faces of the sites. The upward looking faces of the
polyhedron correspond to triangles of our collection of sites whose circumcircles
enclose all the sites. These are of course the faces of the dual of the furthest point
Voronoi diagram [18] for our collection of sites. Note that when our cross edge
iteration ends, the ascending circle is the half-plane above the upper common
tangent of L and R. The half-plane below this tangent is a circle containing all
the sites. If we now let this circle contract until it hits the first site while always
having as chord the last cross edge, we will have produced the next cross edge of
the dual of the furthest point Voronoi. In fact, if our cross edge iteration is left
to continue, but by using the furthest point versions of L and R and reversing
the sense of the InCircle test, it will compute all the cross edges of this dual and
will cycle back to the lower common tangent of L and R.

From the above discussion it is apparent that our divide-and-conquer algorithm
is computing the convex hull of the lifted images of the sites. It is in fact exactly
the Preparata-Hong [17] agorithm for computing the convex hull of n points in
three dimensions. If the InCircle test is replaced by a “positive volume” test, as
obtained by substituting in .%i (A, B, C, D) the third column by the z coordinates
of the points, then the code given above implements the Preparata-Hong algo-
rithm! The reader may have fun verifying that our expanding circles passing
through a chord become rotating supporting planes around the lifted image of
the chord. Thus we are computing the “sleeve” discussed in [17]. Brown [4] has
observed that a similar correspondence can be obtained by lifting the sites
stereographically onto a sphere.

10. AN INCREMENTAL ALGORITHM

The algorithm of the previous section assumes that all points are known at the
beginning of time. For many applications we are interested in dynamic algo-

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

118 l L. Guibas and J. Stolfi

rithms, which allow us to update our diagrams as new points are added or deleted.
A simple algorithm of this sort was proposed by Green and Sibson 171. We now
proceed to describe this algorithm in detail, with the purpose of further illustrat-
ing the power of our tools.

10.1 Overview of the Algorithm

It will simplify our discussion to assume that our points are known to be strictly
inside some large convex polygon (say a triangle) whose vertices are considered
to be among the given sites. The Delaunay diagram of the sites inserted so far is
thus a triangulation of the interior of this bounding polygon. When a new site X
is given, our first step is to locate the interior triangle of the subdivision
containing X, and add three new edges connecting its vertices to X. The new site
X may happen to fall on some existing edge e; in that case, we delete e, and
connect X to the four vertices of the quadrangular “hole” thus created. If the
new site coincides with a previous one, we ignore it. See Figure 25.

Below we prove that the three or four new edges now incident to X are
guaranteed to be Delaunay edges. However, some of the old edges may now be
incorrect and might have to be replaced. In general, we will be in a situation
where our new point X is surrounded by a collection of triangles defining a star-
shaped polygon around X. The spokes connecting X to this polygon will be
known to be Delaunay edges. The edges on the boundary, however, will be of two
kinds. Some will be confirmed Delaunay edges, while others will be marked as
“suspect.” A suspect edge is one which is not known to pass the circle test defined
in Section 8.

The incremental algorithm proceeds by choosing a suspect edge and applying
the circle test to it. We prove below that if the edge passes the test, it is
guaranteed to be a Delaunay edge and need not be considered further. If it fails,
however, it is swapped, that is, replaced by the other diagonal of its quadrilateral.
In that case the new diagonal can be shown to be Delaunay while the two sides
opposite X become suspect, thus reestablishing the initial situation (see Figure
26). The algorithm terminates when no suspect edges remain.

In order to prove the correctness of the algorithm described above we need a
few lemmas.

LEMMA 10.1. The edges initially made incident to X are Delaunay.

PROOF. Consider the circumcircle C of a Delaunay triangle that contains the
new site (or is adjacent to the edge containing it). For each vertex Y of that
triangle, consider the circle C’ that passes through X and is tangent to C and Y.
That circle is point-free, and it establishes the “Delaunayhood” of the edge
XY. 0

LEMMA 10.2. Any edge made incident to X by swapping is Delaunay. So is any
suspect edge that passes the circle text.

