The Quickhull Algorithm for Convex Hulls

C. Bradford Barber* David P. Dobkin' Hannu Huhdanpaa?

January 9, 1995
Submitted to the ACM Transactions on Mathematical Software

Abstract

The convex hull of a set of points is the smallest convex set that contains the points.
This paper presents a practical convex hull algorithm that combines the two-dimensional
Quickhull Algorithm with the general dimension Beneath-Beyond Algorithm. It is similar
to the randomized, incremental algorithms for convex hull and Delaunay triangulation. We
provide empirical evidence that the algorithm runs faster when the input contains non-
extreme points, and that it uses less memory.

Computational geometry algorithms have traditionally assumed that input sets are well
behaved. When an algorithm is implemented with floating point arithmetic, this assumption
can lead to serious errors. We briefly describe a solution to this problem when computing
the convex hull in two, three, or four dimensions. The output is a set of “thick” facets that
contain all possible exact convex hulls of the input. A variation is effective in five or more

dimensions.

1. Introduction

The convex hull of a set of points is the smallest convex set that contains the points. The
convex hull is a fundamental construction for mathematics and computational geometry. For
example, Boardman uses the convex hull in his analysis of spectrometry data [6] and Weeks uses
the convex hull to determine the canonical triangulation of cusped hyperbolic 3-manifolds [44].

Other problems can be reduced to the convex hull — for example, halfspace intersection, Delaunay

*116 Fayerweather Street, Cambridge, MA 02138, bradb@geom.umn.edu. This research was supported in
part by the National Science Foundation under Grants NSF-CCR-91-15793 750-7504, NSF/DMS-8920161, and

CCR90-02352.
"Department of Computer Science, Princeton University, Princeton, NJ 08544, dpd@cs.princeton.edu. This

research was supported in part by the National Science Foundation under Grant CCR-93-01254
{Configured Energy Systems, Inc. 3140 Harbor Lane North, Suite 202 Plymouth, MN 55447, hth@ces.com

triangulation, Voronoi diagrams, and power diagrams. In his review article, Aurenhammer
describes applications of these structures in mesh generation, file searching, cluster analysis,
collision detection, crystallography, metallurgy, urban planning, cartography, image processing,
numerical integration, statistics, sphere packing, and point location [2].

We represent a convex hull with a set of facets and a set of adjacency lists giving the
neighbors and vertices for each facet. The boundary elements of a facet are called ridges. Fach
ridge signifies the adjacency of two facets. In R? and general position, facets are triangles and
ridges are edges.

A Delaunay triangulation in R? can be computed from a convex hull in R, To determine
the Delaunay triangulation of a set of points: lift the points to a paraboloid and compute their
convex hull. The set of ridges of the lower convex hull is the Delaunay triangulation of the
original points [9].

The intersection of halfspaces about the origin is equivalent to the convex hull of the points
in dual space [39]. To determine the intersection of halfspaces: locate an interior point by linear
programming [43], translate the interior point to the origin, transform halfspaces into points by
dividing offsets into coefficients, and compute the convex hull. Via the duality transform, each
facet of the convex hull defines a point of intersection of the halfspaces.

Recent work on convex hulls and Delaunay triangulations has focused on variations of a
randomized, incremental algorithm that has optimal expected performance [12] [15] [21] [28]
[30] [37]. Points are processed one at a time in a random order. In this paper, we propose and
analyze a strategy for processing points in a more efficient order. The result is a faster algorithm
for distributions with interior points.

An incremental algorithm for the convex hull repeatedly adds a point to the convex hull of
the previously processed points. Of particular interest is the Beneath-Beyond Algorithm [27]
[31] [39]. A new point is processed in three steps. First, locate the visible facets for the point
The boundary of the visible facets is the set of horizon ridges for the point. A facet is visible if
the point is above the facet. Second, construct a cone of new facets from the point to its horizon
ridges. Third, delete the visible facets, thus forming the convex hull of the new point and the
previously processed points.

