
CHAPTER 6 

Mesh Generation 

Marshall Bern 
Xerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304 

E-mail: bem @parc.xerox, com 

Paul Plassmann* 
Department of Computer Science and Engineering, The Pennsylvania State University, University Park, 

PA 16802 
E-mail: plassman@cse.psu.edu 

Contents 
1. Introduction 293 

1.1. Types of geometric domains 293 
1.2. Types of meshes 294 
1.3. Organization 295 

2. Numerical methods 296 
2.1. Discrete formulation 296 
2.2. Solution methods 298 

3. Element shape 299 
4. Structured two-dimensional meshes 300 
5. Unstructured two-dimensional meshes 303 

5.1. Delaunay triangulation 303 
5.2. Constrained Delaunay triangulation 306 
5.3. Quadtrees 308 
5.4. Mesh refinement and derefinement 309 
5.5. Mesh improvement 312 
5.6. Theoretical questions 313 

6. Hexahedral meshes 316 
6.1. Multiblock meshes 316 
6.2. Cartesian meshes 317 
6.3. Unstructured hexahedral meshes 318 

7. Tetrahedral meshes 319 
7.1. Delaunay triangulation 320 

* Supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of 
Computational and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38. 

HANDBOOK OF COMPUTATIONAL GEOMETRY 
Edited by J.-R. Sack and J. Urrutia 
© 1999 Elsevier Science B.V. All rights reserved 

291 



292 M. Bern and P. Plassmann 

12. Advancing front 322 
7.3. Octrees 323 
7.4. Refinement and improvement 324 

8. Conclusions 326 
References 327 



Mesh generation 293 

1. Introduction 

A mesh is a discretization of a geometric domain into small simple shapes, such as triangles 
or quadrilaterals in two dimensions and tetrahedra or hexahedra in three. Meshes find use 
in many application areas. In geography and cartography, meshes give compact representa­
tions of terrain data. In computer graphics, most objects are ultimately reduced to meshes 
before rendering. Finally, meshes are almost essential in the numerical solution of partial 
differential equations arising in physical simulation. In this chapter, we concentrate on al­
gorithms for this last application, assuming an audience including both practitioners such 
as engineers and theoreticians such as computational geometers and numerical analysts. 

1.1. Types of geometric domains 

We divide the possible inputs first according to dimension — two or three. We distinguish 
four types of planar domains, as shown in Figure 1. For us, a simple polygon includes 
both boundary and interior. A polygon with holes is a simple polygon minus the interiors 
of some other simple polygons; its boundary has more than one connected component. 
A multiple domain is more general still, allowing internal boundaries; in fact, such a do­
main may be any planar straight-line graph in which the infinite face is bounded by a 
simple cycle. Multiple domains model objects made from more than one material. Curved 
domains allow sides that are algebraic curves such as splines. As in the first three cases, 
collectively known as polygonal domains, curved domains may or may not include holes 
and internal boundaries. 

Three-dimensional inputs have analogous types. A simple polyhedron is topologically 
equivalent to a ball. A general polyhedron may be multiply connected, meaning that it is 
topologically equivalent to a solid torus or some other higher genus solid; it may also have 
cavities, meaning that its boundary may have more than one connected component. We do 
assume, however, that at every point on the boundary of a general polyhedron a sufficiently 
small sphere encloses one connected piece of the polyhedron's interior and one connected 
piece of its exterior. Finally, there are multiple polyhedral domains — general polyhedra 
with internal boundaries — and three-dimensional curved domains, which typically have 
boundaries defined by spline patches. 

Construction and modeling of domain geometry lie outside the scope of this chapter, so 
we shall simply assume that domains are given in some sort of boundary representation, 
without specifying the exact form of this representation. Computational geometers typi­
cally assume exact, combinatorial data structures, such as linked lists for simple polygons 
and polygons with holes, doubly connected edge lists [103] or quad-edge structures [63] 
for planar multiple domains, and winged-edge structures [44,62] for polyhedral domains. 

In practice, complicated domains are designed on computer aided design (CAD) sys­
tems. These systems use surface representations designed for visual rendering, and then 
translate the final design to another format for input to the mesh generator. The Stereo-
lithography Tessellation Language (STL) file format, originally developed for the rapid 
prototyping of solid models, specifies the boundary as a list of surface polygons (usually 
triangles) and surface normals. The advantages of the STL input format are that a "wa­
tertight" model can be ensured and model tolerance (deviation from the CAD model) can 



294 M. Bern and P. Plassmann 

S: 

K D K 
O 

Fig. 1. Types of two-dimensional inputs: (a) simple polygon, (b) polygon with holes, (c) multiple domain, and (d) 
curved domain. 

be specified by the user. The Initial Graphics Exchange Specification (IGES) format en­
ables a variety of surface representations, including higher-order representations such as 
B-splines and NURBs. Perhaps due to its greater complexity, or to sloppy CAD systems or 
users, IGES files often contain incorrect geometry (either gaps or extra material) at surface 
intersections. 

An alternative approach to format translation is to directly query the CAD system with, 
say, point-enclosure queries, and then construct a new representation based on the answers 
to those queries. This approach is most advantageous when the translation problem is dif­
ficult, as it may be in the case of implicit surfaces (level sets of complicated functions) or 
constructive solid geometry formulas. 

With either approach, translation or reconstruction by queries, the CAD model must be 
topologically correct and sufficiently accurate to enable meshing. We expect to see greater 
integration between solid modeling and meshing in the future. 

1.2, Types of meshes 

A structured mesh is one in which all interior vertices are topologically alike. In graph-
theoretic terms, a structured mesh is an induced subgraph of an infinite periodic graph 
such as a grid. An unstructured mesh is one in which vertices may have arbitrarily varying 
local neighborhoods. A block-structured or hybrid mesh is formed by a number of small 
structured meshes combined in an overall unstructured pattern. 

In general, structured meshes offer simplicity and easy data access, while unstructured 
meshes offer more convenient mesh adaptivity (refinement/derefinement based on an ini­
tial solution) and a better fit to complicated domains. High-quality hybrid meshes enjoy 
the advantages of both approaches, but hybrid meshing is not yet fully automatic. We shall 
discuss unstructured mesh generation at greater length than structured or hybrid mesh gen­
eration, both because the unstructured approach seems to be gaining ground and because 
it is more closely connected to computational geometry. 

The division between structured and unstructured meshes usually extends to the shape 
of the elements: two-dimensional structured meshes typically use quadrilaterals, while un­
structured meshes use triangles. In three dimensions the analogous element shapes are 
hexahedra, meaning topological cubes, and tetrahedra. There is, however, no essential rea­
son for structured and unstructured meshes to use different element shapes. In fact it is 



Mesh generation 295 

SmSi 

Fig. 2. Types of meshes: (a) structured, (b) unstructured, and (c) block-structured. 

Fig. 3. (a) Triangulating quadrilaterals, (b) Subdividing triangles to form quadrilaterals. 

possible to subdivide elements in order to convert between triangles and quadrilaterals 
(Figure 3) and between tetrahedra and hexahedra. 

1.3. Organization 

Section 2 gives a brief survey of numerical methods and their implications for mesh genera­
tion. Section 3 discusses the influence of element shape on accuracy and convergence time. 
Sections 4 and 5 cover structured and unstructured two-dimensional meshes. Section 6 
discusses three-dimensional hexahedral mesh generation, including structured, hybrid, and 
unstructured approaches. Finally, Section 7 describes three-dimensional unstructured tetra-
hedral mesh generation. 

We shall explain the basic computational geometry results as they arise within a larger 
context; however, Section 5 concludes with a separate theoretical discussion, because un­
structured planar mesh generation is especially rich in interesting geometric questions. 
Throughout this article, we emphasize practical issues; an earlier survey by Bern and Epp-
stein [24] emphasized theoretical results. Although there is inevitably some overlap be­
tween these two surveys, we intend them to be complementary. 



296 M. Bern and P. Plassmann 

Mesh generation has a huge literature and we cannot hope to cover all of it. There are 
excellent references on numerical methods [34,125], structured mesh generation [35,61, 
86,130,131], and unstructured mesh generation [24,60,85,86,131]. There are also several 
nice Web sites [99,113,117,145] with up-to-date information on mesh generation. 

2. Numerical methods 

Scientific computing seeks accurate discrete models for continuous physical phenomena. 
We can divide the process into three interdependent steps: problem formulation, mesh gen­
eration, and equation solution. In this section, we discuss discretization and solution meth­
ods and their impact on mesh generation. 

2.1. Discrete formulation 

There are a number of approaches to the discrete approximation of partial differential equa­
tions (PDEs) modeling a physical system. Here we briefly review the standard discretiza­
tion methods: finite difference, finite element, and finite volume. Although these methods 
result in linear systems of similar structure, the desired characteristics of meshes for these 
methods differ. 

The finite difference method [128] replaces a continuous differential operator with a 
difference approximation. Consider the partial differential equation 

Cu = / , (1) 

where C is some differential operator and w is a function of position and possibly also of 
time. We seek an approximate solution of (1) on some geometric domain Q. A standard 
finite difference approach replaces C with a discrete stencil. Writing Uk = u(xk) for the 
value of u at mesh vertex position Xk, the action of the stencil at xi can be approximated 
by 

Cu(Xi) ^ 22 ^iki^k, 
kGndjixi) 

where adj(x/) is the set of points adjacent to xi in the mesh and Aik is a set of weights 
depending only on C and the geometry of the mesh. The right-hand side of (1) can also be 
discretized, yielding a system of linear equations 

n 

Y,AiuUk = fi (2) 
k=\ 

to be solved for the unknowns Uk. Because the finite difference stencil gives nonzero weight 
only to neighboring vertices, this system will be quite sparse. 



Mesh generation 297 

It is convenient to use the same stencil throughout the mesh; this restriction simphfies 
not only the software but also the mathematics, because the convergence properties of a 
particular stencil can be analyzed by Taylor series expansion. A finite difference stencil 
gives a more accurate approximation of a continuous operator when the edges meeting at 
vertices are nearly orthogonal. For these reasons, the finite difference method usually relies 
on structured meshes. 

Tht finite element method [125] approximates the solution rather than the equation. The 
essential idea is to replace the continuous function w(x) with the finite-dimensional approx­
imation u{x) = YTk^x ^k(pkM, where the 0/̂  are basis functions with local support. These 
basis functions are typically low-order polynomials, so that the action of the differential 
operator, C(pk^ is easy to compute. Because the approximation u(x) is defined everywhere 
on the domain, an analysis of convergence can be made in a continuous norm instead of 
pointwise as in the finite difference method. 

The finite element method obtains a discrete approximation by demanding that the dif­
ferential equations be satisfied for some set of test functions ^/ri (x): 

f (CU)ifi= f fifi. 
JQ JQ 

An implementation of the finite element method involves the computation of coefficients 

Aik= f {C(l>k)^i = y\ (iCcPk)^i. 

-̂ ^ eel J ' 
where Iik denotes the set of elements for which both the basis function (pk and the test 
function V̂/ are nonzero. The unknowns Uk can now be expressed in terms of the A//̂ 's by 
a sparse linear system of equations, of the same overall form as (2). 

Finite-element methods are typically no more complicated on unstructured meshes than 
on structured meshes. Furthermore, there is no real advantage to mesh edges meeting or­
thogonally. For these reasons, unstructured meshes find broad and increasing use in finite 
element methods. 

Tht finite volume method is motivated by physical conservation laws. The infinitesimal 
version of a conservation law is of the form 

^ + V.<1> = 0, 
dt 

where p is the density and ^ is the flux of the conserved quantity. In order to maintain 
the same physical conservation law on a discrete level, the finite volume method defines 
control volumes, and requires that on each control volume ^y 

f "^f 
J Qy JdQy 

d . 

&t, 

where n is the normal to the surface of the volume. The finite volume method models fluid 
dynamics problems especially well, because pressure and velocity can be represented at 
centers and vertices of volumes, respectively. 



298 M. Bern and P. Plassmann 

Cell-centered control volumes are usually identical to mesh elements, while vertex-
centered control volumes form a dual mesh with one volume for each vertex of the original 
mesh. There are several ways to define vertex-centered control volumes. Two regular grids 
may be overlaid, staggered by half an element, or in the case of unstructured meshes, the 
Delaunay triangulation may be used for the mesh, and its dual — the Voronoi diagram — 
for the control volumes. 

2.2. Solution methods 

The solution of the sparse linear system is usually the most computationally demanding 
of the three steps. Solution methods include direct factorization and preconditioned itera­
tive methods, methods which can vary dramatically in required storage and computational 
cost for different problems. Moreover, the discrete formulation and mesh generation steps 
greatly influence the efficacy of a solution method. For example, if one chooses to use 
higher-order basis functions in the finite element method, one can use a coarser mesh, and 
a smaller but denser linear system. 

