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Abstract. We present an iterative procedure for computing the optimal Bermu-
dan stopping time, hence the Bermudan Snell envelope. The method produces
an increasing sequence of approximations of the Snell envelope from below, which
coincide with the Snell envelope after finitely many steps. Then, by duality, the
method induces a convergent sequence of upper bounds as well. In a Markov-
ian setting the presented iterative procedure allows to calculate approximative
solutions with only a few nestings of conditionals expectations and is therefore
tailor-made for a plain Monte-Carlo implementation. The method presented may
be considered generic for all discrete optimal stopping problems. The power of
the procedure is demonstrated at Bermudan swaptions in a full factor LIBOR
market model.

Key words: Bermudan options, optimal stopping, Monte Carlo simulation,
LIBOR market model

JEL Classification: G13

Mathematics Subject Classification (2000): 62L15, 65C05, 91B28

1 Introduction

Pricing of American style derivatives on a high dimensional system of underlyings
is considered a perennial problem for the last decades. As a matter of fact, such
high dimensional options are difficult, if not impossible, to compute by standard
PDE methods. For high dimensional European options an almost canonical
alternative to PDEs is Monte Carlo simulation. However, for American options,
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Monte Carlo simulation is less trivial since the (optimal) exercise boundary is
usually unknown.

In the past literature, various Monte Carlo algorithms for pricing American
options are developed. Many of these approaches are related to so called back-
ward dynamic programming which comes down to a recursive representation of
the Snell envelope. Among these methods we mention the random tree method
and the stochastic mesh method of Broadie & Glasserman (2000, 2004), the
cross-sectional least squares algorithm by Longstaff & Schwarz (2001), and the
quantization algorithm by Bally & Pages (2003).

As an alternative to backward dynamic programming, one may search for
a suitable parametric family of exercise boundaries and then maximize the so-
lutions of the corresponding family of boundary value problems over the pa-
rameters. In Andersen (1999) this concept has been applied in the context of
Bermudan swaptions in a LIBOR market model. Bermudan options are in fact
American options with a discrete set of exercise dates.

In 2001 Rogers proposed a method for American options which is based on a
dual representation of the Snell envelope. Independently, Haugh & Kogan (2001)
proposed a similar dual procedure for Bermudan derivatives. The dual approach
was a new impulse for the research on Monte Carlo methods for American options
in fact, since it enables Monte Carlo simulation of tight upper bounds due to
given tight lower bounds. More recently, another (multiplicative) dual procedure
based on change of numeraires is developed by Jamshidian (2003, 2004).

Further recent papers on (Monte Carlo) methods for high-dimensional Amer-
ican and Bermudan options include Joshi & Theis (2002), Milstein, Reiß &
Schoenmakers (2003), Kolodko & Schoenmakers (2003, 2004a), Belomestny &
Milstein (2004), Berridge & Schumacher (2004), and for a more detailed and
general overview we refer to Glasserman (2003) and the references therein.

The central result in this paper is an iterative construction of the Bermudan
Snell envelope via a sequence of stopping times which increases to the (first)
optimal stopping time. In each iteration step we improve a whole family of
stopping times (τi), where i runs through the set of exercise dates, and τi is
the stopping time for the Bermudan which is not exercised before date i. In
fact, the proposed improvement is inspired by a canonical exercise policy for
Bermudan swaptions which is already not far from optimal usually; exercise as
soon as the cash-flow dominates all the Europeans ahead. The thus obtained
sequence of stopping families naturally induces an increasing sequence of lower
approximations of the Snell envelope. This sequence even coincides with the
Snell envelope after finitely many steps. However, the main issue is that after
each iteration step we obtain an improved approximation of the Snell envelope
which ranges over all exercise dates. This in contrast to the backward dynamic
program which requires, for obtaining a value for the Snell envelope at the initial
date, a number of steps equal to the total number of exercise dates. As a
consequence (explained in detail in Remark 2.1), for a larger number of exercise
dates, for example ten or twenty, a plain Monte Carlo implementation of the
latter method, where conditional expectations are computed by Monte Carlo,
would require astronomical computation times. Further, by the dual approach
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we deduce from the constructed sequence of lower bounds a sequence of upper
bounds which converges to the Snell envelope as well.

The whole analysis is based on a finite set of exercise dates, but since a con-
tinuous time American option may be approximated by a Bermudan option with
a fine grid of exercise dates, one may in principle apply the method to Amer-
ican options also. The same remark applies to an infinite (perpetual) discrete
optimal stopping problem which may be approximated by a discrete problem for
a finite set of exercise dates (Shiryayev (1978)). We further underline that the
presented method is quite generic and can in principle be applied to any discrete
(not necessarily financial) optimal stopping problem.

The presented iterative method may be considered as a pseudo-algorithm
since for an implementation conditional expectations need to be computed along
trajectories. In a Markovian setting these conditional expectations may be
computed (approximately) by Monte Carlo and the thus resulting algorithm
is spelled out. In a subsequent paper, Bender & Schoenmakers (2004), the sta-
bility of this algorithm is shown and, moreover, the present iteration method
is extended for multiple callable structures. We implement the algorithm for
Bermudan swaptions in a multi-factor LIBOR market model. It turns out that
with a one-degree nested Monte Carlo simulation (two iterations) very accurate
Bermudan prices (within 1%) may be obtained in reasonable times.

It should be noted that the in this paper proposed method is a kind of “policy
iteration” which is rather different from policy iteration as in Howard (1960) and
Puterman (1994). In particular, due to its special nature, our method gives usu-
ally good results with only a very few iterations. Moreover, the procedure does
not rely on explicit knowledge of underlying transition kernels and is essentially
dimension independent. These are important features since in various applica-
tions, for example, in the case of an underlying LIBOR process the dimension is
usually high and transition kernels are not explicitly available.

The paper is organized as follows. In Section 2 we formulate the discrete
optimal stopping problem and consider its implementation for Bermudan style
derivatives. In Section 3 we prove the following corner stone result: Based on
a given family of stopping times which satisfies some natural conditions, one
can construct a next stopping family (by a procedure inspired by a canonical
exercise policy for Bermudan swaptions), which is closer to the optimal family
as the one we have started with. By using this result, we construct in Section 4 a
sequence of stopping families and lower bounds for the Snell envelope and show
that by this sequence the Snell envelope is attained after a finite number of
steps. Then, in Section 5, we recall the dual upper bound representation for the
Snell envelope by Rogers, Haugh & Kogan and include a small extension. Based
on the dual approach, the convergent lower bounds constructed in Section 4,
and an approximation theorem we deduce a sequence of upper bounds which
converges to the Snell envelope from above (also in finitely many steps). In
Section 6 we describe a Monte Carlo implementation of the iterative procedure
in Section 4, for the usual situation where the underlying process is Markovian.
Finally, in Section 7, we apply our method to Bermudan swaptions in a LIBOR
market model. We also give a numerical comparison with Andersen’s (1999)
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lower bound method and its dual considered by Andersen and Broadie (2001).

