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Abstract

We derive a link between assets and interest rates in a standard multi-asset diffusion

economy from two structural assumptions—one on the volatility and one on the short rate

function. Our main result is economically intuitive and testable from data since it only involves

empirically observable quantities. A preliminary study illustrates how this could be done.
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0. Introduction

This paper derives a natural link between assets and interest rates in a broad class
of models. Starting from a completely standard multi-asset framework with
Markovian diffusion asset prices S, we impose two assumptions of a structural

nature and show how they combine to yield a close relationship between the forward
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rate curve and a suitable asset index. All quantities that appear are empirically
observable so that our result is testable from available data.

The paper is structured as follows. Section 1 sets up the framework and defines a
general asset index as the value process of a self-financing portfolio with unit initial
capital. The first structural assumption is imposed on the volatility s and amounts to
the condition that asset prices relative to a suitable (spherical) asset index should
fluctuate in a (rigid) Black–Scholes type fashion. The second structural assumption
says that the short rate function rð�Þ is homogeneous of degree 0; this is a
mathematical formulation for a natural scale-invariance postulate. Section 2 derives,
from this homogeneity alone, a general relation between the drift and volatility of the
short rate. Combining the two assumptions yields in Section 3 our main result. For
the special case where the short rate volatility is constant, we obtain in particular a
distinction into two basic regimes: The instantaneous correlation between the
spherical index I and the short rate rðSÞ is positive or negative, depending on whether
the forward rate curve at the short end is downward or upward sloping. A
preliminary study in Section 4 illustrates how one could test such results on the basis
of empirical data. Section 5 concludes.
1. Basic setup, asset indices, and volatility structures

This section provides the basic framework for our approach. Our ultimate goal is
to derive links between the dynamics of assets and interest rates in a general class of
models, and we want to achieve this by imposing a pair of simple assumptions. These
are of a structural nature and in particular aim at obtaining results on quantities
which are empirically observable. This crucial aspect will come up again at several
stages.

We start on a probability space ðO;F;PÞ with a vector S of n processes S1; . . . ;Sn

over a finite time horizon ½0;T �. These processes model the evolution of our basic
asset prices and constitute the fundamental given ingredient. We assume in most of
the paper that their dynamics are given by the (Markovian) SDEs

dSi
t

Si
t

¼ dRi
t ¼ miðStÞdtþ

Xm

j¼1

sijðStÞdW
j
t; Si

0 ¼ xi
040; i ¼ 1; . . . ; n (1.1)

for nice enough real functions mið�Þ, sijð�Þ on Rn
þþ. In this section, we could also allow

as coefficients general predictable processes mi
t, s

ij
t , and so we use here this more

compact notation.
To exclude local redundancies between assets, we suppose that

st ¼ sðStÞ has full rank P-a.s. for every t 2 ½0;T �. (1.2)

As usual, we write

mi
t ¼ rt þ ðslÞ

i
t ¼ rt þ

Xm

j¼1

sij
t l

j
t; i ¼ 1; . . . ; n, (1.3)
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where rt ¼ rðStÞ is the short rate and lt ¼ lðStÞ the vector of market prices of risk for
the assets in S. We later also consider the assumption

1e range ðstÞ P-a.s. for every t 2 ½0;T �, (1.4)

where 1:¼ð1 . . . 1Þ> 2 Rn; this implies in combination with (1.2) that r and l in (1.3)
are unique. Finally, we recall that the pricing kernel of our economy is 1=N, where N

is given by

dNt

Nt

¼ ðrt þ jltj
2Þdtþ l>t dW t. (1.5)

We emphasize that this entire setup is completely standard; see for instance, Chapter
1 in Karatzas and Shreve (1998) or Chapter 7 in Hunt and Kennedy (2000).

Trading in S by self-financing strategies is modelled by pairs ðv0; pÞ, where v0 2

ð0;1Þ is the initial capital and the Rn-valued process p ¼ ðptÞ0ptpT describes the
fractions of total wealth held over time in the available assets. More precisely, the
(positive) wealth at time t is

Vtðv0; pÞ ¼ v0 E

Z
p> dR

� �
t

¼ v0 exp

Z t

0

p>s ss dW s þ

Z t

0

ðp>s ms �
1
2
jp>s ssj

2Þ ds

� �
,

and the fraction pi
t of Vtðv0; pÞ is currently invested in asset i. Fractions can be

negative (we do not exclude short sales), but must sum to 1 so that we have the
restriction p>t 1 � 1. This is again the standard setup as in Karatzas and Shreve
(1998) or Hunt and Kennedy (2000).

A general asset index or numeraire is the value process Ip:¼V ð1; pÞ of a strategy
ð1;pÞ with one unit of initial capital. Our first structural condition will be an
assumption on the volatility matrix s of S which will allow us to construct a
particular index with good properties. Before embarking on that, however, we note
that the dynamics of any index Ip are

dIpt
Ipt
¼ p>t dRt ¼ m̄tðpÞdtþ s̄tðpÞ

> dW t

with m̄ðpÞ ¼ p>m and the Rm-valued process s̄ðpÞ ¼ s>p. If we rewrite this as

dIpt
Ipt
¼
Xn

i¼1

pi
t

dSi
t

Si
t

, (1.6)

we see that Ip is directly observable from S if the strategy p is, and that the
(instantaneous) return of Ip is a generalized convex combination of the returns of the
Si. Because S and Ip are both stochastic exponentials, the Ip-discounted assets
~SðpÞ:¼S=Ip follow the SDEs

d ~S
i

tðpÞ
~S

i

tðpÞ
¼ ~mi

tðpÞdtþ ~si
tðpÞ
> dW t
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with