The original randomized incremental algorithm upon which we build was proposed by Clark-
son and Shor [16]. They work in the dual space of halfspace intersections. Their algorithm adds
a halfspace by intersecting it with the polytope of the previous intersections. They randomly
select a halfspace to add to the polytope. For each unprocessed halfspace, they maintain the
list of polytope edges that intersect the halfspace. The conflict graph is the set of all such

lists. When a halfspace is processed, the conflict graph identifies the modified edges. To reduce

memory requirements to O(n), they propose storing a single modified edge for each unprocessed
halfspace. A simple search of adjacent edges identifies the remaining modified edges.

Our Quickhull Algorithm is a variation of Clarkson and Shor’s algorithm. As with most
of the variations, we work in the space of points and convex hulls instead of the dual space of
halfspaces and polytopes. This turns the conflict graph into an outside set for each facet. A
point is in a facet’s outside set only if it is above the facet. Like Clarkson and Shor’s algorithm,
an unprocessed point is in exactly one outside set. Qur variation is to process the furthest point
of an outside set instead of a random point. In R?, this is the well-known Quickhull Algorithm
[10] [20] [22] [26].

Other variations of the Clarkson and Shor algorithm do not maintain conflict graphs or
outside sets. Instead, they retain old facets of the convex hull with links to the new facets that
replaced them. This hierarchy begins with an initial simplex formed from d + 1 of the input
points. The algorithms find a visible facet for a point by searching for a chain of visible facets
through the hierarchy. The chain either ends with a facet of the current hull, or all facets of
the current hull are above the point and the point is discarded. These algorithms have been
implemented. In practice, their running times are competitive with other algorithms [24].

We can compare Quickhull with the randomized incremental algorithms by changing the
selection step of Quickhull. If Quickhull selects a random point instead of a furthest point, it
is a randomized incremental algorithm. In our empirical tests, Quickhull runs faster than the
randomized algorithms because it processes fewer interior points. Also, Quickhull reuses the
memory occupied by old facets.

Our analysis is strictly empirical. We define two balance conditions that would guarantee
behavior identical to the randomized algorithms when all points are extreme. If the balance
conditions hold, our algorithm runs on an input of size n with r processed points in time
O(nlogr)for d < 3 and O(nf,/r) for d > 4 (f, is the maximum number of facets for r vertices).
We conjecture that this is always the case when the input precision is restricted to O(logn) bits.

Empirically, the number of points processed by Quickhull is proportional to the number of
vertices in the output. Output-sensitivity is important for convex hull algorithms because the
output size can be much smaller than the worst case size. In R?, Kirkpatrick and Seidel found
an optimal output-sensitive algorithm for convex hull that runs in O(nlogh) time, where A is
the output size [32]. Clarkson & Shor give a 3-d convex hull algorithm with optimal output-
sensitive expected time [16]; it was derandomized by Chazelle and Matousek [12]. In higher
dimensions, the best output-sensitive algorithm is Seidel’s shelling algorithm at O(n? + hlogn)
when h = Q(n) [40], and gift-wrapping at O(nh) otherwise [11]. The Double-Description Method

is the dual of the Beneath-Beyond Algorithm [36]. It is the earliest incremental method for

computing the convex hull. Tt is an excellent choice in high dimensions when the number of

facets is much smaller than the maximum number of facets for r vertices (f,) [3] [25].

2. The Quickhull Algorithm

We assume that the input points are in general position (i.e., no set of d + 1 points define a
(d —1)-flat), so that their convex hull is a simplicial complex [39]. We represent a d-dimensional
convex hull by its vertices and (d — 1)-dimensional faces (the facets). A point is extreme if it is a
vertex of the convex hull. Each facet includes a set of vertices, a set of neighboring facets, and
a hyperplane equation. The (d — 2)-dimensional faces are the ridges of the convex hull. Each
ridge is the intersection of the vertices of two neighboring facets.

Quickhull use two geometric operations: oriented hyperplane and signed distance to hyper-
plane. We represent a hyperplane by its outward-pointing unit normal and its offset from the
origin. The signed distance of a point to a hyperplane is the inner product of the point and
normal plus the offset. The hyperplane defines a halfspace of points that have negative distances
from the hyperplane. If the distance is positive, the point is above the hyperplane.

For processing a point we use a simplification of Griinbaum’s Beneath-Beyond Theorem [Th.

5.2.1] [27]. The randomized incremental algorithms are based on this theorem.

