
FUNDAMENTALS

HANG SI

Contents

1. Mathematical Backgrounds 1
1.1. Convex sets, convex hulls 1
1.2. Simplicial complexes, triangulations 3
1.3. Planar graphs, Euler’s formula 5
2. Algorithm Backgrounds 8
2.1. Algorithmic foundations 9
2.2. Incremental construction 11
2.3. Randomized algorithms 15
Exercises 18
References 19

In order to well-understood the discussion and the analysis of algorithms in this chap-
ter, it is necessary to understand the fundamental geometry and combinatorics of trian-
gulations. We will first present the basic and related materials in this chapter.

1. Mathematical Backgrounds

1.1. Convex sets, convex hulls.

1.1.1. Linear, affine, and convex combinations. The space Rd is a vector space. A linear
subspace of Rd is closed under addition of vectors and under multiplication of (scalar)
real numbers. For example, the linear subspaces of R2 are the origin 0, all lines passing
through origin, and R2 itself.

Basic geometric objects are points, lines, planes and so forth, which are affine sub-
spaces, also called flats. In an affine subspaces, lines are not passing through 0. An
affine subspace of Rd has the form x + L where x is some vector and L is a subspace of
Rd. Thus non-empty affine subspaces are the translates of linear subspaces.

Let a1, a2, . . ., an be points in Rd, and α1, α2, . . ., αn be (scalar) real value in R,
then a linear combination of a1, a2, . . ., an is a point:

α1a1 + α2a2 + · · ·+ αnan ∈ Rd.
In particular, it is

• an affine combination if
∑n

i=1 αi = 1, or
• a conical combination if αi ≥ 0, ∀i, or
• a convex combination if

∑n
i=1 αi = 1, and αi ≥ 0, ∀i.

1

2 HANG SI

The set of all linear combination of a1, a2, . . ., an is a linear subspace of Rd. The set
of all affine combination of a1, a2, . . ., an is an affine subspace of Rd−1. It is also called
the affine span. The affine hull of a set X ⊂ Rd−1, denoted as aff(X), is the intersection
of all affine span of Rd containing X. The dimension of aff(X) is the dimension of the
corresponding linear subspace. A set of k+1 points a0, ...,ak ∈ Rd is affinely independent
if its affine hull has dimension k. Affine subspaces of dimension 0, 1, 2, and d− 1 in Rd
are called points, lines, planes, and hyperplanes, respectively.

1.1.2. Convex set. A point set K ⊆ Rd is convex if with any two points x,y ∈ K it also
contains the straight line segment [x,y] = {λx + (1− λ)y : 0 ≤ λ ≤ 1} between them.

Figure 1. A non-convex (left) and a convex set (right).

Given two convex sets X and Y , it is easy to show that there intersection X ∩ Y is
also a convex set, which may be ∅. Indeed, this is true for arbitrary number of convex
sets. For any family {Xi}, i ∈ I of convex sets, the intersection

⋂
i∈I Xi is also convex.

1.1.3. Convex hull. Given an arbitrary not necessary convex set X ⊆ Rd, there may
exist many convex sets that contain X. The convex hull of X, denoted as conv(X), is
the smallest convex set containing X.

There are many ways to define the convex hull. The following two definitions are
equivalent. The convex hull of a set X is the convex combination of all points of X, i.e.,

conv(X) =

{
n∑

i=1

aiai

∣∣∣ ai ∈ X, ai ∈ R, ai ≥ 0,
n∑

i=1

ai = 1

}
.

It is also the intersection of all convex sets that contains X, i.e.,

conv(X) =
⋂
{C |C is a convex set, and X ⊆ C}.

Let V be a finite set of k+ 1 points. The affine hull of V , aff(V), is the smallest affine
subspace that contains V , i.e.,

aff(V) =

{
k∑

i=0

αivi

∣∣∣ vi ∈ V, αi ∈ R,
k∑

i=0

αi = 1

}
.

The dimension of aff(V) is the dimension of the corresponding linear subspace. A set of
k + 1 points v0, ...,vk ∈ Rd is affinely independent if its affine hull has dimension k.

The dimension of the convex hull K = conv(X), dim(K), is the smallest affine sub-
space that contains K.

FUNDAMENTALS 3

1.2. Simplicial complexes, triangulations. We use simpical complex as the funda-
mental tool to model geometric shapes and spaces. A complex is essentially a collection
of certain types of basic elements satisfying some properties (more precise form will fol-
low later). In the case of simplicial complex, these basic elements are simplices. Because
of their combinatorial nature, simplical complexes are perfect data structure for geomet-
ric modelling algorithms. We first introduce the simplices and simplical complex in a
geometric setting. Then we show that we can also consider it more abstractly (which
makes the concepts more powerful in practice).

1.2.1. Geometric simplicial complexes. Recall that a set of points {p1, · · · ,pn} ⊆ Rd is
affinely independent if

∑n
i=1 αipi = 0 implies that αi = 0 for all i.

A geometric k-simplex σ in Rd is the convex hull of a collection of k + 1 affinely
independent points in Rd. The dimension of σ is dim(σ) = k. For example, the (−1)-
simplex is the empty set (∅), a 0-simplex is a vertex (or point), a 1-simplex is an edge,
a 2-simplex is a triangle, and a 3-simplex is a tetrahedron, see Figure 2.

0 321
Figure 2. From left to right are a 0-simplex (a point), a 1-simplex (an
edge), a 2-simplex (a triangle), and a 3-simplex (a tetrahedron).

A face τ of σ is the convex hull of any subset of the vertices of σ. It is again a simplex.
τ = ∅ and τ = σ are the two trivial faces of σ, all others are proper faces of σ. We write
τ ≤ σ or τ < σ if τ is a face or a proper face of σ. The number of l-faces of σ is equal
to the number of ways we can choose l + 1 from k + 1 points, which is

(
k+1
l+1

)
. The total

number of faces is
k∑

l=−1

(
k + 1

l + 1

)
= 2k+1.

The union of all proper faces of a simplex σ is called the boundary bd(σ) of σ. The
interior int(σ) of σ is σ − bd(σ), see Figure 3. Note that a point (a 0-simplex) has no
proper face, i.e., the boundary of a point is ∅. Therefore the interior of a point is the
point itself.

vertex (0−face)

boundary

interior

edge (1−face)

Figure 3. The boundary and interior of a 2-simplex (a triangle).