~sijðpÞ:¼sij � s̄jðpÞ for i ¼ 1; . . . ; n and j ¼ 1; . . . ;m

and ~miðpÞ:¼mi � m̄ðpÞ � s̄ðpÞ> ~siðpÞ. Intuitively, ~S
i
ðpÞ describes the multipli-

cative fluctuations of asset Si around the index Ip, and ~sðpÞ is the matrix of
intrinsic volatilities with respect to Ip. Like the exchange prices in Platen (2000), the
~S

i
ðpÞ are ratios of two Itô processes and thus have a specific drift and volatility

structure.
A first well-known choice of a particular index is the numeraire portfolio N� ¼ Ip

�

,
defined by the property that all N�-discounted prices ~S

i
ðp�Þ ¼ Si=N� become local

martingales under the original measure P. Thanks to (1.2) and (1.3), N� exists, and it
is also known to have good properties like for instance growth-optimality; see
Becherer (2001) for a theoretical treatment and Platen (2005, 2006) for application-
oriented aspects. However, N� has from our perspective the drawback that it is not
genuinely observable; its construction requires the knowledge of the asset drifts mi

which (in contrast to the volatility matrix s) cannot be recovered from a single
trajectory S:ðoÞ of asset price observations. This motivates our introduction and
study of a different class of indices.

Definition. The volatility structure s of S is called spherical if there exists an
index Ip such that all n corresponding intrinsic volatility vectors ~siðpÞ ¼ si � s̄ðpÞ
are of equal magnitude, i.e., jsi

t � s̄tðpÞj ¼ const.ðt;oÞ P-a.s. for every t 2 ½0;T �
and i ¼ 1; . . . ; n. Any such index Ip is called a spherical index (for the volatility
structure s).

Put differently, s is spherical if all its volatility vectors si lie on a sphere whose
center has the form s̄ðpÞ ¼ s>p for some p with p>1 � 1. This formulation is more
convenient to work with and equivalent to the above definition. In fact, due to (1.1)
and (1.3), the drift m̄ðpÞ of any spherical index Ip is uniquely determined from s̄ðpÞ,
since (1.3) gives m ¼ r1þ sl and so

m̄ðpÞ ¼ m>p ¼ rp>1þ l>s>p ¼ rþ l>s̄ðpÞ.

Hence, a spherical index Ip is unique as soon as its volatility vector s̄ðpÞ is unique.
The importance of a spherical index Ip is that it gives a numeraire in which relative

asset prices ~SðpÞ ¼ S=Ip have a simple volatility structure: the intrinsic volatilities
~siðpÞ ¼ si � s̄ðpÞ always lie on a sphere. Note that like p ¼ ðptðoÞÞ, this sphere can be
random and time-dependent. Things become even simpler if ~siðpÞ does not depend
on o and t, because we then have a multi-dimensional Black–Scholes type
fluctuation around the reference level Ip.

Our first result shows that existence of a spherical index is not a restrictive
condition. In fact, if the number n of assets is fixed, we can always ensure existence of
a spherical index by increasing the number m of driving factors. This is especially
useful if n is small, e.g., if we have a situation with 3 or 4 representative assets that
each summarize one market segment.
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Proposition 1. Assume (1.1)–(1.3). Then a spherical index is always unique. Recall that

m ¼ dimW , n ¼ dimS and assume in addition
(1)
 if m4n� 1: nothing extra,

(2)
 if m ¼ n� 1: that (1.4) holds,

(3)
 if mon� 1: that s is spherical.
Then there exists a (unique) spherical index.

Proof. (a) Existence follows if s is spherical. This is true in case (3) by assumption
and clear in case (1) because due to (1.2), the n points s1; . . . ;sn in Rm always lie on a
sphere in Rm if mXn. For case (2), we have to use (1.4). Generally, n ¼ mþ 1 vectors
in Rm lie on a sphere if and only if they are not all in some hyperplane of dimension
pm� 1. But the latter cannot happen for s1; . . . ;sn, because (1.4) excludes the case
where the vectors lie in a hyperplane not containing the origin and (1.2) the case of a
hyperplane through the origin.

(b) If we have two spherical indices Ip1 ; Ip2 , then jsi � s̄ðpkÞj ¼ js1 � s̄ðpkÞj for all i

and thus

2ðsi � s1Þ>s̄ðpkÞ ¼ jsij2 � js1j2 for i ¼ 2; . . . ; n and k ¼ 1; 2. (1.7)

Hence s̄ðp1Þ � s̄ðp2Þ is orthogonal to si � s1 for i ¼ 2; . . . ; n. But we also know that
s̄ðpkÞ ¼ s>pk and p>k 1 � 1 and therefore

s̄ðpkÞ ¼ ðs> � s11>Þpk þ s11>pk ¼ s1 þ ðs� s11Þ>pk.

Hence s̄ðp1Þ � s̄ðp2Þ ¼ ðs� s11Þ>ðp1 � p2Þ is also in the span of the vectors si � s1,
i ¼ 2; . . . ; n, and so we must have s̄ðp1Þ � s̄ðp2Þ ¼ 0. Uniqueness follows because s̄ðpÞ
determines m̄ðpÞ. &

To construct a spherical index Ip, we need a generating strategy p. Although p
need not be unique, Ip always is so that the choice of p does not matter. But later, we
need some p explicitly to generate Ip from S via (1.6). Due to (1.7), p is a solution of
the equations

jsij2 � js1j2 ¼ 2p>sðsi � s1Þ ¼ 2
Xn

‘¼1

p‘ððs‘Þ>si � ðs‘Þ>s1Þ for i ¼ 2; . . . ; n

(1.8)

with the constraint that p>1 � 1. Note that (1.8) only involves quantities that are o-
wise computable from the asset price data S:ðoÞ since we need the volatilities jsi

tj
2

(only the lengths, not the entire vectors) and the instantaneous return covariances