Direct factorization methods, such as sparse Cholesky or LU factorization, tend be 
slower but more robust than iterative methods. Luckily the extra computational cost can 
be amortized when the factorization is reused to solve for more than one right-hand side. 
An important issue in direct methods is ordering the vertices to minimize the "fill", the 
number of intermediate nonzeros. Nested dissection [72] uses graph separators to save an 
asymptotic factor of 0{n^^^) in the fill. Any planar graph admits separators of size 0(n ^/^); 
reasonable three-dimensional meshes admit separators of size 0(^2/3) [89]. 

Iterative methods [17] have proved effective in solving the linear systems arising in 
physical modeling. Most large problems cannot be effectively solved without the use of 
preconditioning. A popular preconditioner involves an incomplete factorization. Rather 
than computing^the exact factors for the matrix A = LU, approximate factors are computed 
such that A^ LU and the preconditioned system 

L-^AU-\Uu) = L-^f 

is solved iteratively. Ideally, the incomplete factors should be easy to compute and require 
a modest amount of storage, and the condition number of the preconditioned system should 
be much better than the original system. 

Multigrid methods [140] can achieve the ultimate goal of iterative methods, conver­
gence in 0(1) iterations, for certain classes of problems. These methods use a sequence of 
meshes, graded from fine to coarse. The iterative solution of the fine linear system is ac­
celerated by solving the coarser systems. The cycle repeatedly projects the current residual 
from a finer mesh onto the next coarser mesh and interpolates the solution from the coarser 
mesh onto the finer. One drawback of multigrid is that computing a sequence of meshes 
may be difficult for complicated geometries. 

Domain decomposition [122] represents something of a hybrid between iterative and 
direct approaches. This approach divides the domain into possibly overlapping small do­
mains; it typically solves subproblems on the small domains directly, but iterates to the 



Mesh generation 299 

global solution in which neighboring subproblem solutions agree. This approach enjoys 
some of the superior convergence properties of multigrid methods, while imposing less of 
a burden on the mesh generator. In fact, the domain is often partitioned so that subproblems 
admit structured meshes. 

3. Element shape 

The shapes of elements in a mesh have a pronounced effect on numerical methods. For 
purposes of discussion, let us define the aspect ratio of an element to be the ratio of its 
maximum to its minimum width, where width refers to the distance between parallel sup­
porting hyperplanes. There are many other roughly equivalent definitions of aspect ratio. 

In general, elements of large aspect ratio are bad. Large aspect ratios lead to poorly 
conditioned matrices, worsening the speed and accuracy of the linear solver. Speed de­
grades before accuracy; a triangular mesh with a rather mild sharpest angle (say 10°) can 
be noticeably slower than a triangular mesh with a minimum angle of 45°. 

Moreover, even assuming that the solver gives an exact answer, large aspect ratios may 
give unacceptable interpolation error. Here it is useful to distinguish between two different 
types of poor aspect ratio. Early results [39] showed convergence as triangular elements 
shrink, assuming that all angles are bounded away from 0°. Later analysis [6], however, 
showed convergence assuming only that angles are bounded away from 180°, a weaker 
condition. The generalization of this result to three dimensions assumes dihedrals bounded 
away from 0°. Bank and Smith [13] recently proposed a triangle quality measure based on 
an analysis of interpolation error: the area of a triangle divided by the sum of squared edge 
lengths. This measure slightly favors sharp triangles over flat triangles. 

Sometimes, however, elements of large aspect ratio are good! If the solution to the dif­
ferential equation is anisotropic, meaning that its second derivative varies greatly with 
direction, then properly aligned high-aspect-ratio elements give a very efficient mesh. The 
ideal aspect ratio of a triangle is the square root of the ratio of the largest to smallest 
eigenvalues of the Hessian [106]. For triangular meshes, it does not make much difference 
whether long skinny elements have large angles as well as small angles, but if the aspect 
ratio exceeds the ideal then large angles are worse than small [106]. 

Fluid flow problems, especially full Navier-Stokes simulation (that is, viscosity in­
cluded), are strongly anisotropic. For example, in aerodynamic simulations ideal aspect 
ratios may reach 10,000 along the surface of the aircraft. Quadrilateral and hexahedral 
meshes have an advantage in accuracy over triangular and tetrahedral meshes for control-
volume formulations of these problems, as they allow faces of elements in the boundary 
layer to be either almost parallel or almost orthogonal to the surface. 

Simulations with shock fronts — for example, supersonic air flow over a wing — are also 
strongly anisotropic. In this case, however, the locations and directions for high-aspect-
ratio elements cannot be predicted in advance. The need for adaptivity (remeshing based 
on an initial solution) now tilts the balance in favor of triangles and tetrahedra [36]. Simp­
son [121] discusses and surveys the literature on anisotropy. 

Element shape affects another property of the linear system besides condition number. 
A triangular mesh with well-shaped elements gives a symmetric M-matrix — positive def­
inite with negative off-diagonal entries — for a finite element formulation of an equation 



300 M Bern and P. Plassmann 

with a Laplacian operator. M-matrices are exactly those matrices that satisfy a discrete 
maximum principle; this desirable property rules out oscillation of the numerical method. 
In this case, "well-shaped" has a precise meaning: the two angles opposite each interior 
edge of the mesh should sum to at most 180° [18,40]. This requirement implies that no 
quadrilaterals are "reversed" (Section 5.1), so the triangulation must be the Delaunay or 
constrained Delaunay triangulation. Depending on the boundary conditions associated with 
the differential equation, an M-matrix may also require that the single angle opposite a 
boundary edge should measure at most 90°. This requirement goes beyond Delaunay, but 
it is not hard to satisfy this requirement for domains without internal boundaries: simply 
split outwards-facing obtuse angles by dropping perpendiculars to the boundary, flip back 
to a new Delaunay triangulation, and repeat until there are no reversed quadrilaterals and 
no outwards-facing obtuse angles. 

In three dimensions, an unstructured tetrahedral mesh gives an M-matrix if and only if, 
for each edge e' in the mesh, the sum ^ ^ \e\ coiOe is nonnegative, where the sum is over all 
edges e that are opposite to e' in tetrahedra of the mesh, and where \e\ denotes the length 
of e and Oe the dihedral angle at ^ [141]. All such sums will be nonnegative if all dihedrals 
in the mesh are nonobtuse, but this condition is more restrictive than necessary. 

Finally, in a finite volume formulation of Poisson's equation, a Delaunay mesh with 
Voronoi control volumes gives an M-matrix even in three dimensions [88]. The finite vol­
ume formulation — but not the finite element formulation — can tolerate Delaunay tetra­
hedra of large aspect ratio, so long as all control volumes have good aspect ratios [88]. 
The disparity between the two formulations is surprising, because they give the very same 
matrix in two dimensions. 

4. Structured two-dimensional meshes 

Structured meshes offer simplicity and efficiency. A structured mesh requires significantly 
less memory — say a factor of three less — than an unstructured mesh with the same 
number of elements, because array storage can define neighbor connectivity implicitly. 
A structured mesh can also save time: to access neighboring cells when computing a finite 
difference stencil, software simply increments or decrements array indices. Compilers pro­
duce quite efficient code for these operations; in particular, they can optimize the code for 
vector machines. 

On the other hand, it can be difficult or impossible to compute a structured mesh for a 
complicated geometric domain. Furthermore, a structured mesh may require many more el­
ements than an unstructured mesh for the same problem, because elements in a structured 
mesh cannot grade in size as rapidly. These two difficulties can be solved by the hybrid 
structured/unstructured approach, which decomposes a complicated domain into blocks 
supporting structured grids. Hybrid approaches, however, are not yet fully automatic, re­
quiring user guidance in the decomposition step. A complicated three-dimensional hybrid 
mesh (see Section 6.1) can take weeks or even months of work; hence hybrid approaches 
are typically used only late in the design cycle. 

Structured mesh generation can be roughly classified into hand-generated and other el­
ementary approaches, algebraic or interpolation methods, and PDE or variational meth­
ods [129]. The PDE approach [35,73] solves partial differential equations in order to map 



Mesh generation 301 

Fig. 4. The conformal mapping / from the domain i?, defined by a boundary discretization, to a rectangle R. 
The inverse of the mapping maps a grid on R onto a structured mesh for Q. 

the domain ^ onto another domain with a convenient coordinate system. In this section, we 
discuss an elHptic PDE approach [82] with a connection to the classical topic of conformal 
mapping. 

A mapping of a region Q of the complex plane is conformal if it preserves angles; in 
other words, the angle between any two curves intersecting at a point z € i? is preserved by 
the mapping. The Riemann mapping theorem states that for any topological disk Q, there 
exists a conformal mapping / that takes the interior of Q one-to-one onto the interior of 
any other topological disk (such as the unit disk or square). There is an obvious connection 
to mesh generation: a conformal mapping of Q onto a square grid induces a structured 
mesh on ^ with the property that element angles tend towards 90° in the limit of an 
increasingly fine discretization. 

Unfortunately, the Riemann mapping theorem only proves the existence of a confor­
mal mapping; it does not give an algorithm. Let us write z = x -\-iy and consider the the 
complex function f{z) = ^{x,y)-\- ir]{x, y). If / is analytic — as a conformal / will 
be, assuming f\z) 7̂  0 — then it satisfies the Cauchy-Riemann equations: ^x = ^y and 
^y — —r]^. Thus the functions § and rj must each be harmonic and satisfy Laplace's equa­
tion, so that V^^ = 0 and V^rj = 0.lf f is conformal, its inverse is as well; therefore, x 
and y as functions of § and r] are also harmonic and satisfy V^x = 0 and V^y = 0. 

Consider the regions Q and R in Figure 4, and assume we already have a discretization 
of the boundary of Q. (Finding a suitable boundary discretization may itself be a nontrivial 
task.) The obvious algorithm is to solve V^x = 0 and V^y = 0, assuming x and y are 
given on the boundary of R. However, this approach may not work. One may obtain poorly 
shaped or even inverted elements as shown in Figure 5(a). The problem is that the solutions 
X and y may be harmonic, but not harmonic conjugate (i.e., satisfy the Cauchy-Riemann 
equations). 

The algorithm can be partially mended [35] by obtaining a better estimate for M, the 
rectangle height implied by the discretization of the boundary of ^ . If we scale the original 
coordinates of the rectangle ($, rj) onto a square with coordinates (/x, v) with the mapping 
/x = § and V == rj/M we obtain the system 

M^ ^iifi + Xvv = 0 , M y^^ + yvv = 0. (3) 



302 M Bern and P. Plassmann 

Fig. 5. The grid on left was obtained by solving (3) with unit aspect ratio, resulting in a folded-over mesh. On the 
right, a more appropriate aspect ratio has been chosen. 

From the first-order Cauchy-Riemann equations we have 

M^^{xl + yl)l{xl + yl). 

Barfield [16] obtained reasonable nonoverlapping meshes by estimating the average value 
of the right hand side of the above equation and using this value for M. One can think of M 
as an average aspect ratio for the original domain; if ideal aspect ratio varies significantly 
over the domain one can also make this number a function of position. This approach 
can be successful for many physical problems, and can be improved significantly if the 
generated grid is smoothed as a postprocessing step. This approach can also be extended 
to three dimensions, where the Riemann mapping theorem no longer holds, by the addition 
of another "average aspect ratio" term. 

Although the approach just sketched works quite well for some domains, it does not 
guarantee the generation of a valid mesh. It is interesting that the inverse problem, solving 
the harmonic equations 

Vxx + Vvv = 0 

(4) 

does guarantee a solution with no inverted elements and a nonvanishing Jacobian [49,123]. 
Solving the problem in this form is more difficult, because it requires a discretization of 
the domain for which we want to find a grid. However, the system can be inverted to form 
the nonlinear elliptic system [35] 

ocx^^i - ipx^iv + yx,n> = 0, 

ay^^ - 2Py^j,y + yy^^ = 0, 

where 

p = x^Xy + y^yv 

y = ^l + yl' 



Mesh generation 303 

Software designed to solve these systems often includes an additional source term on the 
right-hand sides of the harmonic system in (4) to control the local point spacing in the 
domain [129]. 

The elliptic method just discussed, though motivated by conformal mapping, does not 
compute true conformal mappings. A true conformal mapping induces a structured mesh 
with certain advantages; for example, the Laplacian is the limit of the second-order differ­
ence on such a grid. True conformal mapping, however, does not seem to be widely used 
in mesh generation, perhaps because algorithms to compute such mappings are relatively 
slow, or because they do not allow local control of point spacing. 