4 HANG SI

A geometric simplicial complex K in Rd is a finite collection of simplices, such that
any two simplices are either disjoint or meet in a common face which is also in K. More
formally,

(i) any face of a simplex σ ∈ K is also in K, and
(ii) the intersection of any two simplices σ, τ ∈ K is a face of both σ and τ .

The first property implies ∅ ∈ K. The second property implies that any two different
simplices in K have disjoint interiors, i.e., int(σ)∩ int(τ) = ∅. The dimension dim(K) of
K is the largest dimension of a simplex of K. The vertex set vert(K) of K is the set of
all vertices of K. Without the second property, K is an abstract simplical complex. Fig-
ure ?? illustrates a 3-dimensional geometric simplical complex and an abstract simplical
complex, respectively.

A subcomplex is a subset of K that is a simplicial complex itself. Observe that every
subset of a simplicial complex satisfies Condition (ii). To enforce Condition (i), we
add faces and simplices to the subset. The closure of a subset L ⊂ K is the smallest
subcomplex that contains L,

Cl L = {τ ∈ K | τ ∈ L}.
A particular subcomplex is the i-skeleton K(i) of K, which consists of all simplices σ ∈ K
whose dimension is i or less. Hence K(0) = vert(K) ∪ ∅.

We use special subsets to talk about the local structure of a simplical complex. These
subsets may or may not be closed. The star of a complex τ consists of all simplices that
contain τ , and the link consists of all faces of simplices in the star that do not intersect
τ , i.e.,

St τ = {σ ∈ K | τ ≤ σ}
Lk τ = {σ ∈ Cl Stτ | τ ∩ σ = ∅}

Figure 4 illustrates these two definitions. Note that the star of τ is not a sub complex
(check it), while the link of τ is (validate it).

Vert

0

A

A

Figure 4. Star and link of a vertex. Left: the solid edges and the shaded
triangles belong to the star of the solid vertex. Right: the solid edges
and vertices belong to the link of the hollow vertex.

1.2.2. Underlying spaces, triangulations. Let K be a simplicial complex. The underlying
space |K| of K is the union of all simplices of K, i.e., |K| =

⋃
σ∈K σ, see Fig. 5 for

examples. Note that the underlying space of any (geometric) simplical complex is a
geometric domain (such as a polygon in the plane or a polyhedron in 3d). This domain
consists of a point set which are from the simplices of the given simplicial complex.

FUNDAMENTALS 5

Figure 5. A simplicial complex (left) and its underlying space (right).

We can give each simplex its natural topology as a subspace of Rd. We can then give
|K| a natural topology defined as: a subset A of |K| is closed iff A ∩ σ is closed for any
σ ∈ K. Alternatively, if K is finite, since |K| is embedded, we can consider the subspace
topology on K induced from Rd. Note that these two topologies are the same only if K is
finite. Otherwise, the first one is finer and more general than the second one. However,
in this class, we will talk about only finite simplicial complexes. Hence from now on
we consider the underlying space |K| of any finite simplicial complex equipped with the
natural induced homology form Rd (where K embeds into)

There are many possible simplicial complexes that have the same underlying space.
A simplicial complex gives a combinatorial structure on its underlying space. It is then
a triangulation of that space. We will use this idea to define triangulations of geometric
objects, such as point sets and polygonal domains.

Let S be a finite point set in the plane, a triangulation of S is a 2-dimensional simplical
complex T such that

(i) the vertices of T are in S; and
(ii) the underlying space |T | is the convex hull of S.

Figure 1.2.2 shows some triangulations of a point set. Note a triangulation does not
need to use all vertices of the point set.

1.2.3. Abstract simplicial complexes. ...

1.3. Planar graphs, Euler’s formula. A graph G = (V,E) is a set V of vertices, and
a set E of edges, each a pair of vertices of V . There are many drawings of a graph in
the plane, some with and some without crossings. As illustrated in 7. A graph is planar
if it has an embedding in the plane without crossing edges. Only graphs with relatively
few edges can be drawn without crossings in the plane.

Planar graphs have applications in circuit layout and are helpful in displaying graph-
ical data such as program flow charts, organizational charts, and scheduling conflicts.

A two-dimensional triangulation is a planar graph. Theory of planar graphs are par-
ticular important to study complexity of triangulations. In this section, we introduce
the famous Euler’s formula for planar graphs.

A graph is simple if every edge has two distinct vertices and no two edges have the
same vertices. A simple graph is connected if there is a path (a sequence of edges) that
connecting every pair of its vertices. The smallest connect graph are trees, which are
characterised by having a unique simple path between every pair of vertices. Removing

6 HANG SI

S conv(S) T1

T2 T3 T4

Figure 6. A 2d point set S, the convex hull conv(S), and different
triangulations T1, . . . , T4 of S.

any one edge disconnects the graph. A spanning tree of G = (V,E) is a tree (V, T) with
T ⊂ E. It has the same vertex set as the graph and uses a minimal set of edges necessary
to be connected. A graph is connected if and only if it has a spanning tree.

Figure 7. From left to right: a drawing that is not an embedding, and
embedding with one curved edge, and a straight-line embedding.

Let G = (V,E) be a planar graph. It decomposes the plane into a set of regions, which
are called faces of G. Let v, e, and f denote the number of vertices, edges, and faces of
G. Euler formula is a linear relation between these numbers.

Theorem 1.1 (Euler Formula). Every connected planar graph G = (V,E) satisfies

v − e+ f = 2.

This formula is well-known as the Euler formula for planar graphs and convex 3d
polytopes. There are plenty of proofs, see a collection of different proofs of this formula

FUNDAMENTALS 7

by D. Eppstein’s “Geometry Junkyard” 1. Here we show a proof based on the dual graph
and spanning trees.

Proof. Let G = (V,E) be a connected planar graph. Define the dual graph G∗ = (V ∗, E∗)
of G, such that every vertex in V ∗ corresponds to a face of G, and every edge in E∗

corresponds to two adjacent faces of G. Let F be the set of faces of G, V ∗ and F are
bijective, and E∗ and E are bijective, see Figure 8.

Now each plane angle is formed by two edges, and each edge appears in four plane angles.
It follows that ρ = 2k, so (3) may be interpreted as a variant of (1) and can indeed be
seen as a precursor of Euler’s formula.

