
5th ,QWHUQDWLRQDO�&RQIHUHQFH�³7HOHFRPPXQLFDWLRQV��(OHFWURQLFV�DQG�,QIRUPDWLFV´�ICTEI 2015 
 

 
Chisinau, 20²23 May 2015  

 
± 94 ± 

Nonlinear Dynamics In Mode Locked Lasers: 
Modeling, Simulations And Analysis 

Radziunas M. 
Weierstrass Institute for Applied Analysis and Stochastics  

Leibniz Institute in Forschungsverbund Berlin e. V. 
Mohrenstr. 39, 10117, Berin, Germany

 
Abstract ± In this work, we present two distinct approaches for 

modeling of mode-locked lasers. These models are based on the 
first order partial differential equations for counter-propagating 
optical fields and the delay differential equation for a one-
directionally propagating field, respectively. We demonstrate 
how simulations and different type of analysis of these models 
allow us to get a better understanding of various peculiarities of 
the complicated dynamics in ML lasers and helps to improve the 
design of the devices. 
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I. INTRODUCTION 

Mode-locked (ML) edge-emitting semiconductor lasers are 
widely used for generation of short optical pulses with 
repetition rates of a few to hundred GHz. Modeling, 
simulation and analysis of mode locking in single- or multi-
section quantum-well, quantum-dash or quantum-dot 
semiconductor lasers plays a crucial role seeking to 
understand and control various instabilities of the ML lasers. 

Mode-locking can be observed in semiconductor laser 
devices of different geometry. For example, it was found in 
edge-emitting lasers with an external modulator; vertical-
cavity, edge-emitting or ring lasers with a single or several 
integrated or external saturable absorbers (SAs) [1-5], see Fig. 
1(a); or single-section quantum-dash or quantum-dot based 
Fabry-Perot (FP) type edge-emitting lasers [6]. 

 
Fig. 1. Schematic representation of several ML lasers. 

ML lasers can also have several amplifying, passive or 
distributed Bragg reflector (DBR) sections supplemented by 
individual electrical contacts, see Refs. [1,2,6] and Fig. 1(b) 
and (c)]. These additional sections provide a better control of 

the laser operating states. For example, DBR sections allow a 
better control of the emission wavelength [2] or a better 
integration of the ML laser into the optical circuits [6]. To 
improve the quality of already emitted ML pulsations, one can 
also apply an additional forcing. It can be a periodic 
modulation of the SA voltage [5], an injection of a single or 
several coherent external optical beams, or a reinjection of the 
emitted field with an appropriately selected time delay. 

Mode-locking itself is an operation regime of the laser 
during which a periodic sequence of short optical pulses is 
emitted, and the period of this sequence is strictly determined 
by the field roundtrip time in the laser cavity. Short optical 
pulses, in this case, are due to a superposition of multiple, in 
the frequency domain equally separated longitudinal optical 
modes, having a certain fixed (locked) phase relation between 
each other. A simple example of the ML pulsations is given by 
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Several more realistic simulated periodic states of some 
ML laser are presented in Fig. 2. The top row diagrams 
represent a fundamental ML state having a single short-pulse 
emission during the field roundtrip time T  in the laser cavity. 
For different gain section bias current or negative SA voltage, 
one can also find other periodic states, such as harmonic ML 
pulsations (two equal pulses during the time T  and high 
suppression of each second spectral line in radio-frequency 
(RF) and optical spectra, see second row of Fig. 2), pulses 
with broad trailing edges (third row of Fig. 2) or emission of 
two or more different pulses during the same time T  (fourth 
row of Fig. 2). Moreover, besides of the regular periodic states 
RQH�FDQ�DOVR�REVHUYH�D�YDULHW\�RI�LUUHJXODU�³LPSHUIHFW´�PRGH-
locking states having significant time jitter and small side 
mode suppression in the RF spectrum. 
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Fig. 2. Four typical simulated periodic states of the ML laser. Left: field 

emission during a single field roundtrip in the cavity. Middle: radio-frequency 
spectra. Right: optical spectra. 

 
Below in this work we present two distinct approaches for 

modeling of mode-locked lasers. The first approach is based 
on the traveling wave (TW) model, which is a system of one-
dimensional first-order PDEs resolving temporal-longitudinal 
dynamics of the counter-propagating optical fields and carriers 
[7]. Another method is given by a system of delay differential 
equations (DDEs) for a one-directional propagation of optical 
fields in the ring cavity (Fig: 1(d)) and carriers [8]. Both these 
models are widely used not only for numerical simulation of 
different ML lasers, but also for a detailed analysis of the 
typical operating regimes of ML lasers. In this work, we 
briefly present several analytic and semi-analytic methods for 
analysis of model equations. We show, how these methods 
give a better understanding of the complicated dynamics in 
ML lasers, allow to improve existing or predict new operation 
regimes, as well as to improve the design of the ML devices. 