2 Discrete optimal stopping and its application
to Bermudan style derivatives

Let us consider a discrete non-negative random reward process (Zi)0≤i≤k with
state space R, adapted to some discrete filtration F = (Fi)0≤i≤k. For a fixed
i, 0 ≤ i ≤ k, an F-stopping time τ∗

i is called an optimal stopping time in the
discrete set of exercise dates {i, . . . , k}, if

Y ∗
i := EiZτ∗

i
= sup

τ∈{i,...,k}

EiZτ . (1)

In (1), Ei denotes conditional expectation with respect to Fi and the supremum
is taken over all F-stopping times τ with values in the set {i, ..., k}. The sequence
of optimal stopping times (τ∗

i )0≤i≤k is called an optimal stopping family. For
technical reasons we assume that Zi has finite expectation for each i, 0 ≤ i ≤ k.
The process Y ∗, called the Snell envelope process, is a supermartingale. This
can be seen as follows. Let i < j, then it holds

EiY ∗
j = EiEjZτ∗

j
= EiZτ∗

j
≤ sup

τ∈{i,...,k}

EiZτ = Y ∗
i .

The Snell envelope Y ∗ can be constructed by the following algorithm, called back-
ward dynamic programming (see e.g. Shiryayev (1978), Elliot & Kopp (1999)).
At the last exercise date we have trivially Y ∗

k = Zk, and for 0 ≤ j < k,

Y ∗
j = max

(
Zj, E

jY ∗
j+1

)
. (2)

An optimal stopping family is represented by

τ∗
i = inf

{
j, i ≤ j ≤ k : Y ∗

j ≤ Zj

}
. (3)

In fact, (3) denotes the first optimal stop after time index i.
As a canonical application of discrete optimal stopping in finance we consider

the Bermudan pricing problem. Let L(t) be an R
D-valued random process on a

finite time interval [0, T∞], T∞ < ∞, adapted to a filtration (F(t))0≤t≤T∞
which

satisfies the usual conditions. For example, L can be a system of asset prices,
but also a not explicitly tradable object such as the term structure of interest
rates, or a system of LIBOR rates. Consider a set of dates T := {T0, . . . , Tn}
with 0 ≤ T0 < · · · < Tn ≤ T∞. An option issued at time t = 0 to exercise a cash-
flow CTτ

:= C(Tτ , L(Tτ )) at a date Tτ ∈ T, to be decided by the option holder,
is called a Bermudan style derivative. With respect to a pricing measure P
connected with some pricing numeraire B, the value of the Bermudan derivative
at a future time point t, when the option is not exercised before t, is given by

V (t) := B(t) sup
τ∈{κ(t),...,n}

EF(t) CTτ

B(Tτ )
(4)
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with κ(t) := min{m : Tm ≥ t}. Note that V (t) can also be seen as the
price of a Bermudan option newly issued at time t, with exercise opportuni-
ties Tκ(t), . . . , Tn. The fact that (4) can be considered as the fair price for the
Bermudan derivative is due to general no-arbitrage principles, e.g. see Duffie
(2001). The discounted Bermudan price can be expressed as the solution of a
discrete optimal stopping problem (1) as follows. If t = Ti for some 0 ≤ i ≤ n,
define k := n − i, and

Z0 :=
CTi

B(Ti)
, . . . , Zk :=

CTn

B(Tn)
,

F0 := F(Ti), . . . , Fk := F(Tn).

If Ti < t < Ti+1 for some 0 ≤ i < n, define k := n − i, and

Z0 := 0, Z1 :=
CTi+1

B(Ti+1)
, . . . , Zk :=

CTn

B(Tn)
,

F0 := F(t), F1 := F(Ti+1), . . . , Fk := F(Tn).

Remark 2.1 For a Markovian sequence (L(Ti), B(Ti))0≤i≤k (e.g. a LIBOR
model with B being the spot LIBOR rolling-over account) it would be possible,
in principle, to construct the Snell envelope Y ∗ = V/B by plain Monte Carlo
simulation of the backward dynamic program (2) in the following way. Step 1:
for each state (L(Tk−1), B(Tk−1)), Y ∗

k−1 can be estimated via (2) by simulation

of Y ∗
k (= Zk) under the conditional measure P (L(Tk−1),B(Tk−1)). Next, Step 2:

for each state (L(Tk−2), B(Tk−2)), Y ∗
k−2 can be estimated via (2) by simulation

of Y ∗
k−1 under the conditional measure P (L(Tk−2),B(Tk−2)). However, note that

each simulation in Step 2 requires an estimation of Y ∗
k−1, hence a simulation

according to Step 1. As a result, Y ∗
k−2 requires a (one-fold) nested Monte Carlo

simulation. Thus proceeding we would obtain Y ∗
0 via a (k−1)-fold nested Monte

Carlo simulation. But, the complexity of this procedure would be tremendous.
For example, when using N simulations in each backward step we would need
Nk samples for the value of Y ∗

0 . As an example N = 10 000 and k = 10 would
lead to more than 1040 samples!

3 A one step improvement upon a given family

of stopping times

We now study the optimal stopping problem (1). With respect to the discrete
filtration (Fi)0≤i≤k we consider a family of integer valued stopping indexes (τi),
with the following properties,

i ≤ τi ≤ k, τk = k,

τi > i ⇒ τi = τi+1, 0 ≤ i < k, (5)

and the process
Yi := EFiZτi

. (6)
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For the Bermudan problem (4) one could take for example

τi := inf{j ≥ i : (Tj , L(Tj)) ∈ R} ∧ k,

where R is a certain region in R
D+1, or, as a more trivial example, the family

τi ≡ i. Generally, the process (Yi) is a lower approximation of the Snell envelope
process (Y ∗

i ) due to the family of (sub-optimal) stopping times (τi). Based on
the family (τi) we are going to construct a new family (τ̂i) satisfying (5), which
induces a new approximation of the Snell envelope.

We fix a window parameter κ; an integer with 1 ≤ κ ≤ k, and then introduce
an intermediate process

Ỹi := max
p: i≤p≤min(i+κ,k)

EiZτp
. (7)

Using Ỹi as an exercise criterion we define a new family of stopping indexes

τ̂i : = inf{j : i ≤ j ≤ k, Ỹj ≤ Zj} (8)

= inf{j : i ≤ j ≤ k, max
p: j≤p≤min(j+κ,k)

EjZτp
≤ Zj}, 0 ≤ i ≤ k,

and consider the process
Ŷi := EiZbτi

(9)

as a next approximation of the Snell envelope. Clearly, the family (τ̂i) satisfies
the properties (5) as well. Let us take κ = k. Then for Bermudan derivatives,

as an example, the trivial family τi ≡ i gives for Ỹ the maximum of still alive
Europeans and for Ŷ the second “canonical example” in Kolodko & Schoenmak-
ers (2003, 2004a). As another example, τi ≡ k gives for Ỹ the European option
process due to the last exercise date k and

τ̂i := inf{j : i ≤ j ≤ k, EjZk ≤ Zj}, 0 ≤ i ≤ k.

By the next theorem, (Ŷi) is generally an improvement of (Yi).

Theorem 3.1 Let (τi) be a family of stopping times with the property (5) and

(Yi) be given by (6). Let the processes (Ỹi) and (Ŷi) be defined by (7) and (9),
respectively. Then, it holds

Yi ≤ Ỹi ≤ Ŷi ≤ Y ∗
i , 0 ≤ i ≤ k.