We come to Euler. His formula makes its first appearance in a letter to Goldbach, 14
November 1750 [8]. Maybe in the same year Euler submitted a corresponding note to
the Petersburg Academy. It appeared in the Academy’s Proceedings of 1752/53 which
were published only in 1758. Here is what Euler had to say: Consider any polyhedron,
let S be the number of its solid angles, H be the number of its “hedra” (i.e., facets),
and A be the number of its “acies” (i.e., edges). Then S + H = A + 2. Voilà! By the
way, Euler seems to be the first to speak about the edges of a polyhedron.

T

T

Fig. 3

Here is a charming proof of Euler’s formula, taken from David Eppstein’s “geometry
junkyard” [3]: Consider the 1-skeleton Γ of P (a planar graph) and in the same figure
(Fig. 3) the 1-skeleton Γ̂ of the “dual” P̂ of P . Let T be a spanning tree of Γ. T does not
contain any cycles, so it does not disconnect the plane. Since T is maximal, it follows
that there is a tree T̂ ⊂ Γ̂ such that each edge of P resp. P̂ appears either in T or
in T̂ . The vertices of T are the vertices of P . So T has f0 vertices and k := f0 − 1
edges. Similarly, the vertices of T̂ correspond to the facets of P , so T̂ has f2 vertices
and k̂ := f2 − 1 edges. Since k + k̂ = f1, formula (2) follows.

One of the pioneering figures in the higher-dimensional realm was the Swiss mathemati-
cian Ludwig Schläfli (1814–1895). He was less than well understood at his time, but
anyway, in his “Theorie der vielfachen Kontinuität” (written 1850–1852, printed only in
1901 [10]) he stated the following theorem, nowadays called the Euler-Poincaré relation:

Theorem For every d-dimensional convex polytope one has

f0 − f1 + . . . + (−1)d−1fd−1 = 1 − (−1)d. (4)

The first full proof of this theorem was given by Poincaré, as a consequence of his deve-
lopment of homology theory. The elementary “Ansatz” of Schläfli was only completed
by Bruggesser and Mani [1] in 1969. It uses the method of “shelling”, an induction
procedure adding facets to the boundary 1-by-1.

3

Figure 8. A proof of Euler formula using dual graph and spanning trees
(Figure from D. Eppstein).

Choose any spanning tree T of G. It has v vertices, and v−1 edges. The dual edges of
(G−T)∗ is also a spanning tree of G∗. The two spanning trees together have v−1+f−1
edges, i.e., v − 1 + f − 1 = e, which the above formula follows. �

Euler formula is a topological and combinatorial property of that graph. It can be
used to show many interesting properties of planar graphs as well as three-dimensional
convex polytopes.

A triangulation is a planar graph, but it may not be maximally connected. The face
outside the convex hull of this triangulation is a k-polygon, and k ≥ 3. Using the Euler
formula, we can get upper bounds on the number of edges and faces of a triangulation
in terms of the number of vertices of its vertex set.

Let n, e, and f be the number of vertices, edges, and triangles of a triangulation T of
a point set S. In a triangulation T , every triangle have three edges, every interior edge
is shared by two faces, and every convex hull edge is shared by one face, we then have:

3f = 2e− k,
where k is the number of edges on the convex hull of T . Since k ≥ 0, then,

3f ≤ 2e.

1https://www.ics.uci.edu/~eppstein/junkyard/euler/

8 HANG SI

Using the Euler formula and the above inequality, we can bound the total number of
edges and faces of T , which are

e ≤ 3n− 6,
f ≤ 2n− 4.

The degree (or valency) of a vertex u in a planar graph G is the number of edges at
this vertex. Every edge of G has two distinct vertices (endpoints). The sum of vertex
degrees is twice the number of edges, which must less than 6n−12. It follows that every
planar graph has a vertex whose degree is less than 6.

If a planar graph is not connected, i.e., it has more than one connected component.
The Euler formula does not hold anymore. In general, the Euler characteristic of a
d-dimensional simplical complex K is the alternating sum of the number of simplices

χ = s0 − s1 + s2 − · · ·+ (−1)dsd,

where d is the dimension of K and si is the number of i-simplices in K. It is common to
omit the (−1)− simplex from the sum.

Let K be a two-dimensional simplicial complex, χ = v − e + f . We have seen that
for any simply connected planar graph, χ = 2. However, if a planar graph is not simply
connected, i.e., it has more than one connected component, then the right hand side of
the Euler formula is not necessarily 2 anymore.

2. Algorithm Backgrounds

An algorithm is an explicit, precise, unambiguous, mechanically-executable sequence
of elementary instructions. It is not enough to write down algorithms. It is important
to show: correctness, analysis of runtime, memory usage, etc.

Here are some very nice resources:

• Thomas Cormen, Charles Leiserson, Ron Rivest, and Cliff Stein. Introduction
to Algorithms, third edition. MIT Press/McGraw-Hill, 2009.
• Jeff Erickson: Lecture notes on Algorithms, http://jeffe.cs.illinois.edu/
teaching/algorithms.
• Eric Lehman, F. Thomson Leighton, and Albert R. Meyer. Mathematics for

Computer Science, unpublished lecture notes, most recent revision January 2013.
http://opendatastructures.org/LLM.pdf

Computational geometry emerged from the field of algorithms design and analysis in
the late 1970s. It has grown into a recognized discipline with its own journals, con-
ferences, and a large community of active researchers. The success of the field as a
research discipline can on the one hand be explained from the beauty of the problems
studied and the solutions obtained, and, on the other hand, by the many application
domains?computer graphics, geographic information systems (GIS), robotics, and oth-
ers?in which geometric algorithms play a fundamental role.

• H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, Hei-
delberg, Germany, 1987.
• Mark de Berg Otfried Cheong Marc van Kreveld Mark Overmars, Computa-

tional Geometry, Algorithms and Applications, Third Edition, Springer-Verlag
Berlin Heidelberg, Germany, 2008, 2000, 1997.

