FORWARD-REVERSE EM ALGORITHM FOR MARKOV CHAINS:
CONVERGENCE AND NUMERICAL ANALYSIS

CHRISTIAN BAYER, HILMAR MAI, AND JOHN SCHOENMAKERS

AssTrACT. We develop a forward-reverse EM (FREM) algorithm for estimating parame-
ters of a discrete time Markov chain evolving through a certain measurable state space.
For the construction of the FREM method we develop forward-reverse representations for
Markov chains conditioned on a certain terminal state. We proof almost sure convergence
of our algorithm for a Markov chain model with curved exponential family structure. On
the numerical side we give a complexity analysis of the forward-reverse algorithm by de-
riving its expected cost. Two application examples are discussed.

1. INTRODUCTION

The EM algorithm going back to the seminal paper [Dempster et al., 1977] is a very
general method for iterative computation of maximum likelihood estimates in the setting
of incomplete data. The algorithm consists of an expectation step (E-step) followed by a
maximization step (M-step) which led to the name EM algorithm.

Due to its general applicability and relative simplicity it has nowadays found its way
into a great number of applications. These include maximum likelihood estimates of hid-
den Markov models in [MacDonald and Zucchini, 1997]], non-linear time series models in
[Chan and Ledolter, 1995]] and full information item factor models in [Meng and Schilling, 1996]]
to give just a very limited selection.

Despite the simplicity of the basic idea of the algorithm its implementation in more
complex models can be rather challenging. The global maximization of the likelihood
in the M-step has recently been addressed successfully (see e.g. [Meng and Rubin, 1993
and [Liu and Rubin, 1994]). On the other hand, when the expectation of the complete
likelihood is not known in closed form only partial solutions have been given yet. One
approach developed in [Wei and Tanner, 1990] uses Monte Carlo approximations of the
unknown expectation and was therefore named Monte Carlo EM (MCEM) algorithm.
As an alternative procedure the stochastic approximation EM algorithm was suggested
in [Lavielle and Moulines, 1999].

In this paper we take a completely different route by using a forward-reverse algorithm
(cf. [Bayer and Schoenmakers, 2014]) to approximate the conditional expectation of the
complete data likelihood. In this respect we extend the idea from [Bayer and Schoenmakers, 2014]
to a Markov chain setting, which is considered an interesting contribution on its own. In-
deed, Markov chains are more general in a sense, since any diffusion monitored at discrete
times yields canonically a Markov chain, but not every chain can be embedded (straight-
forwardly) into some continuous time diffusion the other way around.

The central issue is the identification of a parametric Markov chain model (X,, n =
0,1,...) based on incomplete data, i.e. realizations of the model, given on a typically
course grid of time points, let us say ny, ny, . .. ny. Let us assume that the chain runs through
R? and that the transition densities pf ,(x,y), m > n, of the chain exist (with pf ,(x,y) :=
0,(y)), where the unknown parameter 6 has to be determined. The log-likelihood function
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based on the incomplete observations (X, ..., X,,) is then given by

N-1
(11) 1(9, xnl L) an) = Z ln PZ,-,n,-H ('xni’ 'xni+l )’

i=0
with X, = xo being the initial state of the chain. Then the standard method of maximum
likelihood estimation would suggest to evaluate

N-1
(1.2) arg max [(6, X) = arg max Z In pg, iy Xnis Xiy)-
p P - o

The problem in this approach lies in the fact that usually only the one-step transition den-
sities p? . (x,y) are explicitly known, while any multi-step density pj ,(x,y) for m > n
can be expressed as an m —n — 1 fold integral of one-step densities. In particular for larger
m — n, these multiple integrals are numerically intractable however.

In the EM approach, we therefore consider the alternative problem

N-1nj—1
(1.3) argmax ' 3" BlInp! (X;, Xji),

o G20 =

given the “missing data” X, .1,..., X,,,-1, i = 0,..., N — 1. As such, between two such
consecutive time points, n; and n;;; say, the chain may be considered as a bridge process
starting in realization X, and ending up in realization X,,,, (under the unknown parameter
6 though), and so each term in may be considered as an expected functional of the
“bridged” Markov chain starting at time n; in (data point) X, conditional on reaching (data
point) X, at time n;y;.

We will therefore develop firstly an algorithm for estimating the terms in (I.3) for a
given parameter 6. This algorithm will be of forward-reverse type in the spirit of the one
in [Bayer and Schoenmakers, 2014]] developed for diffusion bridges. It should be noted
here that in the last years the problem of simulating diffusion bridges has attracted much
attention. Without pretending to be complete, see for example, [Bladt and Sgrensen, 2014}
Delyon and Hu, 2006, Milstein and Tretyakov, 2004} |Stinis, 2011} Stuart et al., 2004} |Schauer et al., 2013]].

Having the forward-reverse algorithm at hand, we may construct an approximate solu-
tion to in a sequential way by the EM algorithm: Once a generic approximation 6, is
constructed after m steps, one estimates

N—]n,‘+1—1
Ops1 1= arg max Elnp?.. (X0 X% )
m+1 - g PMH j )
o 20 j=m

where X% denotes the Markov bridge process under the transition law due to parameter 6,

and each term

Elnp§,., (X7, X7)

represents a forward-reverse approximation of

HI” 9’71
Eln pj o (X;". X))

as a (known) function of 6.

Convergence properties of approximate EM algorithms have drawn considerable recent
attention in the literature mainly driven by it’s success in earlier intractable estimation
problems. An overview of existing convergence results for the MCEM algorithm can
be found in [Neath, 2013]]. Starting from a convergence result for the forward-reverse
representation for Markov chains we prove almost sure convergence of the FREM se-
quence in the setting of curved exponential families based on techniques developed in
[Bayer and Schoenmakers, 2014] and [Fort and Moulines, 2003||. Essentially the only in-
gredient from the Markov chain model for this convergence to hold are exponential tails



FORWARD-REVERSE EM ALGORITHM FOR MARKOV CHAINS 3

of the transition densities and their derivatives that are straightforward to check in many
examples.

Since computational complexity is always an issue in estimation techniques that involve
a simulation step, we also include a complexity analysis for the forward-reverse algorithm.
We show that the algorithm achieves an expected cost of the order O(N log N) for sample
size of N forward-reverse trajectories.

In order to demonstrate the scope of our method, two application examples ranging from
a Markov chain obtained as a time discretized Ornstein-Uhlenbeck process to a discrete
time Markov chain on R, driven by heavy tailed transition probabilities, are discussed. We
also mention a recent application paper [Bayer et al., 2016, which focuses on practical
and implementation issues of a related forward-reverse EM algorithm in the setting of
Stochastic Reaction Networks (SRNs), i.e., of continuous time Markov chains with discrete
state space.