Proof.
The inequalities Yi ≤ Ỹi and Ŷi ≤ Y ∗

i are trivial. We only need to show the

middle inequality. We use induction in i. Due to the definition of Ỹ and Ŷ , we
have Ỹk = Ŷk = Zk. Suppose that Ỹi ≤ Ŷi for some i with 0 < i ≤ k. We will
then show that Ỹi−1 ≤ Ŷi−1. Let us write

Ŷi−1 = Ei−1Zbτi−1
= 1bτi−1=i−1Zi−1 + 1bτi−1>i−1E

i−1EiZbτi

= 1bτi−1=i−1Zi−1 + 1bτi−1>i−1E
i−1Ŷi.
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Then, by induction and Jensen’s inequality,

Ŷi−1 ≥ 1bτi−1=i−1Zi−1 + 1bτi−1>i−1E
i−1Ỹi

= 1bτi−1=i−1Zi−1 + 1bτi−1>i−1E
i−1 max

p: i≤p≤min(i+κ,k)
EiZτp

≥ 1bτi−1=i−1Ỹi−1 + 1bτi−1>i−1 max
p: i≤p≤min(i+κ,k)

Ei−1Zτp
, (10)

since for τ̂i−1 = i − 1 we have i − 1 = inf{j : i − 1 ≤ j ≤ k, Ỹj ≤ Zj}, and so

Ỹi−1 ≤ Zi−1. We may write (10) as

Ŷi−1 ≥ Ỹi−1 + 1bτi−1>i−1( max
i≤p≤min(i+κ,k)

Ei−1Zτp
− max

i−1≤p≤min(i−1+κ,k)
Ei−1Zτp

).

Thus, after showing that τ̂i−1 > i − 1 implies

Ei−1Zτi−1 ≤ max
p:i≤p≤min(i−1+κ,k)

Ei−1Zτp
,

it follows that Ŷi−1 ≥ Ỹi−1. It holds,

Ei−1Zτi−1 = 1τi−1=i−1Zi−1 + 1τi−1>i−1E
i−1Zτi

≤ 1τi−1=i−1Zi−1 + 1τi−1>i−1 max
p:i≤p≤min(i−1+κ,k)

Ei−1Zτp
. (11)

Then, on the set {τ̂i−1 > i − 1} we have

Zi−1 < max
p: i−1≤p≤min(i−1+κ,k)

Ei−1Zτp
,

so, if (τ̂i−1 > i − 1) ∧ ( τi−1 = i − 1), it follows that

Zi−1 < max(Zi−1, max
p: i≤p≤min(i−1+κ,k)

Ei−1Zτp
).

Hence, if (τ̂i−1 > i − 1) ∧ (τi−1 = i − 1),

Zi−1 < max
p: i≤p≤min(i−1+κ,k)

Ei−1Zτp
.

Thus, from (11) we have on the set {τ̂i−1 > i − 1},

Ei−1Zτi−1 ≤ 1τi−1=i−1 max
p: i≤p≤min(i−1+κ,k)

Ei−1Zτp

+ 1τi−1>i−1 max
p: i≤p≤min(i−1+κ,k)

Ei−1Zτp

= max
p: i≤p≤min(i−1+κ,k)

Ei−1Zτp
.

The following corollary is a simple consequence of Theorem 3.1.

Corollary 3.2 It holds Zi ≤ Ŷi, for 0 ≤ i ≤ k.

Proof. Suppose Zi > Ŷi, then by Theorem 3.1, Zi > Ỹi. So by the construction
(8) we must have τ̂i = i and thus Zi = EiZbτi

= Ŷi, hence a contradiction.
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In the above analysis the window parameter κ was fixed. When κ is increased,
more information of the input exercise policy is used in the improvement step (8).
Therefore, it is intuitively clear that in general the quality of the correspond-
ing improvement step will advance when κ increases. We have the following
proposition.

Proposition 3.3 Consider κ, κ′ with 0 ≤ κ < κ′ ≤ k. Let τ̂i and Ŷi be as in
(8)-(9), and let τ̂ ′

i and Ŷ ′
i be constructed according to (8)-(9) for the window

parameter κ′. Then we have Ŷi ≤ Ŷ ′
i , 0 ≤ i ≤ k.

Proof. Obviously, we have τ̂ ′
i ≥ τ̂i by construction. Hence, by (5) and Corol-

lary 3.2 it follows that Ŷ ′
i = EiZτ̂ ′

i
=

∑k
p=i Ei1τ̂i=pZτ̂ ′

p
=

∑k
p=i Ei1τ̂i=pE

pZτ̂ ′

p

≥
∑k

p=i Ei1τ̂i=pZp = EiZτ̂i
= Ŷi.

As a result, in general the best policy improvement (8)-(9) is obtained by making
in (8) a forward sweep over all exercise dates; hence by choosing κ = k. Indeed,
when the input policy exercises much too early and κ is too small, it may hap-
pen that the improved policy (8) exercises much too early again, for instance,
in situations where the reward process has low expectations in the near future
but higher expectations on longer terms. In contrast, when κ is large enough,
e.g. κ = k, such high future expectations can be detected by (8), and then the
improved policy will exercise later. In Section 5 we will show this by an explicit
example (Example 5.4), in the context of an iterative procedure based on (8)-(9).

Finally, we note that by choosing the smallest κ, hence κ = 1, (8) boils down
to an improvement which basically goes back to Howard (1960). See also Irle
(1980) and Putterman (1994).

4 Iterative construction of the optimal stopping

time and the Snell envelope process

Naturally, we may construct by induction via the procedure (8)-(9) a sequence
of pairs (

(τ
(m)
i )0≤i≤k, (Y

(m)
i )0≤i≤k

)

m=0,1,2,...

in the following way: Start with some family of stopping times (τ
(0)
i )0≤i≤k, which

satisfies (5). A canonical starting family is obtained, for example, by taking

τ
(0)
i ≡ i. Suppose that for m ≥ 0 the pair

(
(τ

(m)
i ), (Y

(m)
i )

)
is constructed,

where
Y

(m)
i := EiZ

τ
(m)
i

, 0 ≤ i ≤ k,

and the stopping time family (τ
(m)
i ) satisfies (5). Then define

τ
(m+1)
i := inf{j : i ≤ j ≤ k, max

p: j≤p≤min(j+κ,k)
EjZ

τ
(m)
p

≤ Zj}

= inf{j : i ≤ j ≤ k, Ỹ
(m+1)
j ≤ Zj}, 0 ≤ i ≤ k, (12)
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with
Ỹ

(m+1)
i := max

p: i≤p≤min(i+κ,k)
EiZ

τ
(m)
p

being an intermediate dummy process and

Y
(m+1)
i := EiZ

τ
(m+1)
i

, 0 ≤ i ≤ k.

Clearly, the family (τ
(m+1)
i )0≤i≤k satisfies (5) as well.

Due to Theorem 3.1 the above constructed sequence satisfies

Y
(0)
i ≤ Y

(m)
i ≤ Ỹ

(m+1)
i ≤ Y

(m+1)
i ≤ Y ∗

i , m ≥ 0, 0 ≤ i ≤ k, (13)

and, due to Corollary 3.2,

Zi ≤ Y
(m)
i , m ≥ 1, 0 ≤ i ≤ k. (14)

By the following proposition, for each fixed i the sequence (τ
(m)
i )m≥1 constructed

above is also nondecreasing in m and bounded from above by any optimal stop-

ping time τ∗
i . It is possible, however, that τ∗

i < τ
(0)
i (e.g. when τ

(0)
i ≡ k).