ðs‘t Þ
>si

t ¼
d

dt

Z
dS‘

S‘
;

Z
dSi

Si

� �
t

. (1.9)

As these can all be estimated from asset price data, Ip is always empirically
observable from S. Section 4 explains in more detail in an example how this
estimation can be done.
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While assuming the existence of a spherical index is not restrictive, the next notion
is a bit more special. To motivate the underlying idea, consider generalizing the
multi-dimensional Black–Scholes model which is obtained from (1.1) under the
assumption of constant drift m and volatility s. The idea is to relax this by assuming
only that relative/intrinsic values ~S

i
behave in a Black–Scholes type fashion. Hence

not the absolute fluctuations of S, but the relative fluctuations of ~S around an index
Ip are assumed to have constant volatility. We shall see below that this is less
dependent on the choice of Ip than appears at first sight.

Let us now make these ideas more precise.

Definition. A volatility structure s is called rigid if there exists an Rm-valued
predictable process s0 such that si � s0 is constant in o; t for i ¼ 1; . . . ; n.

Lemma 2. A volatility structure s is rigid if and only if for all constant vectors b 2 Rn

with b>1 ¼ 1, the difference si � sðbÞ is constant in o; t for i ¼ 1; . . . ; n, where

sðbÞ:¼
Pn

‘¼1b‘s‘ ¼ s>b.

Proof. For any b 2 Rn with b>1 ¼ 1 and any process s0, we have

si � sðbÞ ¼ si � s0 þ s0 � sðbÞ ¼ si � s0 �
Xn

‘¼1

b‘ðs‘ � s0Þ.

This shows the ‘only if’ part, and the ‘if’ part is obvious if we take as s0 any sðbÞ. &

An immediate consequence of Lemma 2 is the promised assertion that rigidity
does not depend very much on the choice of the index. More precisely, we have

Corollary 3. If the relative prices Si=Sk have constant volatility vectors for i ¼ 1; . . . ; n
and for at least one asset Sk, then all relative price processes Si=Sj have constant

volatility vectors for i; j ¼ 1; . . . ; n, and then s is rigid. Hence
(1)
 A rigid volatility structure may be viewed as a multivariate Black–Scholes volatility

structure for relative prices.
(2)
 The structural property of being rigid does not depend on the choice of discounting

index Ib as long as b is constant.
Theorem 4. Assume (1.1)–(1.3). If s is rigid and spherical, the unique spherical index

can be generated by a constant strategy p 2 Rn with p>1 ¼ 1. The corresponding

relative prices ~S
i
ðpÞ ¼ Si=Ip then have constant volatility vectors ~siðpÞ ¼ si � s̄ðpÞ

whose length is the same for all i.

Proof. Because s is spherical, the sphere center s̄ exists, satisfies jsi � s̄j ¼ js1 � s̄j
for i ¼ 2; . . . ; n and may be written as s̄ ¼

Pn
‘¼1p

‘s‘ with a process p satisfying
p>1 � 1. Hence

0 ¼ jsi � s̄j2 � js1 � s̄j2 ¼ ðsi þ s1 � 2s̄Þ>ðsi � s1Þ; i ¼ 2; . . . ; n
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and soXn

‘¼1

p‘ðsi � s‘ þ s1 � s‘Þ>ðsi � s1Þ ¼ 0; i ¼ 2; . . . ; n.

This is a system of linear equations for p whose coefficients are constant in o; t
because of rigidity and Lemma 2. Hence the solution p (which exists since s is
spherical) may also taken to be constant. The rest follows from Corollary 3. &

Our first structural assumption is that s is rigid and spherical. Thanks to
Theorem 4, this later gives major simplifications in a number of formulae by
exploiting the fact, both that j ~siðpÞj does not depend on i (s is spherical), and that the
strategy p generating the spherical index Ip is constant (s is rigid).

2. Homogeneity: motivation and consequences

This section introduces our second basic assumption. Before giving a mathema-
tical formulation, we motivate the underlying economic idea by the following
postulate of scale-invariance: ‘‘The real state of an economy is not affected by a

simultaneous scaling of prices for tradable goods. Put differently, real or intrinsic

values of all products in an economy are determined only by the totality of relative

prices of goods.’’ A similar idea appears in Section 7.3.1 of Hunt and Kennedy (2000)
who say that the so-called natural filtration generated by all relative asset prices is
arguably the most fundamental one since it contains only information intrinsic to the
economy.

Our economy is modelled by the diffusion (1.1) with (inverse) pricing kernel (1.5).
In this setup, we formalize the above economic principle mathematically by the
assumption that

rð�Þ is homogenous of degree 0, (2.1)

i.e., rðgxÞ ¼ rðxÞ for all g40 and x 2 Rn
þþ. To explain why this indeed captures scale-

invariance, let us first consider a complete market where all prices and in particular
the term structure of interest rates are determined by S. Then the short rate r and the
market price of risk l are both uniquely given in terms of m and s via (1.3); see
Corollary 4 of ReiX et al. (2000) for details. To exploit now scale-invariance, note
that a simultaneous scaling of all asset prices should not affect the return dynamics
Ri since all prices are relative. Hence m and s should be homogeneous of degree 0,
and this entails the same for r and l. For a second, alternative motivation, we could
start with the dynamics (1.5) of the (inverse) pricing kernel N. If we now scale all
prices by a factor g40, the new relevant asset prices are gS instead of S, and these
(instead of the obsolete values S) should be plugged as arguments into rð�Þ and lð�Þ.
But since scaling prices does not change anything economically, the resulting
dynamics of N should remain unchanged, and thus the coefficients r (and l) should
be homogeneous of degree 0.