PROOF. Suppose that the edge LN with quadrilateral XLMN was swapped
with the opposite diagonal XM, as in Figure 26. Then X must be the only site
interior to the circle C = LMN. As in Lemma 10.1, we can find a circle contained
in C and passing through X and M; this circle is point-free and proves XM is a
ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

General Subdivisions and Voronoi Diagrams l 119

Fig. 25. Preliminary insertion of a new site.

Fig. 26. Swapping a suspect edge.

Delaunay edge. If the edge LN passed the circle test, then X is outside C; C is
still point-free and proves LN to be a Delaunay edge. 0

LEMMA 10.3. No edge is tested more than once (for each new site).

PROOF. An edge e becomes suspect if and only if there is exactly one edge e’
between it and the point X, and e’ is swapped. Since the edges introduced by the
swapping rule are always incident to X, this situation can occur at most once for
each site insertion. 0

In fact, the same argument shows that if a suspect edge e passes the circle test,
the algorithm will never consider again any edge in the angular sector with vertex
X and spanned by e.

LEMMA 10.4. Once all suspect edges have been checked, all edges in the
triangulation pass the circle test.

PROOF. From Lemma 10.2 we know that all new edges incident to X are
Delaunay edges and therefore they pass the circle test. Any old edge either
became suspect and passed the test at some later time or never became suspect
and was known to pass the test just before X was inserted. In either case, its

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

120 - L. Guibas and J. Stolfi

quadrilateral did not change (otherwise it. would have become suspect) since that
time, and therefore it still satisfies the edge test. 0

The above lemmas imply that the incremental algorithm terminates and
correctly computes the updated Delaunay triangulation.

10.2 Coding the Algorithm

If at each iteration the next, edge to be tested is chosen in a consistent way, the
suspect edges will always form a continuous chain on the perimeter of the star-
shaped polygon surrounding X. Therefore, if we know the first edge in that chain,
we can get all the others by following the pointers of the quad-edge data structure.
The following code implements this idea in more detail. We assume the procedure
coca t e returns an edge e of the current Delaunay diagram such that the given
point X is either on e or strictly inside the left face of e.

PROCEDURE InsertSite[X]:
e t Locate[X];
IF X = e.Org OR X = e.Dest THEN IIgmre it:) RETURN
ELSIF X is on e THEN t- e.Oprev; DeleteEdge[e]; e +-t FI;
{Connect X to vertices around it.]
base t MakeEdge[];
first- e.Org; base.Org +- first; base.Dest+ X;
Splice[base, e];
REPEAT

base +- Connect[e, base.Sym]; e c- base.Oprev
UNTIL e.Dest = first;
e t base.Oprev;
{The suspect edges (from top to bottom) are e (. Onext _ Lprev)k for k = 0, 1,)
(Thebottomedgehas .Org = first.}
DO

t +- e.Oprev;
IF RightOf [t.Dest, e] AND InCircle[e.Org, t.Dest, e.Dest, X]
THEN Swap[e]; e t t
ELSIF e.Org = first THEN (No moresuspectedges.) RETURN
ELSE {Pop a suspect edge:) e +- e. Onext . Lprev FI

OD
END InsertSite.

The main loop of this algorithm is in some aspects similar to the merge step
of the one given in Section 9. Consider the set L as being reduced to the single
point X, and R as including all the previous sites. The “cross edges” then are the
“spokes,” the new edges incident to X; instead of being linearly ordered along
the separating line, they are cyclically ordered around X. The edge e here plays
a role similar to that of rcand, and lcand is always invalid (nonexistent, in
fact). The equivalent of base1 is the last spoke added, that is, e . Onext. The
successively found rcands, as we proceed counterclockwise around the new
point, will correspond to the forgotten edges of the previous algorithm. Note,
however, that the incremental algorithm “connects ahead” after each deletion,
while the algorithm of the previous section would connect all cross edges in strict
counterclockwise order.
ACM Transactions on Graphics, Vol. 4, No. 2, April 1985

General Subdivisions and Voronoi Diagrams . 121

Something quite general is happening here. We have a method with which,
given any two Delaunay triangulations L and R (not necessarily linearly sepa-
rated) and a cross edge between them, we are able to find the next cross edge (if
one exists) on a specified side of the original one. Thus we have another way to
look at Kirkpatrick’s [lo] linear time merge of two arbitrary Voronoi subdivisions.