FUNDAMENTALS 9

2.1. Algorithmic foundations.

2.1.1. A Computational model. A commonly-used (and simple) computational model is
the random access machine (RAM) model. It models a single-processor computer with a
random access memory. A RAM consists of a read-only input tape, a write-only output
tape, a program and a (random acess) memory. The memory consists of registers each
capable of holding a real number of arbitrary precision. There is also no upper bound on
the memory size. All computations take place in the processor. A RAM can access (read
or write) any register in the memory in one time unit when it has the correct address of
that register.

The following operations on real numbers can be done in unit time by a random access
machine:

• Arithmetic operations, ...
• Comparisons
• Indirect access

2.1.2. Asymptotic notations. To analysis an algorithm requires the evaluation/estimation
of its runtime and the amount of memory used.

A simple and generic way to analyze algorithms is to use a mathematical function f
related to the size n of the inputs of the algorithm, where for instance, n is the number
of points to be inserted in the triangulation.

Finding the exact value of f(n) might be very difficult or even impossible. However,
we are not usually interested in this value, but rather a rough estimate. For example,
the question like “how does the running time scale with the size of the input?”. This
is called asymptotic analysis, and the idea is that we will ignore low-order terms and
constant factors, focusing on the shape of the running time curve.

Asymptotic notation is a shorthand used to give a quick measure of the behavior of a
function f(n) as n grows large. We typically use n to denote the size of input, and T (n)
to denote the running time of our algorithm on an input of size n

Several ways of quantifying this value exist. The usual notations are f(n) = Θ(g(n)),
or Ω(g(n)), or O(g(n)), or o(g(n)).

• (Big Oh): T (n) ∈ O(f((n)) if there exists constants c > 0, n0 > 0, such that
T (n) ≤ cf(n) for all n > n0.

Informally, we can view this as “T (n) is proportional to f(n), or better, as n
gets large.” For example, 3n2 + 17 ∈ O(n3). Obviously, 3n2 − 2n ∈ O(n2). Now
let us show that 3n2 + 17 ∈ O(n2), we need to show that

3n2 + 17 < cn2,

for n > n0. We pick the constant c = 3 + 17 = 20, and n0 = 1, then for n > n0,
we have 3n2 + 17 < 3n2 + 17n2 = 20n2.

Big Oh is the most frequently used asymptotic notation. It is used to give
an upper bound on the growth of a function, such as the running time of an
algorithm.
• T (n) ∈ Ω(f(n)) if there exists c, n0 > 0 such that T (n) ≥ cf(n) for all n > n0.

Informally, we can view this as “T (n) is proportional to f(n), or worse, as n
gets large.” For example, 3n3 ∈ Ω(n2). Obviously, 3n2 + 17 ∈ Ω(n2) by choosing

10 HANG SI

c = 1, n0 = 1. Let us show that 3n2 − 2n ∈ Ω(n2). We need to show that

0 < cn2 < 3n2 − 2n,

for all n > n0. If c < 3− 2
n , n > 1, the above inequality holds. We could choose

c = 1.0, n0 = 1, then for n > n0, we have n2 < 3n2 − 2n. In fact, choose any
constant 0 < c < 1 and n0 = 1 will be a proof.

This notation is especially useful for lower bounds.
• T (n) ∈ Θ(f(n)) if T (n) ∈ O(f(n)) and T (n) ∈ Ω(f(n)).

Informally we can view this as “T(n) is proportional to f(n) as n gets large.”
For example, both 3n2 − 2n and 3n2 + 17 are in Θ(n2).

This notation is used to express an asymptotically tight bound.
• T (n) ∈ o(f(n)) if for all constants c > 0, there exists n0 > 0 such that T (n) <
cf(n) for all n > n0.

Very informally, O is like ≤, Ω is like ≥, Θ is like =, and o is like <. Although these
notations, e.g, O(f(n)) represents a set of functions, we usually write T (n) = O(f(n))
to mean that T (n) is in O(f(n)).

2.1.3. Complexity of algorithms. Suppose X is an algorithm (to solve a problem). The
running time and memory usage are the two main factors, which decide the efficiency of
X. The running time is measured by counting the key operations such as the comparisons
in sorting algorithms. The memory usage is measured by the maximum memory required
by the algorithm.

There are two types of running time analysis of algorithms: worst case and expected
case.

For the worst case analysis, we seek the maximum amount of time used by the algo-
rithm for all possible inputs.

For the expected analysis we normally assume a certain probabilistic distribution on
the input and study the performance of the algorithm for any input drawn from the
distribution.

Mostly, we are interested in the asymptotic analysis, i.e., the behavior of the algorithm
as the input size approaches infinity.

Let A be an algorithm. The time complexity of A is O(f(n)) if there exists a constant
c such that for every integer n ≥ 0, the running time of A is at most c ·f(n) for all input
of size n.

2.1.4. Complexity of problems. The time complexity of a know algorithm for a problem
gives us the information about at most how much time we need to solve the problem.
We would also like to know the minimum amount of time we need to solve the problem.

A function u(n) is an upper bound on the time complexity of a problem P if there is
an algorithm A solving P such that the running time of A is u(n). A function l(n) its a
lower bound on the time complexity of a problem P if any algorithm solving P has time
complexity at least l(n).

For example, the lower bound for sorting is Ω(n log n). It is proven by the decision tree
model of computing, in which only comparisons can be performed. It has been proven
that the complexity of the convex hull problem in plane is the same as sorting [?].

FUNDAMENTALS 11

2.2. Incremental construction. In this section, we introduce a common and simple
approach for building geometric structures such as convex hulls as well as triangulations.
It is called incremental construction. In such an algorithm objects are added one at a
time and the structure is updated with each new insertion.

We introduce the basic framework of incremental construction through a basic geom-
etry problem – construction of the convex hull of a given point set in the plane.

2.2.1. Convex hull construction. Recall that the convex hull of a (not necessarily con-
vex) set of points K is the smallest convex set that contains the points. It is denoted
as conv(K). The convex hull problem is: Given a finite set of points S in Rd, return
conv(S). In this section, we consider the convex hull problem in the plane.

A polygon is a planar figure that is described by a finite number of straight line
segments connected to form a closed path. In general, the path of a polygon may cross
itself. A simple polygon is a polygon whose path does not intersect itself.

The Jordan curve Theorem [?, Jordan 1887] shows that any simple polygon divides
the plane into two regions, the region inside it and the region outside it. The convex
hull of a two-dimensional point set is a simple polygon.

