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Abstract

We consider systems of reaction-diffusion equations as gradient systems with respect to an

entropy functional and a dissipation metric given in terms of a so-called Onsager operator, which

is a sum of a diffusion part of Wasserstein type and a reaction part. We provide methods for

establishing geodesic λ-convexity of the entropy functional by purely differential methods, thus

circumventing arguments from mass transportation. Finally, several examples, including a drift-

diffusion system, provide a survey on the applicability of the theory.

1 Introduction

In several papers by Otto (see [JKO98, Ott98, Ott01]) it was shown that certain diffusion problems can
be interpreted as gradient flows with respect to the free energy or relative entropy and the Wasserstein
metric. In [Mie11c] it was shown that general reaction-diffusion systems, with reactions satisfying the
detailed balance condition, can be written as a gradient system with respect to the relative entropy. The
associated dissipation metric G is most easily modeled by considering its inverse K = G−1, called
Onsager operator, as the sum of a diffusion part and a reaction part. The diffusion part is a vector-
valued version of the Wasserstein metric used for the scalar Fokker-Planck equation in [JKO98, Ott01],
namely

Kdiff(u)ξ = − div
(
M(x, u)∇ξ),

where u = (u1, ..., uI) ∈ [0,∞[I is the vector of the densities of the species and ξ = (ξ1, ..., ξI) ∈
R

I is the associated thermodynamical driving force, also called vector of chemical potentials. Here
M(x, u) ∈ Lin(RI×d; RI×d) is a general density-dependent mobility tensor, which is symmetric and
positive semidefinite. Using a symmetric and positive semidefinite matrix Kreact(x, u) ∈ R

I×I we
obtain the full Onsager operator

K(u)ξ = − div
(
M(x, u)∇ξ) + K(x, u)reactξ,

and together with the entropy functional E(u) =
∫
Ω

E(x, u(x))dx giving ξ = DE(u) = DuE(x, u(x))
we find the gradient system

u̇ = −K(u)DE(u) = div
(
M(x, u)∇DuE(x, u)

)
− K(x, u)reactDuE(x, u),

which leads to a large class of reaction-diffusion systems.

The focus of this work is to provide conditions on the system such that the driving functional E : X →
R is geodesically λ-convex with respect to the metric G = K−1. This means that s 7→ E(γ(s)) is
λ-convex for all geodesic curves γ : [sa, sb] → X , i.e.,

E(γ(sθ)) ≤ (1−θ)E(γ(s0)) + θE(γ(s1)) − λ
θ(1−θ)

2
(s1−s0)

2 (1.1)

1



for all θ ∈ [0, 1] and s0, s1 ∈ [sa, sb], where sθ = (1−θ)s0 +θs1. The study of geodesic λ-convexity
for scalar drift-diffusion equations given by

E(u) =

∫

Ω

E(u)+uV (x)dx and K(u)ξ = − div(µ(u)∇ξ), (1.2)

where u 7→ E(u) is convex and u 7→ µ(u) is concave, was initiated in [McC97] and is studied
extensively since then, see e.g. [OtW05, AGS05, DaS10, CL∗10]. An essential tool in this theory is
the characterization of the geodesic curves in terms of mass transportation and the optimal transport
problem of Monge-Kantorovich type. Presently, such a method is not available for systems of equations
or for scalar equations with reaction terms, which destroy the conservation of mass. Instead, this work
relies on a differential characterization of geodesic λ-convexity developed in [DaS08].

Thus, after an introduction of gradient structures for reaction-diffusion systems in Section 2 we provide
an abstract version of the theory developed in [DaS08]. We mainly address the abstract framework
and present the estimates to obtain concrete convexity properties, while the functional analytic aspects
as well as the full framework in terms of complete metric spaces are postponed to subsequent work.
Moreover, we assume that our evolutionary system

u̇ = −F(u) := −K(u)DE(u) (1.3)

generates a suitable smooth local semiflow on a scale of Banach spaces Z ⊂ Y ⊂ H with dense
embeddings, see Section 3 for the details. The main characterization involves the quadratic form

