Handed out: 3.12. Return during lecture: 11.12.

6. Assignment "Numerische Mathematik für Ingenieure II" http://www.moses.tu-berlin.de/Mathematik/ CFL condition and some finite elements in 1D

1. **Programming exercise:** The CFL condition for the θ scheme

10 points

For the heat equation $\partial_t u(t,x) - \partial_x^2 u(t,x) = f(t,x)$ consider the θ -scheme

$$\frac{u^{k+1} - u^k}{\tau} + \theta L^h u^{k+1} + (1 - \theta) L^h u^k = f$$

for a given discrete elliptic operator L^h and $u^k = (u(t_k, x_0), ..., u(t_k, x_N))^T \in \mathbb{R}^{N+1}$ for the discrete domain $\Omega^h = \{ih : 0 \le i \le N\}$ and h = 1/N. Consider the problem with $L^h = -\Delta^h$ the standard 3-point stencil and $f \equiv 0$. The problem is to be solved with Dirichlet boundary conditions $u_0^h = 0$ and $u_N^k = 1$ and initial conditions

(i1)
$$u_i^0 = \begin{cases} 0 & ih \le 1/2, \\ 1 & \text{otherwise,} \end{cases}$$

or with boundary conditions $u_0^k = u_N^k = 0$ and initial conditions

(i2)
$$u_i^0 = \sin(i\pi h).$$

(a) Use Fourier transformation and a separation ansatz to compute exact solutions for (i1) and (i2). For (i1) you might find the representation

$$u^{0}(x) = x - \frac{1}{\pi} \left(\frac{\sin a}{1} - \frac{\sin 2a}{2} + \frac{\sin 3a}{3} - \dots \right)$$

with $a = 2\pi x$ helpful (it suffices to use 40 terms in the expansion).

- (b) Write a function [xh,Ah,Bh,Mii]=a06ex01getLh(p,tau,theta) which returns matrices Ah,Bh that the problem above is equivalent to $A^h u^{k+1} = B^h u^k$ on a uniform mesh xh with $N = 2^p 1$. Suppose $B_h = \mathbb{I} M_h$, then return Mii= max_i M_{ii} .
- (c) Solve the problem with initial conditions (i1) and (i2) for p = 5 and $\tau = 0.01$. Plot the solution after one time-step to a06ex01sol1.pdf for i) $\theta = 0$, ii) $\theta = 1/4$, iii) $\theta = 1/2$ and iv) $\theta = 1$ and compute the corresponding norms $||u^k||_{\infty}$ and $||u^k||_{2,h}$ for k = 0, 1 for i)-iv) and compare with the value Mii. Discuss your observations.
- (d) Repeat the previous step, but now plot the solution a06ex01sol2.pdf after 10 timesteps with $\tau = 0.001$ (do not plot the explicit solution). Discuss the differences.
- (e) Use $\tau = \{0.01, 0.001, 0.0001\}$ to compute the numerical solution at T = 0.01 for θ i)-iv), provided the method gives a reasonable result for that value of θ . Compare the errors in the norms $\max_k \|u^k r_h u\|_{2,h}$ and $\max_k \|u^k r_h u\|_{\infty}$.
 - Which method returns the smallest error (in most cases)?
 - Which method is most reliable, i.e. works so you do not worry about convergence?
 - Which method is the fastest? **Remark:** Do not solve a linear equation for $\theta = 0$! Use p = 7 and $\tau = 10^{-5}$, T = 0.01 for comparison with tic,toc.

Lesson: Here you further improve your understanding of stability in different norms and the practical value of different discretization schemes.

2. Exercise: Equivalence to a minimization problem

Let $A \in \mathbb{R}^{n \times n}$ a symmetric matrix with positive eigenvalues and $b \in \mathbb{R}^n$ arbitrary. Show that Ax = b is equivalent to x minimizing the expression $\frac{1}{2}x^T Ax - bx$.

Lesson: A different approach to state certain linear equations, which will be useful later.

3. Exercise: Weak form of elliptic equation

Consider the problem for the electric potential

$$\begin{aligned} -(\varepsilon(x)\phi'(x))' &= \rho(x) & & \text{in } (0,1), \\ \phi &= 0 & & \text{at } \{0,1\}, \end{aligned}$$

where the relative permittivity is

$$\varepsilon(x) = \begin{cases} 1 & \text{for } 0 < x < 1/2 \\ \bar{\varepsilon} & \text{for } 1/2 \le x < 1 \end{cases}$$

and with given charge density $\rho(x)$. The interpretation is that we have different materials in 0 < x < 1/2 and in 1/2 < x < 1, so that the permittivity might jump.

(a) Show that the general requirement

$$\lim_{\delta \to 0} \int_{1/2-\delta}^{1/2+\delta} \rho(x) \,\mathrm{d}x = 0$$

i.e., the interface carries no extra charges, leads to the transmission condition

$$\lim_{\delta \to 0} \left[\varepsilon(1/2 + \delta)\phi'(1/2 + \delta) - \varepsilon(1/2 - \delta)\phi'(1/2 - \delta) \right] = 0$$

- (b) State the weak form of the problem. **Hint:** Assume the test functions fulfill the boundary conditions and ϕ can be integrated by parts separately on (0, 1/2) and (1/2, 1). The solution and the test functions are continuous.
- (c) Find the weak solution for $\bar{\varepsilon} = 2$, $\rho(x) = -1$. Hint: Try to combine polynomials on (0, 1/2) and on (1/2, 1) with proper continuity of $\phi, \varepsilon \phi'$.
- (d) Is the solution also a classical solution?

Lesson: A very practical example for a elliptic equation, where solutions have low regularity.

- 4. Exercise: Local matrices for a 1D finite element formulation 4 points Let $\Omega = (0, 1)$ and $\phi_1(x) = 1 - x$, $\phi_2(x) = x$.
 - Compute the following two 2×2 matrices

$$M_{ij} = \int_{\Omega} \phi_i(x)\phi_j(x) \,\mathrm{d}x$$
$$S_{ij} = \int_{\Omega} \phi_i'(x)\phi_j'(x) \,\mathrm{d}x$$

• For a > 0 let F(x) = ax + b and define $\overline{\phi}_i(F(x)) = \phi_i(x)$. Compute the matrices

$$\bar{M}_{ij} = \int_{F(\Omega)} \bar{\phi}_i(x) \bar{\phi}_j(x) \, \mathrm{d}x$$
$$\bar{S}_{ij} = \int_{F(\Omega)} \bar{\phi}'_i(x) \bar{\phi}'_j(x) \, \mathrm{d}x$$

explicitly using a, b. **Hint:** Use integration by substitution.

Lesson: This is groundwork for later assignments.

total sum: 23 points

6 points