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Construction of finite elements — PART |

1. Exercise: Finite elements in 1D 10 points
Consider the classical 1D elliptic problem with Dirichlet boundary conditions
—UN(J?) + CU(HZ‘) = f(l'), in Q= (07 1)
u(0) =u(l) =0

where 0 < ¢ € R.

(a) Let V a vectorspace of functions over R which vanish at the boundary.! Derive the
variational form, i.e. determine the bilinear form a : V x V' — R and the linear form
f:V = R, so that for a weak solution u we have a(u,v) = f(v) for all v € V. Show
that a is symmetric.

(b) For given collection of points 0 = 29 < 1 < ... < zxy = 1 and N € N consider the
elements ; = (x;-1,;) for ¢ = 1,.., N and the discrete space

Vi, = {U eV: ’U|QiiS affine linear},

where the basis for j =1,... N — 1 =dimV}, is
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0 else

The Galerkin approximation is up(z) = Z?fiv’l adw;(z) € V. Show that

/_ () () dar = i / w2y ()de = 3 [
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/Quh(x)wi(m)da? = ;/Qk up (z)w;(z)dr = ; [; /Qk wi(:n)wj(as)dx] o,

(c) The elementary task is to compute

5'2/9 wi(r)wj(z)dr  and M:/ wi(x)wj(x) dz.

The claim is that this was done in assignment 6, exercise 4. Please explain! What is
the map Fy : (0,1) = Qj in terms of points z; and/or hy = xp — x;—1 and specify the
nonzero terms explicitly.

Hint: You need to interprete M and S as 2 x 2 matrices of nonzero parts.

(d) How can you use S and M to compute the Galerkin matrix Aj?

Lesson: Teaching the basic idea of finite elements with a simple function space.

2. Programming exercise: Discretization of variational form in 1D 13 points

(a) In this exercise you write a MATLAB program for the variational form of exercise 1.
The main task is to build the matrix (A);; = a(w;, w;) using the symmetric, bilinear
form a. We divide the construction in different steps, which are generalizable to higher
dimension. From exercise 1 you know a and f, the basis w;, and the elements £2;.

1Remark: This space is constructed in such a way, that differentiation is well-defined and functions in V satisfy
the boundary conditions. Note that differentiability is imposed in a weaker sense than in Cé (©2). However, you
might think of V being C} most of the time. We have w; € C(Q) C V.



step 1)

step 2)

step 3)

step 4)

element generation:

Write a function [nelement,npoint,e2p]l=generateelements(x) which for given
set of points x where x(1)<x(2)<...<x(end) returns the number of elements
nelelement and the number of points npoint. The variable e2p (element-to-point
map) is a nelementx2 matrix for which e2p(k,1) is the index of the left node and
e2p(k,2) is the index of the right node of the element ).

Hint: With index we mean 1 < ¢ < npoint, such that the actual point is z(¢).

computation of transformation: Consider the affine linear function Fj, which
maps the reference element Q. = (0,1) to an element €. Write a function
[edet,dFinv]=generatetransformation(k,e2p,x) which for given element number
k returns edet=det(VF}) and dFinv=(VF;)~L.

Hint: Since Fj is affine linear, these two are just constant expressions.

computation of local matrices: In order to compute the Galerkin matrix A, we need
the local matrices S, M from (1c). Write a function mloc=localmass(edet) and a
function a function sloc=localstiff (edet,dFinv) which for given value of edet
and dFinv= G computes the element mass and stiffness matrices

M = /Qk w;(v)w;(r) de = /Q,.ef ¢;(m)¢;(m)|edet|dx

S:/ wi(x)w)(z) de = ¢%($)GGT¢>§(x)|edet|dx
Qp Qref

with ¢; from the previous assignment and %, j = 1,2. How can one relate i, j for given
k with 4,7 using e2p? Hint: In 1D G is a number, so G = GT = 1/edet.
construction of global matrix: The construction of the Galerkin matrix for ¢ = 0 is

done in the MATLAB-lines below. Please study the code ellipticid.m from the ISIS
2 page and explain in detail how this works (in particular the boundary conditions).

%% build matrices

ii = zeros(nelement,nphi”2); 7% sparse i-index

jj = zeros(nelement,nphi”2); J sparse j-index

aa = zeros(nelement,nphi~2); % entry of Galerkin matrix

bb = zeros(nelement,nphi~2); % entry in mass-matrix (to build rhs)

%% build global from local
for k=1:nelement % loop over elements
[edet,dFinv] = generatetransformation(k,e2p,x); % compute map

% build local matrices (mass, stiffness, ...)
sloc = localstiff(edet,dFinv); % element stiffness matrix
mloc = localmass(edet); % element mass matrix

% compute i,j indices of the global matrix
ii( k,: ) = [e2p(k,1) e2p(k,2) e2p(k,1) e2p(k,2)]; % local-to-global
jiCk,: ) = [e2p(k,1) e2p(k,1) e2p(k,2) e2p(k,2)]; % local-to-global

% compute a(i,j) values of the global matrix
aa( k,: ) = sloc(:);
bb( k,: ) = mloc(:);
end
% create sparse matrices
A=sparse(ii(:),jj(:),aa(:));
M=sparse(ii(:),jj(:),bb(:));

Modify ellipticld.m to ellipticldwithc.m to solve the problem for ¢ = 1 and
f(x) = 1. Compare with the exact solution u = e~*(1 — e%)(e* —€)/(1 + ¢).

Modify ellipticld.m into ellipticldinhom.m, to compute the solution with f(z) =
2, ¢ = 0 and inhomogeneous Dirichlet boundary conditions «(0) = 1 and u(1) = 0 by
modification of f as explained in the lecture. Compare with the exact solution.

Modify ellipticld.m into ellipticidjump.m, so that you compute a FEM solution
of assignment 6, exercise 3c). Compare with the exact solution.

Lesson: How to write a general FEM program in the simplest case.

total sum: 23 points