The structure of the paper is as follows. In Section [2] we recapitulate and adapt the
concept of reversed Markov chains, initially developed in [Milstein et al., 2007]] using the
ideas in [Milstein et al., 2004] on reversed diffusions. A general stochastic representation
— involving standard (unconditional) expectations only — for expected functionals of
conditional Markov chains is constructed in Section This representation allows for a
forward reverse EM algorithm that is introduced and analyzed in Section [3| In Section
we proof almost sure convergence of the forward-reverse EM algorithm in the setting of
curved exponential families. Implementation and Complexity of the FREM algorithm are
addressed in Section[5] The paper is concluded with two application examples in Section
6

2. RECAP OF FORWARD AND REVERSE REPRESENTATIONS FOR MARKOV CHAINS

2.1. Notation. Consider a discrete-time Markov process (X,,,%,), n = 0,1,2,..., on a
probability space (Q, ¥, P) with phase space (R" s B(Rd)), henceforth called Markov chain.
Let P,, n > 0, denote the one-step transition probabilities defined by

2.1 P,(x,B) :=PX,+1 €B|X,=x),n=0,1,2,..., x€8, BeS.

In the case of an autonomous Markov chain all the one-step transition probabilities coincide
and are equal to P := Py. The multi-step transition probabilities P, ,, are defined by

Pom(x,B) =PX, €B|X,=x), m2>=n.

We will assume that the one-step (and, a-forteriori, the multi-step) transition probabilities
have densities (w.r.t. the Lebesgue measure) denoted by p, = p,(x,y) and p,n = pum(x,y),
respectively.

Sometimes we denote by X;;*, m > n, a trajectory of the Markov chain which is at step
n in the point x, i.e., X, = x.

2.2. Reverse probabilistic representations. First consider the integral I(f) of a func-
tion f against the multi-step transition density p, y(x,y) against the “forward variable” y.
Clearly, we have the “forward stochastic representation”

22) 1 = [ ot oy =[]

We want to construct a stochastic representation for the integral J(g) of some functional
against the “backward variable” x, i.e., for the expression

2.3) J(g) = f 8(X)pun(x,y)dx,

which we call “reverse stochastic representations”. Of course, x — p,n(x,y) does not
need to be a density. Still, we are going to construct a class of reverse Markov chains that
allow for a probabilistic representation for the solution of (2.3).
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Let us fix a number N € N and consider for 0 < m < N, functions ¢,, : R x R — R,
such that for each m and y the function

o pN—m—l(Z,y)
(24) Z0 gu(y,2) = U0

is a density. One possible choice is

Un(y) = f PN-m—1(2,y)dz

independent of zE]

N

_, is a pair of processes with values in R?
m=0

Definition 2.1. The reverse process (Y, Y,,)
and R, respectively, such that

e Y is a Markov chain with one-step transition densities g,, defined in (2.4);
® Im+l = «ymwm(ymaym-%—l): with Yy = 1.

When needed, we shall denote an instance of the reverse process for a given N started at
Yo =y by (Y™, ),

We note that the dynamics of the reverse process depend on N if the original chain X is
time-inhomogeneous.

Theorem 2.2. For any n,0 < n < N, (2.3)) has the following probabilistic representation.

f g0pun(x, y)dx = B[g(Vy )Y, ],

where g is an arbitrary test function (a “density” p,. has to be interpreted as a Dirac
distribution or 6-function).

Proof. The proof consists of simply unwrapping Definition[2.1} Specifically, with y, =y,

N-n—1

E[g(Y,)\},n)y)vv,n] =fg(YN—n) l_[ (@i YO, yis1)) Ay -+ - dyn-n
1=0
N-n-1
= f 8(yn-n) PN-1-1 Vi1, y)dyy - - dyn-n
1=0

= fg(yN—n)pn(YN—nsyN—n—l)anrl(yN—n—layN—n—Z)'"pN—l(YI,yO)dyl"'dyN—n

= f 8ON-n)PuNON-n> YO)AYN -1

which gives the claim. O

Remark 2.3. It should be stressed that, in contrast to a corresponding theorem in [Milstein et al., 2007]],
Theorem [2.2] provides a family of probabilistic representations indexed by n = 1,..., N,

that involves only one common reverse process Y~ independent of n. It turns out that this

extension of the related result in [Milstein et al., 2007] is crucial for deriving probabilistic
representations for conditional Markov chains below (cf. [Bayer and Schoenmakers, 2014]).

If X is time-homogeneous, then the reverse process does not depend on N, either.

IThis choice may be impractical if the corresponding integral cannot be expressed in closed form.
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2.3. Conditional expectations via forward-reverse representations. In this section we
describe for a Markov Chain an efficient procedure for estimating the final distri-
butions of a chain X = (X),),=0,.n conditioned, or pinned, on a terminal state Xy. More
specifically, for some given (unconditional) process X we aim at simulation of the func-
tional

(2.5) E[gXo,....Xn)| Xo =x, Xy =Y].

The procedure proposed below is in fact an extension of the method developed in [Bayer and Schoenmakers, 2014
to discrete time Markov chains. We note that similar techniques as in [Bayer and Schoenmakers, 2014
also allow us to treat the more general problem

E[g(Xo,...,Xn)| Xo = x, Xy € A]

for suitable sets A ¢ R?.
Let us consider the problem (2.5) for fixed x,y € R (i.e. A = {y}). A direct adaptation
of Theorem [2.2] gives the following result:

Theorem 2.4. Given 0 < n < N and the reverse process (Y, Y) = (Y>¥, Y*N). Then, for
any (suitably integrable) f we have

N-n—1
E[f(YNn Ynon-1s - YO YNon] = fd ; fO0. 15> YN-n) 1_[ Pu+iQVi> Vie1)AYi
(RO i=0
with yn_, = Y.
The basic idea of the forward-reverse representation for E [g(Xo, . .., Xy) | Xo = x, Xy = y]

is the following: we fix some intermediate point 0 < n* < N. We send out paths of the
forward process started at Xy = x until time n*. Independently, we send out paths of the
reverse process (Y, Y) started at Yy = y until time N — n*. While the dynamics of Y is
defined in the standard way, i.e., forward in time, we should really think of the paths of Y
as running backward in time, i.e., as starting in position y at time N and running backwards
until their final time N — (N — n*) = n*. Let us denote these time-reversed paths of Y by 7,
ie., Yy = y. If one of the forward paths X and one of the reverse paths Y happen to meet at
time n*, i.e., X,» = Y+, then we join the paths and consider the joint path as a sample from
the law of the conditioned Markov chain—up to the re-weighting factor (measure change)
Y.