Remark. The idea of scale-invariance also appears in Hoogland and Neumann
(2001a, b), and even the condition that m and s should be homogeneous of degree 0
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can be found there. The main thrust of Hoogland and Neumann (2001a, b) is that
‘‘any payoff function should be representable by a homogeneous function of degree
one in tradables’’, and this is then exploited to give alternative derivations for a
number of well-known option pricing results. The same idea of using homogeneity
already appears earlier in Jamshidian (1997) who even proves that homogeneous
payoffs can always be hedged under more general conditions. Our thrust here goes in
a different direction, and in contrast to Hoogland and Neumann (2001a, b), we
clearly distinguish between economic intuition and mathematical derivation. &

After s being rigid and spherical, homogeneity of r is our second structural
assumption. We combine the two conditions in the next section to obtain our main
result, but focus first on the consequences we can obtain from (2.1) alone. We start
with a simple analytic lemma.

Lemma 5. If h : Rn
þþ ! R is C2 and homogeneous of degree 0, thenXn

i¼1

xi qh

qxi
� 0;

qh

qxk
þ
Xn

i¼1

xi q2h

qxi qxk
� 0;

Xn

i;k¼1

xixk q2h
qxi qxk

� 0.

Proof. By homogeneity, g 7! hðgxÞ is constant on ð0;1Þ for each x 2 Rn
þþ.

Differentiate to get the first result, differentiate that with respect to xk to get the
second one, and multiply by xk and sum over k to get the third result by using the
first one. &

If Q is a risk-neutral measure for the assets S and the bank account
B :¼ expð

R
rðSuÞduÞ, then S=B is a local Q-martingale and Ŵ ¼W þ

R
lðSuÞdu is

a standard Brownian motion under Q. Combining this with (1.3), Itô’s formula and
the first property in Lemma 5 yields

drðStÞ ¼
Xn

i¼1

qr

qxi
miSi

t dtþ
1

2

Xn

i;k¼1

q2r
qxi qxk

Si
tS

k
t ðss

>Þ
ik dtþ

Xn

i¼1

qr

qxi
Si

tðs dW tÞ
i

¼
1

2

Xn

i;k¼1

q2r
qxi qxk

Si
tS

k
t ðss

>Þ
ik dtþ

Xn

i¼1

qr

qxi
Si

tðsdŴ tÞ
i

¼ ĉðStÞdtþ bðStÞ
> dŴ t

¼ cðStÞdtþ bðStÞ
> dW t ð2:2Þ

for the dynamics of rðSÞ, where we have dropped the argument St in most functions
and set

bðxÞ :¼
Xn

i¼1

xi qr

qxi
ðxÞsiðxÞ, ð2:3Þ

ĉðxÞ :¼ cðxÞ � ðb>lÞðxÞ:¼
1

2

Xn

i;k¼1

xixk q2r
qxi qxk

ðxÞðss>ÞikðxÞ. ð2:4Þ

We next fix an auxiliary function sref : Rn ! Rm and set ~sij :¼sij � sj
ref for i ¼

1; . . . ; n and j ¼ 1; . . . ;m. Then we plug si ¼ ~si þ sref into (2.3) and use Lemma 5
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and the Rm-valued functions ~si:¼ð ~sijÞj¼1;...;m to obtain

bðxÞ ¼
Xn

i¼1

xi qr

qxi
ðxÞ ~siðxÞ. (2.5)

Differentiating with respect to xk, multiplying by xkð ~skÞ
> and summing over

k gives

Xn

k¼1

xkð ~skÞ
> qb

qxk
¼
Xn

i;k¼1

xixk q2r
qxi qxk

ð ~s ~s>Þik þ
Xn

i¼1

xi qr

qxi
j ~sij2

þ
Xn

i;k¼1

xixk qr

qxi
ð ~skÞ

> q ~si

qxk
. ð2:6Þ

On the other hand, we can also plug si ¼ ~si þ sref into (2.4) and use the first
property in Lemma 5, then the second one and then (2.5) to get

ĉ ¼ c� b>l ¼ �b>sref þ
1

2

Xn

i;k¼1

xixk q2r
qxi qxk

ð ~s ~s>Þik. (2.7)

Finally, replacing the second derivatives in (2.7) via (2.6) and using the first property
in Lemma 5 leads to

Proposition 6. Assume (1.1)–(1.3). If r satisfies (2.1) and is in C2, then (dropping

all arguments St) the coefficients ĉ, c and b in the short rate dynamics (2.2) are

related by

ĉ ¼ c� b>l

¼ � b>sref þ
1

2

Xn

i¼1

Si
tð ~s

iÞ
> qb

qxi
�

1

2

Xn

i;k¼1

Si
tS

k
t

qr

qxi
ð ~skÞ

> q ~si

qxk

�
1

2

Xn

i¼1

Si
t

qr

qxi
j ~sij2 � ~s2av
� �

, ð2:8Þ

where sref is any reference function and ~s2av:¼ð1=nÞ
Pn

i¼1j ~s
ij2 ¼ ð1=nÞ

Pn
i¼1js

i � sref j2.

To clarify matters, let us emphasize that Proposition 6 is not about the
construction of possible short rate models. We have started in Section 1 from a
standard Markovian diffusion framework for asset prices and have then derived a
general result on the structure of the associated short rate dynamics. This derivation
uses solely the structural assumption that the short rate function rð�Þ is (C2 and)
homogeneous of degree 0.
3. The main result: a link between index, short rate, and slope of the yield curve

In this section, we combine our two structural assumptions on r and s to derive
our main result. The plan for this is as follows. Homogeneity of rð�Þ on its own gives
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in Proposition 6 for the coefficients in the short rate dynamics (2.2) a relation which
depends on an arbitrary reference function sref . If now in addition s is rigid and
spherical, a good choice of sref considerably simplifies that relation; see Proposition 7
below. In a second step, this is then transformed into a result with a clear economic
interpretation.