THEOREM 1. (SIMPLIFIED BENEATH-BEYOND) Let H be a conver hull in R? and let p be a
point in R — H. Then F is a facet of conv(pU H) if and only if

1. F is a facet of H and p is below F, or

2. F is not a facet of H and its vertices are p and the vertices of a ridge of H with one

incident facet below p and the other incident facet above p.

The central problem of Beneath-Beyond is determining the visible facets efficiently. Since a
facet is linked to its neighbors, locating one visible facet allows the rest to be located quickly.
Most of the randomized algorithms use the previously constructed facets to locate the first
visible facet for a point. Qur solution is simpler. After initialization, Quickhull assigns each
unprocessed point to an outside set. By definition, the corresponding facet is visible from the
point.

When Quickhull creates a cone of new facets, it builds new outside sets from the outside sets
of the visible facets. This process, called partitioning, locates a visible new facet for each point.
If a point is above multiple new facets, one of the new facets is selected. If it is below all of the
new facets, the point is inside the convex hull and can be discarded. Partitioning also records

the furthest point of each outside set.

create a simplex of d + 1 points
for each facet F’
for each unassigned point p
if p is above F
assign p to F’s outside set
for each facet ' with a non-empty outside set
select the furthest point p of F’s outside set
initialize the visible set V' to F’
for all unvisited neighbors N of facets in V'
if p is above N
add N toV
the set of horizon ridges H is the boundary of V'
for each ridge R in H
create a new facet from R and p
link the new facet to its neighbors
for each new facet F”
for each unassigned point ¢ in an outside set of a facet in V'
if ¢ is above F’
assign ¢ to F"’s outside set

delete the facets in V'

Figure 1: Quickhull Algorithm for the convex hull in R?.

Quickhull selects a non-degenerate set of points for the initial simplex. If possible, it selects
points with either a maximum or minimum coordinate. An outline of the algorithm is given in
Figure 1.

To prove the correctness of Quickhull, we first prove that a point can be partitioned into any

legal outside set. If so, extreme points of the input will always be vertices of the output.

LemMMA 1. If an extreme point of the input is above two or more facets at a partition step in

Quickhull, it will be added to the hull irrespective of which outside set it is assigned to.

Proof: Assume the contrary and consider an extreme point p that is not assigned to an outside

set and hence never added to the convex hull. Since p is an extreme point, it must have been

outside at least one facet of the initial simplex. By assumption, there is a point ¢ with p in its
visible outside sets but not in its new outside sets. So p is above a visible facet and below all

new facets for ¢. This implies that pis inside the convex hull and hence, not an extreme point. I
THEOREM 2. The Quickhull Algorithm produces the convex hull of a set of points in R?.

Proof: Quickhull starts with the convex hull of d + 1 points. Quickhull partitions points into
outside sets and picks furthest points for processing. By Lemma 1, partitioning can not prevent
an extreme point from being processed. Quickhull processes a point according to Theorem 1. Tt
retains the facets in Part 1 of the theorem, and constructs new facets as specified in Part 2. It
produces the convex hull of the processed points. Processing the last point produces the convex

hull of the input set.]

Most of the randomized incremental algorithms perform the same steps as Quickhull but
in a different order. They use Beneath-Beyond on a random permutation of the points. They
locate a visible facet by a depth-first search of the previous convex hulls. Consider the sequence
of facets tested for a point. Quickhull may test the same sequence during successive partitions
of the point into outside sets.

Edelsbrunner and Shah [21], Joe [30], and Boissonnat and Devillers-Teillaud [7] use a similar
method for Delaunay triangulations. They express their algorithm in terms of triangulations
and the in-sphere test. By the correspondence between Delaunay triangulation and convex hull,
each triangle is a facet of the convex hull and the in-sphere test determines the visible facets for

the lifted point [9].

3. Comparison of Quickhull with the randomized algorithms

If Quickhull and the randomized algorithms perform essentially the same steps, why do we
prefer Quickhull? Quickhull uses less space than most of the randomized incremental algorithms
and runs faster for distributions with non-extreme points. The main costs for these algorithms
are creating facets and computing distances. To isolate the effect of randomization on time
efficiency, we can change the processing order of Quickhull. Instead of selecting the furthest
point of an outside set, we can select a random point from all outside sets.