The above arguments show that it is possible to insert a new site into the
Delaunay structure in total time O(k), if h updates need to be made. Unfortunately
we know of no O(k) algorithm for handling the deletion of a site that leaves an
untriangulated face of k sides. Our best algorithm has asymptotic complexity
O(k logk), which in the worst case k = e(n) is as bad as rebuilding the subdivision
from scratch. We do not know of a linear algorithm even if we assume that the
deletion of the site leaves a convex face. We regard the handling of deletions as
the major open problem in this area.

10.3 Locating a Point in the Delaunay

A suitable algorithm to use for the Locate procedure is the “walking” method
described by Green and Sibson [7]. The idea is to start at some arbitrary place
on the subdivision and then move one edge at a time in the general direction of
the point X. More precisely, we have

PROCEDURE Locate[X] RETURNS [e]:
e t some edge;
DO

IF X = e.Org OR X = e.Dest THEN RETURN e
ELSIF RightOf[X, e] THEN e c e.Sym
ELSIF NOT RightOf[X, e.Onext] THEN e t e.Onext
ELSIF NOT RightOf[X, e.Dprev] THEN e t e.Dprev
ELSE RETURN e FI

OD
END Locate.

10.4 Analysis

The Lot ate procedure given above terminates in 0 (n) time for a triangulation
with n vertices. From this and Lemma 10.4 we derive an O(n) worst-case bound
for the cost of the insertion of the nth site. Point location methods that are
asymptotically faster (in the worst case) have been described in the literature
[ll], but they would not improve the worst-case cost of site insertion and are
probably too complex to be of practical use here. Moreover, those methods
generally assume that subdivision is fixed, so the O(n) cost of building the
associated data structures can be spread out over many queries.

A more careful analysis shows that except for point location, the algorithm
only does the work that needs to be done: it deletes only edges that have to be
deleted and inserts only the edges that have to be inserted. If the updated
Delaunay has k edges incident to the new site X, then the running time (exclusive
of point location) will be 8(k). The algorithm is therefore asymptotically optimal
for the Delaunay update problem.

It is possible to select n sites in such a way that the incremental algorithm
does 8(k) work to insert the kth site in the diagram of the preceding k - 1 ones,
for all k. The total time for the insertion of all n sites is therefore 8(n2) in the

ACM Transactions cm Graphics, Vol. 4, No. 2, April 1985.

122 l L. Guibas and J. Stolfi

worst case. In spite of this, the simplicity of the incremental algorithm may make
it competitive with the divide-and-conquer method even in the cases where the
sites are all given in advance, and in most practical situations its performance
can be quite acceptable. In particular, if the sites are independently sampled
from a reasonably uniform probability distribution, the expected time for each
insertion is small and roughly independent of n. The running time is then
dominated by point location. For the simple walking algorithm, the expected
time in this case will be roughly O(n’/‘) per site, or O(n3”) in total. Furthermore,
in many practical applications successive sites tend to be close to each other;
therefore, if the Locate procedure uses as its starting point the edge returned
in the previous call, each insertion may take roughly constant time, on the
average. In such cases the incremental method may beat the divide-and-conquer
one even for thousands of sites [7, 141.

11. CONCLUSIONS

In this paper we have presented a new data structure for planar subdivisions that
simultaneously represents the subdivision, its dual, and its mirror image. Our
quad-edge structure is both general (it works for subdivisions on any two-
dimensional manifold) and space efficient. We have shown that two topological
operations, both simple to implement, suffice to build and dismantle any such
structure.