We start with the first step. Throughout this section, we assume that rð�Þ is
like mð�Þ and sð�Þ sufficiently nice. If s is spherical with spherical index Ip, (1.8)
makes it clear that ptðoÞ is like sðStðoÞÞ a function of StðoÞ. The same is then
true for the process s̄ðpÞ ¼ s>p, and we write s̄pð�Þ for the corresponding func-
tion s>ð�Þpð�Þ. So if we choose for sref the volatility function s̄p of Ip, the vectors
~si
p ¼ si � s̄p all have the same length because s is spherical; hence we get
~s2av ¼ j ~s

ij2 for all i, and the last term in (2.8) vanishes. If s is also rigid, pð�Þ can
by Theorem 4 be chosen constant in x, and ~si

p then also becomes constant in x due to
Lemma 2. So the double sum in (2.8) vanishes as well and we get (dropping all
arguments St)

Proposition 7. Assume (1.1)–(1.3) and (2.1). If s is rigid and spherical with

spherical index Ip, the coefficients ĉ, c and b in the short rate dynamics (2.2) are

related by

ĉ ¼ �b>s̄p þ
1

2

Xn

i¼1

Si
tð ~s

i
pÞ
> qb

qxi
¼ �

d

dt
rðSÞ;

Z
dIp

Ip

� �
t

þ
1

2

Xn

i¼1

Si
tð ~s

i
pÞ
> qb

qxi
. (3.1)

Proposition 7 is only an auxiliary intermediate result. It relates the risk-neutral
drift ĉðSÞ of the short rate rðSÞ to the spherical index Ip, the constant intrinsic
volatility vectors ~si

p, the assets S and the volatility vector bðSÞ of the short rate. To
transform this into our main result, we first recall the well-known fact that in any
term structure model with nice coefficients, the risk-neutral short rate drift is equal to
the slope of the forward rate curve at the short end, i.e.,

ĉt0 ¼
q
qT

f t0;T

����
T¼t0

. (3.2)

A proof is given in Appendix A. In addition, we need a minor extra assumption
because the vector bðSÞ of instantaneous volatilities is (as a vector) not observable.
Hence we assume that

bðxÞ ¼ b0ðrðxÞÞ for some nice function b0 : R! Rn. (3.3)

One possible justification is that this goes towards a Markovian short rate model
which is a popular assumption in the literature. We provide below an alternative
characterization of (3.3) showing that this is a condition on the structure of the
homogeneous function rð�Þ.

Remark. Models of rigid and spherical Markovian asset markets do exist, even if
we add the condition (3.3). See Appendix B.
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Theorem 8. Assume (1.1)–(1.3), (2.1) and that s is rigid and spherical with spherical

index Ip. If (3.3) holds and the term structure has nice coefficients, then

q
qT

f t0;T

����
T¼t0

¼ � b0ðrðSt0ÞÞ
>s̄pðSt0 Þ þ

1

2
ðjb0jjb0j

0ÞðrðSt0 ÞÞ

¼ �
d

dt
rðSÞ;

Z
dIp

Ip

� �
t

����
t¼t0

þ
1

2
ðjb0jjb0j

0ÞðrðSt0ÞÞ

for each t0 2 ½0;T �. ð3:4Þ

Proof. Thanks to our preparations, this is straightforward. Since (3.3) and (2.5)
give

Pn
i¼1xi ~si

pqb=qxiðxÞ ¼ ðb00ðrðxÞÞÞ
>b0ðrðxÞÞ and because ðb00Þ

>b0 ¼
1
2
ðd=drÞb>0 b0 ¼

1
2
ðd=drÞjb0j

2 ¼ jb0jjb0j
0, the assertion follows from (3.1) and (3.2). &

Theorem 8 is our main result on the link between interest rates and the spherical
index Ip under our two structural assumptions. An economic interpretation is as
follows. Think of a fixed short rate level and consider the effect of a change in
expected interest rates in the near future. Because the last term in (3.4) is then
constant, we see that higher expectations about future interest rates (in the form of an
increased slope of the initial forward rate curve) go with a decrease of correlation

between the short rate and the spherical index, and vice versa.
The central relation (3.4) is (almost) observable and testable in the sense that

(almost) all its ingredients can be computed o-wise from available data. For the left-
hand side, we only need the initial forward rate curve T 7!f t0;T near t0. The first term
on the right-hand side can be written as (dropping the argument St0 )

�ðb0 � rÞ>s̄p ¼ �jb0 � rj js̄pjrIp;r,

where

rIp;r:¼
ðb0 � rÞ>s̄p
jb0 � rj js̄pj

¼

d

dt

� �
rðSÞ;

Z
dIp

Ip

� �
tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d

dt
hrðSÞit

� �
d

dt

Z
dIp

Ip

� �
t

� �s
����������
t¼t0

(3.5)

is the instantaneous correlation at time t0 between the short rate rðSÞ and the return
of the spherical index Ip. Since both Ip and rðSÞ are observable, so are rIp;r and the
volatilities jb0 � rj of r and js̄pj of Ip. The final term in (3.4) becomes observable
under an auxiliary parametric assumption on b0; for instance, we could try jb0ðrÞj ¼

br1=2 if we believe in a CIR-like model. Alternatively, we could use (3.4) to estimate
the parameters in a specific model for b0.