Proposition 4.1 Let (τ∗
i ) be an optimal stopping family. For each m ≥ 1, and

i, 0 ≤ i ≤ k, we have

τ
(m)
i ≤ τ

(m+1)
i ≤ τ∗

i .

Proof. Suppose that τ∗
i < τ

(m)
i for some m ≥ 1 and some i with 0 ≤ i ≤ k.

Then, by (13) and the definition of τ
(m)
i ,

Y ∗
τ∗

i
≥ Ỹ m

τ∗

i
> Zτ∗

i
,

so τ∗
i is not optimal, hence a contradiction. Thus, the right inequality is proved.

Next suppose τ
(m+1)
i < τ

(m)
i for some m ≥ 1 and some i with 0 ≤ i ≤ k. Then,

by the definition of τ
(m)
i we have

Ỹ
(m)

τ
(m+1)
i

> Z
τ
(m+1)
i

.

On the other hand, according the definition of τ
(m+1)
i , we have

Ỹ
(m+1)

τ
(m+1)
i

≤ Z
τ
(m+1)
i

.

So, we get Ỹ
(m)

τ
(m+1)
i

> Ỹ
(m+1)

τ
(m+1)
i

, which contradicts (13).
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The next lemma formulates a “quasi-supermartingale property” for Y (m), and
Ỹ (m).

Lemma 4.2 For m ≥ 0 and 0 ≤ i < k it holds

Y
(m+1)
i ≥ Ỹ

(m+1)
i ≥ EiY

(m)
i+1 ≥ EiỸ

(m)
i+1 ,

where Ỹ (0) has to be interpreted as 0.

Proof. Using (13) we have

Y
(m+1)
i ≥ Ỹ

(m+1)
i = maxp: i≤p≤min(i+κ,k) EiZ

τ
(m)
p

≥ EiZ
τ
(m)
i+1

= EiEi+1Z
τ
(m)
i+1

=

EiY
(m)
i+1 ≥ EiỸ

(m)
i+1 .

Due to the inequality chain (13) and Proposition 4.1 there exist a limit lower
bound process Y ∞ and a limit family of stopping times (τ∞

i ),

Y ∞
i := (a.s.) lim

m↑∞
↑ Y

(m)
i and τ∞

i := (a.s.) lim
m↑∞

↑ τ
(m)
i , 0 ≤ i ≤ k, (15)

where the uparrows indicate that the respective sequences are non-decreasing.

Further it is clear that the family (τ∞
i ) satisfies (5). Since τ

(m)
i is an integer

valued random variable in the set {i, . . . , k} for each m, we have almost surely,

τ
(m)
i (ω) = τ∞

i (ω) for m > N(ω). Therefore, Z
τ
(m)
i

→ Zτ∞

i
a.s., and so by

dominated convergence we have,

Y ∞
i = (a.s.) lim

m↑∞
↑ EiZ

τ
(m)
i

= EiZτ∞

i
, 0 ≤ i ≤ k. (16)

Funnily, it turns out that after at most k iterations the limit Y ∞ is attained
and coincides with the Snell envelope. Hence, the limiting procedure (16) termi-
nates.2 We will show this by backward induction starting from the last exercise
date using the quasi-supermartingale property Lemma 4.2. So, for the sequence
of stopping families we have an analogue property; Proposition 4.4. As an alter-
native, we derive this directly from the iterative construction (12) by backward
induction.

Proposition 4.3 For i, 0 ≤ i ≤ k, the following identity holds,

Y
(m)
i = Y ∞

i = Y ∗
i , for m ≥ k − i.

Proof. We use backward induction over i. For i = k we have trivially Y
(m)
k

= Zk = Y ∗
k for m ≥ 0. Suppose the assertion is already proved for some i with

0 < i ≤ k. Now let m ≥ k−(i−1), hence m−1 ≥ k−i ≥ 0. Then, by Lemma 4.2

and the induction hypothesis it follows that Y
(m)
i−1 ≥ Ei−1Y

(m−1)
i = Ei−1Y ∗

i . On

the other hand, by Corollary 3.2 we have Y
(m)
i−1 ≥ Zi−1 since m ≥ 1. Thus, Y

(m)
i−1

= Y ∗
i−1.

2This issue was pointed out by a perceptive referee, and also by Christian Bender practically
right after the submission of the first version.
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Proposition 4.4 For i, 0 ≤ i ≤ k, it holds

τ
(m)
i = τ∞

i = τ∗
i , for m ≥ k − i,

where τ∗
i is the first optimal stopping time after i, introduced in (3).

Proof. For i = k we have trivially τ
(m)
k = τ∗

k for m ≥ 0. Suppose the as-
sertion is already proved for all j, i ≤ j ≤ k, where 0 < i ≤ k. Now let
m ≥ k − (i − 1), hence m − 1 ≥ k − i. Then, by defining the event A :=
{Zi−1 ≥ maxp: i−1≤p≤min(i−1+κ,k) Ei−1Z

τ
(m−1)
p

} and using the induction hypoth-

esis, we may write

τ
(m)
i−1 = inf{j : i − 1 ≤ j ≤ k, Zj ≥ max

p: j≤p≤min(j+κ,k)
EjZ

τ
(m−1)
p

}

= 1A(i − 1) + 1Ac inf{j : i ≤ j ≤ k, Zj ≥ max
p: j≤p≤min(j+κ,k)

EjZτ∗

p
}

= 1Aτ∗
i−1 + 1Acτ∗

i = τ∗
i−1,

since A ⊂ {Zi−1 ≥ Ei−1Zτ∗

i
} by the induction hypothesis again, and Ac ⊂

{τ∗
i−1 > i − 1}. We thus have τ∗

i−1 = i − 1 on A and τ∗
i−1 = τ∗

i on Ac.

The following lemma gives a representation for the distance between two it-
erations.

Lemma 4.5 For m, n with 1 ≤ m ≤ n, and i, 0 ≤ i ≤ k, we have

0 ≤ Y
(n)
i − Y

(m)
i = Ei

τ
(n)
i −1∑

p=τ
(m)
i

1
τ
(m)
p =p

(EpY
(m)
p+1 − Y (m)

p ).

Proof. Due to Proposition 4.1 we have for 1 ≤ m ≤ n, τ
(n)
i ≤ τ

(m)

τ
(n)
i

≤ τ
(n)

τ
(n)
i

= τ
(n)
i . Hence, it holds τ

(m)

τ
(n)
i

= τ
(n)
i , and so Y

(n)
i = EiZ

τ
(n)
i

= EiZ
τ
(m)

τ
(n)
i

=

∑k
l=i Ei1

τ
(n)
i =l

Z
τ
(m)
l

=
∑k

l=i Ei1
τ
(n)
i =l

ElZ
τ
(m)
l

=
∑k

l=i Ei1
τ
(n)
i =l

Y
(m)
l = EiY

(m)

τ
(n)
i

.