In the case that ^ is a simple polygon, the Schwarz-Christoffel formula offers an ex­
plicit form for the conformal mappings from the unit disk D io Q. Such a mapping can 
in turn be used to find conformal mappings from ^ to a square or rectangle. Let the 
points in the complex plane defining the polygon (in counterclockwise order) be z i , . . . , Z/i, 
the interior angles at these points be a i , . . . , a^ , and define the normalized angles as 
P/^=ak/7t — 1. Using coi,.. .,(On as the preimages of z\, • - •,Zn on the edge of the disk, 
the Schwarz-Christoffel formula gives the form of the conformal mapping as 

f{a,) = A-\-B f ] ( l - § M ) ^ ^ d f (5) 
•̂ ^ k=\ 

There are several programs available to solve for the unknown cok values: SCPACK by 
Trefethen [133], the SC Toolbox by Driscoll [47], and CRDT by DriscoU and Vavasis [48]. 
One difficulty in the numerical solution is "crowding", enormous variation in spacing be­
tween the (Dk points. CRDT, the latest and apparently best Schwarz-Christoffel algorithm, 
overcomes this difficulty by repeatedly remapping so that crowding does not occur near 
the points being evaluated. 

5. Unstructured two-dimensional meshes 

We have already mentioned the advantages of unstructured meshes: flexibility in fitting 
complicated domains, rapid grading from small to large elements, and relatively easy re­
finement and derefinement. 

Unlike structured mesh generation, unstructured mesh generation has been part of main­
stream computational geometry for some years, and there is a large literature on the sub­
ject. We consider three principled approaches to unstructured mesh generation in some 
detail; these approaches use Delaunay triangulation, constrained Delaunay triangulation, 
and quadtrees. Then we discuss mesh refinement and improvement. In the final section, we 
describe some geometric problems abstracted from unstructured mesh generation. 

5.1. Delaunay triangulation 

Our first approach to unstructured mesh generation partitions the task into two phases: 
placement of mesh vertices, followed by triangulation. (Added points are called Steiner 



304 M. Bern and P. Plassmann 

points to distinguish them from the domain's original vertices.) If the placement phase is 
smart enough, the triangulation phase can be especially simple, considering only the input 
vertices and Steiner points and ignoring the input edges. 

The placement phase typically places vertices along the domain boundary before adding 
them to the interior. The boundary should be lined with enough Steiner points that the De-
launay triangulation of all vertices will conform to the domain. This requirement inspires 
a crisp geometric problem, called conforming Delaunay triangulation: given a polygonal 
domain Q, add Steiner points so that each edge of .^ is a union of edges in the Delau­
nay triangulation. An algorithm due to Saalfeld [112] lines the edges of Q with a large 
number of Steiner points, uniformly spaced except near the endpoints. A more efficient 
solution [96] covers the edges of Q by disks that do not overlap other edges. Edelsbrunner 
and Tan [52] gave the best theoretical result, an algorithm that uses 0{n^) Steiner points 
for an ^-vertex multiple domain. They also gave an Q{n^) lower bound example. 

There are several approaches to placing interior Steiner points. One approach [84] com­
bines the vertices from a number of structured meshes. A second approach [10,95] adds 
Steiner points in successive layers, working in from the domain boundary as in advancing 
front mesh generation (Section 7.2). Figure 6 shows an example. A third approach [88, 
137] chooses interior points at random according to some distribution, which may be in­
terpolated from a coarse quadtree or "background" triangulation. An independent random 
sample is likely to produce some badly shaped triangles [26], so the generator should over-
sample and then filter out points too close to previously chosen points [88]. Finally, there 
are deterministic methods that achieve essentially the same effect as random sampling with 
filtering; these methods [29,120] define birth and death rules that depend upon the density 
of neighboring points. 

All of these methods can give anisotropy. The first and second approaches, structured 
submeshes and advancing front, offer local control of element shapes and orientations. 
These approaches may space points improperly where structured meshes or advancing 
fronts collide, but this flaw can usually be corrected by filtering points and later smoothing 
the mesh. The third and fourth approaches trade direct control over element shapes for ease 
of fitting complicated geometries. Nevertheless, one can achieve anisotropy with these ap­
proaches by computing the Delaunay triangulation within a stretched space [29,36,43]. For 
example, Bossen [29] uses a "background" triangulation to define local affine transforma­
tions; Delaunay flips (described below) are then made with respect to transformed circles. 
Stretched Delaunay triangulations have many more large angles than ordinary Delaunay 
triangulations, but this should not pose a problem unless the stretching exceeds the desired 
amount (Section 3). 

The triangulation phase uses the well-known Delaunay triangulation. The Delaunay tri­
angulation of a point set S = [s\,S2,.. .,Sn} is defined by the empty circle condition: a 
triangle siSjSk appears in the Delaunay triangulation DT(5) if and only if its circumcircle 
encloses no other points of S. See Figure 7(a). There is an exception for points in special 
position: if an empty circle passes through four or more points of 5, we may triangulate 
these points — complete the triangulation — arbitrarily. So defined, DT(5) is a triangula­
tion of the convex hull of 5. For our purposes, however, we can discard all triangles that 
fall outside the original domain Q. 



Mesh generation 305 

Fig. 6. Delaunay triangulation of points placed by an advancing front (T. Barth). 

Fig. 7. (a) Delaunay triangulation. (b) A reversed quadrilateral. 

There are a number of practical Delaunay triangulation algorithms [56]. We describe 
only one, called the edge flipping algorithm, because it is most relevant to our subsequent 
discussion. Its worst-case running time of O(n^) is suboptimal, but it performs quite well 
in practice. The edge flipping algorithm starts from any triangulation of S and then locally 
optimizes each edge. Let e be an internal (non-convex-hull) edge and Qe be the triangu­
lated quadrilateral formed by the triangles sharing e. Quadrilateral Qe is reversed if the 
two angles without the diagonal sum to more than 180°, or equivalently, if each triangle 
circumcircle contains the opposite vertex as in Figure 7(b). If Qe is reversed, we "flip" it 
by exchanging e for the other diagonal. 

compute an initial triangulation of S 
place all internal edges onto a queue 
while the queue is not empty do 

remove the first edge e 
if quadrilateral Qe is reversed then 

flip it and add the outside edges of Qe to the queue endif 
endwhile 

An initial triangulation can be computed by a sweep-line algorithm. This algorithm adds 
the points of S by x-coordinate order. Upon each addition, the algorithm walks around the 



306 M. Bern and P. Plassmann 

^ 4 . 

Fig. 8. A sweep-line algorithm for computing an initial triangulation. 

convex hull of the already-added points, starting from the rightmost previous point and 
adding edges until the slope reverses, as shown in Figure 8. The following theorem [45] 
guarantees the success of edge flipping: a triangulation in which no quadrilateral is reversed 
must be a completion of the Delaunay triangulation. 

5.2. Constrained Delaunay triangulation 

There is another way, besides conforming Delaunay triangulation, to extend Delaunay tri­
angulation to polygonal domains. The constrained Delaunay triangulation of a (possibly 
multiple) domain ^ does not use Steiner points, but instead redefines Delaunay triangula­
tion in order to force the edges of Q into the triangulation. 

A point p is visible to a point q'mQ li the open line segment pq Hes within Q and does 
not intersect any edges or vertices of ^ . The constrained Delaunay triangulation CDT(^) 
contains each triangle not cut by an edge of i?, that has an an empty circumcircle, where 
empty now means that the circle does not contain any vertices of Q visible to points inside 
the triangle. The visibility requirement means that external proximities, where ^ wraps 
around to nearly touch itself, have no effect. Figure 9 provides an example; here vertex v 
is not visible to any point in the interior of triangle abc. 

The edge flipping algorithm can be generalized to compute the constrained Delaunay 
triangulation, only this time we do not allow edges of I? onto the queue. Obtaining an 
initial triangulation is somewhat more difficult for polygonal domains than for point sets. 
The textbook by Preparata and Shamos [103] describes an 0(«logn)-time algorithm for 
computing an initial triangulation. This algorithm first adds edges to Q to subdivide it into 
easy-to-triangulate "monotone" faces. 

Ruppert [111], building on work of Chew [38], gave a mesh-generation algorithm based 
on constrained Delaunay triangulation. (Subsequently, Mitchell [90] sharpened Ruppert's 
analysis, and Shewchuk [117,118] further refined the algorithm and made an implementa­
tion available on the Web.) Ruppert's algorithm computes the constrained Delaunay trian­
gulation at the outset and then adds Steiner points to improve the mesh, thus uniting the 
two phases of the approach described in the last section. In choosing this approach, the 



Mesh generation 307 

Fig. 9. The constrained Delaunay triangulation of a polygon with holes. 

Fig. 10. A mesh computed by Ruppert's algorithm (J. Ruppert). 

user gives up some control over point placement, but obtains a more efficient mesh with 
fewer and "rounder" triangles. 

The first step of Ruppert's mesh generator cuts off all vertices of the domain Q at which 
the interior angle measures less than 45°. The cutting line at such a vertex v should not 
introduce a new small feature to ^ ; it is best to cut off an isosceles triangle whose base is 
about halfway from v to its closest visible neighbor. If v has degree greater than two, as 
might be the case in a multiple domain, then the bases of the isosceles triangles around v 
should match up so that no isosceles triangle receives a Steiner point on one of its legs. 

Next the algorithm computes the constrained Delaunay triangulation of the modified 
domain. The algorithm then goes through the loop given below. The last line of the loop 
repairs a constrained Delaunay triangulation after the addition of a new Steiner point c. To 
accomplish this step, there is no need to recompute the entire triangulation. The removed 



308 M. Bern and P. Plassmann 

old triangles are exactly those with circumcircles containing c, which can be found by 
searching outwards from the triangle that contains c, and the new triangles that replace the 
removed triangles must all be incident to the new vertex c. 

while there exists a triangle t with an angle smaller than 20° do 
let c be the center of r's circumcircle 
if c lies within the diameter semicircle of a boundary edge e then 

add the midpoint m of ^ 
else add c endif 

recompute the constrained Delaunay triangulation 
endwhile 

The loop is guaranteed to halt with all angles larger than 20°. At this point, the cut­
off isosceles triangles are returned to the domain, and the mesh is complete. Ruppert's 
algorithm comes with a strong theoretical guarantee: all new angles, that is, angles not 
present in the input, are greater than 20°, and the total number of triangles in the mesh 
is at most a constant times the minimum number of triangles in any such no-small-angle 
mesh. To prove this efficiency result, Ruppert shows that each triangle in the final mesh 
is within a constant factor of the local feature size at its vertices. The local feature size at 
point p e Q is defined to be the radius of the smallest circle centered at p that touches two 
nonadjacent edges of the boundary; this is a spacing function intrinsic to the domain. 

5.3. Quadtrees 

A quadtree mesh generator [8,25,143] starts by enclosing the entire domain ^ inside an 
axis-aligned square. It splits this root square into four congruent squares, and continues 
splitting squares recursively until each minimal — or leaf — square intersects ^ in a 
simple way. Further splits may be dictated by a user-defined spacing function or balance 
condition. Quadtree squares are then warped and cut to conform to the boundary. A final 
triangulation step gives an unstructured triangular mesh. 

We now describe a particular quadtree mesh generator due to Bern, Eppstein, and 
Gilbert [25]. As first presented, the algorithm assumes that ^ is a polygon with holes; 
however, the algorithm can be extended to multiple and even to curved domains. In fact, 
the quadtree approach handles curved domains more gracefully than the Delaunay and 
constrained Delaunay approaches, because the splitting phase can automatically adapt to 
the curvature of enclosed boundary pieces. 

The algorithm of Bern et al. splits squares until each leaf square contains at most one 
connected component of ^ ' s boundary, with at most one vertex. Mitchell and Vavasis [91] 
improved the splitting phase by "cloning" squares that intersect Q in more than one con­
nected component, so that each copy contains only a single connected component of Q. 
The algorithm then splits squares near vertices of Q two more times, so that each vertex 
lies within a buffer zone of equal size squares. 

Next the mesh generator imposes a balance condition: no square should be adjacent to 
one less than one-half its size. This causes more splits to propagate across the quadtree, 
increasing the total number of leaf squares by a constant factor (at most 8). Squares are 



Mesh generation 309 

Fig. 11. A mesh computed by a quadtree-based algorithm (S. Mitchell). 

then warped to conform to the domain Q. Various warping rules work; we give just one 
possibihty. In the following pseudocode, \b\ denotes the side length of square b. 

for each vertex u of i? do 
let y be the closest quadtree vertex to v 
move y iov 

endfor 
for each leaf square b still crossed by an edge e do 

move the vertices of b that are closer than \b\/Aio eio their closest points on e 
endfor 
discard faces of the warped quadtree that lie outside Q 

Finally, the cells of the warped quadtree are triangulated so that all angles are bounded 
away from 0°. Figure 11 gives a mesh computed by a variant of the quadtree algorithm. 
This figure shows that cloning ensures appropriate element sizes around holes and "almost 
holes". Notice that a quadtree-based mesh exhibits preferred directions — horizontal and 
vertical. If this artifact poses a problem, mesh improvement steps can be used to redistribute 
element orientations. The quadtree algorithm enjoys the same efficiency guarantee as Rup-
pert's algorithm. In fact, the quadtree algorithm was the first to be analyzed in this way [25]. 