The line segments of a simple polygon are called edges, and two edges meet at a vertex.
A simple polygon with n vertices has n edges. It is also called an n-gon. The graph of
a simple polygon is a cyclic sequence of vertices (or edges). It can be represented by a
doubly-linked data structure.

There are plenty of methods for constructing convex hulls, see, e.g., [2, Chapter 19].
We will introduce an incremental algorithm. The basic idea of an incremental convex
hull algorithm is that points (objects) are added one at a time, and the convex hull
(geometric structure) is updated with each new insertion.

The input of this algorithm is a set S of n vertices in the plane. For simplifying our
describing the basic scheme of the incremental algorithm, we assume the input point set
satisfies a condition: no three of its points lie on a common line. Any point set satisfies
this condition is said in general position. This assumption avoids lots of degenerated
cases (or special cases), such as two points share the same location, or three or more
points lie on the same line. In the latter case, the convex hull with collinear edges must
be merged. With the general position assumption, the basic algorithm is given in 10.

visible edges

Figure 9. Incremental construction of convex hull.

The algorithm initialises a triangle, which is the convex hull of the first three points.

12 HANG SI

Algorithm: IncrementalConvexHull(S)
Input: S = {p1,p2, . . . ,pn} is a set of n points in the plane;
Output: conv(S);
1 Initialise conv(S3) := conv({p1,p2,p3});
2 for i = 4 to n do
3 if pi lies outside conv(Si−1); then
4 let Q be the set of all visible edges of pi;
5 Q is a chain of edges, let pa, pb be the endpoints of Q;
6 insert edges {papi} and {pbpi} into conv(Si−1);
7 remove edges in Q from conv(Si−1);
8 endif
9 endfor

Figure 10. The incremental convex hull algorithm.

Now consider adding a new point to the convex hull. If the point lies in the interior
of the convex hull, then the convex hull does not change, one can simply skip this point,
and go to process the next one.

Assume the point lies outside the convex hull. Then the convex hull needs to be
updated. Every edge of a convex hull defines a unique supporting line which contains
this edge and the convex hull lies in only at one side of this line. We call an edge of
the convex hull visible by a point if this point lies in the other side of its supporting line
which does not contain the convex hull, in other words, the supporting line of this edge
separates the convex hull and this point, see Figure 2.2.1.

The following steps are performed to update the convex hull: (1) locate a visible edge
of the convex hull for the point; (2) construct a cone from the new point to all of its
visible edges, see Figure 2.2.1 Left, and (3) delete all visible edges of this point in Step
2, and enlarge the convex hull by adding the two cone edges thus forming the convex
hull with the new point and the previously processed points, see Figure 2.2.1 Right.

With the assumption that S is in general position. conv(S3) is a triangle (line 1). In
line 5, Pa and Pb are not collinear with pi.

2.2.2. The orient2d predicate. We need a method to check whether a convex hull edge
is visible by a newly added point. This is a geometric query (called predicate), denoted
as orient2d, which takes three ordered points p, q, r in the plane, and test whether
they follow a counterclockwise or clockwise direction, see Figure 2.2.2, likewise, it tells
that the last point r lies in left or right side of the oriented edge pq. Note that the
orientation depends on the order in which the points are given.

This predicate can be answered by taking the sign of the signed area of the triangle
with vertices p := (px, py), q := (qx, qy) and r := (rx, ry), i.e,

orient2d(p,q, r) = sign(det(A)),

where

A =

px py 1
qx qy 1
rx ry 1

FUNDAMENTALS 13

Observe that as we read the stack elements from top to bottom (that is, from right to left) consecutive triples
of points of the upper hull will make a (strict) “left-hand turn” (see Fig. 12(b)). As we push new points on the
stack, we will enforce this property by popping points off of the stack that violate it.

Turning and orientations (Aside): Before proceeding with the presentation of the algorithm, we should first make a
short digression to discuss the meaning of “left-hand turn.” Given an ordered triple of points hp, q, ri in the plane,
we say that they have positive orientation if they define a counterclockwise oriented triangle (see Fig. 13(a)),
negative orientation if they define a clockwise oriented triangle (see Fig. 13(b)), and zero orientation if they are
collinear, which includes as well the case where two or more of the points are identical (see Fig. 13(c)). Note
that orientation depends on the order in which the points are given.

(a) (b) (c)

p

q

r

p

q
r

p

q

r p = r

q

orient(p, q, r) > 0 orient(p, q, r) < 0 orient(p, q, r) = 0

Fig. 13: Orientations of the ordered triple (p, q, r).

Orientation is formally defined as the sign of the determinant of the points given in homogeneous coordinates,
that is, by prepending a 1 to each coordinate. For example, in the plane, we define

Orient(p, q, r) = det

0
@

1 px py

1 qx qy

1 rx ry

1
A .

Observe that in the 1-dimensional case, Orient(p, q) is just q�p. Hence it is positive if p < q, zero if p = q, and
negative if p > q. Thus orientation generalizes the familiar 1-dimensional binary relations <,=, >. Observe
that the sign of the orientation of an ordered triple is unchanged if the points are translated, rotated, or scaled (by
a positive scale factor). A reflection transformation (e.g., f(x, y) = (�x, y)) reverses the sign of the orientation.
In general, applying any affine transformation to the point alters the sign of the orientation according to the sign
of the determinant of the matrix used in the transformation. (By the way, the notion of orientation can be
generalized to d + 1 points in d-dimensional space, and is related to the notion of chirality in Chemistry and
Physics.)

Given a sequence of three points p, q, r, we say that the sequence hp, q, ri makes a (strict) left-hand turn if
Orient(p, q, r) > 0.

Graham’s algorithm continued: Returning to the algorithm, let us consider the insertion of the ith point, pi (see
Fig. 14(a)). If the triple hpi, S[top], S[top � 1]i forms a strict left-hand turn, then we can simply push pi onto
the stack. Otherwise, we can infer that the middle point of the triple, that is, S[top], cannot be on the upper hull,
and so we pop it off the stack. We repeat this until either reaching a positively oriented triple (see Fig. 14(b)), or
until we find that there are fewer than two elements on the stack. We then push pi on top of the stack, making it
the right-most vertex on the upper hull (see Fig. 14(c)). The algorithm is presented in the code block below.