This section reports the results of experiments comparing two versions of Quickhull, with and
without randomization. Fach test is an average and range for ten trials. Quickhull partitions
points to the first visible facet. The randomized version starts with a random initial simplex. In a
previous report, we compared actual time and space for Quickhull and a randomized incremental

program [4]. Those figures support our results here.

First consider uniform random distributions projected to a sphere. Each coordinate is
selected randomly from the interval [-0.5, 0.5]. The sphere is radius 0.5 centered at the ori-
gin. All points are extreme. In R? to R7, there is little difference in operation counts with and
without randomization.

For example, consider the convex hull of 300 uniform random points in R® projected to a
sphere. Quickhull created 28,200 (27,600-28,700) facets and computed 51,600 (50,200-53,100)
distance tests. For the same distributions, randomized Quickhull created 29,000 (28,600-29,900)
facets and computed 53,400 (51,900-55,600) distance tests. Delaunay triangulations show similar
results because all points are extreme.

Quickhull uses less memory than most of the randomized algorithms. For the R® example,
Quickhull uses memory proportional to the 7124 output facets, while an algorithm that retains
old facets uses memory proportional to the 29,000 (28,600-29,900) created facets.

Figures 2a-2c show the results for uniform random distributions of points in the unit cube.
In ten trials, the convex hull of 10,000 random points had 245 (226-288) facets and 125 (115-
134) vertices. Quickhull created 730 (662-831) facets while the randomized version created 2210
(1960-2440). The randomized version performed twice as many distance tests. These differences
are due to the number of processed points. Quickhull processed 153 (141-171) points while the
randomized version processed 387 (345-421) points.

Consider the case of finding the convex hull of a set of uniform random points in R® projected
to a sphere of radius 0.5 centered at the origin. To these points add the vertices of a cube,
also centered at the origin. As the edge length of the cube increases, the number of extreme,
cospherical points decrease. We consider the situation when the cube has edge length 0.96. In
this case, the sphere extends slightly beyond each facet of the cube.

The convex hull of 10,000 cospherical points and a 0.96 cube contains 76 (68-84) facets and
40 (36-44) vertices. Quickhull created 315 (155-807) facets while the randomized version created
26,000 (11,900-37,600) facets. The difference is due to the number of processed points. Quickhull
processed 74 (42-174) points while the randomized version processed 4360 (2080-6253) points.
Because Quickhull processes the furthest point of each outside set, it processes the cube’s vertices
before processing most of the cospherical points.

The randomized incremental algorithms can perform significantly worse than expected.
There are two bad cases. Fach point could create many new facets, or each search for a visible
facet could visit many old facets. The first case occurs when the points of a spiral happen to be
added in order. This can not occur for Quickhull because the end of the spiral would be added
before most of the intermediate points.

For Quickhull, the second case corresponds to assigning all points to one outside set for most

partitions. We conjecture that this can not occur if we restrict the input precision to O(logn)
bits [35]. In R?, a point creates at least d new facets. Since Quickhull processes the furthest
point of each outside set, a sequence of partitions to a single facet would produce a facet that
is too small for the input precision. A similar restriction holds for Quicksort using a mean
pivot. For Quicksort to be unbalanced, most of the points must consistently fall in one of two
partitions. With a mean pivot, this would require O(n) bits of precision.

We conjecture that Quickhull iterations are average (i.e., each iteration creates an average
number of new facets whose outside sets are average size). This defines two balance conditions.
Let d be the dimension, n be the number of input points, r be the number of processed points,

and f, be the maximum number of facets of r vertices (f, = O(rl¥2/|d/2]") [33]).

DEFINITION . An execution of Quickhull is balanced if
o the average number of new facets for the j-th processed point is df;/j

e the average number of partitioned points for the j-th processed point is d(n — 7)/j

To test the balance conditions statistically, we can compute the expected number of new
facets from the actual number of facets. Similarly we can compute the expected number of par-
titioned points. For example, each iteration of Quickhull on ten trials of 6000 random cospherical
points in R? created 3.7 fewer new facets than expected (1.3 standard deviation), and partitioned
5.4 fewer points than expected (50 s.d.). On the same distributions, randomized Quickhull cre-

ated 0.1 fewer facets than expected (1.3 s.d.), and partitioned 1.4 fewer points than expected
(46 s.d.).