5.4. Mesh refinement and derefinement 

Adaptive mesh refinement places more grid points in areas where the PDF solution error 
is large. Local error estimates based on an initial solution are known as a posteriori error 
estimates [7] and can be used to determine which elements should be refined. For elliptic 



310 M. Bern and P. Plassmann 

problems these estimators asymptotically bound the true error and can be computed locally 
using only the information on an element [138]. 

One approach to mesh refinement [71] iteratively inserts extra vertices into the triangu-
lation, typically at edge bisectors or triangle circumcenters as in Section 5.2. New vertices 
along the boundaries of curved domains should be computed using the curved boundary 
rather than the current straight edge, thereby giving a truer approximation of the domain 
as the mesh refines [36]. Iterative vertex insertion may be viewed as a mesh improve­
ment step (Section 5.5), and indeed several generators [29,119,139] have combined inser­
tion/deletion, flipping, and smoothing into a single loop. 

Iterative vertex insertion gives a finer mesh, but not a nesting or edge conforming, re­
finement of the original mesh, meaning a mesh that includes the boundaries of the original 
triangles. Nesting refinements simplify the interpolation step in the multigrid method (Sec­
tion 2.2). To compute such a refinement, we turn to another approach. This approach splits 
triangles in need of refinement, by adding the midpoints of sides. The pseudocode below 
gives the overall approach. 

solve the differential equation on the initial mesh TQ 
estimate the error on each triangle 
while the maximum error on a triangle is larger than the given tolerance do 

based on error estimates, mark a set of triangles Sk to refine 
* divide the triangles in Sk, along with adjacent invalid triangles to get T^^i 
solve the differential equation on T^+i 
estimate the error on each triangle 
k = k+\ 

endwhile 

There are a number of popular alternatives for step *, in which the current mesh Tk is 
adaptively refined. In regular refinement [11,12], the midpoints of the sides of a marked 
triangle are connected, as in Figure 12(b), to form four similar triangles. Unmarked trian­
gles that received two or three midpoints are split in the same way. Unmarked triangles 
that received only one midpoint are bisected by connecting the midpoint to the opposite 
vertex as in Figure 12(a). Before the next iteration of •, bisected triangles are glued back 
together and then marked for refinement; this precaution guarantees that each triangle in 
Tk^\ will either be similar to a triangle in To or be the bisection of a triangle similar to a 
triangle in TQ. Thus, regular refinement — regardless of the number of times through the 
refinement loop — produces a mesh with minimum angle at least half the minimum angle 
in 7b. Hence the angles in T^+i are bounded away from 0 and n. 

Rivara [107-109] proposed several alternatives for step • based on triangle bisection. 
One method refines each marked triangle by cutting from the opposite vertex to the mid­
point of the longest edge. Neighboring triangles are now invalid, meaning that one side 
contains an extra vertex; these triangles are then bisected in the same way. Bisections con­
tinue until there are no remaining invalid triangles. Refinement can propagate quite far from 
marked triangles; however, propagation cannot fall into an infinite loop, because along a 
propagation path each bisected edge is longer than its predecessor. This approach, like 
the previous one, produces only a finite number of different triangle shapes — similarity 



Mesh generation 311 

Fig. 12. A triangle divided by (a) bisection, and (b) regular refinement. 

Fig. 13. The bisection algorithm given in the pseudocode splits invalid children of refined triangles to their sub­
division points, rather than to their longest edges. 

classes — and the minimum angle is again at least half the smallest angle in TQ. Quite 
often longest-edge refinement actually improves angles. 

A second Rivara refinement method is given in the pseudocode below and illustrated 
in Figure 13. This method does not always bisect the longest edge, so bisections tend to 
propagate less, yet the method retains the same final angle bound as the first Rivara method. 

Qi = Sk {Q denotes "marked" triangles to be refined} 
Ri =0 {R denotes children of refined triangles} 
while (Q/U/?/) 7^0 do 

bisect each triangle in Qi across its longest edge 
bisect each triangle in Rt across its subdivided edge 
add all invalid children of Qi triangles to Ri^\ 
add all other invalid triangles to 2/+i 
/ = / + 1 

endwhile 

We now discuss the reverse process: coarsening or derefinement of a mesh. This process 
helps reduce the total number of elements when tracking solutions to time-varying differ­
ential equations. Coarsening can also be used to turn a single highly refined mesh into a 
sequence of meshes for use in the multigrid method [98]. 

Figure 14 shows a sequence of meshes computed by a coarsening algorithm due to 
Ollivier-Gooch. The algorithm marks a set of vertices to delete from the fine mesh, elim­
inates all marked vertices, and then retriangulates the mesh. The resulting mesh is node 



312 M. Bern and P. Plassmann 

Fig. 14. A sequence of meshes used by the multigrid method for solving the Unear systems arising in modeUng 
airflow over an airfoil (C. OUivier-Gooch). 

conforming, meaning that every vertex of the coarse mesh appears in the fine mesh, but not 
edge conforming. One difficulty is that the shapes of the triangles degrade as the mesh is 
coarsened, due to increasing disparity between the interior and boundary point densities. 
Meshes produced by refinement methods are typically easier to coarsen than are less hier­
archical meshes such as Delaunay triangulations. Teng, Talmor, and Miller [87] have re­
cently devised an algorithm using Delaunay triangulations of well-spaced point sets, which 
produces a sequence of bounded-aspect-ratio, node-conforming meshes of approximately 
minimum depth. 

5.5. Mesh improvement 

The most common mesh improvement techniques are flipping and smoothing. These tech­
niques have proved to be very powerful in two dimensions, and together they can transform 
very poor meshes into very good ones, so long as the mesh starts with enough vertices. 

Flipping exchanges the diagonals of a triangulated quadrilateral as in the edge flipping 
algorithm for computing Delaunay triangulation (Section 5.1), only the criterion for mak­
ing the exchange need not be the Delaunay empty circle test. Flipping can be used to reg­
ularize vertex degrees, minimize the maximum angle, or improve almost any other quality 
measure of triangles. For quality measures optimized by the Delaunay triangulation (Sec­
tion 5.6.1), flipping computes a true global optimum, but for other criteria it computes only 
a local optimum. 

Mesh smoothing adjusts the locations of mesh vertices in order to improve element 
shapes and overall mesh quality [2,3,33,55,100]. In mesh smoothing, the topology of the 
mesh remains invariant, thus preserving important features such as the nonzero pattern of 
the linear system. 

Laplacian smoothing [55,77] is the most commonly used smoothing technique. This 
method sweeps over the entire mesh several times, repeatedly moving each adjustable ver­
tex to the arithmetic average of the vertices adjacent to it. Variations weight each adjacent 
vertex by the total area of the elements around it, or use the centroid of the incident ele­
ments rather than the centroid of the neighboring vertices [139]. Laplacian smoothing is 
computationally inexpensive and fairly effective, but it does not guarantee improvement 



Mesh generation 313 

Fig. 15. (a) A mesh resulting from bisection refinement without smoothing, (b) The same mesh after local 
optimization-based smoothing. 

in element quality. In fact, Laplacian smoothing can even invert an element, unless the 
algorithm performs an explicit check before moving a vertex. 

Another class of smoothing algorithms uses optimization techniques to determine new 
vertex locations. Both global and local optimization-based smoothing offer guaranteed 
mesh improvement and validity. Global techniques simultaneously adjust all unconstrained 
vertices; such an approach involves an optimization problem as large as the number of un­
constrained vertices, and consequently, is computationally very expensive [33,100]. Local 
techniques adjust vertices one by one — or an independent set of vertices in parallel [58] 
— resulting in a cost more comparable to Laplacian smoothing. Many quality measures, 
including maximum angle and area divided by sum of squared edge lengths, can be opti­
mized by techniques related to linear programming [2]. 

Figure 15 shows the results of a local optimization-based smoothing algorithm devel­
oped by Freitag et al. [58]. The algorithm was applied to a mesh generated adaptively 
during the finite element solution of the linear elasticity equations on a two-dimensional 
rectangular domain with a hole. The mesh on the left was generated using the bisection 
algorithm for refinement; the edges from the coarse mesh are still evident after many levels 
of refinement. The mesh on the right was generated by a similar algorithm, only with vertex 
locations optimized after each refinement step. Overall, the global minimum angle has im­
proved from 11.3°to21.7° and the average minimum element angle from 35.7° to 41.1°. 

5.6. Theoretical questions 

We have mentioned some theoretical results — conforming Delaunay triangulation, no-
small-angle triangulation — in context. In this section, we describe some other theoretical 
work related to mesh generation. 



314 M. Bern and P. Plassmann 

5.6.1. Optimal triangulation. Computational geometers have studied a number of prob­
lems of the following form: given a planar point set or polygonal domain, find a best 
triangulation, where "best" is judged according to some specific quality measure such as 
maximum angle, minimum angle, maximum edge length, or total edge length. If the input 
is a simple polygon, most optimal triangulation problems are solvable by dynamic pro­
gramming in time 0(f2^), but if the input is a point set, polygon with holes, or multiple 
domain, these problems become much harder. 

The Delaunay triangulation — constrained Delaunay triangulation in the case of polyg­
onal domains — optimizes any quality measure that is improved by flipping a reversed 
quadrilateral; this statement follows from the theorem that a triangulation without reversed 
quadrilaterals must be Delaunay. Thus Delaunay triangulation maximizes the minimum an­
gle, along with optimizing a number of more esoteric quality measures, such as maximum 
circumcircle radius, maximum enclosing circle radius, and "roughness" of a piecewise-
linear interpolating surface [105]. 

As mentioned in Section 5.5, edge flipping can also be used as a general optimization 
heuristic. For example, edge flipping works reasonably well for minimizing the maximum 
angle [53], but it does not in general find a global optimum. A more powerful local im­
provement method called edge insertion [23,53] exactly solves the minmax angle problem, 
as well as several other minmax optimization problems. 

Edge insertion starts from an arbitrary triangulation and repeatedly inserts candidate 
edges. If minimizing the maximum angle is the goal, the candidate edge e subdivides the 
maximum angle; in general the candidate edge is always incident to a "worst vertex" of a 
worst triangle. The algorithm then removes the edges that are crossed by e, forming two 
polygonal holes alongside e. Holes are retriangulated by repeatedly removing ears (trian­
gles with two sides on the boundary, as shown in Figure 16) with maximum angle smaller 
than the old worst angle Lcab. If retriangulation runs to completion, then the overall trian­
gulation improves and edge be is eliminated as a future candidate. If retriangulation gets 
stuck, then the overall triangulation is returned to its state before the insertion of e, and e 
is eliminated as a future candidate. Each candidate insertion takes time 0{n), giving a total 
running time of 0(«^). 

compute an initial triangulation with all (2) edge slots unmarked 
while 3 an unmarked edge e cutting the worst vertex a of worst triangle abc do 

add e and remove all edges crossed by e 
try to retriangulate by removing ears better than abc 
if retriangulation succeeds then mark be 
else mark e and undo e's insertion endif 

endwhile 

Edge insertion can compute the minmax "eccentricity" triangulation or the minmax 
slope interpolating surface [23] in time 0{n^). By inserting candidate edges in a certain 
order and saving old partial triangulations, the running time can be improved to 0{n^ log n) 
for minmax angle [53] and maxmin triangle height. 

We close with some results for two other optimization criteria: maximum edge length 
and total length. Edelsbrunner and Tan [51] showed that a triangulation of a point set that 
minimizes the maximum edge length must contain the edges of a minimum spanning tree. 



Mesh generation 315 

Fig. 16. Edge insertion retriangulates holes by removing sufficiently good ears. Dotted lines indicate the old 
triangulation. 

The tree divides the input into simple polygons, which can be filled in by dynamic pro­
gramming, giving an 0(n-^)-time algorithm (improvable to 0(n^)). Whether a triangula­
tion minimizing total edge length — "minimum weight triangulation" — can be solved in 
polynomial time is still open. The most promising approach [46] incrementally computes 
a set of edges that must appear in the triangulation. If the required edges form a connected 
spanning graph, then the triangulation can be completed with dynamic programming as in 
the minmax problem. 

5.6.2. Steiner triangulation. The optimal triangulation problems just discussed have lim­
ited applicability to mesh generation, since they address only triangulation and not Steiner 
point placement. Because exact Steiner triangulation problems appear to be intractable, 
typical theoretical results on Steiner triangulation prove either an approximation bound 
such as the guarantees provided by the mesh generators in Sections 5.2 and 5.3, or an or­
der of complexity bound such as Edelsbrunner and Tan's 0{n^) algorithm for conforming 
Delaunay triangulation. 

