Genetically optimized photonic crystal for spatial filtering of reinjection into broad-area diode lasers

Carsten Brée1, Volker Raab2, Darius Gailevičius3, Vytautas Purlys1, Joan Montiel4, Guillermo Garre Werner4, Kestutis Staliunas5, Andreas Rathsfeld4, Uwe Bandelow1, Mindaugas Radziunas1

1. Weierstrass Institute for Applied Analysis and Stochastics, D-10117 Berlin, Germany
2. Raab-Photonik GmbH, D-14469 Potsdam, Germany
3. Laser Research Center, Vilnius University, 10222 Vilnius, Lithuania
4. Monocrom S.L., E-08800 Vilanova i la Geltrú, Spain
5. Departament de Física, Universitat Politècnica de Catalunya, E-08222 Terrassa, Spain

Modern high-power broad-area semiconductor laser diodes (BASLDs) deliver optical output powers of several ten Watts at high electro-optical conversion efficiencies, which makes them highly relevant for numerous industrial, medical and scientific applications. However, lateral multimode behavior in BASLDs due to thermal lensing turns out highly detrimental, as it results in poor focusability and decreased laser beam brightness. Approaches to overcome this issue include improved epitaxial layer design, the optimization of evanescent spatial filtering by tailoring the emitter geometry and facet reflectivity, or Fourier spatially filtered reinjection from an external resonator [1].

Here, we consider the usage of longitudinally chirped photonic crystals (PhC) within the external cavity (EC) [2] for tailoring the spatial filter properties. The corresponding EC setup, consisting of a slow-axis collimating lense, a 2D photonic crystal, and the external mirror (R=4%), is shown in Fig. 1a). While free space propagation in the EC is modeled by Fresnel diffraction integrals, optical propagation through the PhC requires accurate treatment of lateral angular dispersion. For the sake of efficiency of the time-domain BASLD simulator [3], we use a beam propagation method (BPM) based on Rayleigh-Sommerfeld diffraction theory. The chirp of the longitudinal PhC periods is optimized with a genetic algorithm. The transmission amplitude of the optimized structure suppresses lateral propagation angles between 2° and 4°, cf. Fig. 1b), and shows excellent agreement with an exact rigorous coupled wave analysis (RCWA) for calculating PhC transmission and almost vanishing reflection amplitudes. In a next step, we performed numerical simulations of a 1mm long and 100μm broad BASLD subject to PhC spatially filtered reinjection [4]. We found a significant improvement of the lateral far-field profile and increase of beam brightness by a factor 1.5, cf. Fig. 1c). However, for BASLDs with a longer emitter length, lateral waveguide dispersion considerably limits the effectiveness of our scheme.

In summary, we demonstrated theoretically that spatial filtering with photonic crystals is a viable alternative to Fourier slit spatial filtering schemes, and offers increased flexibility for designing tailored angular transmission profiles by suitably optimized longitudinal PhC chirp.

This work is supported by the EUROSTARS Project E!10524 HIP-Lasers and the DFG SFB 787 project B4.

References