THEOREM 3. Let n be the number of input points in R® and r be the number of processed
points. If the balance conditions hold, the worst case complexity of Quickhull is O(nlogr) for
d <3 and O(nf,/r) for d > 4.

Proof:

There are two costs to Quickhull, adding a point to the hull and partitioning. The dominant
cost for adding a point is O(d®) work to create hyperplanes. The dominant cost for partitioning
is O(d) work to compute distances. The total cost for adding points is proportional to the total
number of new facets created, O(d®Y"_, df;/j). This simplifies to O(f,) (each term is less than
df./r and the |d/2]! denominator of f, subsumes d*).

The cost of partitioning one point in one iteration is proportional to the number of new facets.
The total cost is O(d Y i_; d*(n—j)f;/j*). Expanding f; yields O(d*n E;leLd/ZJ_Q/ |d/2]Y). If
d < 3, the sum is O(nlogr). Otherwise, each term is less than f,/r? and the sum is O(nf,/r). i

If r = n and the balance conditions hold, the cost of Quickhull is O(nlogn) for d < 3 and
O(f) otherwise. This is the same as the expected cost of the randomized incremental algorithms
[15].

For Quickhull, the furthest point of an outside set is not always the furthest point from a
facet, but in many cases, it is the furthest overall and hence an extreme point. If it is not an
extreme point, then a later point will delete it. An extreme point that deletes multiple vertices

appears to occur infrequently. For these reasons, we make the following conjecture.

CONJECTURE . Let n be the number of input points in R%, and v be the number of output

vertices. If the precision of the input points is O(logn), the worst case complezity of Quickhull
is O(nlogwv) for d <3 and O(nf,/v) for d > 4.

4. Coping with imprecision

So far, we have followed the real-RAM model and assumed that the input set is non-
degenerate. If we implement Quickhull with floating point arithmetic, round-off and represen-
tation errors may introduce degeneracies. We briefly describe heuristic extensions of Quickhull
that work well in practise.

Quickhull partitions a point and determines its horizon facets by computing whether the
point is above or below a hyperplane. We have assumed that computations return consistent
results. The existence of roundoff errors calls this assumption into question. For example in
Figure 3, the point may be computed to be above facets I'1 and I'3 and below F2. The Beneath-
Beyond step replaces I'1 and F'3 with five new facets. Since it does not replace I'2, the new facets
contain serious geometric and topological errors. Two of the facets are flipped up-side-down and
four of the facets meet at a ridge.

With floating point arithmetic, we can not prevent such errors from occurring but we can
repair the damage after processing a point. We use brute force: if adjacent facets are non-
convex, if more than two facets facets meet at a ridge, or if other topological faults occur, one of
the facets is merged into a neighbor. Quickhull merges the facet that minimizes the maximum
distance of a vertex to the neighbor.

For example in Figure 3, label the new facets by ridges @ — e. Quickhull first handles ridges
with more than two facets. In this case, facets a, b, d, and e meet at the same ridge. Quickhull
repairs the fault by merging the two closest facets, say b and d. The vertices of facet I'2 and
facet ¢ are contained in the merged facet bd, so Quickhull merges them together. The merged
facet bed2 has only two neighbors. It is merged into the closer of facets @ and e. Say the later

occurs. If facet bede2 and facet a are clearly convex, Quickhull is finished with this pair of facets.

We can not use the counter-clockwise test to test the convexity of non-simplicial facets: The
test depends on vertices coinciding with the intersection of hyperplanes. Instead, non-simplicial
facets have a point (the centrum) that must be clearly below the hyperplanes of neighboring
facets. Except for large facets, the centrum is the average of the vertices projected to the
hyperplane. Centrums are fixed for large facets.

The result of merging is a “thick” facet defined by a positive and negative offset from the
facet’s hyperplane. The polytope defined by the negative offsets clearly excludes the vertices;
the polytope defined by the positive offsets clearly includes the input points. The space between
the polytopes contains the boundaries of all possible, exact convex hulls through the points. We
determine the offsets — after constructing the hull — by testing all points near the boundary of
the convex hull.

When done, Quickhull reports the maximum facet width and guarantees that neighboring
facets are clearly convex. In practice, Quickhull produces a convex hull whose thickest facet is
less than six times thicker than merging two non-convex simplicial facets. In R? to R*, a ratio
greater than ten probably indicates an error.