II. OPTICAL MODES OF THE TW MODEL 

The traveling wave equations [7] of multi-section edge-
emitting semiconductor laser can be written in the following 
operator form: 
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Here, the four-component vector-function � �,z t<  

represents the slowly varying complex amplitudes of the 

counter-propagating optical fields, Er , and polarization 

functions, pr , which together with the parameters Z , J , 

andg are used to model the material gain dispersion. gv is the 

group velocity, N r  is the field coupling factor within the DBR 

sections, 0R  and LR  are the field intensity reflections at the 

laser facets =0z  and =z L . Function E  is the wave 

propagation factor depending on the dynamically changing 
carrier density within the active and SA parts of the device. 
For the considered dynamical models of carriers in quantum-
well and quantum-dot based lasers see Refs. [7] and [3], 
respectively. 

Usually, the dynamics of carriers is slow so that in any 
short time interval E  remains nearly constant. For each fixed 

distribution � �zE  the operator � �H E  from Eq. (1) together 

with the boundary conditions for the fields Er  gives rise to 
the spectral problem [9] 
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All complex-valued sets � � � �� �, ,zT E E:  satisfying Eq. (2) 

are instantaneous longitudinal optical modes of the considered 
system. After the suitable normalization of the eigenfunctions 

� �,zT E  (by, e.g., assuming � �,
,0 1

E j
T E�  ), the field function 

� �,z t< can be represented as sum of suitably normalized 

modal components: 

� � � � � � � � � �.e, , xp  ,j j j jj
z t f t z f t i tT E<  v :¦           (3) 

Here, j:  are time averages of the complex eigenvalues, 

� �� �,j z tE: , Im j:  determines growth/decay of the mode, 

and the optical frequencies � �Re j:  are nearly equidistant for 

the FP-type lasers. 
 
We have used a mode expansion (3) of the optical field 

and its consequent reconstruction from only several selected 
modes for investigation of the broad ML pulses observed 
experimentally in standard two-section quantum-dot lasers 
[3,4]. 

 

 
Fig. 3. Simulated ML pulsations with a broad trailing edge plateau [4]. (a): 

Calculated time trace of the field intensity [thick gray curve] and its 
reconstruction using 4 and 50 modes with largest amplitudes [thin curves]. 
(b): optical spectra [grey lines], the relative mode phases (above) and mode 

amplitudes (below) vs. relative mode wavelengths [bullets]. 
 

Our theoretical study presented in Fig. 3 has shown that 
the shape of the simulated ML pulse depends strongly on the 
relations between the amplitudes and phases of the complex 
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modal functions � �jf t . The complex emitted field function in 

the considered case can be represented as a sum of two 
functions, both determined by the superposition of several 
modes. The first of these functions is the sum of all modes 
with almost zero relative phases (black upper bullets in Fig. 
3(b)) and similar intensities, decaying uniformly with an 
increasing mode frequency (wavelength) separation from the 
gain peak frequency (black lower bullets in the same figure). 
This function is responsible for the main sharp field intensity 
peak of the ML regime (see Fig. 3(a)). The second function is 
determined only by a few most intensive modes (after 
subtracting their moderate contribution to the first function) 
with the relative phases located along some slanted line (upper 
blue bullets in Fig. 3(b)). The 4-mode reconstruction of the 
optical field (blue curve in Fig. 3(a)) has a related ~20% of 
period peak intensity dislocation. The superposition of two 
such complex periodic functions with different peak intensity 
positions implies a strong asymmetry of the ML pulse. 

Another application of our mode analysis was given in 
Ref. [8]. In this case, we have analyzed ML pulsations in 
quantum dash based lasers consisting of a single active section 
and three different monolithically integrated DBR sections at 
the right side of the device. In all cases, the length of the 
whole device was kept constant, whereas the length DBRl  and 

the coupling DBRN  of the DBR part were (250 Pm, 40/cm), 

(50 Pm, 200/cm), and (25 Pm, 400/cm), respectively. 
Measurements of these devices have shown, that the quality of 
ML pulsations in the laser with DBRN =400/cm was 

comparable to that one of the simple FP type laser. On the 
other hand, the pulse quality in DBRN =200/cm laser was 

strongly degraded, and DBRN =40/cm laser has shown no ML 

pulsations at all. 
 