Correctness: Why is Graham’s algorithm correct? As with any incremental algorithm, we need to establish the
invariant that holds after each iteration of the loop. Let Pi denote the subsequence consisting of the first i points.
Correctness is a direct consequence of the following claim.

Claim: After the insertion of the point pi, the contents of S (from top to bottom) consist of the vertices of the
upper hull of Pi in right to left order.

Lecture Notes 13 CMSC 754

counterclockwise clockwise collinear

Figure 11. Orientations of three points in the plane.

By our choice of the matrix A, we have

orient2d(p,q, r) > 0 −→ p,q, r are counterclockwise,
orient2d(p,q, r) < 0 −→ p,q, r are clockwise
orient2d(p,q, r) = 0 −→ p,q, r are collinear.

The result of det(A) is twice of the signed area of the triangle defined by the three
points.

Remark. If two columns of A in above are interchanged, e.g.,

B =

1 px py
1 qx qy
1 rx ry

 ,

then we have det(A) = −det(B). The signs of the above orient2d test must be also
inverted.

2.2.3. Correctness. We can show that the above convex hull algorithm is correct as long
as the point set S is in general position.

In order to show that an incremental algorithm is correct, we need to establish the
invariant that holds after each iteration of the loop.

Claim: After the insertion of point pi, the convex hull of Si is constructed.

2.2.4. Basic analysis of running time. The complexity of this algorithm can be estimated
in terms of n, the total number of points, and h, the number of points (edges) on the
convex hull.

The cost to compute the new convex hull of a new point pi lies in two parts:

(1) find all the visible edges to form Q; and
(2) update the convex hull by adding two edges papi and pbpi.

We first consider (2), which is clearly related to the size of Q, i.e., the number of
visible edges for point pi. Since pi can be an arbitrary point in S, and the intermediate
convex hull conv(Si−1) is also arbitrary, it is difficult to know exactly the size of Q for
pi. The key fact is that once an edge appear in Q, it will be deleted after inserting pi,
and it will never reappear later. Only two new edges are created at pi. By the Euler’s
formula, the overall size for all Q’s is O(n). Hence (2) only requires O(n) time.

14 HANG SI

Consider (1). What is the time we need to find all visible edges for pi. A easy way
to search all visible edges for pi is simply check all edges in the current convex hull. Let
hi−1 be the number of edges in the convex hull of conv(Si−1). Then the total cost of
searching n convex hulls is: h = h3 + h4 + · · ·+ hn−1. Let hc be the maximum number
in {h3, · · · , hn−1}. The running time is clearly O(nhc). If hc is O(1), i.e., it is bounded
by a constant independent of n, then the total cost is O(n). However, if hc is large, such
that hc = Ω(n), then total cost of this step is O(n2).

In summary, depending on the input point set and the sequence of insertion, the
IncremetalConvexHull algorithm may run in O(n) and O(n2) time. Hence the worst
case running time is O(n2).

2.2.5. Improving the running time by sorting. Indeed, we just need to consider how to
find the first visible edge e of pi. Then the other visible edges can be found by searching
the doubly linked list both clockwise and counterclockwise starting from e to find the
complete list of visible edges. This only takes O(1) time.

We can clearly, improve this algorithm by pre-sorting the given set S. A simple way
is to sort the point set along a fixed direction, for example, the x- or y-axis, then insert
points using the sorted sequence. This guarantees that each newly added point is outside
the current hull. Moreover, the last inserted point, e.g., pi−1 must be connected by a
visible edge of pi. Hence the cost of location a visible edge for pi also takes O(1) time.
It is known that the sorting of a set of vertices along a sweep line can be done in time
Θ(n log n). Thus this incremental algorithm with a line sweep sorting constructs the
convex hull in Θ(n log n) time.

The quickhull [1] algorithm can be though of a special way of sorting points which is
suitable for constructing convex hulls. The basic idea is following: it maintains a outside
set for each convex hull facet through out the process. A point is in a facet’s outside
set if it is above the facet. An unprocessed point is always in exactly one outside set.
The quickhull algorithm 2 choses the furthest point in an outside set and to insert it.
It is intuitive, by this way of choosing inserting points, most of the interior points are
skipped, hence the temporary side of the convex hull will be reduced. However, there is
no guarantee that this is always the best choice of new vertex.

It turns out, if we choose new point randomly, this will always result a good expected
runtime. We will discuss this in the next section.

2.2.6. A line-sweep triangulation algorithm. By slightly modifying the incremental con-
vex hull algorithm in Figure 10 one can obtain a triangulation of S as well. Instead of
creating a cone (in line 5) and deleting the visible edges (in line 6), we create triangles by
joining each visible edge in Q and the point pi. This resulting a triangulation (instead
of the convex hull) of {p1, . . . ,pi}.

We then have a simple and efficient algorithm using line-sweeping [3] to construct
triangulations for a set of points. The basic idea is to sort the point set along a fixed
direction (for example, the x-axis), then use a (vertical) line that sweeps over the plane
from left to right. The triangulation is created online during the line sweeping. An
invariant is: at any moment in time, the partial triangulation contains all points to
the left of the line. When the line hits a new vertex (an event), the triangulation is

2The source code of quickhull is freely available at http://www.quickhull.org.

FUNDAMENTALS 15

augmented by creating new triangles connecting to this new vertex. The algorithm is
given in Figure 12.

Algorithm: LineSweep(S, s)
Input: A set S of n points in R2, s is the normal of sweep line;
Output: A triangulation T of S;
1 sort the points in S into a sequence L := {p1, . . .pn} along s;
2 initialize T with only one triangle {p1,p2,p3};
3 for i = 4 to n do
4 let Q be the set of all visible edges of pi;

(Q 6= ∅ since pi locates outside conv(Si−1).)
5 create new triangles to T by each edge in Q and pi;
6 endfor

Figure 12. The sweep line triangulation algorithm.

In line 1, the vertices in L are ordered in such a way, that no conflict will occur during
the algorithm. A simple order is the lexicographic (dictionary) order along the x- or
y-axis. For the initial triangle to be valid, it is necessary to assume the general position,
i.e., p1,p2,p3 are not collinear. To efficiently obtain the set Q (in line 4), one could start
from the last newly created triangle, which must contain a hull edge e. Then the set of
all visible edges of pi can be collected by a breadth search from e. Figure 13 illustrates
an example of this algorithm.