The simplest case of (3.3) occurs if bðxÞ is a constant vector b�; this corresponds to
a ‘semi-Vasi�cek’ type model for the short rate with constant volatility jb�j. The last
term in (3.4) then vanishes and we are left with the simplified relation

q
qT

f t0;T

����
T¼t0

¼ �
d

dt
rðSÞ;

Z
dIp

Ip

� �
t

����
t¼t0

. (3.6)
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This also has a very appealing and plausible economic interpretation: if the forward

rate curve is upward (downward) sloping at the short end, the short rate is negatively

(positively) correlated with the spherical index Ip. Section 4 shows some results from a
simple empirical study of (3.6).

We conclude this section with the promised characterization of condition (3.3).
The key point is that this can also be viewed as a structural assumption on the short
rate function rð�Þ, in line with our overall approach.

Proposition 9. If s is rigid and spherical, a sufficient condition for

bðxÞ ¼ b0ðrðxÞÞa0 for all x 2 Rn
þþ (3.7)

is that

rðxÞ ¼ jðJaðxÞÞ for all x 2 Rn
þþ (3.8)

for some a and some strictly monotone C1 function j : ½0;1Þ ! R, where Ja : R
n
þþ !

R is the homogeneous function

JaðxÞ:¼
Yn

i¼1

ðxiÞ
ai

with a 2 Rnnf0g satisfying
Xn

i¼1

ai ¼ 0.

Conversely, (3.8) is also necessary for (3.7) if we have (1.2) and either mXn or the

combination of m ¼ n� 1 with (1.4) in the form

1e range ðsðxÞÞ for every x 2 Rn
þþ. (3.9)

Proof. The sufficiency part is easy. Denote by jinv the inverse function of j,
differentiate (3.8) and use (2.5) to get

bðxÞ ¼ JaðxÞj0ðJaðxÞÞ
Xn

i¼1

ai ~si
p ¼ jinvðrðxÞÞj0ðjinvðrðxÞÞÞ

Xn

i¼1

ai ~si
p¼:b0ðrðxÞÞ. (3.10)

Note that v̄a :¼
Pn

i¼1a
i ~si

p is a constant vector since s is rigid and spherical. The
necessity part is more involved; its proof can be found in Appendix C. &

The proof of Proposition 9 shows in particular that bðxÞ is a scalar rðxÞ-dependent
multiple of a constant vector v̄a and gives with (3.10) an expression for the function
b0 in terms of j. Simple examples are jðzÞ ¼ log z which leads to b0ðrÞ ¼ b� for a
constant vector b�, or jðzÞ ¼ ðlog zÞ1=ð1�bÞ which gives b0ðrÞ ¼ Crb with another
constant vector C. Hence, our setup contains in particular a rich class of term
structure models, and these have a Markovian short rate as soon as (3.7) holds and
the projection of s̄pðxÞ on v̄a is a function of rðxÞ only; see (3.4).

Remark. It may seem strange that we impose conditions on the short rate r without
actually postulating or studying a model for r. To explain this, let us recall that our
basic ingredients are really the drift m and volatility s of our asset prices S. In view of
(1.3), it then remains to specify either r or the market price of risk l, and assumptions
on r should thus rather be viewed as implicit assumptions on the basic objects m, s
and l.
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4. A first empirical study

This section presents a first empirical study for the simplified relation (3.6)
deduced from Theorem 8. We indicate how one could test (3.6) on the basis of
available market data. But this is only preliminary work, and a detailed statistical
analysis still remains to be done.
4.1. Estimation of the required quantities

Our data come from the Euro asset market, but we do not consider all stocks. We
take the German index DAX, the French index CAC and the Dutch index AEX as
representative price processes and regard these three stock indices as our basic assets.
We have daily closing price data for them and also data of riskless Euro yields for
1–3 months time to maturity.

In order to test (3.6), we construct for the above data the spherical index, obtain
the correlation between this index and the short rate, and determine the initial slope
of the forward yield curve. Since Theorem 8 is a local result, we carry out our
estimations over rather short time periods of 4 months. We outline the procedure in
three steps below.

Step 1. Estimation of the spherical index. We first estimate the covariance matrix of
S. We observe the asset prices S

j
k, j ¼ 1; . . . ; n (with n ¼ 3 in our example) at N þ 1

(daily) dates Tk, k ¼ 1; . . . ;N þ 1. In view of (1.9), we estimate the local return
covariance rates by

d
ðs‘Þ>si ¼

1

N

XN

k¼1

1

Tkþ1 � Tk

S‘kþ1 � S‘k

S‘k

Si
kþ1 � Si

k

Si
k

. (4.1)

We solve the system (1.8) of linear equations by replacing ðs‘Þ>si with the estimates
from (4.1) and obtain the estimated weights p̂‘ of the spherical index. The estimate
for the squared volatility norm of the spherical index is then computed via

djs̄pj2 ¼Xn

i;‘¼1

p̂ip̂‘ d
ðs‘Þ>si.

After computing the index weight estimates, we construct from the asset returns via
(1.6) a time series of estimates bIpk of the spherical index . The result is shown in Fig. 3
below.

Step 2. Covariance and correlation between short rate and spherical index. In view of
the available data, we use the 1 month spot yield as approximation for the short rate.
Denote by ðrkÞ a time series of this process observed at the dates Tk and let b� be the
(constant) volatility vector of the short rate. The local covariance between the short
rate and the spherical index Ip is next estimated by

db>� s̄p ¼ 1

N

XN

k¼1

1

Tkþ1 � Tk

ðrkþ1 � rkÞ
dIpkþ1 � bIpkbIpk .
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After computing an estimate for the squared short rate volatility norm by

djb�j2 ¼ 1

N

XN

k¼1

ðrkþ1 � rkÞ
2

Tkþ1 � Tk

,

we may estimate the instantaneous correlation between Ip and r due to (3.5) by

brIp;r ¼

db>� s̄pdjb�jdjs̄pj .
Step 3. Estimation of the initial forward yield slope. To estimate at date t0 the slope

of the instantaneous forward yield curve at the short end, we use riskless
continuously compounded bond yields Rt0;T . These are connected with the zero
coupon bond prices Bt0;T via

Rt0;T ¼ �
logBt0;T

T � t0
.