We have also shown how by using the quad-edge structure and the InCircle
primitive, we can get compact and efficient Voronoi/Delaunay algorithms. The
InCircle test is shown to be of value both for implementing and reasoning about
such algorithms. The code for these algorithms is sufficiently simple that we
have practically given all of it in this paper.

REFERENCES

1. BAUMGART, B. G. A polyhedron representation for computer vision. In 1975 National Computer
Con/erence. AFIPS Conference Proceedings, vol. 44. AFIPS Press, Arlington, Va., 1975, pp. 589-
596.

2. BOOTS, B. N. Delaunay triangles: An alternative approach to point pattern analysis. In Proc.
Assoc. Am. Geogr. 6 (1974), 26-29 (as cited by [20]).

3. BRAID, I. C., HILLYARD, R. C., AND STROIJD, I. A. Stepwise construction of polyhedra in
geometric modeling. In Mathematical Methods in Computer Graphics and Design, K. W. Brodlie,
Ed. Academic Press, London, 1980, pp. 123-141.

4. BROWN, K. Q. Voronoi diagrams from convex hulls. Zn/. Proc. Lett. 9, 5 (1979), 223-228.
5. DAMPHOUSSE, P. Cartographie topologique-La classification des cartes cellulaires. Unpub-

lished Rep., Univ. of Tours, France.
6. EVEN, S. Algorithmic Combinatorics. Macmillan, N.Y., 1973.
7. GREEN, P. J., AND SIBSON, R. Computing Dirichlet tesselation in the plane. Comput. J. 21, 2

(1977), 168173.
8. HARARY, F. Graph Theory. Addision-Wesley, Reading, Mass., 1972, p. 105.
9. IYANAGA, S., AND KAWADA, Y. Encyclopedic Dictionary of Mathematics, 2nd. ed. MIT Press,

Cambridge, Mass., 1968.
10. KIRKPATRICK, D. Efficient computation of continuous skeletons. In Proceedings of the 20th

Annual IEEE Symposium on Foundations of Computer Science (San Juan, Puerto Rico, Oct.
1979), IEEE, New York, pp. 18-27.

11. KIRKPATRICK, D. Optimal search in planar subdivisions. Tech. Rep. 81-13, Dep. of Computer
Science, Univ. of British Columbia, 1981.

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

General Subdivisions and Voronoi Diagrams - 123

12. KNUTH, D. E. The Art of Computer Programming, uol. I: Fundamental Algorithms, 2nd. ed.
Addision-Wesley, Reading, Mass., 1975.

13. LEE, D. T. Proximity and reachability in the plane. Tech. Rep. R-831, Coordinated Science
Lab., Univ. of Illinois, Urbana, Ill., 1978.

14. LEE, D. T., AND SCHACHTER, B. J. Two algorithms for constructing the Delaunay triangulation.
Int. J. Comput. hf. Sci. 9, 3 (1980), 219-242.

15. MANTYLA, M. J., AND SULONEN, R. GWB: A solid modeler with Euler operators. IEEE Comput.
Graphics Appl. 2, 5 (Sept. 1982), 17-31.

16. MULLER, D. E., AND PREPARATA, F. P. Finding the intersection of two convex polyhedra.
Theor. Comput. Sci. 7 (1978), 217-236.

17. PREPARATA, F. P., AND HONG, S. J. Convex hulls of finite sets of points in two and three
dimensions. Commun. ACM 20 (1977), 87-93.

18. SHAMOS, M. I. Computational geometry. Ph.D. Dissertation, Yale University, New Haven,
Conn., 1977.

19. SHAMOS, M. I., AND HOEY, D. Closest-point problems. In Proceedings of the 16th Annual IEEE
Symposium on Foundations of Computer Science (Berkeley, Calif., Oct. 1975), IEEE, New York,
pp. 151-162.

20. WATSON, D. F. Computing the n-dimensional Delaunay tesselation with application to Voronoi
polytopes. Comput J. 24,2 (1981), 167-172.

Received March 1983; accepted March 1984

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