Figure 13. The line-sweep algorithm yo construct a triangulation.

The sort of a set of vertices along the sweep line can be done in time O(n log n).
The number of visible edges of pi is a constant independent of n. The total number of
newly created triangles is less than 2n− 4. Thus this line sweep algorithm constructs a
triangulation in O(n log n) time.

2.3. Randomized algorithms. A Randomised algorithm uses a random number gen-
erator as a key input for decision making. They are simple and frequently with good
expected running time.

16 HANG SI

2.3.1. The basics of probability analysis. Consider rolling two dice and observing the
results. It could be that the first die comes up 1 and the second comes up 2, or that the
first comes up 2 and the second comes up 1, and so on. There are 6 × 6 = 36 possible
outcomes. Each of these outcomes has probability 1/36 (assuming these are fair dice).
Suppose we care about some quantity such as “what is the probability the sum of the
dice equals 7?” We can compute that by adding up the probabilities of all the outcomes
satisfying this condition (there are six of them, for a total probability of 1/6).

In the language of probability theory, any probabilistic setting is defined by a sample
space S The points of the sample space are called outcome. In the above example, the
sample space S for the pair of dice has 36 outcomes. Each outcome of the sample space
has a probability, e.g, 1/36. A probability function on a sample space S is a total function
Pr : S → R such that

• Pr[ω] ≥ 0 for all ω ∈ S, and
• ∑ω∈S Pr[ω] = 1.

A sample space together with a probability function is called a probability space.
An event is a subset of the sample space. For instance, one event we might care about

is the event that the first die comes up 1. Another is the event that the two dice sum to
7. For any event E ⊆ S, the probability of an event is just the sum of the probabilities
of the outcomes contained inside it, i.e,

Pr[E] :=
∑

ω∈E
Pr[ω].

A random variable X is a function from a probability space to a number, i.e., it maps
every outcome of the sample space S to an integer or a real. For instance, another way
we can talk formally about these dice is to define the random variable X1 representing
the result of the first die, X2 representing the result of the second die, and X = X1 +X2

representing the sum of the two. We could then ask: what is the probability that X = 7?
One property of a random variable we often care about is its expectation. The expected

value of a (discrete) random variable X over sample space X is:

E[X] :=
∑

ω∈S
Pr[ω]X(ω).

In other words, the expectation of a random variable X is just its average value over S,
where each outcome ω is weighted according to its probability. For instance, if we roll a
single die and look at the outcome. The random variable X : S → R is simply the value
of the outcome die (between 1 and 6). Assume every outcome has equal probability,
which is 1/6, then the expected value is:

E[X] := 1
1

6
+ 2

1

6
+ · · ·+ 6

1

6
= 3.5.

Another example is toss a coin. Use H means Head, and T means Tail, respectively. The
sample space has only two outcomes, S = {H,T}, each with probability 1/2 (assume it
is a fair coin). Define a random variable R such that R(H) = 1 and R(T) = 3. Then
the expected value of R is:

E[R] := 1
1

2
+ 3

1

2
= 2.

FUNDAMENTALS 17

An indicator random variable is a random variable which maps each outcome to either
0 or 1. Indicator random variables are useful to handle events. In particular, an indicator
random variable partitions the sample space into those outcomes mapped to 1 and those
outcomes mapped to 0. More generally, for any partition of the probability space into
disjoint events A1, A2, · · · we can rewrite the expectation of random variable X as:

E[X] :=
∑

i

∑

ω∈Ai

Pr[ω]X(ω) =
∑

i

Pr[Ai]E[X|Ai],

where E[X|Ai] is the expected value of X given Ai, defined to be

E[X|Ai] :=
1

Pr[Ai]

∑

ω∈S
Pr[ω]X(ω).

An important fact about expected values is Linearity of Expectation: for any two
random variables X and Y ,

E[X + Y] = E[X] + E[Y].

This fact is incredibly important for analysis of algorithms because it allows us to analyse
a complicated random variable by writing it as a sum of simple random variables and
then separately analysing these simple ones.

2.3.2. Randomised incremental convex hull construction. As an example, we describe a
randomized incremental convex hull algorithm and analyze its expected running time.

This algorithm is basically the same as the incremental algorithm given in Figure 10.
The only difference is how to compute the visible edges for an outside new point pi, i.e.,
in line 4. The key idea in computing visible edges efficiently is to precompute them: for
each point not yet inserted, keep track of one edge of the current convex hull that is
visible from it. With this edge available, the set of all visible edges can be found in O(1)
in the doubly linked list.

Computational Geometry Lecture 1: Convex Hulls

1.7 Randomized Incremental Insertion

Each point maintains a pointer to an arbitrary visible edge (null if inside). ⇥(n2) changes in the worst
case, but easy backwards analysis shows O(n log n) expected changes if points are inserted in random
order.

Each point p maintains a pointer e(p) to some visible edge of the evolving convex hull; we call this
the conflict edge for p. If p is already inside the evolving convex hull, then e(p) is a null pointer. These
pointers are bidirectional; thus, every edge e has a conflict list of all points for which e is the conflict
edge.

We insert each new point p by splicing it into the endpoints of edge e(p) and then removing concave
vertices, exactly as in our earlier sweep-line algorithm. Whenever we remove an edge of the polygon—
either e(p) or an edge adjacent to a concave vertex—we mark each point on its conflict list. After the
polygon has been completely repaired, we assign a new conflict edges to each marked point q as follows.
If q lies inside the triangle formed by p and its two neighbors on the polygon, then q is an interior point,
so we can set e(q) to NULL. Otherwise, at least one of the edges adjacent to p is visible to q; assign e(q)
to one such edge (chosen arbitrarily if q can see both). Each change to a conflict pointer e(q) requires
constant time.

Inserting a point into a convex hull and updating conflict pointers for uninserted points.

The running time of each phase is dominated by (1) the number of concave corners removed and
(2) the number of changes to conflict pointers; everything else clearly takes O(n) time. Each point can
be removed from the polygon at most once, so the number of corner removals is clearly O(n). Thus, to
complete the analysis of our algorithm, we only need to determine the total number of conflict pointer
changes.