The mesh generators in Sections 5.2 and 5.3 give constant-factor approximation algo­
rithms for what we may call the no-small-angle problem: triangulate a domain Q using a 
minimum number of triangles, such that all new angles are bounded away from 0°. The 
provable constants tend to be quite large — in the hundreds — although the actual perfor­
mance seems to be much better. The number of triangles in a no-small-angle triangulation 
depends on the geometry of the domain, not just on the number of vertices n; an upper 
bound is given by the sum of the aspect ratios of triangles in the constrained Delaunay 
triangulation. 

We can also consider the no-large-angle problem: triangulate Q using a minimum num­
ber of triangles, such that all new angles are bounded away from 180°. The strictest bound 
on large angles that does not imply a bound on small angles is nonobtuse triangulation: 
triangulate a domain Q such that the maximum angle measures at most 90°. Moreover, 
a nonobtuse mesh has some desirable numerical and geometric properties [9,135]. Bern, 
Mitchell, and Ruppert [27] developed a circle-based algorithm for nonobtuse triangulation 



316 M. Bern and P. Plassmann 

Fig. 17. Steps in circle-based nonobtuse triangulation. 

of polygons with holes; this algorithm gives a triangulation with 0(n) triangles, regard­
less of the domain geometry. Figure 17 shows the steps of this algorithm: the domain is 
packed with nonoverlapping disks until each uncovered region has either 3 or 4 sides; radii 
to tangencies are added in order to split the domain into small polygons; and finally small 
polygons are triangulated with right triangles, without adding any new subdivision points. 

It is currently unknown whether multiple domains admit polynomial-size nonobtuse tri-
angulations. Mitchell [93], however, gave an algorithm for triangulating multiple domains 
using 0{n^ log n) triangles with maximum angle 157.5^. Tan [ 126] improved the maximum 
angle bound to 132° and the complexity to the optimal O(n^). 

6. Hexahedral meshes 

Mesh generation in three dimensions is not as well developed as in two, for a number 
of reasons: lack of standard data representations for three-dimensional domains, greater 
software complexity, and — most relevant to this article — some theoretical difficulties. 

This section and the next one survey approaches to three-dimensional mesh generation. 
We have divided this material according to element shape, hexahedral or tetrahedral. This 
classification is not completely strict, as many hexahedral mesh generators use triangu­
lar prisms and tetrahedra in a pinch. Careful implementations of numerical methods can 
handle degenerate hexahedra such as prisms [66,67]. In this section, we describe three ap­
proaches to hexahedral mesh generation that vary in their degree of structure and strictness. 

6.1. Multiblock meshes 

We start with the approach that produces meshes with the most structure (and quite often 
the highest quality elements). A multiblock mesh contains a number of small structured 



Mesh generation 317 

Fig. 18. A multiblock hexahedral mesh of a submarine, showing (a) block structure, and (b) a vertical slice through 
the mesh (ICEM CFD). 

meshes that together form a large unstructured mesh. Typically a user must supply the 
topology of the unstructured mesh, but the rest of the process is automated. Figure 18 shows 
a multiblock mesh created by ICEM Hexa, a system developed by ICEM CFD Engineering. 
In this system the user controls the placement of the block comers, and then the mesh 
generator projects the implied block edges onto domain curves and surfaces automatically. 
Due to the need for human interaction, multiblock meshes are not well suited to adaptive 
meshing, nor to rapidly iterated design and simulation. 

6.2. Cartesian meshes 

We move on to a recently developed "quick and dirty" approach to hexahedral mesh gener­
ation. The Cartesian approach offers simple data structures, explicit orthogonality of mesh 
edges, and robust and straightforward mesh generation. The disadvantage of this approach 
is that it uses non-hexahedral elements around the domain boundary, which then require 
special handling. 

A Cartesian mesh is formed by cutting a rectangular box into eight congruent boxes, 
each of which is split recursively until each minimal box intersects the domain ^ in a 
simple way or has reached some small target size. (This construction is essentially the 
same as an octree, described in Section 7.3.) Requiring neighboring boxes to differ in size 
by at most a factor of two ensures appropriate mesh grading. 

Boxes cut by the boundary are classified into a number of patterns by determining which 
of their vertices lie interior and exterior to Q. Each pattern corresponds to a different type 
of non-hexahedral element. Boxes adjacent to ones half their own size can similarly be 
classified as non-hexahedral elements, or alternatively the solution value at their subdivi­
sion vertices can be treated as implicit variables using Lagrange multipliers [1]. 

Recent fluid dynamics simulations have used Cartesian meshes quite successfully in both 
finite element and finite volume formulations [41,42,144]. The approach can be adapted 
even to very difficult meshing problems. For example, Berger and Oliger [21] and Berger 



318 M Bern and P. Plassmann 

Fig. 19. A two-dimensional Cartesian mesh for a biplane wing (W. Coirier). 

and Colella [20] have developed adaptive Cartesian-based methods for rotational IBiows and 
flows with strong shocks. 

6.3. Unstructured hexahedral meshes 

Hexahedral elements retain some advantages over tetrahedral elements even in unstruc­
tured meshes. Hexahedra fit man-made objects well, especially objects produced by CAD 
systems. The edge directions in a box-shaped hexahedron often have physical significance; 
for example, hexahedra show a clear advantage over tetrahedra for a stress analysis of a 
beam [19]. The face normals of a box meet at the center of the element; this property can 
be used to define control volumes for finite volume methods. These advantages are not 
inherent to hexahedra, but rather are properties of box-shaped elements, which degrade 
as the element grows less rectangular. Thus it will not suffice to generate an unstructured 
hexahedral mesh by transforming a tetrahedral mesh. 

Armstrong et al. [4] are currently developing an unstructured hexahedral mesh generator 
based on the medial axis transform. The medial axis of a domain is the locus of centers of 
spheres that touch the boundary in two or more faces. This construction is closely related 
to the Voronoi diagram of the faces of the domain; Srinivasan et al. [124] have previously 
applied this construction to two-dimensional unstructured mesh generation. The medial 
axis is a natural tool for mesh generation, as advancing fronts meet at the medial axis in 
the limit of small, equal-sized elements. By precomputing this locus, a mesh generator can 
more gracefully handle the junctures between sections of the mesh. 

Tautges and Mitchell [127] are developing an all-hexahedral mesh generation algorithm 
called whisker weaving. Whisker weaving is an advancing front approach that fixes the 
topology of the mesh before the geometry. It starts from a quadrilateral surface mesh. 



Mesh generation 319 

which can itself be generated by an advancing-front generator within each face [28]. The 
algorithm forms the planar dual of the surface mesh, and then finds closed loops in the 
planar dual around the surface of the polyhedron. Each loop will represent the boundary 
of a layer of hexahedra in the eventual mesh. A layer of hexahedra can be represented by 
its dual, called a sheet, which has one vertex per hexahedron and edges between adjacent 
hexahedra. As the algorithm runs, it fills in sheets from the boundary inwards. 

This approach to hexahedral meshing raises an interesting theoretical question: which 
quadrilateral surface meshes can be extended to hexahedral volume meshes? Mitchell [94] 
and Thurston [132] (see also Eppstein [54]) answered this question in a topological sense 
by showing that any surface mesh on a simple polyhedron with an even number of quadri­
laterals can be extended to a volume mesh formed by (possibly curved) topological cubes. 
The geometric question remains open. 

7. Tetrahedral meshes 

Tetrahedra have several important advantages over hexahedra: unique linear interpolation 
from vertices to interior, greater flexibility in fitting complicated domains, and ease of 
refinement and derefinement. In order to realize the last two of these advantages, tetrahedral 
meshes are almost always unstructured. 

Most of the approaches to unstructured triangular mesh generation that we surveyed in 
Section 5 can be generalized to tetrahedral mesh generation, but not without some new 
difficulties. Before describing Delaunay, advancing front, and octree mesh generators we 
discuss three theoretical obstacles to unstructured tetrahedral meshing, ways in which M̂  
differs from M .̂ 

First, not all polyhedral domains can be triangulated without Steiner points. Figure 20(a) 
gives an example of a non-tetrahedralizable polyhedron, a twisted triangular prism in which 
each rectangular face has been triangulated so that it bends in towards the interior. None 
of the top three vertices is visible through the interior to all three of the bottom vertices; 
hence no tetrahedron formed by the vertices of this polyhedron can include the bottom face. 
Chazelle [37] gave a quantitative bad example, shown in Figure 20(b). This polyhedron in­
cludes ^(n) grooves that nearly meet at a doubly-ruled curved surface; any triangulation 
of this polyhedron must include Q{n^) Steiner points and Q(n^) tetrahedra. Bad exam­
ples such as these appear to rule out the possibility of generalizing constrained Delaunay 
triangulation to three dimensions. 

Second, the very same domain may be tetrahedralized with different numbers of tetrahe­
dra. For example, a cube can be triangulated with either five or six tetrahedra. As we shall 
see below, the generalization of the edge flip to three dimensions exchanges two tetrahe­
dra for three or vice versa. This variability does not usually pose a problem, except in the 
extreme cases. For example, n points in M? can have a Delaunay triangulation with Q{n^) 
tetrahedra, even though some other triangulation will have only 0(n). 

Finally, tetrahedra can be poorly shaped in more ways than triangles. In two dimensions, 
there are only two types of failure, angles close to 0° and angles close to 180°, and no fail­
ures of the first kind implies no failures of the second. In three dimensions, we can classify 
poorly shaped tetrahedra according to both dihedral and solid angles [22]. There are then 



320 M. Bern and P. Plassmann 

Fig. 20. (a) Schonhardt's twisted prism cannot be tetrahedralized without Steiner points, (b) Chazelle's polyhe­
dron requires Q{n ) Steiner points. 

Needle Wedge 

Fig. 21. The five types of bad tetrahedra. 

five types of bad tetrahedra, as shown in Figure 21. A needle permits arbitrarily small solid 
angles, but not large solid angles and neither large nor small dihedral angles. A wedge per­
mits both small solid and dihedral angles, but neither large solid nor large dihedral angles, 
and so forth. Notice that a sliver or a cap can have all face angles bounded away from both 
0° and 180°, although the tetrahedron itself may have arbitrarily small solid angles and in­
terior volume. An example is the sliver with vertex coordinates (0, 0,0), (0, 1, £), (1,0, e), 
and (1, 1,0), where ^ ^- 0. 

Many measures of tetrahedron quality have been proposed [75], most of which have 
a maximum value for an equilateral tetrahedron and a minimum value for a degenerate 
tetrahedron. One suitable measure, which forbids all five types of bad tetrahedra, is the 
minimum solid angle. A weaker measure, which forbids all types except slivers, is the 
ratio of the minimum edge length to the radius of the circumsphere [88]. 

7.1. Delaunay triangulation 

As in two dimensions, point placement followed by Delaunay triangulation is a popular ap­
proach to mesh generation, especially in aerodynamics. The same point placement methods 



Mesh generation 321 

Fig. 22. In three dimensions, an edge flip exchanges three tetrahedra sharing an edge for two tetrahedra sharing a 
triangle, or vice versa. 

work fairly well: combining structured meshes [68], advancing front [10,78,79], and ran­
dom scattering with filtering [137]. As in two dimensions, the placement phase must put 
sufficiently many points on the domain boundary to ensure that the Delaunay triangulation 
will be conforming. Although the three-dimensional conforming Delaunay triangulation 
problem is not too hard for most domains of practical interest, we do not know of pub­
lished solutions. 

The first two point placement methods suffer from the same liability in three dimensions 
as in two: points may be improperly spaced at junctures between fronts or patches. All 
three methods suffer from a new sort of problem: even a well spaced point set may include 
sliver tetrahedra in its Delaunay triangulation, because a sliver does not have an unusually 
large circumsphere compared to the lengths of its edges. For this reason, some Delaunay 
mesh generators [10] include a special postprocessing step that finds and removes slivers. 
Chew (personal communication) has recently devised an algorithm that removes slivers by 
adding Steiner points at a random location near their circumcenters. 

The triangulation phase of mesh generation also becomes somewhat more difficult in 
three dimensions. The generalization of edge flipping exchanges the two possible triangu-
lations of five points in convex position, as shown in Figure 22. We call a flip a Delaunay 
flip if, after the flip, the triangulation of the five points satisfies the empty sphere condi­
tion — no circumsphere encloses a point. In three dimensions, it is no longer true that 
any tetrahedralization can be transformed into the Delaunay triangulation by a sequence 
of Delaunay flips [69], and it is currently unknown whether any tetrahedralization can be 
transformed into the Delaunay triangulation by arbitrary flips. Nevertheless, there are prov-
ably correct, incremental Delaunay triangulation algorithms based on edge flipping [50,70, 
104]. 