Even when checking for matches among all pairs of paths sampled from X and Y, such
perfect matches happen extremely rarely (with probability zero). Therefore, we relax the
perfect matching condition using a kernel K, of the form

K (u) := € 'K(ule), yeR?,
with K being integrable on R¢ and fRd K(u)du = 1. Formally K. converges to the delta

function 6y on R? (in distribution sense) as € | 0. We obtain the following stochastic
representation (involving standard expectations only) for (2.3):

Theorem 2.5. Let the chain (Y,Y) = (Yy;N , YN ) be given by Deﬁnitionand assumed
independent of the forward chain X := X%*. Then, with 0 < n* < N,

(2.6) E[g(Xo,....Xn) | Xo=x, Xy =y] =
limE[g(XO’--an*’ YN—n*—l,n-,Yl’ YO)Ke (YN—n* _Xn*)yN—n*]
-0 E[Ke (YN—n* _Xn*)yN—n*]

Proof. The proof is analogous to the corresponding one in [Bayer and Schoenmakers, 2014].
As a rough sketch, apply Theorem [2.4]to

f(yO’yl’ cee ,)’N—n*) = g(X09 ce 7Xn*,)’1, e ,)’N—n*)Ke()’O - XIl*)?
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conditional on X, ..., X,-, send € — 0, and divide the result by

PO,N(X»)’) = PL%E [KE (YN—n"st - Xn*)yN—;z*] . O

2.4. Forward-Reverse algorithm. Given Theorem[2.3]the corresponding forward-reverse
Monte Carlo estimator for (2.6) suggests itself: Sample i.i.d. copies X1V, ..., X of the
process X and, independently, i.i.d. copies

(YO, y®), ..., (Y0, yon)

of the process (Y,Y). Take for K a second order kernel (such as a Gaussian kernel)
and choose a bandwidth €y ~ M~V4 if d < 4, or ey ~ M~ if d > 4. By next
replacing the expectations in the numerator and denominator of by their respec-
tive Monte Carlo estimates involving double sums, one ends up with an estimator with
Root-Mean-Square error O(M~'/?) in the case d < 4 and O(M~*/*d) in the case d > 4
(cf. [Bayer and Schoenmakers, 2014] for details).

3. THE FORWARD-REVERSE EM ALGORITHM

Let us now formulate the forward-reverse EM (FREM) algorithm in the setting of the
missing data problem. Suppose that the parameter § € ® C R and that the Markov chain
X = (X;;,n € N) has state space RY, Assuming that the transition densities p, x of X exist
for n, k € N the full-data log-likelihood then reads

nN—l
(3.1) 1.6, x) = Z log pl, (xiy Xi1), X € R

i=0
In the missing data problem only partial observations X, ..., X,, are available for 0 =
ny < np < ... < ny with log-likelihood function / given in (L.I) that is intractable in

most cases. Instead, the maximization of / in 8 has to be replaced by a two step iterative
procedure, the EM algorithm.

E-step: In this step, evaluate in the m-th iteration the conditional expectation of the
complete data log-likelihood

(0, 6, Xp,) =By, [1.(0, X0, . .., Xy NXngs - - - Xy 1

m

M-step: Update the parameter by
0m+1 = arg max Q(Q, gm» Xn.):
0

using the shorthand X,,, = X,,,...,X,,. Since in many Markov chain models the E-step
is intractable in this form, we propose a forward-reverse approximation for the expectation
of the transition densities evaluated at the observations.

FR E-step: Evaluate
(3.2) On(6; 6, X,) := EgF[1(6, X)IX,, 1,

where Eg R denotes a forward-reverse approximation of the conditional expectation
under the parameter 6,,.

It should be noted that, due to the dependence of the number of FR-trajectories on m, we
now have an explicit dependence of Q on m. Due to the Markov property of the model the
forward-reverse approximation can be performed independently in each interval between
missing observations. This point will be further exploited for the implementation in Section

After this FR E-step is computed the M-step remains unchanged. The FREM algorithm
gives a random sequence (6,,),>0 that under certain conditions given in the next section
converges to stationary points of the likelihood function. To assure a.s. boundedness of
this sequence we apply a stabilization technique as introduced in [Chen et al., 1988]].
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The stable FREM algorithm. Let K,, C ® for m € N be a sequence of compact sets such
that

(3.3) K, C Ky and © = U K,,

meN
for all m € N. We define the stable FREM algorithm by checking if 6,, after the m-th
maximization step lies in K,, and resetting the algorithm otherwise. Choose a starting
value 6y € Ky and let r,,, for m € N, py := 0, count the number of resets.

stable M-step:
(3.4) 6,41 = argmax Q,,(0, 6,,, X,,.,) and 111 = Fpy, if argmax Q,,(0, 6,,, X»,.) € Ky,
0 9

(3.5) 6,1 =6pand ryyey =1y + 1, if arg mglx 00,6, X,,) € K.

We will show in the next section that under weak assumption the number of resets r,,
stays a.s. finite. Our stable FREM algorithm consists now of iteratively repeating the FR
E-step and the stable M-step.

4. ALMOST SURE CONVERGENCE OF THE FREM ALGORITHM

In this section we prove almost sure convergence of the stable FREM algorithm under
the assumption that the complete data likelihood is from a curved exponential family. Our
proof is mainly based on results from [Bayer and Schoenmakers, 2014, [Fort and Moulines, 2003]]
and the classical framework for the EM algorithm introduced in [Dempster et al., 1977]]
and [Lange, 1995]).

4.1. Model setting. Suppose that¢ : ® — R,y : ® — R and § : R+ — RY are
continuous functions. We make the structural assumption that the full data log-likelihood
is of the form

4.1 1c(0, X0, - . ., Xny) = $(0) + (S (X0, ..., X)), Y(6)),

i.e. . is from a curved exponential family. In order to proof convergence we need the
following properties to be fulfilled that naturally hold in many popular models. In Section
we give practical examples that fall into this setting. Set I. := ¢(6) + (s, y(8)) for all
s € RY,

Assumption 4.1.
(1) There exists a continuous function 8 : R? — @ such that [.(A(s), s) = supyee L(6, 5)
for all s € RY.
(2) The incomplete data likelihood / (cf. (I-I)) is continuous in 6, and the level sets
{6 € ®|l(0, x) > C} are compact for any C > 0 and all x.
(3) The conditional expectation Eg[S (Xo, ..., Xu ) Xn, = Xngs-.-»Xny = Xn,] €Xists
for all (X, ..., X,,) € R¥*! and € © and is continuous on ©.