We thus may write (with empty sums being zero),

0 ≤ Y
(n)
i − Y

(m)
i = EiY

(m)

τ
(n)
i

− EiY
(m)

τ
(m)
i

= Ei

τ
(n)
i −1∑

p=τ
(m)
i

(Y
(m)
p+1 − Y (m)

p )

=
∑

α≤β

β−1∑

p=α

Ei1
τ
(m)
i =α

1
τ
(n)
i =β

(EpY
(m)
p+1 − Y (m)

p )

= Ei

τ
(n)
i −1∑

p=τ
(m)
i

1
τ
(m)
p =p

(EpY
(m)
p+1 − Y (m)

p ),

where we have used in the final step that τ
(m)
p > p implies EpY

(m)
p+1 = Y

(m)
p .
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By letting n ↑ ∞ and using Proposition 4.1 and Proposition 4.3, Lemma 4.5
yields a representation for the distance between the m-th iteration and the Snell

envelope. In fact, Lemma 4.5 states that the difference Y
(n)
i − Y

(m)
i , or Y ∗

i −

Y
(m)
i respectively, can be seen as an aggregation of errors made due to exercise

decisions according to policy τ (m), before the generally better exercise time τ
(n)
i ,

or τ∗
i respectively.

Iterative procedure (12)-(13) versus backward dynamic pro-
gram

Note that on the one hand, in view of Proposition 4.3, the iterative procedure
requires k iterations for constructing the whole Snell envelope. On the other
hand, the backward dynamic program requires k recursion steps backward for
constructing the whole Snell envelope. In this respect, if all occurring condi-
tional expectations would be easily tractable (or, let us say if they would be
given by God), the backward dynamic program should be preferred of course, as
it doesn’t require a forward sweep over all exercise dates at each step. However,
particularly in high dimensional problems, the conditional expectations occur-
ring in the backward dynamic program are usually difficult to evaluate, from a
technical as well as from a computational point of view. For instance, in the
Longstaff-Schwartz regression method one needs to choose an appropriate sys-
tem of basis functions suiting to the problem under consideration. This system
may be rather complicated for high dimensional problems (such as Bermudans
due to a 40-factor LIBOR model). The alternative, plain Monte Carlo simula-
tion of these conditional expectations in each backward recursion step, leads to
an explosion of computation time since the degree of nesting increases with each
step, see Remark 2.1. Yet, the very power of the iteration procedure based on

(12)-(13), started up with τ
(0)
i ≡ i for example, lays in the following facts:

• For any m (in particular for low m, e.g. 1, 2, 3), iteration Y (m) gives an

approximation of the whole Snell envelope Y ∗
0 , . . ., Y ∗

k , with Y
(m)
k−m = Y ∗

k−m,

. . ., Y
(m)
k = Y ∗

k , while, in contrast, m backward steps of the backward
dynamic program give the values Y ∗

k−m, . . . , Y ∗
k , and not more.

• For fixed i the approximation Y
(m)
i increases, and thus improves, in each

iteration step m.

• By taking κ = k we usually get very close to the Snell envelope with only
a few iterations (e.g. m = 1, 2, 3), due to the particular nature of the
iteration procedure (12)-(13), which is inspired by a canonical stopping
strategy for Bermudan swaptions.

In fact, the iteration procedure (12)-(13) may be regarded as an extension of
the backward dynamic program, see Figure 1. Thus, as we will see in detail in
Section 6, in a Markovian setting the iteration procedure (12)-(13) allows for
approximating the whole Snell envelope by plain Monte Carlo simulation using

12



a few iterations (e.g. m = 1, 2, 3). Moreover, as we will see in Section 7, we may
get surprisingly good results!

––– Exercise date →
0 1 · · · k − 2 k − 1 k

0 Y
(0)
0

Y
(0)
1

· · · Y
(0)
k−2

Y
(0)
k−1

Y ∗
k

1 Y
(1)
0

Y
(1)
1

· · · Y
(1)
k−2

Y ∗
k−1 Y ∗

k

| 2 Y
(2)
0

Y
(2)
1

Y ∗
k−2 Y ∗

k−1 Y ∗
k

Iteration · · · · · ·
level · · · · · ·
↓ · · · · · ·

k − 1 Y
(k−1)
0

Y ∗
1 · · · Y ∗

k−2 Y ∗
k−1 Y ∗

k

k Y ∗
0 Y ∗

1 · · · Y ∗
k−2 Y ∗

k−1 Y ∗
k

Figure 1. The iterative procedure as an extension (bold terms) of the Back-
ward Dynamic Program

5 Convergent upper bounds by the dual ap-
proach

We now deduce by a dual approach a sequence of upper bound processes from
the sequence of lower approximations of the Snell envelope, Y (m), m = 0, 1, . . .,
constructed in Section 4. This dual approach, developed in the works of Davis
& Karatzas (1994), Rogers (2001), Haugh & Kogan (2001), is based on the
following observation. For any supermartingale (Sj)0≤j≤k with S0 = 0 we have,

Y ∗
0 = sup

τ∈{0,...,k}

E0Zτ ≤ sup
τ∈{0,...,k}

E0(Zτ − Sτ )

≤ E0 max
0≤j≤k

(Zj − Sj), (17)

hence the right-hand side provides a (dual) upper bound for Y ∗
0 . Rogers (2001)

and independently Haugh & Kogan (2001) show, that the equality in (17) is
attained at the martingale part of the Doob-Meyer decomposition of Y ∗,

M∗
0 := 0; M∗

j :=

j∑

l=1

(Y ∗
l − El−1Y ∗

l ), 1 ≤ j ≤ k, (18)

and also at the shifted Snell envelope process

S∗
j := Y ∗

j − Y ∗
0 , 0 ≤ j ≤ k. (19)

The next lemma provides a somewhat more general class of supermartingales,
which turn (17) into an equality. Moreover, we show that the equality holds
almost sure.
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Lemma 5.1 Let S be the set of supermartingales S with S0 = 0. Let S ∈ S be
such that Zj − Y ∗

0 ≤ Sj for each j: 1 ≤ j ≤ k. Then,

Y ∗
0 = max

0≤j≤k
(Zj − Sj) a.s. (20)

Proof. By the assumptions we have Zj ≤ Y ∗
0 + Sj for each j: 0 ≤ j ≤ k, and

so by (17),
0 ≤ E0 max

0≤j≤k
(Zj − Sj) − Y ∗

0 ≤ 0.

Hence, we have E0 max
0≤j≤k

(Zj − Sj − Y ∗
0 ) = 0 and Zj − Sj − Y ∗

0 ≤ 0 for each j:

0 ≤ j ≤ k, which yields (20).
Note that both (18) and (19) satisfy the conditions of Lemma 5.1, for more
examples see Kolodko & Schoenmakers (2004).

The duality representation provides a simple way to estimate the Snell en-
velope from above, using a lower approximation process denoted by Y , hence
Y ≤ Y ∗. Let M be the martingale part of the Doob-Meyer decomposition of Y ,
satisfying

M0 = 0;

M j = M j−1 + Y j − Ej−1Y j

=

j∑

l=1

Y l −

j∑

l=1

El−1Y l, 1 ≤ j ≤ k.

Then, according to (17),

Y ∗
0 ≤ E0 max

0≤j≤k
(Zj − M j) =: Y

up

0 . (21)

Let us now consider the sequence of lower bound processes Y (m), m = 0, 1, . . .
from Section 4. Analogue to (21) we may deduce a sequence of upper bound
processes,

Y
(m),up
i := Ei max

i≤j≤k
(Zj −

j∑

l=i+1

Y
(m)
l +

j∑

l=i+1

El−1Y
(m)
l )

= Y
(m)
i + Ei max

i≤j≤k
(Zj − Y

(m)
j +

j−1∑

l=i

(ElY
(m)
l+1 − Y

(m)
l )) (22)

=: Y
(m)
i + ∆

(m)
i , 0 ≤ i ≤ k.