We first estimate the value of limT&t0qRt0;T=qT by the slope of the regression line
through the three points given by the 1–3 month yields; standard calculus then
gives

qf t0;T

qT

����
T¼t0

¼ � lim
T&t0

q2 logBt0;T

qT2
¼ 2 lim

T&t0

qRt0;T

qT
.

Remark. As already mentioned, (3.6) is a local result that involves instantaneous
volatilities and correlations. Steps 1 and 2 use time averages from time series to
generate estimates for these local quantities, and this works well only if the time
series under consideration come from stationary processes. The same comment
applies to Step 3 where we estimate the desired slope by averaging (over all
observation dates) the slopes obtained at each date. Once the stationarity
assumption is not met, the reliability of such crude estimates is drastically reduced
and more sophisticated methods are called for. In the same vein, one might also look
for and use other observable financial products for obtaining estimates of the
quantities we need.

4.2. Empirical results

On the basis of the previous description, we performed an analysis of the data in
the periods January–April 2001 and January–April 2002. During the period in 2001,
the yield curve at the short end was downward sloping; Figs. 1 and 2 show the yield
curves of the first and the last day of this period.

From Step 1, we obtain estimates for the instantaneous covariances of the three
assets, the spherical index weights and the spherical index volatility. The assets and
the corresponding spherical index estimates, both scaled by their initial values, are
shown in Fig. 3.
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Fig. 2. Euro yield curve on April 30, 2001. Estimated initial slope is � �0:0006.

Fig. 1. Euro yield curve on January 2, 2001. Estimated initial slope is � �0:0012.

Fig. 3. Estimated weights of spherical index are p̂DAX ¼ 0:8908, p̂CAC ¼ 0:6554 and p̂AEX ¼ �0:5462.
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For the period January–April 2001 we then obtain the following estimates:
Short rate volatility djb�j: 0:0061,
Spherical index volatility djs̄pj: 0:3097,
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Fig. 4. Euro yield curve on January 2, 2002. Estimated initial slope is � �0:0025.

Fig. 5. Euro yield curve on April 30, 2002. Estimated initial slope is � þ0:0029.
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Correlation brIp;r between index and short rate: 0:2169,

Average initial slope of yield curve T 7!Rt0;T : �0:0040,
Average initial slope of forward rate curve T 7!f t0;T : 2	�0:0040 ¼ �0:0080.
According to (3.6), the product of the first three numbers, 0:0061	 0:3097	

0:2169 � 0:0004, should be equal to minus the last one, 0:0080. So we might
conclude that with respect to sign and order of magnitude, the empirical results for
this example are roughly consistent with (3.6). But we repeat that the main point of
this section is to illustrate the basic approach, and a proper test of (3.6) by
appropriate econometric methods is left for future research.

During the period in 2002, the situation on the interest rate market was quite
different from 2001. As we see in Figs. 4 and 5, the initial slope of the yield curve was
changing from negative to positive. This indicates that an assumption of stationarity
is here probably violated. Indeed, a similar test of (3.6) in this case did not yield
conclusive results.
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5. Conclusion

We have presented an economically intuitive and empirically testable link between
assets and interest rates in a general Markovian diffusion framework. This is derived
from two structural assumptions on the coefficients of the model: the volatility
structure is rigid and spherical, and the short rate function is homogeneous of degree
0. These mathematical assumptions are motivated via a scale invariance postulate in
an intrinsic Black–Scholes economy. A preliminary empirical analysis has also
indicated how our result could be tested.
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Appendix A. Proof of (3.2)

In this appendix, we prove the representation

ĉt0 ¼
q
qT

f t0;T

����
T¼t0

ð3:2Þ

for the risk-neutral short rate drift ĉ. We start with the risk-neutral forward rate
dynamics

df t;T ¼ gt;T dtþ d>t;T dŴ t

to obtain for T ¼ t4t0

rt ¼ f t;t ¼ f t0;t þ

Z t

t0

gu;t duþ

Z t

t0

d>u;t dŴ u.

Writing a dot � for partial derivatives with respect to the second argument, we get

drt ¼
_f t0;t dtþ gt;t dtþ

Z t

t0

_gu;t du

� �
dtþ d>t;t dŴ t þ

Z t

t0

_d
>

u;t dŴ u

� �
dt (A.1)

because all quantities are sufficiently nice. Now the HJM drift condition (see for
instance Björk (2004), Proposition 23.2) says that

gu;t ¼ d>u;t

Z t

u

du;s ds,
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since g is the risk-neutral forward rate drift. Plugging this into (A.1) yields

drt¼
_f t0;t dtþ

Z t

t0

_d
>

u;t

Z t

u

du;s dsduþ

Z t

t0

jdu;tj
2 duþ

Z t

t0

_d
>

u;t dŴ u

� �
dtþ d>t;t dŴ t.