To simplify our notation we will neglect in the following the dependence of / on s.
Under these assumptions we can separate the E- and M-step. In order to do so we define

8(0) := EolS (Xo, - ... X)Xy = Xngs -+ -, Xy = Xy |-

An iteration of the EM algorithm can now be written as 6,,,1 = 6(g(6,,)). Let us denote by
I" the set of stationary points of the EM algorithm, i.e.

I = {0 € Bl6(z(0)) = 6}.

It was shown in Theorem 2 in [Wu, 1983] that if ® is open, ¢ and y are differentiable and
Assumption 4.1 holds, then

I' = {6 € B|0yl(6) = 0},
such that the fixed points of the EM algorithm coincide with the stationary points of the
incomplete data log-likelihood / as defined in (I.I). In [Wu, 1983 it was proved that the
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set I contains all limit points of (6,)) and that (I(6,)) converges to [(6y) for some 6y € I'. In
the following theorem we extend these results to the FREM algorithm. Let d(x, A) be the
distance between a point x and a set A.

For the convergence of our forward-reverse based EM algorithm, we naturally also need
to guarantee convergence of the corresponding forward-reverse estimators.

Assumption 4.2.

(1) For any multi-indices @, € Ng with ||+|B] < 2 and any index i there are constants
C,=Ci(i,a,B),Cy = Co(i,a, B) > 0 such that

1028 pix, y)| < Cy exp (=Calx = yl) .

(2) The kernel K has exponential decay.
(3) § is twice differentiable in its arguments and both S and its first and second deriva-
tives are polynomially bounded.

Remark 4.3. In the related paper [Bayer and Schoenmakers, 2014, Condition 4.1, Condi-
tion 4.4], the authors even required Gaussian decay for both the transition densities and the
kernel (i.e., in (I)) and (2) above). These requirements—especially the first one—were some-
what natural in a diffusion context, see the discussion in [Bayer and Schoenmakers, 2014,
Remark 4.3]. However, it is easy to see that the following results also hold under the weaker
assumptions imposed above, see, in particular, the proof of [Bayer and Schoenmakers, 2014,
Theorem 4.7]. The above conditions could be further relaxed: in fact, it is enough that
both the kernel and the relevant derivatives of the transition densities are rapidly decaying
functions—i.e., decaying faster than the reciprocal of any polynomial. Indeed, the proof of
[Bayer and Schoenmakers, 2014, Theorem 4.7] is based on the fact that the convolution of
the second derivative of p; and the kernel K is itself (up to normalization) a density with fi-
nite moments of all orders. As is well-known that the convolution of two rapidly decaying
functions is again rapidly decaying, this fact is still true under the weaker conditions.

Now we are ready to state as the main result of this section a general convergence
theorem for the FREM algorithm.

Theorem 4.4. Let (Ky)men satisfy 33) and choose 6y € K. Suppose that Assumptions
and|.2|hold, I(T') is compact and the number M of forward-reverse iterations satisfies
M > m, then the stable FREM random sequence (6,,).s0 has the following properties:

(1) lim,, 7, < o0 a.s. and (6,,) is almost surely bounded.
(2) lim,, d(1(6,,), (")) = 0 almost surely.
3) Ifalso lis s-times differentiable, then lim,, d(6,,,I') = 0 almost surely.
Proof. (1) Set
g"(0) 1= BIRIS Xo, -, Xy WXy = Xgs -+ Xy = Xy .
With the above notation an iteration of the FREM algorithm can be written as
Oms1 = 08" (6,0))-

It was shown in Lemma 2 in [Lavielle and Moulines, 1999] that the incomplete data log-
likelihood / is a natural Lyapunov function relative to 7 and to the set of fixed points I'. If
for any € > 0 and compact K C ® we have

(4.2) Z L= @, -1@g@oniza liek) < 00 as.,
m

then Proposition 11 in [Fort and Moulines, 2003|] implies in our setting that lim sup,, r, <
co almost surely and that (6,) is a compact sequence such that (1) follows. To obtain (4.2)
it is sufficient by Borel-Cantelli to prove that

D P(I@E ™ O)) = KOO, > €) < o0,

m
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Define for any § > 0 a neighborhood of K by
Ks .= {x e RYinf |z — x| < ¢}.
zeK
By assumption / and @ are continuous, such that for any § > O there exists 7 > 0 such that

for any x,y € K;, we have |/(6(x)) — I(6(y))| < 6.
Choosing now € = ¢ A 1 yields

P((@(s"™ (6))) = B8 ) Lo,k > €)
= P (1@ 0)) — B O g,k > € 127 (0,) = 8B, ek) < )
+ P (@™ 0,)) - OGO Lg,ex) > € 18" On) = g0 Lg,er1 > )
< 2P (18" (6) — 8Ol ex1 > €).

Markov’s inequality then gives

P (1@ On)) = B O g,ex) = €) < 26 *E [lg”*(em) - @) 1{9,,,61“]

for some k > 0.

By [Bayer and Schoenmakers, 2014, Theorem 4.18] (see also Remark @] below), we
can always choose a number M of samples for the forward-reverse algorithm and a corre-
sponding bandwidth € = €y = M~ such that

2 C
B¢ (0w - 0 L] < 3

for some constant C. We note that the choice of @ depends on the dimension d as well as
on the order of the kernel. For instance, for d < 4 and a standard first order accurate kernel
K, we can choose any 1/4 < a < 1/d.

In any case, if we choose M > m then

*3) D" P (1@ ™ 0n)) = [O(EN N g,ex) > €) < o0,
which proves (1).
To prove (2) and (3) observe that for every K C ® we have

Hm |{(6n1) — 16O ig,ex) =0 a.s.
By Borel-Cantelli it is sufficient to prove that

Z P(l(Bns1) = OO g,ex) = €) < 00.

But since we have shown in (1) that r, is finite a.s., we have in the above sum that 6,,,; =
6(g"R(8,,)) in almost all summands. Hence, it is sufficient to show that

> PIGEE ™ 6)) — 1B ENNig,ex) 2 ©) < .

which is nothing else than (@.3). The statement of (2) and (3) follows now from Sard’s
theorem (cf. [Brockner, 1975]]) and Proposition 9 in [Fort and Moulines, 2003|]. O

Remark 4.5. In the above convergence proof we need to rely on the convergence proof of
the forward-reverse estimator when the bandwidth tends to zero and the number of simu-
lated Monte Carlo samples tends to infinity. Such a proof is carried out for the diffusion
case in [Bayer and Schoenmakers, 2014, Theorem 4.18], where also rates of convergence
are given. We note that the proof only relies on the transition densities of (a discrete skele-
ton of) the underlying diffusion process. Hence, it immediately carries over to the present
setting.
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Theorem is a general convergence statement that links the limiting points of the
FREM sequence to the set of stationary points of [. In many concrete models the set I" of
stationary points consists of isolated points only such that an analysis of the Hessian of
[ gives conditions for local maxima. A more detailed discussion in this direction can be
found in [Lavielle and Moulines, 1999] for example.