Let us also define ∆̂
(m)
i := Y

(m),up
i − Y

(m+1)
i . By the next proposition ∆

(m)
i

and ∆̂
(m)
i depend in a sense on how far the lower bound process Y (m) is away

from being a supermartingale.
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Proposition 5.2 For m ≥ 1, 0 ≤ i ≤ k, it holds,

0 ≤ ∆
(m)
i ≤ Ei

k−1∑

j=i

1
τ
(m)
j =j

max
(
EjY

(m)
j+1 − Y

(m)
j , 0

)
, (23)

0 ≤ ∆̂
(m)
i ≤ Ei

k−1∑

j=i+1

1
τ
(m)
j =j

max
(
EjY

(m)
j+1 − Y

(m)
j , 0

)

−1
τ
(m)
i >i

(Y
(m+1)
i − Y

(m)
i ). (24)

Proof. By property (5) it holds Y
(m)
j = EjY

(m)
j+1 on the set {τ

(m)
j > j}. So, the

first inequality follows from (22) and (14). From Lemma 4.2 and (13) we have

1
τ
(m)
i =i

max
(
EiY

(m)
i+1 − Y

(m)
i , 0

)
− 1

τ
(m)
i =i

(Y
(m+1)
i − Y

(m)
i ) ≤ 0,

and then the second inequality follows from ∆̂
(m)
i = ∆

(m)
i − (Y

(m+1)
i − Y

(m)
i )

and (23).
We note that estimation (23) is basically the same as in Kolodko & Schoen-
makers (2003, 2004a). As an immediate consequence of Proposition 5.2 and
Proposition 4.3, we obtain

Proposition 5.3 For 0 ≤ i ≤ k, we have the following identity,

Y
(m),up
i = Y ∗

i , for m ≥ max(k − i − 1, 0).

Proof. For i = k and i = k−1 this follows trivially from (22) and the convention
of empty sums being zero. Due to (24) and Lemma 4.2 it holds

∆̂
(m)
i ≤ Ei

k−1∑

j=i+1

(Y
(m+1)
j − Y

(m)
j ).

Then we can use straightforward backward induction starting from i = k − 1.

The choice of window parameter κ

It should be noted that all results in Sections 3-5 hold for any window parameter
κ between 1 and k. However, due to Proposition 3.3 and Example 5.4 below, it
is clear that κ = k, hence a forward sweep over all exercise dates, is in general
the optimal choice.

Example 5.4 Consider a reward process Z with the following properties: k ≥ 2,
Z0 = 1, Zj is a martingale for 0 ≤ j ≤ k−2 with 0 ≤ Zj ≤ 2, Zk−1 is independent
of Zj, 0 ≤ j ≤ k − 2 with EZk−1 = 3, and Zk = 1. So, obviously, τ∗

i = k − 1

for 0 ≤ i < k − 1. Let us now start with the initial policy τ
(0)
i = i. Then, it

is easily seen that for an iteration (12) based on κ = 1 we have τ
(m)
0 = 0 for

0 ≤ m ≤ k − 2, and τ
(k−1)
0 = k − 1. Hence, k − 1 iterations are required for

obtaining the optimal stopping time at j = 0. In contrast, iteration (12) based
on κ = k yields the optimal stopping time already in one iteration step.

15



For Example 5.4 in a Markovian setting, a plain Monte Carlo implementation of
the iterative procedure in the spirit of Section 6 below, based on κ = 1, would
give rise to about k-fold nested simulations, hence computation times exploding
with k. In practice, nevertheless, due to special features of a problem under
consideration it may happen that a suitable choice of κ smaller than k gives
computationally more efficient results. In the case of Bermudan swaptions, for
example, the underlying Europeans far away from the monitor date have usually
relatively low value. So a κ smaller than k may be computationally more efficient
in this case.

6 Monte Carlo Algorithm for the Iterative
Method

We now describe how to construct an approximation of the exercise policy

(τ
(m)
i )0≤i≤k, given by (12), by the Monte Carlo method. For this we assume, that

Z is a function of an R
D-valued Markov random sequence (Li)0≤i≤k adapted to

the filtration F = (Fi)0≤i≤k, i.e.

Zi = hi(Li), 0 ≤ i ≤ k.

This assumption is fulfilled in practically all applications, see also Remark 2.1.

For m ≥ 0 and i, 0 ≤ i ≤ k, we introduce the random set of dates

Θ
(m)
i := {ηj : η1 = τ

(m)
i ; for j ≥ 1, if ηj < k then ηj+1 = τ

(m)
ηj+1}

⊂ {i, . . . , k},

at which the exercise policy τ (m) says “exercise”. Obviously, for m ≥ 1, the set

Θ
(m)
i can be represented as

Θ
(m)
i = {j ≥ i : Zj ≥ Ỹ

(m)
j }, 0 ≤ i ≤ k,

and, due to the nondecreasingness of the sequence (Ỹ
(m)
i )m≥1, we have

Θ
(m+1)
i ⊂ Θ

(m)
i ⊂ Θ

(1)
i , m ≥ 1, 0 ≤ i ≤ k. (25)

For each m ≥ 0 and i, 0 ≤ i ≤ k, the stopping times τ
(m)
p , i ≤ p ≤ k, may be

retrieved from Θ
(m)
i via

τ (m)
p = inf Θ

(m)
i ∩ {p, . . . , k}.

For a generic trajectory L(ω) of the process L starting afresh at date i in L
(ω)
i ,

and m ≥ 1, we construct the set Θ
(m)
i by a recursive procedure R(m). For this

we fix a sequence of numbers Nm, m ≥ 1.
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Initial procedure R(1):

We construct the set Θ
(1)
i on a trajectory L(ω), starting in L

(ω)
i at date i, by

checking the condition

Zj ≥ Ỹ
(1)
j = max

j≤p≤min(j+κ,k)
EjZ

τ
(0)
p

on L(ω) at each exercise date j, j ≥ i, for the given initial stopping family τ (0). In
general the conditional expectations on the righthand side need to be estimated
by Monte Carlo. However, in many cases explicit formulas or good explicit ap-
proximations are available. For instance, in the case of Bermudan swaptions and
trivial initial stopping family τ

(0)
i ≡ i, we need the values of still-alive Europeans

which can be approximated within 0.3% relative by explicit formulas (e.g., see
Schoenmakers (2005)).

Recursion step R(m + 1):

We here construct recursively the set Θ
(m+1)
i on a trajectory L(ω) which starts

in L
(ω)
i at date i.

Construct Θ
(m)
i on L(ω) by R(m);

for j ∈ Θ
(m)
i do

begin

Simulate Nm trajectories ξ(α) = (ξ
(α)
l )k

l=j , 1 ≤ α ≤ Nm, under

the conditional measure PL
(ω)
j (hence ξ

(α)
j = L

(ω)
j for each α);

for α = 1, . . . , Nm do
begin

Construct Θ
(m,α)
j on ξ(α) by R(m);

for p = j, . . . , min(j + κ, k) do

Estimate tau[p, α] := inf Θ
(m,α)
j ∩ {p, . . . , k}

end;

for p = j, . . . , min(j + κ, k) do

Estimate Y [p] := 1
Nm

Nm∑
α=1

hEstimate tau[p,α]

(
ξ
(α)
Estimate tau[p,α]

)
;

Estimate Y tilde[j] := max
j≤p≤min(j+κ,k)

Estimate Y [p];

if hj(L
(ω)
j ) ≥ Estimate Y tilde[j] then j ∈ Θ

(m+1)
i

end.