ξ 7→ M(u, ξ) := 〈ξ, DF(u)K(u)ξ〉 − 1

2
〈ξ, DK(u)[F(u)]ξ〉,

which can be seen as the form induced by the metric Hessian of E . The main result is that E is
geodesically λ-convex if the estimate

M(u, ξ) ≥ λ〈ξ,K(u)ξ〉 (1.4)

holds for all suitable u and ξ. Our proof is a straightforward generalization of the approach in [DaS08]
that is based on the evolutionary variational inequality (EVI)λ given by

1

2

d+

dt
dK(u(t), w)2 +

λ

2
dK(u(t), w)2 + E(u(t)) ≤ E(w), ∀w ∈ X, t > 0, (1.5)

where d+

dt
f(t) = lim supτց0

1
τ
(f(t+τ) − f(t)) and dK is the distance induced by G = K−1. The

idea is to show that (1.3) and (1.4) imply (1.5), and finally deduce (1.1).

Condition (1.4) is closely related to the Bakry-Émery conditions [BaÉ85, Bak94] and provides a
strengthened version of the classical entropy-dissipation estimate. In fact, definingD(u) = 〈DE(u),K(u)DE(u)〉
and R(u) = 2M(u, DE(u)) the solutions u of (1.3) satisfy

d

dt
E(u(t)) = −D(u(t)) and

d

dt
D(u(t)) = −R(u(t)).

By (1.4) there exists α ≥ λ such that R(u) − 2αD(u) = P(u) ≥ 0 for all u. Assuming α > 0, in
[AM∗01] the decay estimates

D(u(t)) ≤ e−2αtD(u(0)) and E(u(t))−E(u(∞)) +

∫ ∞

t

P(u(s))ds =
1

2α
D(u(t))
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are used to derive convergence for t → ∞. We discuss further useful properties of the geodesic
λ-convexity in Section 3.3, also if λ < 0.

The main part of this work surveys possible applications of the abstract theory, see Section 4. We
emphasize that geodesic convexity is a strong structural property of a gradient system that is rather
difficult to achieve, in particular with respect to distances that are associated with the Wasserstein
metric. Our examples show that there are at least some nontrivial reaction-diffusion equations or
systems that satisfy this beautiful property. First we discuss simple reaction kinetics satisfying the
detailed balance conditions, i.e. ODE systems in the form

u̇ = −F (u) = −K(u)DE(u), where E(u) =

I∑

i=1

ui log(ui/wi).

This includes the case of general reversible Markov chains u̇ = Qu, where Q ∈ R
I×I is a stochastic

generator, see also [Maa11, Mie11b, ErM11].

In the following sections we treat partial differential equations or systems where estimate (1.4) heavily
relies on a well-chosen sequence of integrations by parts, where the occurring boundary integrals
needs to be taken care of. We use the fact that for convex domains Ω and functions ξ ∈ H2(Ω) with
∇ξ · ν = 0 on ∂Ω, we have ∇

(
|∇ξ|2

)
· ν ≤ 0 on ∂Ω, Proposition 4.2. In Section 4.2 we give a

lower bound for the geodesic convexity of E(u) =
∫
Ω

u log udx with respect to the inhomogeneous
Wasserstein metric induced by K(u)ξ = − div(µ(x)u∇ξ), where 0 < µ0 ≤ µ ∈ W2,∞(Ω), thus
generalizing results in [Lis09]. Theorem 4.3 provides a new result of geodesic convexity for E and K
from (1.2), where the concave mobility u 7→ µ(u) is allowed to be decreasing, i.e. µ′(u) < 0, thus
complementing results in [CL∗10].

Sections 4.4 and 4.5 discuss problems with reactions, namely

u̇ = ∆u − f(u) and

(
u̇1

u̇2

)
=

(
δ∆u1

δ∆u2

)
+ k

(
u2−u1

u1−u2

)
.

The first case with f(u) = k(1−u) gives geodesic λ-convexity with λ = 1
2
min{k, k2}, while the

second case gives geodesic 0-convexity. In Section 4.6 a one-dimensional drift-diffusion system with
charged species is considered, where the nonlinear coupling occurs via the electrostatic potential.
The final example discusses cross-diffusion of Stefan-Maxwell type for u = (u1, ..., uI) under the
size-exclusion condition u1 + · · ·+ uI ≡ 1.