For R?, Quickhull repairs the following faults in this order: more than two facets meeting
at a ridge, a facet contained in another facet, a facet with fewer than d neighbors, a facet with
flipped orientation, a newly processed point that is coplanar with an horizon facet, concave
facets, coplanar facets, and redundant vertices. It removes coplanar facets in independent sets
of merges sorted by angle. In R® and higher, it removes coplanar facets after constructing the
hull. This may cause a poor approximation and the hull may be wider than reported. Both
events appear to be unlikely.

Quickhull does not handle all faults from degenerate distributions. For example, faults occur
for the furthest-site Delaunay triangulation of 2000 points within 10712 of the unit circle. During
construction of the corresponding convex hull, two neighboring facets may span the point set
with opposite orientations. A point may be just above both facets yet remain distant from the
precise convex hull. Later, the coplanar point may be far above a new facet. If this occurs,
Quickhull generates a warning and reports a wide facet.

In R?, there are several robust convex hull and Delaunay triangulation algorithms [23] [29]
[34]. In R?, Sugihara and Dey et. al. produce a topologically robust convex hull and Delaunay
triangulation [18] [42]. Their algorithms are a variation of Beneath-Beyond with steps to prevent
topological anomalies such as in Figure 3. The output may contain unbounded geometric faults.

There are several implementations for computing the convex hull with precise arithmetic.
The output is a triangulation. If the input is degenerate, the output may contain simplices

with zero volume. Clarkson’s hull implementation of the randomized incremental algorithm

10

restricts the input precision to about fifteen decimal digits. The implementation computes the
exact sign of determinants [13]. It is a practical solution for precise convex hulls and Delaunay
triangulations [14].

We timed hull, hullio[19] (a precursor of hull without exact arithmetic), triangle[41]
(a two dimensional Delaunay triangulation program with exact arithmetic), and our imple-
mentation of Quickhull (ghull 2.2) on a Silicon Graphics 100 MHz R4000. These are fastest
implementations known to the authors. We used a Sun SPARCstation for performance tuning
of qhull. The times are the average and range of user CPU seconds for ten different trials.

hull computed the Delaunay triangulations of 10,000 uniform random points in a square in
10.23 (10.0-10.5) seconds, while ghull with merging computed them in 6.61 (6.5-6.7) seconds.
If we compare hullio and ghull without merging, the corresponding figures are 6.2 (6.0-6.4)
and 5.93 (5.8-6.1) respectively. The difference between hull and qhull with merging is largely
due to exact arithmetic. Specialized code for two dimensions is much faster. The triangle
program computes the same Delaunay triangulations in 1.3 (1.3-1.4) seconds.

hull computed the convex hulls of 20,000 uniform random points in a cube in 9.9 (8.2-10.9)
seconds, hullio computed them in 4.5 (4.0-5.4) seconds, ghull with merging computed them
in 1.75 (1.6-2.1) seconds, and ghull without merging computed them in 1.67 (1.6-1.8) seconds.
These figures support the previous comparison for uniform random points.

hull computed the convex hulls of 5,000 random points on the surface of a hypercube in 28
(26-32) seconds. They had 6700 facets on average. For the same inputs, ghull with merging
produced 1700 facets on average in 5.6 (5.2-6.0) seconds. It merged 2300 (2000-2500) facets.
There was one facet of the convex hull for each facet of the hypercube. These facets contained
4500 coplanar points on average. ghull without merging produced 4300 facets on average in
1.9 (1.7-2.0) seconds. The larger time differences for hull and hullio and for qhull with and

without merging reflect the increased use of exact arithmetic and facet merging.

5. Summary

Our goal is a practical algorithm for general dimension convex hulls. We have shown empirical
evidence that the algorithm satisfies its balance conditions and that it performs like a random-
ized incremental algorithm that is output-sensitive to the number of vertices. The Quickhull
Algorithm uses less space than most of the randomized incremental algorithms and executes
faster for inputs with non-extreme points.

In addition, Quickhull uses merged facets to guarantee that the output is clearly convex.
The algorithm is implemented with floating point arithmetic. It reports the maximum width of

a merged facet. In R® and higher, the maximum width may be wider than reported.