Note, that Θ
(m)
i on L(ω) and Θ

(m,α)
j on ξ(α) in the procedure R(m + 1) are

constructed by calling R(m) recursively.

By computing Θ
(m)
0 on a set of trajectories of the process L using the above

described procedure, we can estimate the lower bound Y
(m)
0 , for m ≥ 1, as

17



follows by Monte Carlo. Simulate for α = 1, . . . , N a trajectory (L
(α)
j )0≤j≤k

under the measure PL0 . Then, for each trajectory L(α) determine the index

η(m,α) := inf Θ
(m,α)
0 , which is an estimate of τ

(m)
0 on this trajectory. Next,

compute

Y
(m)
0 ≈

1

N

N∑

α=1

hη(m,α)

(
L

(α)

η(m,α)

)
.

Worst case complexity analysis of the algorithm

Let us fix an iteration level m ≥ 1 and take κ = k. For simplicity we take
Np = N for 1 ≤ p ≤ m. Let Cp,i, 1 ≤ p ≤ m, be the cost of the recursive
procedure R(p) starting at exercise date i, and c be the cost, on average, of
simulating the process L from one exercise date to the next. Then, for p = 1 we

have roughly, when always #Θ
(1)
i ≈ k − i and k is not too small,

C1,i ≈
(k − i)1+ξN ξ

(1 + ξ)!
c, (26)

where ξ = 0 if (quasi-)analytical formulas for EiZ
τ
(0)
j

, i ≤ j ≤ k, are available,

and ξ = 1 otherwise. From the recursive pseudo-code it follows that in the worst

case, when always #Θ
(p)
i ≈ k − i, we have

Cp+1,i ≈

k∑

j=i

NCp,j , 1 ≤ p < m (27)

(we assume N ≫ 1). Then, it is easy to show by induction from (26), (27),

and the asymptotic identity
∑l

j=1 jp = lp+1

p+1 (1 + O(l−1)) for l → ∞ and fixed p,
p ≥ 1, that

Cm,i ≈
(k − i)m+ξNm−1+ξ

(m + ξ)!
c

for larger k. So, the total cost of estimating Y
(m)
0 is in worst cases approximately

Cost(Y
(m)
0 ) ≈

km+ξNm+ξ

(m + ξ)!
c. (28)

We emphasize that (28) holds for fixed m and k large enough, but not for fixed
k and m → ∞ ! For the important case m = 2 and ξ = 0, which applies for

example in Section 7, (28) yields Cost(Y
(2)
0 ) ≈ N2k2c/2.

Remark 6.1 The cost estimate (28) is really “worst case”. In usual applications
the inclusion sequence (25) thins out rapidly from the right to the left and, as a
consequence, the algorithm performs usually much faster as one would expect on
the basis of (28). We note further that, in practice, it turns out more efficient to
take Np+1 much smaller than Np rather than equal (see for instance Section 7).
However, a detailed analysis of this issue may depend on the particular problem
under consideration and is considered beyond the scope of this article.
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Remark 6.2 (variance reduced Monte Carlo simulation of Y (m)) We can reduce
the number of Monte Carlo simulations for Y (m) by using the following variance
reduced representation,

Y
(m)
i = EiZ

τ
(m)
i

= EiZ
τ
(m−1)
i

+ Ei(Z
τ
(m)
i

− Z
τ
(m−1)
i

). (29)

One can expect that Z
τ
(m−1)
i

and Z
τ
(m)
i

are strongly correlated and thus the

variance of (Z
τ
(m)
i

− Z
τ
(m−1)
i

) will be less than the variance of Z
τ
(m)
i

. So, the

computation of Ei(Z
τ
(m)
i

− Z
τ
(m−1)
i

) for a given accuracy, can usually be done

with less Monte Carlo simulations than needed for direct simulation of EiZ
τ
(m)
i

.

Remark 6.3 (stability of the algorithm) An important issue remaining is the
stability of the presented Monte Carlo algorithm, which is derived from the
pseudo algorithm in Section 4 by replacing mathematical expectations with
Monte Carlo approximations in fact. The stability question is highly non-trivial
and has been studied in the subsequent work Bender & Schoenmakers (2004).
From the results in this paper it follows that the here presented algorithm is
numerically stable indeed.

7 A numerical example: Bermudan swaptions in
the LIBOR market model

Let us first recall the LIBOR Market Model with respect to a tenor structure
0 < T1 < . . . < Tn in the spot LIBOR measure P ∗. The dynamics of the forward
LIBORs Li(t), defined in the interval [0, Ti] for 1 ≤ i < n, are governed by the
following system of SDE’s (e.g., see Jamshidian (1997)),

dLi =

i∑

j=κ(t)

δjLiLj γi · γj

1 + δjLj

dt + Li γi · dW ∗, (30)

where δi = Ti+1−Ti are day count fractions, t → γi(t) = (γi,1(t), . . . , γi,d(t)) are
deterministic volatility vector functions defined in [0, Ti] (called factor loadings),
and κ(t) := min{m : Tm ≥ t} denotes the next reset date at time t. In (30),
(W ∗(t) | 0 ≤ t ≤ Tn−1) is a standard d-dimensional Wiener process under the
measure P ∗ with d, 1 ≤ d < n, being the number of driving factors. The spot
LIBOR measure is induced by the numeraire

B∗(t) :=
Bκ(t)(t)

B1(0)

κ(t)−1∏

i=1

(1 + δiLi(Ti)) ,

where Bi(t) is the value of a zero coupon bond with face value $1 at time t ≤ Ti.
A (payer) swaption contract with maturity Ti and strike θ with principal $1

gives the right to contract at Ti for paying a fixed coupon θ and receiving floating
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LIBOR at the settlement dates Ti+1,. . . ,Tn. So the contract is equivalent with
a pay-off at maturity Ti given by

STi,Tn
(Ti) :=




n−1∑

j=i

Bj+1(Ti)δj (Lj(Ti) − θ)




+

.

A Bermudan swaption issued at t = 0 gives the right to exercise a cash-flow

B∗(Tτ )Zτ := STτ ,Tn
(Tτ )

at an exercise date Tτ ∈ {T1, . . . , Tk} ⊂ {T1, . . . , Tn}, to be decided by the option
holder.

Since the system (L(Ti), B∗(Ti)) is Markovian we may compute Bermudan
swaption prices in the LIBOR model (30) by the algorithm described in Section 6.
For our simulation experiments we use the following LIBOR volatility structure,

γi(t) = cg(Ti − t)ei, where g(s) = g∞ + (1 − g∞ + as)e−bs

is a parametric volatility function proposed by Rebonato (1999), and ei are d-
dimensional unit vectors, decomposing some input correlation matrix of rank d.
For generating LIBOR models with different numbers of factors d, we take as a
basis a correlation structure of the form

ρij = exp(−ϕ|i − j|); i, j = 1, . . . , n − 1 (31)

which has full-rank for ϕ > 0, and then for a particular choice of d we de-
duce from ρ a rank-d correlation matrix ρd with decomposition ρd

ij = ei · ej ,
1 ≤ i, j < n, by principal component analysis. We note that instead of (31) it is
possible to use more general and economically more realistic correlation struc-
tures. For instance the parametric structures of Schoenmakers & Coffey (2003).