There are further interesting applications of gradient flows where methods based on geodesic convex-
ity can be employed, even though the system under investigation may not be geodesically λ-convex,
see e.g. the fourth order problems studied in [MMS09, GST09, CL∗10]. Possible applications to vis-
coelasticity are discussed in [MOS12]. In [FiG10] a diffusion equation with Dirichlet boundary condi-
tions, which leads to absorption, is investigated.

2 Gradient structures for reaction-diffusion systems

In this section we give some general background on gradient and Onsager systems. All our arguments
are formal and will be made precise in the following sections.

A gradient system is a triple (X, E ,G) where X is the state space containing the states u ∈ X .
For simplicity we assume that X is a reflexive Banach space with dual X∗. The driving functional
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E : X → R∞ := R ∪ {∞} is assumed to be differentiable (in a suitable way) such that the
potential restoring force is given by −DE(u) ∈ X∗. The third ingredient is a metric tensor G, i.e.
G(u) : X → X∗ is linear, symmetric and positive (semi-)definite.

The gradient flow associated with (X, E ,G) is the (abstract) force balance

G(u)u̇ = −DE(u) ⇐⇒ u̇ = −K(u)DE(u) := −∇GE(u), (2.1)

where we recall that the “gradient” ∇GE of the functional E is an element of X (in contrast to the
differential DE(u) ∈ X∗) and is calculated in terms of K(u) = G(u)−1. We call this equation an
abstract force balance, since G(u)u̇ can be seen as a viscous force arising from the motion of u. We
call the linear, symmetric and positive semidefinite operator K(u) : X∗ → X the Onsager operator
and the corresponding triple (X, E ,K) Onsager system.

Since we are mainly interested in reaction-diffusion systems we consider densities u : Ω → ]0,∞[I

of diffusive species X1, . . . , XI . The driving functional of the evolution E is of the form

E(u) =

∫

Ω

E(x, u(x))dx,

where Ω ⊂ R
d is a bounded domain and E is a sufficiently smooth energy density. It was shown

in [Mie11c] that for a wide class of reaction-diffusion systems gradient/Onsager structures can be
specified. The central point is that in the Onsager form we have an additive splitting of the Onsager
operator into a diffusive and a reaction part, namely K(u)ξ = Kdiff(u)ξ + Kreact(u)ξ, where ξ is
the thermodynamically conjugated force being dual to the rate u̇. We define the diffusion part Kdiff,
following the Wasserstein approach to diffusion introduced by Otto in [JKO98, Ott01], and the reaction
part Kreact as follows:

Kdiff(u)ξ = − div
(
M(u)∇ξ

)
, and Kreact(u)ξ = K(u)ξ. (2.2)

Here M(x, u) : R
I×d → R

I×d and K(x, u) ∈ R
I×I are symmetric, positive semidefinite tensors of

order four and two, respectively. The evolution is described by

u̇ = − div
(

M(x, u)∇
(
∂uE(x, u)

))
+ K(x, u)∂uE(x, u), (2.3)

subjected to the no-flux boundary condition M(x, u)∇
(
∂uE(x, u)

)
· ν(x) = 0 for x ∈ ∂Ω.

The symmetry of the tensor K(u) allows us to define the dual dissipation potential

Ψ∗(u; ξ) =
1

2
〈ξ,K(u)ξ〉 =

1

2

∫

Ω

∇ξ·M(u)∇ξ + ξ·K(u)ξdx.

We call Ψ∗ the dual dissipation potential since it is the Legendre transform of the dissipation potential
Ψ : (u, u̇) 7→ 1

2
〈G(u)u̇, u̇〉, i.e., we have

Ψ∗(u; ξ) = sup{ 〈ξ, v〉 − Ψ(u, v) | v ∈ X }.