5. IMPLEMENTATION AND COMPLEXITY OF THE FREM ALGORITHM

Before presenting two concrete numerical examples, we will first discuss general as-
pects of the implementation of the forward-reverse EM algorithm. For this purpose, let
us, for simplicity, assume that the Markov chains X and (¥, YY) are time-homogeneous, i.e.,
that p = pr and g = g, do not depend on time k. We assume that we observe the Markov

process X at times 0 = ny < --- < ny, ie., our data consist of the values X,, = x,,,
k=0,...,N. For later use, we introduce the shortcut-notation x := (x,,/ 3\’: o

The law of X depends on an s-dimensional parameter 8 € R®, which we are trying to
estimate, i.e., p = p’. To this end, let

N
{0; x0,...,xN) = Z log p?(xi_1, x;)

i=1

denote the log-likelihood function for the estimation problem assuming full observation.
As before, we make the structural assumption that

(5. (0 X0, -+ %) = B(0) + )" (X0, -, X Wi(0).

i=1

For simplicity, we further assume that there are functions S l] such that

N
Si(X0y « v vy Xny) = Z S}'I(x"/—l’ s X))
=1

The structural assumption (5.1)) allows us to effectively evaluate the conditional expecta-
tion of the log-likelihood /. for different parameters 6, without having to re-compute the
conditional expectations. More precisely, recall that for a given guess 6the E step of the
EM algorithm consists in calculating the function

(5.2) 01— 0(6;0,x) := Eg[fc (6: X0 - s Xu))| Xy = Xy =0, ... ,N],

with [z denoting (conditional) expectation under the parameter 0. Inserting the structural
assumption (5.I), we immediately obtain

m

0(6:0,%) = ¢(0) + > YiO)Bg | Si(Xos .-, X )| X, = Xy j =0, N]
i=1

m
=)+ ). SO
i=1
with 2/ := By [$i(Xo.....X,)| Xs, = %, j=0.....N]. i = 1,....m. Note that the def-
inition of zf does not depend on the free parameter 8. Thus, only one (expensive) round
of calculations of conditional expectations is needed for a given 6, producing a cheap-to-
evaluate function in 6, which can then be fed into any maximization algorithm.
For any given 6, the calculation of the numbers zf, ..., 2% requires running the forward-
reverse algorithm for conditional expectations. More precisely, using the Markov property
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we decompose

2= Eg[si(Xo,...,XnN)|Xn/. SE 0,...,N]

an,l = xnj,anj = X |-

N .
- ZE;[S{(X,[H,...,X,[/.)
j=1
All these conditional expectations are of the Markov-bridge type for which the forward-
reverse algorithm is designed. Hence, for each iteration of the EM algorithm, we apply the
forward-reverse algorithm N times, one for the time-intervals n;_y,...,n;, j = 1,...,N,

evaluating all the functionals n s hﬂ, at one go.

5.1. Choosing the reverse process. Recall the defining equation for the one-step transi-
tion density g of the reverse process given in (2.4). For simplicity, we shall again assume
that the forward and the reverse processes are time-homogeneous, implying that (Z.4) can
be re-expressed as
p(z.y)
02 Y(,2)

Notice that in this equation only p is given a-priori, i.e., the user is free to choose any
re-normalization y provided that for any y € R? the resulting function z +— g(y,z) is non-
negative and integrates to 1. In particular, we can turn the equation around, choose any
transition density g and define

p(z.y)
Y(y,2) : 10,2
Note, however, that for the resulting forward-reverse process square integrability of the
process Y is desirable. More precisely, only square integrability of the (numerator of the)
complete estimator corresponding to (2.6) is required, but it seems far-fetched to hope for
any cancelations giving square integrable estimators when Y itself is not square integrable.
From a practical point of view, it therefore seems reasonable to aim for functions ¢ satis-

fying

Y~1
in the sense that ¢ is bounded from above by a number slightly smaller than 1 and bounded
from below by a number slightly smaller than 1. Indeed, note that Y/ is obtained by mul-
tiplying terms of the form (Y, Y,+1) along the whole trajectory of the reverse process Y.
Hence, if ¢ is bounded by a large constant, Y could easily take extremely large values,
to the extent that buffer-overflow might occur in the numerical implementation — think of
multiplying 100 numbers of order 100. On the other hand, if ¢ is considerably smaller
than 1, Y might take very small values, which can cause problems in particular taking
into account the division by the forward-reverse estimator for the transition density in the
denominator of the forward-reverse estimator.
Heuristically, the following procedure seems promising.

o Ifym fRL, p(z,y)dz can be computed in closed form (or so fast that one can think
of a closed formula), then choose

W) = (3 2) = fR Pl

e Otherwise, assume that we can find a non-negative (measurable) function p(z,y)
with closed form expression for j;v plz,y)dz such that p(z,¥) = p(z,y). Then
define _

P(z,y)

Ja P y)dz
which is a density in z. By construction, we have

.o = PEY f Pz, y)dz 22,
q(y,2) R P(z,y)

q(y,z) ==
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implying that we are (almost) back in the first situation.

Remark 5.1. Even if we can, indeed, explicitly compute y(y,z) = fRd p(z,y)dz, there is
generally no guarantee that Y has (non-exploding) finite second moments. However, in
practice, this case seems to be much easier to control and analyze.

5.2. Complexity of the forward-reverse algorithm. We end this general discussion of

the forward-reverse EM algorithm by a refined analysis of the complexity of the forward-
reverse algorithm for conditional expectations as compared to [Bayer and Schoenmakers, 2014].
We start with an auxiliary lemma concerning the maximum product of numbers of two
species of balls in bins, which is an easy consequence of a result by Gonnet [Gonnet, 1981]],

see also [Sedgewick and Flajolet, 1996, Section 8.4].

