Handed out: 22.01. Return during lecture: 29.01.

11. Assignment "Numerische Mathematik für Ingenieure II"

http://www.moses.tu-berlin.de/Mathematik/

Solving systems of linear equations - gradient descent

1. Exercise: Minimization with constraint

8 points

Let $A \in \mathbb{R}^{n \times n}$ a symmetric, positive definite matrix (SPD) and $b \in \mathbb{R}^n$ arbitrary. Furthermore for $m \in \mathbb{N}$, $1 \le m \le n$ let $B \in \mathbb{R}^{m \times n}$ be a matrix of rank m and $c \in \mathbb{R}^m$.

(a) Show that the task 'Minimize $J(x) = \frac{1}{2}x^{\top}Ax - x^{\top}b$ subject to the linear equality constraint Bx = c.' leads to the system of linear equations

$$\begin{pmatrix} \star \\ B & 0 \end{pmatrix} \begin{pmatrix} x \\ \lambda \end{pmatrix} = \begin{pmatrix} b \\ c \end{pmatrix}.$$

Hint: You may use the method of Lagrange multipliers for multiple constraints, i.e., consider derivatives of $L(x, \lambda) = J(x) + \lambda^{\top} (Bx - c)$.

(b) Show that (\star) is invertible.

Hint: First show $BA^{-1}B^{\top}\lambda = BA^{-1}b - c$. Then explain, why $BA^{-1}B^{\top}$ is invertible.

(c) Consider $A \in \mathbb{R}^{n \times n}$ obtained from a Galerkin approximation of the bilinear form

$$u(u,v) = \int_{\Omega} \nabla u \cdot \nabla v \, \mathrm{d}\Omega,$$

with the discrete subspace $V_h \subset H^1(\Omega)$ (no essential boundary conditions). You want to minimize $\frac{1}{2}a(u_h, u_h) - f(u_h)$ for $u_h \in V_h$ subject to the constraint

i) ... of homogeneous Dirichlet bc's $w_i(x_j) = 0$ for $x_j \in \partial \Omega$. Describe what is B in (\star) that is equivalent to minimization subject to constraints?

Hint: To keep notation simple you may assume $x_j \in \partial \Omega$ for $j = 1 \dots m$.

ii) ... of $\int u \, d\Omega = 0$. Describe how you need to choose *B* for the discrete problem (*)? **Hint:** Use the mass matrix *M* and consider the product (1, ..., 1)M.

2. Exercise: Properties of gradient descent

8 points

Let $A \in \mathbb{R}^{n \times n}$ a SPD matrix and $b \in \mathbb{R}^n$ given. Consider minimization problem

$$J(x) = \frac{1}{2}x^{\top}Ax - b^{\top}x,$$

solved iteratively by gradient descent. For given x_i define a sequence $(x_1, x_2, ... x_n)$ with $x_n \in \mathbb{R}^n$ so that

$$z_{n+1} = x_n + \gamma_n r_n$$

with $r_n = b - Ax_n \in \mathbb{R}^n$ and $\gamma_n = \frac{r_n^\top r_n}{r_n^\top Ar_n} \in \mathbb{R}$.

- (a) Show $J(x_{n+1}) \leq J(x_n)$ with equality only if x_n is already a solution.
- (b) Show that for given direction r_n that $s = \gamma_n$ makes J(x) minimal along the line $x_n + sr_n$.
- (c) Let $A \in \mathbb{R}^{2 \times 2}$. Explicitly confirm the formula for the convergence speed

$$||e_n||_A^2 = \left(\frac{\rho - 1}{\rho + 1}\right)^{2n} ||e_0||_A^2, \quad \text{where} \quad ||e||_A^2 = e^\top Ae,$$

where $\rho = \max \lambda_i / \min \lambda_i$ is the condition number of A derived from its eigenvalues λ_i . (d) Let

$$A = \begin{pmatrix} 17 & 6\\ 6 & 8 \end{pmatrix}, \qquad b = \begin{pmatrix} 3\\ 4 \end{pmatrix}.$$

Find x_i with $||e_0||_A = 1$ such that gradient descent convergences i) as fast as possible or ii) as slow as possible.

3. Programming exercise: Gradient descent

- (a) Write a function [x,iter]=gradientdescent(A,b,tol,x0) which solves Ax = b using gradient descent as described above. Here $x = x_n$ and iter is the number of required gradient descent iterations. The sparse SPD matrix A and b are provided. Iterate gradient descent while $||r_n|| >$ tol. The optional argument x0 provides a starting vector for the iteration, if it is not provided use $x_0 = b$. Hint: Use nargin.
- (b) Apply gradient descent to the matrix A from (2d) with $x_0 = b$ and compare with the fast/slow initial vector from (2d) i), ii). Also compare with random initial vector with $||e_0||_A = 1$. Visualize the iterations by plotting lines between the iterates and the isosurfaces of J and export to gradient.pdf. How many iterations n does gradient descent need to converge in each case?

Hint: The MATLAB function contour or contourf might be useful.

(c) Apply gradient descent to the matrix $A = K_n$ with n = 100 from assignment 1, exercise 1 with $b = (1, ..., 1)^{\top}$, $x_0 = b$. How many iterations do need to converge? Use the exact solution to compute $||e_0||_A$, $||e_n||_A$ and estimate the maximum number of iterations that you would have expected.

Hint: Eigenvalues and -vectors are as in the lecture, e.g. $(v_i)_j = \sqrt{2} \sin(\pi i j / (n+1))$.

(d) Let $A = \mathbb{I}_n + \frac{\tau}{h^2} K_n$ with \mathbb{I}_n the $n \times n$ identity matrix, h = 1/(n+1) and $\tau = 1/1000$. This is the implicit Euler discretization of $\partial_t u - \partial_{xx} u = 0$, u(t,0) = u(t,1) = 0 using finite-differences in 1D on (0,1). Use $u_h^0(x_i) = \sin(\pi x_i)$ as initial data. Compute the discrete solution Ax = b for n = 100 at T = 0.1 using gradient descent with $x_0 = b$. You have $b = u_h^k$ and $x = u_h^{k+1}$. Compare with the exact solution. How many iterations does gradient descent need to converge per time-step on average?

Remark: Use tol=1d-7 for 3b,3c,3d). After this we say a solution has *converged*.

total sum: 24 points

As usual, use sparse matrices (where this is useful).