In the following subsections we will specify the structure of the functional E and the Onsager operator
K and present some illustrative examples.
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2.1 Chemical reaction kinetics of mass-action type

Pure chemical reaction systems are ODE systems u̇ = R(u), where often the right-hand side is
written in terms of polynomials associated to the reaction kinetics. It was observed in [Mie11c] that
under the assumption of detailed balance (also called reversibility) such systems have a gradient
structure with the relative entropy

E(u) =
I∑

i=1

ui log(ui/wi)

as the driving functional, where wi > 0 denotes fixed reference densities. We assume that there are
R reactions of mass-action type (cf. e.g. [DeM84, GiM04, KjB08]) between the species X1, . . . , XI

denoted by

αr
1X1 + · · · + αr

IXI

kfw
r−⇀↽−

kbw
r

βr
1X1 + · · ·+ βr

IXI r = 1, . . . , R,

where kbw
r and kfw

r are the backward and forward reaction rates, and the vectors αr, βr ∈ N
I
0 contain

the stoichiometric coefficients of the rth reaction.

The associated reaction system for the densities (in a spatially homogeneous system, where diffusion
can be neglected) reads

u̇ = R(u) := −
R∑

r=1

(
kfw

r (u) uαr − kbw
r (u) uβr

)(
αr − βr

)
, (2.4)

where we use the monomial notation uα = uα1

1 · · ·uαI

I .

The main assumption to obtain a gradient structure is that of detailed balance, which means that there
exists a reference density vector w such that all R reactions are balanced individually, namely

∃w ∈ ]0,∞[I ∀ r = 1, . . . , R ∀u ∈ ]0,∞[I : kfw
r (u)wαr

= kbw
r (u)wβr

=: k∗
r(u). (2.5)

Here we have used the freedom to allow for reaction coefficients depending on the densities.

As in [Mie11c] we now define the Onsager matrix

K(u) =
R∑

r=1

k∗
r(u)Λ

(
uαr

wαr , uβr

wβr

)(
αr−βr

)
⊗

(
αr−βr

)
with Λ(a, b) =

a − b

log a − log b
(2.6)

and find that the reaction system (2.4) takes the form

u̇ = R(u) = −K(u)DE(u). (2.7)

This follows easily by using the definition of Λ and the rules for logarithms, namely

(
αr−βr

)
·
(
log u− log w) = log

(
uαr

/wαr) − log
(
uβr

/wβr)
.

2.2 Coupling diffusion and reaction

Now we consider coupled reaction-diffusion systems. The driving functional for the evolution is the
total relative entropy E(u) =

∫
Ω

E(u) dx. The Onsager operator is given by the sum K(u) =

5



Kdiff(u) + Kreact(u) with Kdiff and Kreact as in (2.2). Hence, with K given in (2.6) the coupled
system reads

u̇ = div
(
M(u)∇

(
log u− log w

))
+ K(u)

(
log u− log w

)
= div

(
M̃(u)∇u

)
+ R(u),

where M(u) = M̃(u)diag(u).

As an example for a reaction-diffusion system we consider the quaternary system studied in [DF∗07,
DeF08], namely the evolution of a mixture of diffusive species X1, X2, X3 and X4 in a bounded
domain Ω undergoing a reversible reaction of the type

X1 + X2

kfw

−⇀↽−
kbw

X3 + X4. (2.8)

For the density vector u = (u1, u2, u3, u4) we introduce the free energy functional

E(u) =

∫

Ω

4∑

i=1

ui log(ui/wi)dx.

For simplicity we assume that kfw = kbw = 1 and can take wi = 1. We have the stoichiometric
vectors α = (1, 1, 0, 0), β = (0, 0, 1, 1) and thus

K(u1, u2, u3, u4) = Λ
(
u1u2 , u3u4

)



1 1 −1 −1

1 1 −1 −1

−1 −1 1 1

−1 −1 1 1


 .

The tensor M(u) = diag(δ1u1, . . . , δ4u4) and the corresponding Onsager operator Kdiff(u) leads
to the reaction-diffusion system

u̇ = div
(
D∇u

)
− (u1u2 − u3u4)(α − β), where D = diag(δ1, . . . , δ4).