Lemma 5.2. Let X be a random variable supported in a compact set D ¢ R? with a
uniformly bounded density p. For any K € N construct a partition BX, ..., Bllg of D in
measurable sets of equal Lebesgue measure /l(BlK) = AD)/K, i =1,...,K. Finally, for
given M € N let X1, ..., Xy be a sequence of independent copies of X and define

My =#{ie{l,... .M} X;eBf}, k=1,.. K

For M, K — co such that M = O(K) we have the asymptotic relation

1
E| max My|=0 _log M .
k=1,...K loglog M

=1,...,

Proof. W.l.o.g., we may assume that A(D) < 1. Let
pi=P(X € Bf) <lipll, /K

and observe that the random vector (NVy, ..., Nk) satisfies a multi-nomial distribution with
parameters K, N and (py, ..., px)-

The proof for the statement in the special case of p; = ... = px = 1/K is given in
Gonnet [Gonnet, 1981]], so we only need to argue that the relation extends to the non-
uniform case. To this end, let K’ := | K/ ||pll., ] and let (N, ..., Ng) denote a multi-nomial
random variable with parameters M, K’ and (1/K’,...,1/K"). Observe that ||p|l., > 1
by the assumption that A(D) < 1. Hence, K’ < K and 1/K’ > pi, Yk = 1,...,K. As
M = O(K”) we have by Gonnet’s result that

=1,...,

Moreover, it is clear that E [max;-; g M;] < E[maxy-._ g Ni]—in the latter case, the
same number of samples is put into fewer boxes with uniformly higher probabilities each—
and we have proved the assertion. O

.....

Theorem 5.3. Assume that the transition densities p and q have compact support in
Rd.ﬂ Moreover, assume that the kernel K is supported in a ball of radius R > 0. Then
the forward-reverse algorithm for M forward and reverse trajectories based on a band-
width proportional to M~''? can be implemented in such a way that its expected cost is
O(MlogM) as M — oo.

Proof. In order to increase the clarity of the argument, we re-write the double sum in the
forward-reverse algorithm to a simpler form, which highlights the computational issues.
Indeed, we are trying to compute a double sum of the form
M M
i J
(5.3) FiKe(Xh - 11),
i=1 j=1

2Obviously, this assumption can be weakened.
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where F; ; obviously depends on the whole ith sample of the forward process X and on the
whole jth sample of the reverse process (Y, Y).

We may assume that the end points X’. and Y }{/ of the M samples of the forward and
reverse trajectories are contained in a compact set [-L, L]. (Indeed, the necessary re-
scaling operation can obviously be done with O(M) operations.) In fact, for ease of notation
we shall assume that the points are actually contained in [0, 11¢. We sub-divide [0, 1]¢ in
boxes with side-length Se, where S > R is chosen such that 1/(S€) € N. Note that there
are K := (S€)™ boxes which we order lexicographically and associate with the numbers
1,..., K accordingly.

In the next step, we shall order the points X!, and Yf{, into these boxes. First, let us
define a function f; : [0,1]¢ = {1,...,1/(Se)}¢ by setting

fi(x) = (x1 /SO, ....[xa/ (S,

with [-] denoting the smallest integer larger or equal than a number. Moreover, define
Hill,. 1/ e —(1,...,K} by

Holin, .. nig) =G = DS ™ + (- DS )™+ 4 (ig— 1) + 1.

Obviously, a point x € [0, 1]¢ is contained in the box number k if and only if £(f1(x)) = kE]
Now we apply a sorting algorithm like quick-sort to both sets of points (X,'l*, XM ) and

(Y};I, e, Y,fl’l) using the ordering relation defined on [0, 114 x [0, 114 by
x<y:= fH(fix) < L(HO).

Sorting both sets incurs a computational cost of O(M log M), so that we can now assume
that the vectors X', and Y’ ;;l are ordered.

Notice that K.(x —y) # 0 if and only if x and y are situated in neighboring boxes,
ie., if [fi(x) — fi()|, < 1, where we define |a|,, := max;=;,_4|a;| for multi-indices .
Moreover, there are 3¢ such neighboring boxes, whose indices can be easily identified, in
the sense that there is a simple set-valued function f3 which maps an index k to the set of
all the indices f3(k) of the at most 34 neighboring boxes. Moreover, for any k € {1,...,K}
let X,’;(*k) be the first element of the ordered sequence of Xﬁl lying in the box k. Likewise,
let Yf{](k) be the first element in the ordered sequence Y:‘{I lying in the box with index k.
Note that identifying these 2K indices i(1),...,i(K) and j(1),..., j(K) can be achieved at
computational costs of order O(K log M) = O(M log M).

After all these preparations, we can finally express the double sum as

M M ' K i(k+1)—=1 jir+D-1 '
54 D D FK (X -v) =D 30 > > Fiuke (X - 1)),
i=1 j=1 k=1 refs(k) i=itk)  j=j(r)

Regarding the computational complexity of the right hand side, note that we have the
deterministic bounds

K = O0(M),
Ik < 3%

Moreover, regarding the stochastic contributions, the expected maximum number of sam-
ples X', (Yé, respectively) contained in any of the boxes is bounded by O(log M) by
Lemmaf5.2] i.e.,

E| max (j(r+1)—j)|= O(log M),

which then needs to be multiplied by the total number M of points Xfl* to get the complexity
of the double summation step. O

3To make this construction fully rigorous, we would have to make the boxes half-open and exclude the
boundary of [0, 1]%.



14 CHRISTIAN BAYER, HILMAR MAI, AND JOHN SCHOENMAKERS

Remark 5.4. As becomes apparent in the proof of Theorem|5.3] the constant in front of the
asymptotic complexity bound does depend exponentially on the dimension d.

Remark 5.5. Notice that the box-ordering step can be omitted by maintaining a list of all
the indices of trajectories whose end-points lie in every single box. The asymptotic rate of
complexity of the total algorithm does not change by omitting the ordering, though.

6. AppLICATIONS OF THE FREM ALGORITHM

The forward reverse EM algorithm is a versatile tool for parameter estimation in dy-
namic stochastic models. It can be applied in discrete time Markov models, but also in the
the setting of discrete observations of time-continuous Markov processes such as diffusions
for example.

In this section we give examples from both worlds: we start by a discretized Ornstein-
Uhlenbeck process that serves as a benchmark model, since the likelihood function can be
treated analytically. Then we give an example of a discrete time Markov chain with heavy
tailed transition densities given by a two-parameter Z-distribution, see [Barndorff-Nielsen et al., 1982]]
for details. For a complex real data application of our method we refer the interested reader
to the paper by Bayer et al. [Bayer et al., 2016|| that was developed in parallel to an earlier
version of the present one.

6.1. Ornstein-Uhlenbeck dynamics. In this section we apply the forward-reverse EM
algorithm to simulated data from a discretized Ornstein-Uhlenbeck process. The corre-
sponding Markov chain is thus given by

6.1) Xps1 = Xy + AXyAf + AWpsy, 720

where W, are independent random variables distributed according to N(0, Af). The drift
parameter 4 € R is unknown and we will employ the forward reverse EM algorithm to
estimate it from simulated data. The Ornstein-Uhlenbeck model has the advantage that the
likelihood estimator is available in closed form and we can thus compare it to the results
of the EM algorithm.