Letting t& t0, we obtain (3.2). &
Appendix B. Existence of models

We show here that many rigid and spherical asset markets with a short rate
volatility of the form bðxÞ ¼ b0ðrðxÞÞ exist. To that end, we first choose a
homogeneous, rigid and spherical asset volatility structure with (1.2) and set
rðxÞ:¼jðJaðxÞÞ as in (3.8). Then rðxÞ is also homogeneous, and Proposition 9 shows
that we have bðxÞ ¼ b0ðrðxÞÞ. If we then choose some homogeneous function lðxÞ, we
obtain a homogeneous mðxÞ from the drift condition (1.3). This construction also
illustrates that we usually have enough freedom in the choice of our parameters to
produce a model with (for instance) a desired short rate process as output. &
Appendix C. Proof of Proposition 9

In this appendix, we prove that (3.8) is necessary for (3.7).
Step 1. For each x 2 Rn

þþ, xjqr=qxjðxÞ is uniquely determined by bðxÞ ¼ b0ðrðxÞÞ

so that

xj qr

qxj
ðxÞ ¼ f jðrðxÞÞ (C.1)

for functions f 1; . . . ; f n : R! R. To see this, suppose that we have two representa-
tions

bðxÞ ¼
Xn

i¼1

xi qr

qxi
ðxÞsiðxÞ ¼

Xn

i¼1

xi qr̄

qxi
ðxÞsiðxÞ

of the form (2.3) with homogeneous functions r and r̄. Then we get for h :¼ r� r̄ thatXn

i¼1

xi qh

qxi
ðxÞsiðxÞ ¼ 0 and

Xn

i¼1

xi qh

qxi
ðxÞ ¼ 0, (C.2)

the latter by Lemma 5. Now if mXn, the full rank condition (1.2) yields
range ðsðxÞÞ ¼ Rn and therefore xiqh=qxiðxÞ ¼ 0 for i ¼ 1; :::; n due to (C.2). If
m ¼ n� 1, combining (1.2) with (3.9) implies that span ð1; range ðsðxÞÞÞ ¼ Rn and
we see again from (C.2) that xiqh=qxiðxÞ ¼ 0. This proves the assertion.

Step 2. Because of (C.1) andXn

i¼1

xi qr

qxi
ðxÞ ~si

p ¼ bðxÞ ¼ b0ðrðxÞÞa0,
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there exists for any x0 2 Rn
þþ an open ball U0 around x0 and an index j0 such that

xj0
qr

qxj0
ðxÞ ¼ f j0

ðrðxÞÞa0 for all x 2 U0.

This implies the existence of constants ai with aj0 ¼ 1 and
Pn

i¼1a
i ¼ 0 such that

f i � r ¼ aif j0
� r on U0 for all i. (C.3)

To prove this, we may assume that j0 ¼ 1 so that f 1 � ra0 on U0. For iaj, (C.1)
implies

q2r
qxi qxj

¼
q
qxi

f j

xj
¼

1

xj
f 0j

qr

qxi
¼

f 0j f i

xixj
¼

f 0i f j

xixj
,

hence

f 0iðrðxÞÞ ¼
f 01ðrðxÞÞ

f 1ðrðxÞÞ
f iðrðxÞÞ on U0.

This ODE has for each i the unique solution f iðrðxÞÞ ¼ aif 1ðrðxÞÞ for a constant ai,
and homogeneity of r enforces by Lemma 5 that

Pn
i¼1a

i ¼ 0. This proves (C.3).
Step 3. A priori, (C.3) holds only on U0, and the constants ai could depend on x0.

We claim that the ai are global constants and that (C.3) holds on all of Rn
þþ. Since

Rn
þþ is s-compact, both assertions follow once we prove the following result: if we

have two representations

f i � r ¼ ai
‘ f j‘
� r with f j‘

� ra0 on U ‘; for ‘ ¼ 1; 2

with open balls U1;U2 such that U1 \U2a;, then

f i � r ¼ ai
1 f j1
� r ¼ ai

2 f j2
� r holds on U1 [U2. (C.4)

To see this, use the shorthand g :¼ f � r and note that we have gi ¼ ai
1 gj1
¼ ai

2 gj2
on

U1 \U2; hence a
j2
1 gj1
¼ gj2

a0 on U1 \U2, so a
j2
1 a0, and then it follows that

ai
1 gj1
¼ ai

2 a
j2
1 gj1

on U1 \U2 so that ai
1 ¼ ai

2 a
j2
1 . Using this, we have on U1 that

gi ¼ ai
1 gj1
¼ ai

2 a
j2
1 gj1
¼ ai

2 gj2
,

and so (C.4) follows.
Step 4. Now define the function ~r : Rn

þþ ! R by ~rðyÞ :¼ rðexp½y�Þ ¼ rðxÞ with
x ¼ exp½y�:¼ðexpðy1Þ; :::; expðynÞÞ

>. Then we have from (C.3)

q~r
qyj
ðyÞ ¼ xj qr

qxj
ðxÞ ¼ ajf j0

ðrðxÞÞ ¼ ajf j0
ð~rðyÞÞ. (C.5)

Choose H : R! R with H 0 ¼ 1=f j0
and integrate (C.5) with respect to yj for a fixed j

to get

Hð~rðyÞÞ ¼ CjðyÞ þ ajyj, (C.6)

where CjðyÞ does not depend on yj. Now differentiate (C.6) with respect to yi for iaj

and use (C.5) to get qCjðyÞ=qyi ¼ ai. This yields CjðyÞ ¼ aiyi þ Ci;jðyÞ, where Ci;jðyÞ



ARTICLE IN PRESS

O. ReiX et al. / Journal of Economic Dynamics & Control 31 (2007) 593–612612
now depends neither on yi nor on yj, and

Hð~rðyÞÞ ¼ Ci;jðyÞ þ aiyi þ ajyj.

Iterating this argument finally gives

Hð~rðyÞÞ ¼ C þ
Xn

i¼1

aiyi ¼ C þ
Xn

i¼1

ai log xi ¼ C þ log JaðxÞ

with a constant C, and inverting H yields

rðxÞ ¼ ~rðyÞ ¼ H invðC þ log JaðxÞÞ

which is of the form (3.8). &
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