In fact, many reaction-diffusion systems studied in the literature (including semiconductor models in-
volving an elliptic equation for the electrostatic potential), see e.g. [GlH05, DeF06, DeF07, Gli09,
BoP11], have the structure developed above. Except for the recent work [Mie11c, GlM12, Mie12] the
gradient structure was not displayed and exploited explicitly, only the Liapunov property of the free
energy E was exploited for deriving a priori estimates.

2.3 Non-isothermal coupled systems

We now extend the system from the previous section and consider the non-isothermal case when the
temperature of the system is not constant but an independent field coupled to the densities u. For such
systems we have two functionals, namely the total energy, which is preserved during the evolution of
the system, and the total entropy, which acts as the driving force. Instead of using the temperature
θ : Ω → R as additional variable it has certain advantages to use the internal energy e : Ω → R as
free variable (see [Mie12, Mie11a] for details). Thus, the functionals are

E(u, e) =

∫

Ω

e(x)dx and S(u, e) =

∫

Ω

S(x, u(x), e(x))dx.
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Now the Gibbs relation leads to the definition of the temperature as θ = Θ(u, e) := 1/∂eS(u, e),
where the relation ∂eS(u, e) > 0 is imposed.

The major advantage of the formulation in terms of (u, e) is that energy conservation is a linear
constraint. Moreover, following [AGH02] it is reasonable to assume that S is a concave function in
(u, e). The equations can be written in (u, e) using the Onsager operator

K(u, e)

(
ξ

ε

)
= − div

(
M(u, e)∇

(
ξ

ε

))
+ K(u, e)ξ,

where the fourth order tensor M(u, e) has the block structure

M(u, e) =

(
Muu(u, e) Mue(u, e)
Mue(u, e) Mee(u, e)

)
,

where Muu(u, e), Mue(u, e) and Mee(u, e) are symmetric and positive semidefinite.

The evolution equations for (u, e) take the form

u̇ = − div
(
Muu(u, e)∇

(
∂uS(u, e)

)
+ Mue(u, e)∇

(
∂eS(u, e)

))
+ K(u, e)∂uS(u, e),

ė = − div
(
M

∗
ue(u, e)∇

(
∂uS(u, e)

)
+ Mee(u, e)∇

(
∂eS(u, e)

))
.

This form has the major advantage that we can read of “parabolicity” in the sense of Petrovsky (cf.
[LSU68, Sect. VII.8]) for the full coupled system by assuming that M is positive definite and that D2S
is negative definite. Hence, local existence results can be obtained from [Ama93].

Moreover, we are able to postulate suitable strongly coupled models by assuming that S has the form

S(u, e) = s(e) − u ·

(
log u − log w(e)

)
, (2.9)

where w(e) is the vector of reference densities in the detailed balance condition (2.5), which may now
depend on the internal energy (i.e. on the temperature).

2.4 Drift-reaction-diffusion equations

We close this section by considering a drift-diffusion system coming from the theory of semiconduc-
tor devices. More precisely, we treat the simplest semiconductor model, namely the van Roosbroeck
system. Here, we additionally need to take into account that the electric charge of the species gen-
erates an electric potential, whose electric field creates drift forces proportional to the charges of the
species. We recite here briefly the results of [Mie11c, Sect. 4] and refer to latter for the full discussion.
Moreover, we refer to [GlM12] for drift-diffusion systems exhibiting bulk-interface interaction.

The system’s state is described by the electron and hole densities n : Ω → ]0,∞[ and p : Ω →
]0,∞[, respectively. The charged species generate an electrostatic potential φn,p being the unique
solution of the linear potential equation

− div(ε∇φ) = δ + qnn + qpp in Ω, φ = φDir on ΓDir ⊂ ∂Ω, (2.10a)

where δ : Ω → R is a given doping profile and qn = −1 and qp = 1 are the charge numbers with
opposite sign. The evolution of the densities n, p is governed by diffusion, drift according to the electric
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field ∇φn,p, and recombination according to simple creation-annihilation reactions for electron-hole
pairs, namely

Xn + Xp
−⇀↽− ∅, i.e. α =

(
1

1

)
and β =

(
0

0

)
.