In each simulation run we suppose that we have known observations

Xo, X10ats - - - » Xnar

for varying step size At and use the EM methodology to approximate the likelihood func-
tion in between. We perform six iteration of the algorithm with increasing number of data
points N.

In Table [[l we summarize the results of two runs for the discrete Ornstein-Uhlenbeck
chain. The mean and standard deviation are estimated from 1000 Monte Carlo iterations.
We find that already after three steps the mean is very close to the corresponding estimate
of the true MLE. This indicates a surprisingly fast convergence for this example. Note
also that the approximated value of the likelihood function stabilizes extremely fast at the
maximum.

Table [2| gives results for the same setup as in Table 1| but with initial guess 4 = 2 such
that the forward-reverse EM algorithm converges from above to the true maximum of the
likelihood function. We observe that the smaller step size A = 0.05 results in a more
accurate approximation of the likelihood and also of the true MLE. It seems that the step
size has crucial influence on the convergence rate of the algorithm, since for A = 0.05 the
likelihood stabilizes already from the second iteration.

In Figure|I|the empirical distribution of 1000 estimates for A is plotted. The initial value
was 0.5 and the true maximum of the likelihood function is at 1.161. The step size between
observations was chosen to be At = 0.1. The histogram on the left shows the estimates after
only one iteration and on the right the estimates were obtained from five iterations of the
forward-reverse EM algorithm.



FORWARD-REVERSE EM ALGORITHM FOR MARKOV CHAINS 15

At N bandwidth mean 1 stddevd likel. std dev likel.

0.1 2000 0.0005 0.972 0.0135  -3.402 0.00290
8000 0.000125 1.098  0.00841 -3.383 0.00062

32000  3.125e-05 1.132  0.00476 -3.381  0.000123
128000 7.812e-06  1.151  0.00236 -3.381  2.783e-05
512000 1.953e-06  1.157  0.00117 -3.381  4.745e-06
2048000 4.882e-07 1.159 0.000581 -3.381  1.005e-06

0.05 2000 0.0005 1.160 0.0141  -3.107  0.000854

8000 0.000125  1.247  0.00872 -3.103  9.867e-05

32000  3.125e-05 1.253  0.00468 -3.103  1.329e-05

128000 7.812e-06  1.265  0.00225 -3.103  3.772e-06

512000 1.953e-06 1.265 0.00111 -3.103  6.005e-07

TaBLE 1. Behavior of the forward-reverse EM algorithm for a discretized

Ornstein-Uhlenbeck model for different step sizes At, initial guess 4 =
0.5 and true MLE Ay g = 1.161 and 1.266, respectively.

At N bandwidth mean A stddevl likel. std dev likel.

0.1 2000 0.0005 1.554  0.0353  -3.457 0.0134
8000  0.000125 1312  0.0127 -3.393 0.00221

32000 3.125e-05 1.217 0.00544 -3.382  0.000351
128000 7.812e-06 1.185 0.00245 -3.381  5.817e-05
512000 1.953e-06 1.168 0.00121 -3.381  1.227e-05

0.05 2000 0.0005 1.390  0.0248 -3.108 0.00238
8000  0.000125  1.289  0.00925 -3.103  0.000130
32000 3.125e-05 1.261 0.00471 -3.103  1.451e-05
128000 7.812¢-06 1.266  0.00221 -3.103  2.538e-06
512000 1.953e-06 1.266 0.00113 -3.103  5.855e-07
TaBLE 2. Behavior of the forward-reverse EM algorithm for a discretized
Ornstein-Uhlenbeck model for different step sizes At, initial guess 4 = 2
and true MLE Ay g = 1.161 and 1.266, respectively.

Figure [2| depicts the distribution of 1000 Monte Carlo samples of the likelihood val-
ues that led to the estimates in Figure|l| It is interesting to see that after one iteration of
the algorithm the likelihood values are approximately bell shaped (left histogram) whereas
after five iterations the distributions becomes more and more one-sided as would be ex-
pected, since the EM algorithm only increase the likelihood from step to step towards the
maximum.

Figure 3| shows the convergence of the forward reverse EM algorithm when the number
of iterations increases. We find that already after 4 iterations the estimate is very close to
the true MLE for A. After six iterations the algorithm has almost perfectly stabilized at the
value of the true MLE A = 1.16.

6.2. Z-distribution models. As a second application we consider the EM Algorithm in
the context of an autonomous time series model where the one step probability is given by
a Z-distribution [Barndorff-Nielsen et al., 1982]. The density of the z-distribution is given
by

exp [ax/o]
oB(a,B) (1 +exp [x/c])"*

(6.2) p(x;a,B,0) = xeR; a,B,0>0
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Ficure 1. Empirical distribution of 1000 estimates after one iteration
(right) and after five iteration (left) of the forward-reverse EM algorithm.
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Ficure 2. Empirical distribution of the likelihood values of 1000 Monte
Carlo samples after one iteration (right) and after five iteration (left) of

the forward-reverse EM algorithm.

with B(:,-) being the beta-function. The density (6.2) is heavy tailed in the sense that
the upper and lower tail of log p(x; @, 8, o) tend to a straight line asymptotically. Further,
if @ = B it is symmetric and for @ > B8 (8 > «a) negatively (positively) skewed. The

autonomous one-step transition density is thus given by,

Dii+1 (Xis Xix1) := px(Xi, Xi1) = p(Xip1 — X3 @, 8,0),
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Ficure 3. Convergence of the forward-reverse EM algorithm from one
to six iterations for each 1000 estimates of A. The value of the true MLE
is 1= 1.161.

and the full-data log-likelihood expression (3.1)) becomes

nN—l
exp [a (xi41 — x;) /0]
(6.3) l(a,B,0,x) = log [ <
;‘ oB(a,B) (1 + exp [(xi1 — x;) [o])**”
= T g B )
nN—l

—(@+p) Z log[1 + exp [(xix1 — x;) /o] ..
=0

If we fix the choice of o, i.e. o := 0 is assumed to be known, then we are in the setting
of an exponential family as in Section[d.1} Indeed, we have with 6 = (@, 8) (while abusing
notation a bit)

10, %) = 1.(a,8,%) = ¢(@,8) + S1 (X0, es Xuy) Y1(, B) + S2 (X0, -y Xy ) Y2(, B)
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with
¢(a,B) = —nylog[ooB(e,B)],

07
lvbl(a’ﬁ) = 0__7 Sl (.X(), "'7'an) = Xny — X0
0

ny—1

(@B =a+pB, S2(X0s.s Xny) = — Z log[1 + exp [(xi+1 — x;) /ool],
i=0

cf. @.1). For a fixed appropriate choice oy we first consider the EM algorithm for the sym-
metric one parameter case @ = 5, and then, subsequently, we consider the two parameter
case.