11

We have implemented Quickhull for general dimension. The program, qhull, computes con-
vex hulls, Delaunay triangulations, Voronoi vertices, furthest-site Voronoi vertices, and half-
space intersections. It is available from <http://www.geom.umn.edu/locate/qhull> and
<ftp://geom.umn.edu/pub/software/ ghull.tar.Z>. The program includes options for
imprecise data and arithmetic, facet area and hull volume, partial hulls, input transformations,
randomization, tracing, multiple output formats, graphical output, and execution statistics. The
program can be called from within an application.

Over the last two years, 3000 copies of ghull were retrieved via ftp. It has been used for
support structures in layered manufacturing [1], classification of molecules by their biological
activity, vibration control, geographic information systems, neighbors of the origin in the R®
lattice, stress analysis, stability of robot grasps [5], spectrometry [6], constrained control alloca-
tion [8], robot navigation [17], micromagnetic modeling [38], and invariant sets of delta-sigma
modulators [45].

Acknowledgments: A special thanks to Albert Marden and Victor Milenkovic for providing
excellent environments for completing this work. The referees’ comments greatly improved the

presentation and content of this paper.

References

[1] S. Allen and D. Dutta. Determination & evaluation of support structures in layered man-

ufacturing. Journal of Design & Manufacturing, 5:153-162, 1995.

[2] F. Aurenhammer. Voronoi diagrams — a survey of a fundamental geometric data structure.

ACM Computing Surveys, 23:345-405, 1991.

[3] D. Avis and D. Bremner. How good are convex hull algorithms? 1In Proc. 11th Annual

ACM Symposium on Computational Geometry, pages 20-28, 1995.

[4] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The Quickhull algorithm for convex hull.
Technical Report GCGAH3, The Geometry Center, 1993.

[5] L. Belsis, S. Grundmann, T. Rasanen, J. Sullivan, J. B. Walker, and M. Wright. Personal

communications regarding qhull, 1995.

[6] J.W. Boardman. Automating spectral unmixing of AVIRIS data using convex geometry
concepts. Fourth Airborne Geoscience Workshop, Washington, D.C., October 1993.

[7] J.-D. Boissonnat and M. Devillers-Teillaud. On the randomized construction of the Delau-

nay tree. Theoretical Computer Science, 1990.

12

[8] K. A. Bordignon and W. C. Durham. Closed-form solutions to constrained control allocation

problem. Journal of Guidance, Control, and Dynamics, 18(5):1000-1007, 1995.

[9] D.F. Brown. Voronoi diagrams from convex hulls. Information Processing Letters, 9:223—

228, 1979.

[10] A. Bykat. Convex hull of a finite set of points in two dimensions. Information Processing

Letters, 7:296-298, 1978.

[11] D.R. Chand and S.S. Kapur. An algorithm for convex polytopes. Journal of the ACM,
7:78-86, 1970.

[12] B. Chazelle and J. Matousek. Derandomizing an output-sensitive convex hull algorithm in

three dimensions. Computational Geometry: Theory and Applications, 1991.

[13] K. L. Clarkson. Safe and effective determinant evaluation. In Proc. 31st IEEE Symposium
on Foundations of Computer Science, pages 387-395, 1992.

[14] K. L. Clarkson. A program for convex hulls. http://netlib.att.com /netlib/
voronoi/hull.html, 1995.

[15] K. L. Clarkson, K. Mehlhorn, and R. Seidel. Four results on randomized incremental

constructions. In Symposium on Theoretical Aspects of Computer Science, 1992.

[16] K.L. Clarkson and P.W. Shor. Applications of random sampling in computational geometry,
ii. Discrete Computational Geometry, 4:387-421, 1989.

[17] P. Cucka, N.S. Netanyahu, and A. Rosenfeld. Learning in navigation: Goal finding in
graphs. Technical Report CAR-TR-759, Center for Automation Research, University of
Maryland, 1995.

[18] T. K. Dey, K. Sugihara, and C. L. Bajaj. Delaunay triangulations in three dimensions with
finite precision arithmetic. Computer Aided Geometric Design, 9:457-470, 1992.

[19] S. Dorward. Personal communication, 1992.

[20] W. Eddy. A new convex hull algorithm for planar sets. ACM Transactions on Mathematical
Software, 1977.