With mobilities µn(n, p), µp(n, p) > 0 and reaction rate κ(n, p) > 0 the drift-diffusion system reads

ṅ = div
(
µn(n, p)(∇n + qnn∇φn,p)

)
− κ(n, p)(np−1),

ṗ = div
(
µp (n, p)(∇p + qp p∇φn,p)

)
− κ(n, p)(np−1).

(2.10b)

For establishing a gradient structure we define the functional E as the sum of electrostatic and free
energy:

E(n, p) =

∫

Ω

1

2
|∇φn,p|2 + n(log n − 1) + p(log p − 1)dx.

The thermodynamic conjugated forces, also called quasi-Fermi potentials, read DnE(n, p) = log n+
qnφn,p and DpE(n, p) = log p + qpφn,p. Here we used that φn,p solves (2.10a) and depends linearly
on n and p. The Onsager operator K(n, p) takes the form

K(n, p)

(
ξn

ξp

)
=

(− div(µnn∇ξn)

− div µp(p∇ξp)

)
+ κ(n, p)Λ(np, 1)

(
1 1
1 1

) (
ξn

ξp

)
.

Thus again we have two Wasserstein terms for the electrochemical potentials coupled with a reaction
term. We immediately find that for qn = −qp (opposite charges of electron and holes) it holds that(

qn

qp

)
∈ KerK(n, p). This means, that the total charge Q(n, p) =

∫
Ω

δ+qnn+qppdx is a conserved

quantity, i.e., dQ(n,p)
dt

= 0. Moreover, using that

−K(n, p)DE(n, p) =

(
div

(
µnn∇(log n + qnφn,p)

)
− κΛ(np, 1) log(np)

div
(
µpp∇(log p + qpφn,p)

)
− κΛ(np, 1) log(np)

)

we see that
(

ṅ

ṗ

)
= −K(n, p)DE(n, p) is the desired Onsager structure of the van Roosbroeck

system (2.10).

A similar gradient system with only one species was considered in [AmS08], namely

u̇ = div
(
u∇Φu), −∆Φu + Φu = u in Ω, ∇u · ν = 0, Φ = 1 on ∂Ω.

It is a gradient system for the energy E(u) =
∫
Ω

u + 1
2
|∇Φu|2 + 1

2
|Φu−1|2 dx and the Wasserstein

operator K(u)ξ = − div(u∇ξ).

2.5 On the metric induced by reaction and diffusion

As we have seen above it is most natural to model reaction-diffusion systems in terms of the Onsager
operator. Hence, we will formulate the convexity conditions in terms of E , K, and the vector field F .
However, from the mathematical point of view the metric G = K−1 and the induced distance dK are
important as well. Following the famous Benamou-Brenier formulation [BeB00] we can characterize
our G in a similar fashion

〈G(u)v, v〉 = inf
{ ∫

Ω

Ξ:M(u)Ξ + ξ · K(u)ξdx
∣∣∣ Ξ ∈ L2(Ω; RI×d),

ξ ∈ L2(Ω; RI), ξ + divΞ = v
}
.

(2.11)
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In particular, concavity of the tensors M and K (i.e. for all ξ the mapping u 7→ ξ·K(u)ξ is concave)
we find that (u, v) 7→ 〈G(u)v, v〉 is convex, which can be used to establish the existence of geodesic
curves.

3 Geodesically λ-convex gradient systems

3.1 Abstract setup

In this section we provide an abstract formulation such that the theory of [DaS08] can be applied
to general systems (X, E ,K), in particular to systems of partial differential equations, where K is
allowed to be a partial differential operator as well. The main point of [DaS08] is that it is sufficient to
establish the geodesic λ-convexity of E on a dense set, where all the calculations on functions can
be done rigorously. Then the abstract theory allows us to extend the geodesic λ-convexity of E to the
closure of the domain of E .

We consider a set X which is a closed subset of a Banach space X , e.g. vectors of Radon measures.
For the smooth solutions and their velocities we need smaller spaces

Z ⊂ Y ⊂ X

with dense and continuous embeddings. For u ∈ Y the norm induced by the metric G(u) will be
equivalent to that of the Hilbert space H , for which we assume

Y ⊂ H with dense and continuous embedding.