We take the following model parameters: A flat 10% initial LIBOR curve over
a 40 period quarterly tenor structure, and the parameters

n = 41, δi = 0.25, c = 0.2, a = 1.5, b = 3.5, g∞ = 0.5, ϕ = 0.0413. (32)

We consider Bermudan swaptions with yearly exercise opportunities, hence
Ti = T4i, i = 1, . . . , 10. For a “practically exact” numerical integration of the
SDE (30), we used the log-Euler scheme with ∆t = δ/5 (e.g., see also Kurban-
muradov, Sabelfeld and Schoenmakers (2002)).

By the algorithm in Section 6, based on κ = k, we now compute, starting

from τ
(0)
i ≡ i, two successive lower bounds Y

(m)
0 : Y

(1)
0 and Y

(2)
0 , and the dual

upper bound Y
(1),up
0 for different number of factors d and for different types of

options: in-the-money (ITM) with θ = 0.08, at-the-money (ATM) with θ = 0.1
and out-of-the-money (OTM) with θ = 0.12.

Although closed form expressions for European swaptions do not exist in a
LIBOR market model, there do exist very accurate (typically better, than 0.3%
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relative) approximate formulas (see e.g. Schoenmakers (2005)), which we use for

the computation of τ (1). Thus, Y
(1)
0 can be computed by an ordinary Monte

Carlo simulation and for Y
(2)
0 and Y

(1),up
0 we can use Monte Carlo simulation

with only one degree of nesting. For Y
(1)
0 we construct 106 trajectories. Next,

we construct Y
(2)
0 using variance reduction technique (29), where we used for

estimating the expectation in the second term a number of (outer) Monte Carlo
simulations varying from 2000 to 15 000 (2000 for ITM, 10 000 for ATM, 15 000
for ITM) in order to keep standard deviations within 0.5%. For each outer

trajectory, we use 100 nested (inner) simulations. Further, Y
(1),up
0 − Y

(1)
0 is

simulated with 100 inner and 1000 outer simulations to get comparable standard
deviations. We compare the results with the lower bound YA,0 = EZτA,0 and
the dual upper bound Y up

A,0 due to the stopping family, constructed by strategy
I of the Andersen method (see Andersen (1999)):

τA,i = inf{j ≥ i : B∗(Tj)Zj ≥ Hj}.

The sequence of constants Hj is pre-computed using 105 simulations. We use
106 Monte Carlo trajectories for YA,0 and 5000 Monte Carlo trajectories (with
1000 inner simulations) for Y up

A,0 − YA,0, in order to get comparable standard
deviations. The results are presented in Table 1.

We conclude, that for ITM swaptions the gap between the first iteration of

the lower bound Y
(1)
0 and its dual Y

(1),up
0 is less than 0.5% relative, while for

ATM and OTM swaptions it is about 2% relative. However, the second itera-

tion, the lower bound Y
(2)
0 , gives the Bermudan price with an accuracy better,

than 1% relative in all cases. Further we note that for multi-factor models even
the first iteration Y

(1)
0 is higher than YA,0. The dual upper bounds Y

(1),up
0 and

Y up
A,0 are almost the same, however. The dual upper bounds are computed via

a standard upper bound estimator as in Andersen & Broadie (2001). For more
efficient dual estimators, see Kolodko & Schoenmakers (2003, 2004a). The com-
puting times for generating the values in Table 1 are reported in Table 2.

Table 1. (all the values are in basis points)

θ d Y
(1)
0 (SD) Y

(2)
0 (SD) Y

(1),up

0 (SD) YA,0 (SD) Y
up

A,0 (SD)

1 1104.6(0.5) 1108.9(2.4) 1109.4(0.7) 1107.7(0.5) 1109.0(0.5)
0.08 2 1098.6(0.4) 1100.5(2.4) 1103.7(0.7) 1097.5(0.4) 1104.1(0.6)

(ITM) 10 1094.4(0.4) 1096.9(2.1) 1098.1(0.6) 1093.0(0.4) 1099.5(0.6)
40 1093.6(0.4) 1096.1(2.0) 1096.6(0.6) 1092.9(0.4) 1098.2(0.5)

1 374.3(0.4) 381.2(1.6) 382.9(0.8) 381.2(0.4) 383.1(0.4)
0.10 2 357.9(0.3) 364.4(1.5) 366.4(0.8) 354.6(0.4) 367.4(0.6)

(ATM) 10 337.8(0.3) 343.5(1.3) 345.6(0.7) 331.9(0.3) 348.2(0.6)
40 332.6(0.3) 338.7(1.2) 341.2(0.8) 327.0(0.3) 342.7(0.6)

1 119.0(0.2) 121.0(0.6) 121.3(0.4) 120.5(0.2) 121.1(0.1)
0.12 2 112.7(0.2) 113.8(0.5) 114.9(0.4) 110.0(0.2) 114.4(0.3)

(OTM) 10 100.2(0.2) 100.7(0.4) 101.5(0.3) 95.7(0.2) 102.1(0.3)
40 96.5(0.2) 96.9(0.4) 97.7(0.3) 92.2(0.2) 98.1(0.3)
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Table 2. Computing times (minutes) for the values in Table 1 (Pentium III).

θ d Y
(1)
0 Y

(2)
0 − Y

(1)
0 Y

(1),up

0 − Y
(1)
0 YA,0 Y

up
A,0 − YA,0

1 7.6 10.6 3.0 12.4 14.9
0.08 2 7.2 11.0 3.1 11.7 14.7

(ITM) 10 7.7 12.8 3.6 12.7 17.7
40 10.4 27.2 6.1 17.8 29.9

1 21.4 27.1 5.2 26.6 26.2
0.10 2 21.7 38.6 5.4 26.6 26.3

(ATM) 10 24.7 47.6 6.6 30.25 33.0
40 34.5 79.4 11.4 45.7 57.7

1 30.5 9.9 6.9 33.9 33.3
0.12 2 31.4 8.5 7.2 34.2 34.2

(OTM) 10 36.6 9.8 11.5 39.4 43.4
40 63.4 17.3 21.6 58.7 78.1

Computational time

We note that, in order to exclude systematic errors due to Euler simulation of
the LIBOR SDE, we have taken relatively small time steps (∆t = δ/5). For
an acceptable accuracy in practice one may take larger time steps, for example
∆t = δ (e.g. see Kurbanmuradov, Sabelfeld & Schoenmakers (2002)). Therefore,
the computation times in Table 2 may be substantially reduced by optimizing ∆t
and, further, by optimizing the trade of between the effort used for the computa-
tion of Y (1) and Y (2)−Y (1), by optimizing the choice of the window parameter κ,
and by other variance reduction techniques (e.g., antithetic variables). However,
we consider these numerical optimizations beyond the scope of this article and in
any case we expect that, when the producers of microprocessor chips keep “rid-
ing the exponential”, computation of higher order iterations, hence practically
exact Bermudan prices, will become feasible in the near future.
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