There are other practical three-dimensional Delaunay triangulation algorithms as well. 
Bowyer [30] and Watson [136] gave incremental algorithms with reasonable expected-case 
performance. Barber [15] implemented a randomized algorithm in arbitrary dimension. 
This algorithm can be used to compute Delaunay triangulations through a well-known 
reduction [31] which "lifts" the Delaunay triangulation of points in W^ to the convex hull 
of points in IR^+^ 



322 M. Bern and P. Plassmann 

Fig. 23. The surface of a tetrahedral mesh computed by an advancing front generator (ANSYS, Inc.). 

7.2. Advancing front 

We have already mentioned an advancing front approach to placing Steiner points for De-
launay triangulation. A pure advancing front mesh generator [77,79,97,101] places the 
elements themselves, rather than just the Steiner points. This approach gives more direct 
control of element shapes, especially near the boundary, which is often a region of spe­
cial interest. Advancing front generators seem to be especially popular in aerodynamics 
simulations [64,65,79,85,101]. 

We describe an advancing front algorithm of Lohner and Parikh [79,80] as it contains 
the essential ideas. Desired element size (and perhaps stretching directions) are defined 
at the vertices of a coarse "background" tetrahedralization and interpolated to the rest of 
the domain. The background mesh can also be defined by an octree, the three-dimensional 
generahzation of a quadtree. To get started, the boundaries of the domain are triangulated; 
the initial front consists of the boundary faces. The algorithm then iteratively chooses a 
face of the front and builds a tetrahedron over that face. The algorithm attempts to fill in 
clefts left by the last layer of tetrahedra before starting the next layer; within a layer, the 
algorithm chooses small faces first in order to minimize collisions. The fourth vertex of 
the tetrahedron will be either an already existing vertex or a vertex specially created for 
the tetrahedron. In the latter case, the algorithm tries to choose a smart location for the 
new vertex; for example, the new vertex may be placed along a normal to the base face 
at a distance determined by aspect ratios and length functions ultimately derived from the 
background triangulation [59]. In either case, cleft or new vertex, the tetrahedron must be 
tested for collisions before final acceptance. 

Figure 23 shows the surface of a fairly isotropic tetrahedral mesh computed by an ad­
vancing front mesh generator developed by ANSYS, Inc. This generator, like the one just 
described, places elements directly. 



Mesh generation 323 

Fig. 24. The surface of a tetrahedral mesh derived from an octree (M. Yerry and M. Shephard). 

Marcum and Weatherill [81] have devised an algorithm somewhere between pure ad­
vancing front and advancing-front point placement followed by Delaunay triangulation. 
Their algorithm starts with a coarse mesh, and then uses advancing front to place addi­
tional Steiner points, simply subdividing the coarse tetrahedra to maintain a triangulation. 
This mesh is then improved first by Delaunay and then by minmax-solid-angle flips. Other 
researchers agree that applying flips in this order is more effective than using either type 
of flip alone. 

7.3. Octrees 

An octree is the natural generalization of a quadtree. An initial bounding cube is split into 
eight congruent cubes, each of which is split recursively until each minimal cube intersects 
the domain .Q in a simple way. As in two dimensions, a balance condition ensures that 
no cube is next to one very much smaller than itself; balancing an unbalanced quadtree 
or octree expands the number of boxes by a constant multiplicative factor. The balance 
condition need not be explicit, but rather it may be a consequence of an intrinsic local 
spacing function [134]. 

Shephard and his collaborators [114-116,142] have developed several octree-based 
mesh generators for polyhedral domains. Their original generator [142] tetrahedralizes 
leaf cubes using a collection of predefined patterns. To keep the number of patterns man­
ageable, the generator makes the simplifying assumption that each cube is cut by at most 
three facets of the input polyhedron. Perucchio et al. [102] give a more sophisticated way 
to conform to boundaries. Buratynski [32] uses rectangular octrees and a hierarchical set 
of warping rules. The octree is refined so that each domain edge intersects boxes of only 
one size. Boxes are warped to domain vertices, then edges, and finally faces. 

Mitchell and Vavasis [91] generalized the quadtree mesh generator of Bern et al. [25] to 
three dimensions. The generalization is not straightforward, primarily because vertices of 



324 M. Bern and P. Plassmann 

Fig. 25. The tetrahedron on the left is bisected to form two new tetrahedra. 

polyhedra may have very complicated local neighborhoods. This algorithm is guaranteed to 
avoid all five types of bad tetrahedra, while producing a mesh with only a constant times the 
minimum number of tetrahedra in any such bounded-aspect-ratio tetrahedralization. So far 
this is the only three-dimensional mesh generation algorithm with such a strong theoretical 
guaranty. Vavasis [134] has recently released a modified version of the algorithm (called 
QMG for "Quality Mesh Generator"), including a simple geometric modeler and equation 
solver to boot. The modified algorithm includes a more systematic set of warping rules; in 
particular, the new warping method for an octree cube cut by a single facet generalizes to 
any fixed dimension [92]. 

7.4. Refinement and improvement 

We discuss improvement before refinement, because less is known on the subject. As we 
mentioned above, edge flipping generalizes to three dimensions, and flipping first by the 
Delaunay empty sphere criterion and then by the minmax solid angle criterion seems to be 
fairly effective. Laplacian smoothing also generalizes, although experimental results [57] 
indicate that it is no longer as effective as in two dimensions. Optimization-based smooth­
ing [2,57] appears to be more powerful than simple Laplacian smoothing. Freitag and 
Ollivier-Gooch [57] recommend combining Delaunay flipping with smoothing for maxmin 
dihedral angle or maxmin dihedral-angle sine. 

We now move on to refinement and discuss two different refinement algorithms based 
upon the natural generalization of bisection to three dimensions. To bisect tetrahedron 
vov\V2V2> across edge V{)V\, we add the triangle foi 1̂ 21̂ 3, where VQ\ is the midpoint of 
VQV\, as shown in Figure 25. This operation creates two child tetrahedra, uofo 11̂21̂3 and 
VQ\V\V2V^, and bisects the faces VQV\V2 and fofi 1̂ 3, which, unless they lie on the domain 
boundary, are each shared with an adjacent tetrahedron. Two tetrahedra that share a face 
must agree on how it is to be bisected; otherwise an invalid mesh will be constructed. 

A single bisection of a tetrahedron can approximately square the minimum solid angle, 
unlike in two dimensions where the minimum angle of a triangle is decreased by no more 
than a factor of two. Consider the wedge tetrahedron with vertex coordinates (0,^,0), 



Mesh generation 325 

Fig. 26. The first three levels of longest-edge bisection of the canonical tetrahedron. Note that the tetrahedra 
generated at each level are similar. For the final level of refinement we show only the four tetrahedra obtained 

from fô ôi ^2^3- Four similar tetrahedra are obtained from vo\v\V2V2>. 

(0,—e, 0),(1,0,^), and (1, 0, — e). Bisection of the longest ^dgt of this tetrahedron creates 
a new tetrahedron with minimum soHd angle about s^. 

Rivara and Levin [110] suggested an extension of longest-edge Rivara refinement (Sec­
tion 5.4) to three dimensions. Notice that splitting the longest edge in a tetrahedron also 
splits the longest edge on the two subdivided faces, and thus the bisection of shared faces 
is uniquely defined. (Ties can be broken by vertex labels.) Neighboring invalid tetrahedra, 
meaning all those sharing the subdivided longest edge, are refined recursively. 

Rivara and Levin provide experimental evidence suggesting that repeated rounds of 
longest-edge refinement cannot reduce the minimum solid angle below a fixed threshold, 
but this guarantee has not been proved. The guarantee would follow if it could be shown 
that the algorithm generates only a finite number of tetrahedron similarity classes. 

A bisection algorithm first introduced by Bansch [14] does indeed generate only a finite 
number of similarity classes. Before describing the algorithm, we sketch the argument of 
Liu and Joe [74] which motivates the algorithm. The key observation is that there exists 
an affine transformation that maps any tetrahedron to a canonical tetrahedron for which 
longest-edge bisection generates only a finite number of similarity classes. Consider the 
canonical tetrahedron tc with coordinates ( -1 ,0 ,0) , (1,0, 0), (0, 1/V2, 0), and (0, 0,1). 
In Figure 26 we illustrate the first three levels of longest-edge bisection of tc = V{)V\ V2V^. 
It can be shown that all the tetrahedra generated at each level of refinement are similar 
and that the eight tetrahedra generated after three levels of refinement are similar to tc. 
Refinement in the canonical space induces a refinement in the original space with only a 
finite number of different similarity classes. A subtlety: the similarity classes in the origi­
nal space correspond to homothets (identical up to scaling and translation), not similarity 
classes, in the canonical space. Hence the number of similarity classes turns out to be 36 
rather than 8 [5,83]. 

Bansch [14], Liu and Joe [76], and Arnold et al. [5] give essentially equivalent [71] 
algorithms for generating the bisection order; we follow Bansch's presentation. Each face 
in each tetrahedron elects one of its edges to be its refinement edge, so that two conditions 
hold: the choice for a face is consistent between the two tetrahedra that share it, and exactly 



326 M. Bern and P. Plassmann 

one edge in each tetrahedron — the global refinement edge — is chosen by pairs of faces 
of the tetrahedron. These conditions hold initially if each face picks its longest edge and 
ties are broken in any consistent manner, for example, by vertex or edge label order. In the 
pseudocode below, a child face is a triangle like vo\V2V\ in Figure 25, and a new face is 
one like V{)\V2V^. 

mark the refinement edge of every face in the current mesh 
let 7b be the set of marked tetrahedra; / = 0 
while (7/ ^ 0) do 

bisect each tetrahedron in 7/ across its global refinement edge 
pick the old edge in each child face as its refinement edge 
pick the longest edge in each new face as its refinement edge 
/ = / + 1 
let Ti be the set of invalid tetrahedra 

enddo 

8. Conclusions 

We have described the current state of the art in mesh generation for finite element methods. 
Practical issues in mesh generation are — roughly in order of importance — algorithm 
robustness, fit with underlying physics, element quality, and mesh efficiency. 

Unstructured triangular and tetrahedral mesh generation already makes frequent use of 
data structures and algorithms familiar in computational geometry. We expect this trend to 
continue. We also expect — and recommend — computational geometers to focus some 
attention on structured meshes and hexahedral meshes. 

We close with a short list of open problems of both practical and theoretical interest. It 
is no coincidence that these problems focus on three-dimensional mesh generation. 

1. Is the flip graph for a point set in B? connected? In other words, is it possible to 
convert any triangulation of a point set (even a point set in convex position) into any 
other using only flips (Figure 22)? 

2. Is there a smoothing algorithm guaranteed to remove slivers? A sliver (Figure 21) is 
the only type of bad tetrahedron with well spaced vertices and small circumspheres. 

3. Is there an algorithm for conforming Delaunay triangulation in R-̂ ? In other words, 
place vertices on the boundary of a polyhedron, so that the Delaunay triangulation of 
all vertices, original and new, contains the polyhedron. 

4. Is there an algorithm for unstructured tetrahedral mesh generation that guarantees an 
M-matrix for the finite element formulation of Poisson's equation? 

5. Give an algorithm for computing the blocks in a multiblock mesh. Such an algo­
rithm should give a small number of nicely shaped blocks, quadrilaterals in R^ and 
hexahedra in R^. 

6. Can any quadrilateral surface mesh with an even number of quadrilaterals be ex­
tended to a hexahedral volume mesh? 



Mesh generation 327 

Ackonwledgements 

We would like to thank Lori Freitag, Paul Heckbert, Scott Mitchell, Carl Ollivier-Gooch, 
Jonathan Shewchuk, and Steve Vavasis for help in preparing this survey. 

References 

[1] M. Aftosmis, J. Melton and M. Berger, Adaptation and surface modeling for Cartesian mesh methods, 
AIAA Paper 95-1725, 12th AIAA CFD Conf., San Diego, CA (June 1995). 

[2] N. Amenta, M.W. Bern and D. Eppstein, Optimal point placement for mesh smoothing, Proc. 8th ACM-
SIAM Symp. Disc. Algorithms (1997), 528-537. 

[3] E. Amezua, M.V. Hormaza, A. Hernandez and M.B.G. Ajuria, A method of the improvement of 3d solid 
finite-element meshes. Adv. Eng. Software 22 (1995), 45-53. 

[4] C.G. Armstrong, D.J. Robinson, R.M. McKeag, T.S. Li and S.J. Bridgett, Medials for meshing and more, 
Proc. 4th International Meshing Roundtable, Sandia National Laboratories (1995). 

[5] D.N. Arnold, A. Mukherjee and L. Pouly, Locally adapted tetrahedral meshes using bisection. Manuscript 
(1997). 

[6] I. Babuska and A. Aziz, On the angle condition in the finite element method, SIAM J. Numer. Anal. 13 
(1976), 214-227. 

[7] I. Babuska and W.C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Nu­
mer. Anal. 15 (1978), 736-754. 