6.2.1. The case 8 = a = B with fixed oy. In this case the one step probability reads

exp [a(xir1 — xi)/ 0]

ooB(a, @) (1 +exp [(xis1 — x)/a0])™

(64) p?ji+1 (xi’ xi+l) =

and the full data log-likelihood becomes,
l(a,X) = l(a, X0, X1, ..., XnN)

ny—1

= Z log Pﬁfm (Xi, Xi1)
i=0
2N g [ exp [o (Xiu1 = X)) /o] }
= looB@,a) (1 +exp[(Xis1 — X)) /oo])™
= —nylogoy —2nylogl (@) + nylogl' 2a)

ny—1

-2« Z (log [1+exp[(Xis1 — X)) /o0l] -

Xiv1 — Xi)
i=0

20'0

Now let us consider the EM maximization step based on incomplete data X,y := (Xy,, X, --.» Xny)-
Note that X,,, = Xy = xp is the initial state of the chain. Consider with 6,, = @, = B,

Q(Q’, A, X)) = E(t,“ [ZC(Q’, Xo, X1, ey X11N)| XnU,an s XnN]
= —nylogoy — 2ny logI (@) + ny logT’ 2a)

N-1
~2a ) By,
=0

= —nylogog — 2nylogT' (@) + ny logl Qa) — 2a¢ (), x, 09, N) ny,

nj+1—1

Z (10g[1 +exp [(Xiv1 — Xp) /ool] -

=n;

Xin —Xi)

Xnj> Xn
O-O J

j+l1

where we note that

(6.5) C(ap,x,00,N) =
nj—1

Z (log[l +exp [(Xis1 = X) /ool] =

l:nj

1 N-1

- Eam

X X,
ny /
J=0

Njt1

> log?2

Xiy1 — X;
oo

almost surely, since the function y — log[1 + ¢’] — y/2 has a global minimum log 2 at
y = 0. It is easy to check that

(6.6) @ = argmax Q(a, @, X(n))
O<a<oo

necessarily satisfies

I"'2a%) TI'(a°)

F2e°) T(a°)

On the other hand, by properties of the polygamma function |[Abramowitz and Stegun, 1964]]

the left-hand-side in decays monotonically from +co to log2 if 0 < @° < co. Then, by

6.7)

= {(ap, x,00,N).
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using and standard asymptotic behavior of the log-gamma function, it easily follows
that (6.6) always has a unique global maximum.

In the EM algorithm the conditional expectations in (6.5) are of course not exactly
known and therefore computed by the forward-reverse algorithm.

Q
o

15
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-05 0.0

I I I I I I
0 200 400 600 800 1000

n;

Ficure 4. Synthetic data generated by a z-process with parameters @ =
B = 1.1. The sample has size N = 200 and n;,; —n; =5,i =0,...,N—1.
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(of

Ficure 5. Convergence of the FREM algorithm for two different initial
guesses. For each initial guess, the values obtained from the first 25 iter-
ations are plotted. The upward-pointing triangle indicates the parameter
used to generate the data, the diamond indicates the approximate limit-
ing value of the FREM procedure. As the parameters are restricted to
a = 3, we only plot the @ coordinate.

We present one example for the estimation of the parameter @ = 8 of a Z-process. In
Figure 4 we show one trajectory of a Z-process generated with parameter @ = 8 = 0.7 and
o =0.0316.f

40 =0.0316 = 1/ V1000 essentially normalizes the variance of the terminal value Xjooo.
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Figure[5]shows the convergence of the FREM algorithm for two different initial guesses
a=p=0.7and @ = 8 = 1.7, respectively, for the data in Figure 4, We observe conver-
gence to a parameter @ = 5 =~ 0.992.

6.2.2. The case 8 = (a,p) with fixed o¢. Analogue to the one parameter case we now
consider the two parameter case. Based on the incomplete data X, := (X, X, .- -, Xiy)

we may write with 6,, = (@, Bn) (cf. (6.3))
Q(a’ﬁs a’msﬁms X) = Egm [lc(a,ﬁ, X(), veey XnN)| Xn() = Xngs eees XnN = an]

= —ny log [ooB(a, B)] + il (%ny = X0)
20’0

njy—1

D (log [+ exp [(Xint = X0) foro]] -

=n;

Xivi = X;
— (@ +B)E,, 1—)

X X
207 J

Njv1

= —ny log[ooB(a, )] + %8 (xny — x0) = (@ + B B, x, 00, N) nyy

with ¢ (6, x, 079, N) defined in (6.5). Similar to (6.6), it follows by solving for stationary
points that

(a°,B°) = argmax Q(a, B, ¥, Bms X)
a,B>0

satisfies the system

M@ +f) _ T'@) TI'§)

'@ +p°) 2l@) 2P
ey e 1
F@) T@) oo

It is possible to show (e.g. by using results in [Abramowitz and Stegun, 1964]) that

{r’(a+/3)_ r'@ F’(ﬂ)}_(lo 2 o)
T@+p) 2@ 2@ ‘8e>)

(6.8a)

= (O, x,00,N) > log2,

(6.8b)

(an - )C()) .

range

a,B>0
and that the system has a unique solution that represents a global maximum. In
the corresponding EM algorithm the conditional expectations (6.5) need to be computed
accurate enough by the forward-reverse algorithm.

We end this section by a numerical example based on a z-process with known parameter
o and two unknown parameters « and § that are not restricted to be equal. The sample is
depicted in Figure[6] Note that & # S introduces a monotonous “drift” in the process.

Figure [/| shows the convergence of the FREM algorithm for the synthetic data shown
in Figure@for the four different initial guesses 6y = (2,2), 6y = (0.2, 2), 6y = (2,0.2) and
6y = (0.2,0.2). The results are based on M = 5000 simulations of the “unobserved” values
of the process X and a bandwidth € = 1073, and 25 iterations of the FREM algorithm. No
stabilization was used for the algorithm.

For all the initial guesses, we observe convergence to the same parameter values 6 ~
(0.981,0.804). The iterations seem to rapidly jump to a one-dimensional sub-mainifold
(almost, but not quite flat) in just one step of the FREM, and then rather slowly, but
monotonously move towards their suggested limit.
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Ficure 6. Synthetic data generated by a z-process with parameters @ =
1.1 and 8 = 0.9. The sample has size N = 200 and n;y; — n;, = 5,
i=0,...,N-1
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