[21] H. Edelsbrunner and N.R. Shah. Incremental topological flipping works for regular triangu-
lations. In Proceedings of the Symposium on Computational Geometry, pages 43-52. ACM,
1992.

13

[22] R.W. Floyd. Personal communication to Preparata & Shamos on Quickhull, 1976.

[23] S. Fortune. Stable maintenance of point-set triangulation in two dimensions. In 30th Annual

Symposium on the Foundations of Computer Science. IEEE, 1989.

[24] S. Fortune. Computational geometry. In R. Martin, editor, Directions in Geometric Com-

puting. Winchester UK: Information Geometers, 1993.
[25] K. Fukuda. cdd Reference Manual. ftp://ifor13.ethz.ch/pub/fukuda/cdd, 1995.

[26] P.J. Green and B.W. Silverman. Constructing the convex hull of a set of points in the

plane. Computer Journal, 22(262-266), 1979.

[27] B. Griinbaum. Measures of symmetry for convex sets. In Proceedings of the Seventh Sympo-
sium in Pure Mathematics of the American Mathematical Society, Symposium on Convexity,

pages 233-270, 1961.

[28] L. Guibas, D.E. Knuth, and M. Sharir. Randomized incremental construction of Delaunay

and Voronoi diagrams. Algorithmica, pages 381-413, 1992.

[29] L. Guibas, D. Salesin, and J. Stolfi. Constructing strongly convex approximate hulls with
inaccurate primitives. Algorithmica, 9:534-560, 1993.

[30] B. Joe. Construction of three-dimensional Delaunay triangulations using local transforma-

tions. Computer-Aided Geometric Design, 8:123-142, 1991.

[31] M. Kallay. Convex hull algorithms in higher dimensions. Unpublished manuscript, Dept.
Mathematics, Univ. of Oklahoma, Norman, Oklahoma (see Preparata & Shamos 1985),
1981.

[32] D.G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm? SIAM J.
Computing, 15:287-299, 1986.

[33] V. Klee. Convex polytopes and linear programming. In Proc. IBM Sci. Comput. Symp.:
Combinatorial Problems, pages 123-158, 1966.

[34] Z. Li and V. Milenkovic. Constructing strongly convex hulls using exact or rounded arith-
metic. In Proceedings of the Symposium on Computational Geometry, pages 197-207. ACM,
1990.

[35] V. Milenkovic. Personal communication, 1994.

14

[36]

[39]

[40]

[41]

T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall. The double description
method. In H. W. Kuhn and A. W. Tucker, editors, Contributions to the Theory of Games

1I, volume 8 of Annals of Mathematical Studies, pages 51-73. Princeton University Press,
1953.

K. Mulmuley. Computational Geometry, An Introduction Through Randomized Algorithms.
Prentice-Hall, 1994.

D.G. Porter, E. Glavinas, P. Dhagat, J. A. O’Sullivan, R. S. Indeck, and M. W. Muller.
Irregular grain structure in micromagnetic simulation. Journal of Applied Physics, to appear
April 1996.

D F.P. Preparata and M.I. Shamos. Computational Geometry. An Introduction. Springer-
Verlag, 1985.

R. Seidel. Constructing higher-dimensional convex hulls at logarithmic cost per face. In

Proc. 18th ACM Symposium on the Theory of Computation, pages 404-413, 1986.

J. R. Shewchuk. Triangle: A two-dimensional quality mesh generator and Delaunay trian-

gulator. Technical report, Carnegie-Mellon Institute, 1995.

K. Sugihara. Topologically consistent algorithms related to convex polyhedra. In Algorithms
and Computation, Third International Symposium, ISAAC °92, volume 650 of Lecture Notes
in Computer Science, pages 209-218. Springer- Verlag, 1992.

S. Teller. Personal communication, 1994.

J.R. Weeks. Convex hulls and isometries of cusped hyperbolic 3-manifolds. Technical Report

TR GCG32, The Geometry Center, Univ. of Minnesota, August 1991.

B. Zhang, M. Goodson, and R. Schreier. Invariant sets for general second-order low-pass
delta-sigma modulators with dc inputs. In IEFFE Inter. Symposium on Circuits and Systems,

volume 6, pages 1-4, 1994.

15