[8] PL. Baehmann, S.L. Wittchen, M.S. Shephard, K.R. Grice and M.A. Yerry, Robust geometrically-based 
automatic two-dimensional mesh generation. Internal. J. Numer. Methods Eng. 24 (1987), 1043-1078. 

[9] B.S. Baker, E. Grosse and C.S. Rafferty, Nonobtuse triangulation of polygons. Discrete Comput. Geom. 3 
(1988), 147-168. 

[10] T.J. Baker, Automatic mesh generation for complex three-dimensional regions using a constrained Delau-
nay triangulation, Eng. Comput. 5 (1989), 161-175. 

[11] R.E. Bank, PLTMG: A Software Package for Solving Elliptic Partial Differential Equations, Users' Guide 
6.0, SIAM Pubhcations, Philadelphia, PA (1990). 

[12] R.E. Bank, A.H. Sherman and A. Weiser, Refinement algorithms and data structures for regular local mesh 
refinement. Scientific Computing, R. Stepleman et al., eds, IMACS/North-HoUand Publishing Company, 
Amsterdam (1983), 3-17. 

[13] R.E. Bank and R.K. Smith, Mesh smoothing using a posteriori error estimates, SIAM J. Num. Anal., to 
appear. ftp://math.ucsd.edU/pub/scicomp/reb/ftpfiles/a67.ps.Z. 

[14] E. Bansch, Local mesh refinement in 2 and 3 dimensions. Impact Comput. Sci. Eng. 3 (1991), 181-191. 
[15] C.B. Barber, D.P. Dobkin and H.T. Huhdanpaa, The Quickhull algorithm for convex hulls. Submitted to 

ACM Trans. Math. Software. See http: //www.geom.umn.edu/software/qhull/ (1995). 
[16] W.D. Barfield, An optimal mesh generator for Lagrangian hydrodynamic calculations in two space dimen­

sions, J. Comput. Phys. 6 (1970), 417^29. 
[17] R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine and 

H. Van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 
SIAM, Philadelphia (1994). 

[18] T.J. Barth, Aspects of unstructured grids and finite-volume solvers for the Euler and Navier-Stokes equa­
tions. Technical Report, von Karman Institute for Fluid Dynamics, Lecture Series 1994-05 (1994). 

[19] S.E. Benzley, E. Perry, K. Merkley, B. Clark and G. Sjaardema, A comparison of all-hexahedral and all-
tetrahedral finite element meshes for elastic and elasto-platic analysis, Proc. 4th International Meshing 
Roundtable, Sandia National Laboratories (1995), 179-191. 

[20] M.J. Berger and P. Colella, Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys. 82 
(1989), 64-84. 

[21] M.J. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations, J. Com­
put. Phys. 53 (1984), 484-512. 



328 M. Bern and P. Plassmann 

[22] M. Bern, L.R Chew, D. Eppstein and J. Ruppert, Dihedral bounds for mesh generation in high dimensions, 
Proc. 6th ACM-SIAM Symp. Disc. Algorithms (1995), 189-196. 

[23] M. Bern, H. Edelsbrunner, D. Eppstein, S. Mitchell and T.-S. Tan, Edge-insertion for optimal triangula-
tions. Discrete Comput. Geom. 10 (1993), 47-65. 

[24] M. Bern and D. Eppstein, Mesh generation and optimal triangulation. Computing in Euclidean Geometry, 
2nd ed., D.-Z. Du and EK. Hwang, eds. World Scientific, Singapore (1995), 47-123. 

[25] M. Bern, D. Eppstein and J.R. Gilbert, Provably good mesh generation, J. Comput. System Sci. 48 (1994), 
384^09. 

[26] M. Bern, D. Eppstein and F. Yao, The expected extremes in a Delaunay triangulation, Intemat. J. Comput. 
Geom. Appl. 1 (1991), 79-92. 

[27] M. Bern, S. Mitchell and J. Ruppert, Linear-size nonobtuse triangulation of polygons. Discrete Comput. 
Geom. 14 (1995), 411^28. 

[28] T.D. Blacker, Paving: A new approach to automated quadrilateral mesh generation, Intemat. J. Numer. 
Methods Eng. 32 (1991), 811-847. 

[29] F. Bossen, Anisotropic mesh generation with particles. Technical Report CMU-CS-96-134, Carnegie-
Mellon University, School of Computer Science (1996). http: //ltswww.epfl.ch/~bossen/. 

[30] A. Bowyer, Computing Dirichlet tessellations. Computer J. 24 (1981), 162-166. 
[31] K.Q. Brown, Voronoi diagrams from convex hulls. Inform. Process. Lett. 9 (1979), 223-228. 
[32] E.K. Buratynski, A fully automatic three-dimensional mesh generator for complex geometries, Intemat. J. 

Numer. Methods Eng. 30 (1990), 931-952. 
[33] S. Canann, M. Stephenson and T. Blacker, Optismoothing: An optimization-driven approach to mesh 

smoothing. Finite Elements in Analysis and Design 13 (1993), 185-190. 
[34] G.F. Carey and J.T Oden, Finite Elements: Computational Aspects, Prentice-Hall (1984). 
[35] J.E. Castillo, Mathematical Aspects of Grid Generation, Society for Industrial and Applied Mathematics, 

Philadelphia (1991). 
[36] M.J. Castro-Diaz, F. Hecht and B. Mohammadi, New progress in anisotropic grid adaptation for inviscid 

and viscid flows simulations, Proc. 4th Intemational Meshing Roundtable, Sandia National Laboratories 
(1995). 

[37] B. Chazelle, Convex partitions of polyhedra: A lower bound and worst-case optimal algorithm, SIAM J. 
Comput. 13 (1984), 488-507. 

[38] L.R Chew, Guaranteed-quality triangular meshes. Technical Report TR-89-983, Comp. Science Dept., 
Comell University (1989). 

[39] RG. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland (1978). 
[40] RG. Ciarlet and PA. Raviart, Maximum principle and uniform convergence for the finite element method, 

Comput. Methods Appl. Mech. Eng. 2 (1973), 17-31. 
[41] W.J. Coirier, An adaptively-refined, Cartesian cell-based scheme for the Euler and Navier-Stokes equa­

tions, NASA Technical Memorandum 106754, NASA (October 1994). 
[42] W.J. Coirier and K.G. Powell, An accuracy assessment of Cartesian-mesh approaches for the Euler equa­

tions, J. Comput. Phys. 117 (1995), 121-131. 
[43] E.F D'Azevedo and R.B. Simpson, On optimal interpolation triangle incidences, SIAM J. Sci. Stat. Com­

put. 10 (1989), 1063-1075. 
[44] L. De Floriani and B. Falcidieno, A hierarchical boundary model for solid object representation, ACM 

Transactions on Graphics 7 (1988), 42-60. 
[45] B. Delaunay, Sur la sphere vide, Izv. Akad. Nauk SSSR, VII Seria, Otd. Mat. i Estestv. Nauk 7 (1934), 

793-800. 
[46] M.T. Dickerson and M.H. Montague, A (usually?) connected subgraph of the minimum weight triangula­

tion, Proc. 12th ACM Symp. Comp. Geometry (1996), 204-213. 
[47] T.A. DriscoU, A Matlab toolbox for Schwarz-Christojfel mapping, ACM Trans. Math. Software, to appear. 
[48] T.A. DriscoU and S.A. Vavasis, Numerical conformal mapping using cross-ratios and Delaunay triangu­

lation. Available under http: //www.cs.comell.edu/Info/People/vavasis/vavasis.html (1996). 
[49] A.S. Dvinsky, Adaptive grid generation from harmonic maps. Numerical Grid Generation in Computa­

tional Fluid Dynamics '88, S. Sengupta, J. Hauser, PR. Eiseman and J.F. Thompson, eds, Pineridge Press 
Limited, Swansea, U.K. (1988). 



Mesh generation 329 

[50] H. Edelsbrunner and N.R. Shah, Incremental topological flipping works for regular triangulations, Proc. 
8th ACM Symp. Comp. Geometry (1992), 43-52. 

[51] H. Edelsbrunner and T.-S. Tan, A quadratic time algorithm for the minmax length triangulation, Proc. 
32nd IEEE Symp. Foundations of Comp. Science (1991), 414-^23. 

[52] H. Edelsbrunner and T.-S. Tan, An upper bound for conforming Delaunay triangulations, Discrete Comput. 
Geom. 10 (1993), 197-213. 

[53] H. Edelsbrunner, T.S. Tan and R. Waupotitsch, A polynomial time algorithm for the minmax angle trian­
gulation, SIAM J. Sci. Stat. Comp. 13 (1992), 994-1008. 

[54] D. Eppstein, Linear complexity hexahedral mesh generation, Proc. 12th ACM Symp. Comp. Geom. 
(1996), 58-67. 

[55] D.A. Field, Laplacian smoothing and Delaunay triangulations, Comm. Appl. Numer. Methods 4 (1988), 
709-712. 

[56] S. Fortune, Voronoi diagrams and Delaunay triangulations. Computing in Euclidean Geometry, 2nd ed., 
FK. Hwang and D.-Z. Du, eds. World Scientific, Singapore (1995), 225-265. 

[57] L. Freitag and C. OUivier-Gooch, A comparison of tetrahedral mesh improvement techniques, Proc. 5th 
International Meshing Roundtable, Sandia National Laboratories (1996), 87-100. http://sass577.endo. 
sandia.gov:80/9225/Personnel/samitch/roundtable96/. 

[58] L.A. Freitag, M.T Jones and RE. Plassmann, An efficient parallel algorithm for mesh smoothing, Proc. 
4th International Meshing Roundtable, Sandia National Laboratories (1995), 47-58. 

[59] P.J. Frey, H. Borouchaki and P.-L. George, Delaunay tetrahedralization using an advancing-front ap­
proach, Proc. 5th International Meshing Roundtable, Sandia National Laboratories (1996), 31-46. 
http://www.cs.cmu.edu/~ph. 

[60] PL. George, Automatic Mesh Generation, Wiley, New York (1991). 
[61] PL. George, F Hecht and E. Saltel, Fully automatic mesh generator for 3D domains of any shape. Impact 

of Com. in Sci. andEng. 2 (1990), 187-218. 
[62] A.S. Glassner, Maintaining winged-edge models, Graphics Gems II, E.J. Arvo, ed.. Academic Press Pro­

fessional, Boston, MA (1991), 191-201. 
[63] L.J. Guibas and J. Stolfi, Primitives for the manipulation of general subdivisions and the computation of 

Voronoi diagrams, ACM Trans. Graphics 4 (1985), 74-123. 
[64] O. Hassan, K. Morgan, E.J. Probert and J. Peraire, Mesh generation and adaptivity for the solution of 

compressible viscous high-speed flows, Intemat. J. Numer. Methods Eng. 38 (1995), 1123-1148. 
[65] O. Hassan, K. Morgan, E.J. Probert and J. Peraire, Unstructured tetrahedral mesh generation for three-

dimensional viscous flows, Intemat. J. Numer. Methods Eng. 39 (1996), 549-567. 
[66] T. J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Prentice-

Hall, Inc., Englewood Cliffs, NJ (1987). 
[67] T.J.R. Hughes and J.E. Akin, Techniques for developing 'special' finite element shape functions with par­

ticular reference to singularities, Intemat. J. Numer. Methods Eng. 15 (1980), 733-751. 
[68] A. Jameson, T.J. Baker and N.P. Weatherill, Calculation ofinviscid transonic flow over a complete aircraft, 

Proc. AIAA 24th Aerospace Sciences Meeting, Reno (1986). 
[69] B. Joe, Three-dimensional triangulations from local transformations, SIAM J, Sci. Stat. Comput. 10 

(1989), 718-741. 
[70] B. Joe, Construction of three-dimensional Delaunay triangulations using local transformations, Comput. 

Aided Geom. Design 8 (1991), 123-142. 
[71] M.T. Jones and RE. Plassmann, Adaptive reflnement of unstructured finite-element meshes. Finite Elements 

in Analysis and Design 25 (1-2) (March 1997), 41-60. 
[72] M.S. Khaira, G.L. Miller and T.J. Sheffler, Nested dissection: A survey and comparison of various nested 

dissection algorithms. Technical Report CMU-CS-92-106R, School of Computer Science, Camegie Mel­
lon University, Pittsburgh, Pennsylvania (1992). 

[73] P. Knupp and S. Steinberg, Fundamentals of Grid Generation, CRC Press (1994). 
[74] A. Liu and B. Joe, On the shape of tetrahedra from bisection. Math. Comput. 63 (207) (1994), 141-154. 
[75] A. Liu and B. Joe, Relationship between tetrahedron shape measures, BIT 34 (1994), 268-287. 
[76] A. Liu and B. Joe, Quality local refinement of tetrahedral meshes based on bisection, SIAM J. Sci. Comput. 