 
Fig. 4. Calculated mode damping (top) and frequency separation of the 
adjacent modes (bottom) vs. mode frequency for the FP laser with non-

vanishing LR  (black bullets, =0N ) and the lasers with different integrated 

DBR sections satisfying the relation =1DBR DBRlN  and vanishing reflectivity 

LR at the DBR section facet. 

Our theoretical mode analysis presented in Fig. 4 provides 
an explanation of experimental observations. An integration of 
the DBR section introduces a significant modal gain 
dispersion, supporting only those modes that are within the 

stop-band of DBR. Consequently, the remaining 4-5 main 
modes in the laser with DBRN =40/cm are simply not enough 

for the formation of the ML pulsations (see green triangles in 
Fig. 4(a)). On the other hand, the integration of DBRs 
degrades the equidistance of the modes, which is also a crucial 
condition for the formation of the ML pulsations (lower panel 
of the same figure). For the lasers with DBRN =400/cm this 

violation is marginal (blue squares in Fig. 4(b)). On contrary, 
in the lasers with DBRN =200/cm it becomes important (red 

diamonds in the same figure) and implies a significant 
broadening of the RF spectral line. 

 

III.  ASYMPTOTIC ANALYSIS OF THE DDE MODEL 

Another model of passive and hybrid ML in lasers with the 
SA is based on the system of DDEs that is derived from the 
TW equations under the assumption of a one-directional 
propagation of the optical fields in the ring cavity (see Ref [8] 
and Fig. 1(d)):  
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Here, functions E, G and Q denote the complex field 
amplitude, the lumped saturable gain and saturable absorber, 
respectively. The parameters T , 0g , 0q , s , J , D , ,g qJ , and 

,g qD  represent the field round-trip time in the cold cavity, the 

pump current in the gain section, the unsaturated absorption in 
the SA, the ratio of the gain and the SA saturation intensities, 
the width of the spectral filtering, the linear non-resonant 
attenuation factor per cavity round-trip including field 
reflectivity at the facets, the gain and the SA relaxation rates, 
and the linewidth enhancement factors, respectively. The 
function � �aF t  in this example represents a 1

mf
-periodic 

modulation of the negative voltage in the SA, whereas a  is the 
amplitude of this modulation [5]. Such periodic forcing helps 
to improve the quality of passive ML pulsations. Namely, once 
the detuning = p mf f fG �  between the passive ML frequency 

pf  and the modulation frequency mf  is small enough, the 

pulsation frequency can be entrained by the modulation 
frequency. These hybrid ML pulsations usually have a reduced 
time jitter, which is mainly determined by the low jitter of the 
external modulation. 

The experimental and numerical estimation of the 
frequency detuning ranges admitting hybrid ML for all 
modulation amplitudes is an important, but also a time-
consuming task. In theory, it is related with simulation of many 
long transient intervals (each one with a slightly modified mf  

and/or amplitude a ) and a consequent check of the periodicity 
of the resulting trajectory. The estimation of the hybrid ML 
existence region in modulation amplitude - detuning plane for a 
single set of model parameters can take a whole day of 
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simulations. To accelerate this study, we have investigated the 
linearization of the DDE model (5) around the passive ML 
solution in the limit of small modulation amplitude a  [5]. We 
have found a semi-analytic expression for the range of the 
scaled detuning f aG  admitting the existence of the periodic 

hybrid ML solution. This new technique allows to get 
reasonable locking range estimates in a couple of minutes so 
that a more detailed study of the hybrid ML dependencies on 
all other parameters also becomes possible. 

 

 
Fig. 5. Estimated length of the interval of the frequency detuning fG  

admitting periodic hybrid ML state for different modulation amplitudes a  for 
(a): standard, (b): SH, and (c): HF modulations. Thick solid curves: obtained 
by direct numerical integration of Eqs. (1)-(4) with tuned mf and a . Thin 

dashed lines: semi-analytic asymptotic estimates. 
 

The width of the locking range for a selected passively ML 
state and modulation function � � � �=cos 2 mF t f tS  is shown in 

Fig. 5(a). Panels (b) and (c) of the same figure represent the 
width of the locking regions for the modulation frequency 

2m pf f|  (second harmonic, or SH modulation with 

= 2p mf f fG � ) and 2m pf f|  (half frequency, or HF 

modulation with = 2p mf f fG � ). The frequency detuning in 

these cases indicates the difference between pf  and the pulse 

repetition rate of the hybrid ML (which, in general, differs 
from the exact frequency of the solution). We note that our 
algorithms are working properly for standard and SH 
modulations (solid curves and dashed lines almost coincide), 
but fail to show a proper locking regions for HF modulation, 
where the locking range dependence on the amplitude a  is 
nonlinear. 
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