T (n) = O(n) +O(number of conflict pointer changes)

Unfortunately, in the worst case, a constant fraction of the pointers can change in a constant fraction
of the insertions, leading to ⌦(n2) changes overall. Suppose the input point set consists of two columns,
each containing n/4 points, along with a cloud of n/2 points between and above both columns. If the
points are inserted in order from bottom to top, every point in the cloud changes its conflict pointer at
each of the first n/2 insertions.

Inserting points in the wrong order can take ⌦(n2) time.

7

Figure 14. Left: Each uninserted point maintains pointer to a visible
edges on the convex hull. Right: some visible edges will be changed and
updated during the incremental construction of the convex hull. Courtesy
of Jeff Erickson.

One way to realise this is for each uninserted point pi maintain a pointer to one of
its visible edges on the current (growing) convex hull, see Figure 14 Left. Initially, for
all points p4, · · · ,pn, we assign one of the edges of the triangle {p1,p2,p3} to them,
computed by the Orient2d() predicate. Later on, at the insertion of an outside point pi,
some old convex hull edges will be removed, and two new convex hull edges containing pi
are added to the convex hull. The edges assigned to those uninserted points need to be

18 HANG SI

updated, see Figure 14 Right. The question is: How much will be the total cost to update
the visible edges for all points? It certainly depends on the insertion order of points.
It is possible if we insert points in a bad order, each insertion may cause O(n) points
whose visible edges need to be updated. Such an example is shown in Figure 15. Hence
the total cost is O(n2). It turns out, if the points p4, · · · ,pn are randomly permuted,
the expected cost is O(n log n).

Computational Geometry Lecture 1: Convex Hulls

1.7 Randomized Incremental Insertion

Each point maintains a pointer to an arbitrary visible edge (null if inside). ⇥(n2) changes in the worst
case, but easy backwards analysis shows O(n log n) expected changes if points are inserted in random
order.

Each point p maintains a pointer e(p) to some visible edge of the evolving convex hull; we call this
the conflict edge for p. If p is already inside the evolving convex hull, then e(p) is a null pointer. These
pointers are bidirectional; thus, every edge e has a conflict list of all points for which e is the conflict
edge.

We insert each new point p by splicing it into the endpoints of edge e(p) and then removing concave
vertices, exactly as in our earlier sweep-line algorithm. Whenever we remove an edge of the polygon—
either e(p) or an edge adjacent to a concave vertex—we mark each point on its conflict list. After the
polygon has been completely repaired, we assign a new conflict edges to each marked point q as follows.
If q lies inside the triangle formed by p and its two neighbors on the polygon, then q is an interior point,
so we can set e(q) to NULL. Otherwise, at least one of the edges adjacent to p is visible to q; assign e(q)
to one such edge (chosen arbitrarily if q can see both). Each change to a conflict pointer e(q) requires
constant time.

Inserting a point into a convex hull and updating conflict pointers for uninserted points.

The running time of each phase is dominated by (1) the number of concave corners removed and
(2) the number of changes to conflict pointers; everything else clearly takes O(n) time. Each point can
be removed from the polygon at most once, so the number of corner removals is clearly O(n). Thus, to
complete the analysis of our algorithm, we only need to determine the total number of conflict pointer
changes.

T (n) = O(n) +O(number of conflict pointer changes)

Unfortunately, in the worst case, a constant fraction of the pointers can change in a constant fraction
of the insertions, leading to ⌦(n2) changes overall. Suppose the input point set consists of two columns,
each containing n/4 points, along with a cloud of n/2 points between and above both columns. If the
points are inserted in order from bottom to top, every point in the cloud changes its conflict pointer at
each of the first n/2 insertions.

Inserting points in the wrong order can take ⌦(n2) time.

7
Figure 15. Inserting points in a bad order will have a total cost Ω(n2).
Courtesy of Jeff Erickson.

We apply backward analysis [4] to show the expected running time of assigning and
reassigning future points to edges. Whenever we add a new edge, we pay a cost equal
to the number of future points assigned to that edge. We consider the incremental
algorithm backwards: on each iteration, remove a random point p ∈ {p4, · · · ,pn}. If p
is inside the current convex hull, pay nothing. Otherwise, remove the two edges of the
convex hull that contain p, and pay cost equal to the number of “future” points which
are outside these two edges (where “future” is technically the past now). If there are i
points remaining, then each “future” point has probability at most 2/i of contributing to
the cost of this iteration. By linearity of expectation, the expected cost of this iteration
is (n− 3− i) ∗ 2/i (we do not count the first 3 points of the initial triangle). Summing
over all i gives an expected total cost of

n−3∑

i=1

(n− 3− i)2

i
≤ (n− 3)

n−3∑

i=1

2

i
= 2(n− 3)Hn−3 = O(n log n).

Thus the total expected running time of the randomised incremental convex hull algo-
rithm is O(n log n).

Exercises

1. Let X ⊂ Rd be a set of n points. Show the following definitions of the convex
hull of X are equivalent:

(1.1) The set of all points that are convex combinations of all points in X.
(1.2) The intersection of all convex sets that include X.

2. Convex hull questions:
(2.1) Is empty set convex?
(2.2) Is a set with only one point convex?

3. The interior of a simplex is defined as the simplex without its boundary.

(3.1) What is the minimum number of points to create a simplex with non-empty
interior?

4. Let K be a two-dimensional simplicial complex. Claim: The interior of simplices
of K partition the underlying space of K.

(4.1) Is this claim true or false?
(4.2) Show your reasons for your answer of (4.1).

5. Asymptotic notations. Show the following equations hold.
(5.1) n2 + 3n+ 20= O(n2).
(5.2) n log n− 2n+ 13 = Ω(n log n);
(5.3) n2 + 5n+ 7 = Θ(n2).

References

[1] C. Bradford Barber, David P. Dobkin, and Hannu T. Huhdanpaa. The Quickhull algorithm for convex
hulls. ACM Tranactions on Mathematical Software, 22(4):469–483, 1996.

[2] Jocob E. Goodman and Joseph O’Rourke, editors. Handbook of Discrete and Computational Geometry
and Its Applications. CRC, Boca Raton, Raton, Florida 33431, 2000.

[3] J. Nievergelt and F. P. Preparata. Plane-sweep algorithms for intersecting geometric figures. Com-
mun. ACM, 25(10):739–747, October 1982.

[4] Raimund Seidel. Backwards Analysis of Randomized Geometric Algorithms, pages 37–67. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1993.

19