16 (6) (1995), 1269-1291. 



330 M. Bern and P. Plassmann 

[77] S.H. Lo, A new mesh generation scheme for arbitrary planar domains, Intemat. J. Numer. Methods Eng. 
21 (1985), 1403-1426. 

[78] S.H. Lo, Volume discretization into tetrahedra, Computers and Structures 39 (1991), 493-511. 
[79] R. Lohner and P. Parildi, Three-dimensional grid generation via the advancing-front method, Intemat. J. 

Numer. Methods Fluids 8 (1988), 1135-1149. 
[80] R. Lohner, Progress in grid generation via the advancing front technique, Eng. Comput. 12 (1996), 186-

210. 
[81] D.L. Marcum and N.P. Weatherill, Unstructured grid generation using iterative point insertion and local 

reconnection, AIAA J. 33 (9) (1995), 1619-1625. 
[82] C.W. Mastin, Elliptic grid generation and conformal mapping. Mathematical Aspects of Grid Generation, 

Jose E. Castillo, ed.. Society for Industrial and AppUed Mathematics, Philadelphia (1991), 9-18. 
[83] J.M. Maubach, The number of similarity classes created by local n-simplicial bisection refinement. 

Manuscript (1996). 
[84] D.J. Mavriplis, Unstructured and adaptive mesh generation for high Reynolds number viscous flows. Tech­

nical Report 91-25, ICASE, NASA Langley Research Center (1991). 
[85] D.J. MavripUs, Unstructured mesh generation and adaptivity. Technical Report ICASE 95-26, NASA 

Langley, Hampton VA (1995). Abstract at http: //techreports.larc.nasa.gov/cgibin/NTRS. 
[86] D.J. Mavriplis, Mesh generation and adaptivity for complex geometries and flows. Handbook of Compu­

tational Fluid Mechanics, R. Peyret, ed.. Academic Press, London (1996). 
[87] G.L. Miller, D. Talmor and S.-H. Teng, Optimal coarsening of unstructured meshes, Proc. 8th ACM-SIAM 

Symp. Disc. Algorithms (1997). 
[88] G.L. Miller, D. Talmor, S.-H. Teng and N. Walkington, A Delaunay based numerical method for three 

dimensions: Generation, formulation and partition, Proc. 36th IEEE Symp. on Foundations of Comp. 
Science (1995), 683-692. 

[89] G.L. Miller, S.-H. Teng and S.A. Vavasis, A unified geometric approach to graph separators, Proc. 32nd 
IEEE Symp. on Foundations of Comp. Science (1991), 538-547. 

[90] S.A. Mitchell, Cardinality bounds for triangulations with bounded minimum angle. Sixth Canadian Con­
ference on Computational Geometry (1994). 

[91] S.A. Mitchell and S. Vavasis, Quality mesh generation in three dimensions, Proc. 8th ACM Symp. Comp. 
Geom. (1992), 212-221. 

[92] S.A. Mitchell and S. Vavasis, An aspect ratio bound for triangulating a d-grid cut by a hyperplane, Proc. 
12th ACM Symp. Comp. Geom. (1996), 48-57. 

[93] S.A. Mitchell, Refining a triangulation of a planar straight-line graph to eliminate large angles, Proc. 34th 
IEEE Symp. on Foundations of Comp. Science (1993), 583-591. 

[94] S.A. Mitchell, A characterization of the quadrilateral meshes of a surface which admit a compatible 
hexahedral mesh of the enclosed volume, Proc. 13th Symposium on Theoretical Aspects of Computer 
Science (STAGS '96), LNCS, Springer-Verlag (1996). 

[95] J.-D. Miiller, Proven angular bounds and stretched triangulations with the frontal Delaunay method, Proc. 
11th AIAA Comp. Fluid Dynamics, Orlando (1993). 

[96] L.R. Nackman and V. Srinivasan, Point placement for Delaunay triangulation of polygonal domains, Proc. 
3rd Canadian Conf. Comp. Geometry (1991), 37^0. 

[97] Nguyen-Van-Phai, Automatic mesh generation with tetrahedral element, Intemat. J. Numer. Methods Eng. 
18 (1982), 273-289. 

[98] C.F OUivier-Gooch, Multigrid acceleration of an upwind Euler solver on unstructured meshes, AIAA J. 
33 (10) (1995), 1822-1827. 

[99] S. Owen, Meshing research corner, http: //www.ce.cmu.edu /NetworkZ /sowen/www/mesh.html (1995). 
[100] V.N. Parthasarathy and S. Kodiyalam, A constrained optimization approach to finite element mesh smooth­

ing. Finite Elements in Analysis and Design 9 (1991), 309-320. 
[101] J. Peraire, J. Peiro, L. Formaggia, K. Morgan and O.C. Zieniewicz, Finite element Euler computations in 

three dimensions, Intemat. J. Numer. Methods Eng. 26 (1988), 2135-2159. 
[102] R. Pemcchio, M. Saxena and A. Kela, Automatic mesh generation from solid models based on recursive 

spatial decomposition, Internat. J. Numer. Methods Eng. 28 (1989), 2469-2502. 
[103] F.P Preparata and M.I. Shamos, Computational Geometry: An Introduction, Springer-Verlag (1985). 



Mesh generation 331 

[104] V.T. Rajan, Optimality of the Delaunay triangulation in R^, Proc. 7th ACM Symp. Comp. Geometry 
(1991), 357-363. 

[105] S. Rippa, Minimal roughness property of the Delaunay triangulation, Comput. Aided Geom. Design 7 
(1990), 489^97. 

[106] S. Rippa, Long and thin triangles can be good for linear interpolation, SIAM J. Numer. Anal. 29 (1992), 
257-270. 

[107] M.-C. Rivara, Algorithms for refining triangular grids suitable for adaptive and multigrid techniques, 
Intemat. J. Numer. Methods Eng. 20 (1984), 745-756. 

[108] M.-C. Rivara, Design and data structure of fully adaptive, multigrid, finite-element software, ACM Trans. 
Math. Software 10 (3) (1984), 242-264. 

[109] M.-C. Rivara, Mesh refinement processes based on the generalized bisection ofsimplices, SIAM J. Numer. 
Anal. 21 (3) (1984), 604-613. 

[110] M.-C. Rivara and C. Levin, A 3-d refinement algorithm suitable for adaptive and multi-grid techniques, 
Comm. Appl. Numer. Methods 8 (1992), 281-290. 

[ I l l ] J. Ruppert, A Delaunay refinement algorithm for quality 2-dimensional mesh generation, J. Algorithms 18 
(3) (1995), 548-585. 

[112] A. Saalfeld, Delaunay edge refinements, Proc. 3rd Canadian Conf. Comp. Geometry (1991), 33-36. 
[113] R. Schneiders, Finite element mesh generation, http: //www-users.informatik.rwth-aachen.de/ ~roberts/ 

meshgeneration.html (1995). 
[114] W.J. Schroeder and M.S. Shephard, A combined octree/Delaunay method for fully automatic 3-D mesh 

generation, Intemat. J. Numer. Methods Eng. 29 (1990), 37-55. 
[115] M. Shephard and M. Georges, Automatic three-dimensional mesh generation by the finite octree technique, 

Intemat. J. Numer. Methods Eng. 32 (1991), 709-749. 
[116] M.S. Shephard, F. Guerinoni, I.E. Flaherty, R.A. Ludwig and PL. Baehmann, Finite octree mesh genera­

tion for automated adaptive three-dimensional flow analysis, Proc. 2nd Int. Conf. Numer. Grid Generation 
in Computational Fluid Mechanics (1988), 709-718. 

[117] J.R. Shewchuk, Triangle: A two-dimensional quality mesh generator and Delaunay triangulator, see http: 
//www.cs.cmu.edu/%7Equake/triangle.html (1995). 

[118] J.R. Shewchuk, Adaptive precision floating-point arithmetic and fast robust geometric predicates in C, 
Proc. 12th ACM Symp. Comp. Geometry (1996). 

[119] K. Shimada, Physically-based mesh generation: Automated triangulation of surfaces and volumes via 
bubble packing, PhD thesis, ME Dept., MIT (1993). 

[120] K. Shimada and D.C. Gossard, Computational methods for physically-based FE mesh generation, Proc. 
IFIP TC5AVG5.3 8th Int. Conference on PROLAMAT, Tokyo (1992). 

[121] R.B. Simpson, Anisotropic mesh transformations and optimal error control, Appl. Numer. Math. 14 (1-3) 
(1994), 183-198. 

[122] B. Smith, P. Bj0rstad and W. Gropp, Domain Decomposition: Parallel Multilevel Algorithms for Elliptic 
Partial Differential Equations, Cambridge University Press, New York (1996). 

[123] PW. Smith and S.S. Sritharan, Theory of harmonic grid generation. Complex Variables 10 (1988), 359-
369. 

[124] V. Srinivasan, L.R. Nackman, J.-M. Tang and S.N. Meshkat, Automatic mesh generation using the symmet­
ric axis transformation of polygonal domains. Technical Report RC 16132, Comp. Science, IBM Research 
Division, Yorktown Heights, NY (1990). 

[125] G. Strang and G.J. Fix, An Analysis of the Finite Element Method, Prentice-Hall (1973). 
[126] T.-S. Tan, An optimal bound for conforming quality triangulations, Proc. 10th ACM Symp. Comp. Geom­

etry (1994), 240-249. 
[127] T.J. Tautges and S.A. Mitchell, The whisker weaving algorithm for constructing all-hexahedral finite ele­

ment meshes, Proc. 4th Intemational Meshing Roundtable, Sandia National Laboratories (1995). 
[128] J.W. Thomas, Numerical Partial Diff^erential Equations: Finite Difference Methods, Springer, New York 

(1995). 
[129] J.F. Thompson, Numerical Grid Generation, Elsevier, Amsterdam (1982). 
[130] J.F. Thompson, Z.U.A. Warsi and C.W. Mastin, Numerical Grid Generation: Foundations and Applica­

tions, North-Holland (1985). 



332 M. Bern and P. Plassmann 

[131] J.F. Thompson and N.P. Weatherill, Aspects of numerical grid generation: Current science and art, Proc. 
11th AIAA Applied Aerodynamics Conference (1993), 1029-1070. 

[132] W. Thurston, Re: Hexahedral decompostion of polyhedra, a posting to sci.math newsgroup, http: 
//www.ics.uci.edu/~eppstein/junkyard/Thurston-hexahedra (1993). 

[133] L.N. Trefethen, Numerical computation of the Schwarz—Christojfel transformation, SI AM J. Sci. Statist. 
Comput. 1 (1980), 82-102. 

[134] S. Vavasis, QMG: Mesh generation and related software, http: //www.cs.comell.edu/Info/People/vavasis/ 
qmg-home.html (1995). 

[135] S.A. Vavasis, Stable finite elements for problems with wild coefficients. Technical Report TR93-1364, 
Dept. of Comp. Science, Cornell University (1993). 

[136] D.F. Watson, Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes. 
Computer J. 24 (1981), 167-171. 

[137] N.P. Weatherill and O. Hassan, Efficient three-dimensional Delaunay triangulation with automatic point 
creation and imposed boundary constraints. Internal. J. Numer. Methods Eng. 37 (1994), 2005-2039. 

[138] A. Weiser, Local-mesh, local-order, adaptive finite element methods with a posteriori error estimates for 
elliptic partial differential equations. Technical Report 213, Yale University, New Haven, Connecticut 
(1981). 

[139] W. Welch, Serious putty: Topological design for variational curves and surfaces, PhD thesis, CS Dept, 
Carnegie Mellon University (Dec. 1995). CMU-CS-95-217, ftp: //reports.adm.cs.cmu.edu/usr/anon/1995/ 
CMU-CS-95-217A.ps, 217B.ps, 217C.ps. 

[140] J. Xu, Iterative methods by space decomposition and subspace correction, SI AM Review 34 (4) (1992), 
581-613. 

[141] J. Xu and L. Zikatanov, A monotone finite element scheme for convection diffusion equations. Math. 
Comput., to appear. 

[142] M.A. Yerry and M.S. Shephard, Automatic three-dimensional mesh generation by the modified-octree 
technique, Internat. J. Numer. Methods Eng. 20 (1984), 1965-1990. 

[143] M.A. Yerry and M.S. Shephard, A modified quadtree approach to finite element mesh generation, IEEE 
Comput. Graphics Appl. 3 (1983), 39^6 . 

[144] D.P. Young, R.G. Melvin, M.B. Bieterman and J.E. Bussoletti, A locally refined rectangular grid finite el­
ement method: Application to computational fluid dynamics and computational physics, J. Comput. Phys. 
92(1991), 1-66. 

[145] R. Young and I. MacPhedran, Internet finite element resources, http: //www.engr.usask.ca/~macphed/ 
finite/fe_resources/fe_resources.html (1995). 




