
Combining Asymptotic Analysis and Optimization in
Semiconductor Design
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Once Upon a Time...

Optimal Semiconductor Design

Miniaturization

Switching–times

Energy Consumption

The Design Problem

Higher/lower current density
in the on/off state
by changing the doping profile

( c©T. Ayalew, TU Vienna)

(Selberherr, et al. 1998)
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Classical Semiconductor Models

Model Hierarchy

Boltzmann Equation

Hydrodynamic Equations

Energy Transport Model

Drift Diffusion Model
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State of the Art

Fang, Ito (1992):
Identification of doping profiles from LBIC images

Selberherr, Stockinger, et al. (1998 –):
Optimization of MOSFET doping profiles using a black box gradient method

Wang, et al. (1999):
Optimization of doping profiles using finite dimensional least squares

Burger, Engl, Markowich, Pietra (2001 –):
Identification of doping profiles

Hinze, Pinnau (2001 –):
Optimal control approach to semiconductor design

Burger, Pinnau (2002 –):
Gummel–type algorithms

Drago, Anile, Pinnau (2005 –):
Optimization based on the energy–transport model, space mapping

Unterreiter, Volkwein (2006):
Optimal control for QDD

Burger, Fuego, Pinnau, Rau (2011–):
Optimal control of self-consistent classical and quantum particle systems

Liu (2014):
Optimization of solar cell performance

Peschka, Rotundo, Thomas (2016):
Doping optimization of semiconductor lasers
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A Simple Design Problem

n-region p-region

Figure: np-junction

min
(V ,C)

J(V ,C ) = 1
2‖n(V )− nd‖L2 + 1

2‖p(V )− pd‖L2 + γ
2 ‖∇(C − C̄ )‖L2

subject to the Drift Diffusion equations in Equilibrium

eλ(V ,C ) := −λ2∆V − n(V ) + p(V ) + C = 0

space charge n(V )− p(V )− C
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Separate Blocks of Research

We can

optimize on different levels of the model hierarchy!

provide analysis for the different models!

can link the models via asymptotic analysis!

Can we

also find an asymptotic link for the different optimization problems?
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E.g. Zero Space Charge Approximation λ = 0
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Figure: potential V for different λ

away from the junction, potential is linear and behaves like the zero space
charge solution, different approximation in depletion region
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Limit λ→ 0 combined with optimization

subject to

subject to

?
1

1Andreas Unterreiter, ”The Thermal Equilibrium Solution of a Generic Bipolar
Quantum Hydrodynamic Model”, Commun. Math. Phys.,1997
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Limit λ→ 0 combined with optimization

subject to

subject to

convergence of minima and minimizers
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Forward problem - Drift Diffusion Equations
Considering a semiconductor in thermal equilibrium, without recombination
and generation processes.
The classical Drift Diffusion equations

div Jn = 0, Jn = ∇n + n∇V ,
div Jp = 0, Jp = ∇p − p∇V ,
− λ2∆V = n − p − C .

with boundary conditions ν · ∇n = ν · ∇p = ν · ∇V = 0 on ∂Ω can be
condensed to

−λ2∆V = n(V )− p(V )− C

where n(V ) = αe−V , p(V ) = βeV are written in Slotboom variables and the
additional conditions

ν · ∇V = 0 on ∂Ω,

∫
n = N,

∫
p = P,

∫
V = 0.
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Variational Approach (dual to Unterreiter)

Let Σ0 = {V ∈ L1(Ω): |V | ≤ K a.e.,
∫

Ω
V = 0} with K > 0. Define

F (V ) =

{
N log(

∫
Ω
e−V dx) + P log(

∫
Ω
eV dx) +

∫
Ω
CV dx , if V ∈ Σ0

+∞, otherwise

and

Fλ(V ) =
λ2

2

∫
Ω

|∇V |2 dx + F (V ) for V ∈ Σ0 ∩ H1 =: Σ1.

Then one obtains the nonlocal(!) Euler-Lagrange equation F ′λ(V )[ϕ] = 0∫
Ω

λ2∇V ·∇ϕdx−
∫

Ω

N∫
e−V dx

e−Vϕdx+

∫
Ω

P∫
eV dx

eVϕdx+

∫
Ω

Cϕdx = 0.
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Theorem
The functional Fλ is strictly convex and possesses a unique minimizer Vλ.

Further, we get uniform bounds allowing for the extraction of convergent
subsequences Vλ → V0, where V0 is the unique minimizer of F0.

The dual approach also allows to consider weaker assumptions on the doping
profile C .
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Lemma
The constrained optimization problem

Find (V ,C ) such that

j = min
(V ,C)

J(V ,C ) s.t. eλ(V ,C ) = 0

is solvable for every given C ∈ H1(Ω). In general, no uniqueness!

The adjoint system is given by

−λ2∆ΨV = αe−V Ψn + βeV Ψp,

−ΨV + Ψn = (n − nd),

ΨV + Ψp = (p − pd),

with boundary conditions ν · ∇Ψi = 0 and integral conditions
∫

Ψi = 0 for
i = n, p,V and the optimality condition reads

γ∆(C − C̄ ) = ΨV

ν · ∇C = 0 on ∂Ω.
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Proposition (Γ-convergence2)

Let X be a topological space, let {Fn} be a sequence of functions from X into R,

then {Fn} Γ-converges to F if and only if the following conditions are satisfied:

lim inf −inequality : ∀x ∈ X ∀xn → x ∈ X : F (x) ≤ lim inf
n→∞

Fn(xn),

lim sup−inequality : ∀x ∈ X ∃xn → x ∈ X : F (x) ≥ lim
n→∞

Fn(xn).

To obtain Γ-convergence we include the PDE constraint in the cost functional

Jλ(V ,C ) = J(V ,C ) + χEλ ,

where

χEλ =

{
0, if (V ,C ) ∈ Eλ

+∞, else

and

Eλ := {(V ,C ) ∈ V × Uad : eλ(V ,C ) = 0} with Uad = {u ∈ H1 : |u| ≤ K}.

2Gianni Dal Maso, ”An Introduction to Γ-convergence”, Birkhäuser
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Properties required to obtain the Γ-convergence

We use X = H1(Ω)× H1(Ω) endowed with its weak topology.

Lemma
uniqueness of the solution of the forward problem for λ ≥ 0

strong L2 convergence of the solutions Vλ → V0, n(Vλ)→ n(V0),
p(Vλ)→ p(V0) as λ→ 0 and uniform boundedness of {Vλ} in H1(Ω)
depending on ‖C‖H1

J(V ,C ) = J1(V ) + J2(C ), J1 weakly continuous, J2 weakly lower
semicontinous and radially unbounded.

Definition

Let X be a metric space. A sequence of functionals {Fn} is said to be
equi-coercive on X, if for every t ∈ R there exists a compact subset Kt of X
such that {Fn ≤ t} ⊂ Kt for every n ∈ N.
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Convergence of Minima and Minimizers

Theorem
Jλ is an equi-coercive sequence of functionals.

Idea: Let (Vt ,Ct) ∈ {Jλ(Vt ,Ct) ≤ t}. Due to χEλ in the definition of Jλ, Vt

is a solution of DD equations with doping Ct . ‖Ct‖ ≤ K since Jλ is radially
unbounded w.r.t C , this yields uniform boundedness of Vt . Therefore
‖Vt‖H1 + ‖Ct‖H1 bounded.

Proposition

Γ-convergence + equi-coercivity ⇒ convergence of minima and minimizers 3

3Gianni Dal Maso, ”An Introduction to Γ-convergence”, Birkhäuser
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Numerical results
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