We assume that open and connected sets Z ⊂ Z and Y ⊂ Y exist such that

Z ⊂ Z ∩ X , Z ⊂ Y ⊂ Y ∩ X , and Z is dense in X .

We consider a gradient systems (Z, E ,K) satisfying

E ∈ C2(Z; R), K ∈ C1(Y ; Lin(H∗; H)), G = K−1 ∈ C1(Y ; Lin(H ; H∗)). (3.1)

Thus, the evolution reads
u̇ = −F(u) = −K(u)DE(u),

where, having in mind PDEs, we assume the smoothness of the vector field F

F ∈ C1(Z; Y ) and DF ∈ C0(Z; Lin(Z; Y )) ∩ C0(Z; Lin(Y ; H)), (3.2)

which is what one would obtain composing the smoothness of K and E .

3.2 Geodesic curves and geodesic λ-convexity

The metric tensor G = K−1 generates a distance dK : X × X → [0,∞] in the usual way: For
u0, u1 ∈ X we define the set of connecting curves via

C(u0, u1) = { γ ∈ C1([0, 1]; X) | γ(0) = u0, γ(1) = u1 }.
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This allows us to define the distance dK as follows

dK(u0, u1)
2 = inf{ JK(γ) | γ ∈ C(u0, u1) } with JK(γ) =

∫ 1

0
Γ(γ(s), γ′(s))ds. (3.3)

Here γ′ denotes the derivative with respect to the arclength parameter s, and

Γ(u, v) = 〈G(u)v, v〉 if (u, v) ∈ Y × H and + ∞ else.

It is easy to see that dK is symmetric and satisfies the triangle inequality. We assume positivity, i.e.,

∀u, w ∈ Z : u 6= w =⇒ dK(u, w) > 0. (3.4)

Thus, we may consider also the metric gradient system (X, E , dK) in the sense of [AGS05]. We refer
to this work or to [CL∗10] for distances dK in more general cases. As in any metric space (X, dK), a
geodesic curve connecting u0 and u1 is a curve γ ∈ C(u0, u1) satisfying

∀ r, s ∈ [0, 1] : dK(γ(r), γ(s)) = |r−s| dK(u0, u1). (3.5)

Remark 3.1 If Y is a convex subset of Y ⊂ X and Y ∋ u 7→ 〈η,K(u)η〉 is concave for all η, then

(u, v) 7→ 〈G(u)v, v〉 is (jointly) convex on Y × H . As a consequence the functional JK in (3.3) and

hence d2
K : Y × Y → [0,∞[ is convex as well.

Remark 3.2 Only in very few cases dK can be calculated explicitly, all relying on the Wasserstein dis-

tance dWass, see [AGS05, Vil09]. For constants µ > 0 and κ ≥ 0 consider Kµ,κ(u) = − div(µu∇ξ)+
κuξ, which is affine in u. For κ = 0 we have, on the set X = { u ∈ M(Ω) | u ≥ 0 } of nonnegative

Radon measures, the distance

dKµ,0
(u1, u2) =

√
vol(u1)/µ dWass

(
1

vol(u1)
u1,

1
vol(u1)

u2

)
if vol(u1) = vol(u2) and +∞ else.

For κ the Onsager operator Kµ,0 is mass preserving, hence X decomposes into the components

Xα = { u ∈ X | vol(u) = α }. For µ = 0 there is no spatial interaction, and we find the explicit

formula dK0,κ
(u1, u2) =

√
4/κ‖√u1−

√
u2‖L2(Ω). For µ, κ > 0 there are geodesic curves between

all points of X , and we conjecture the formula

dKµ,κ
(u1, u2)

2 = sup
{∫

Ω

η(0, x)u1(dx) −
∫

Ω

η(1, x)u2(dx)
∣∣∣η̇ + µ

2
|∇η|2 ≤ κ

2
η2

}
.

This and other characterizations of reaction-diffusion distances will be investigated in subsequent

work.

For a given λ ∈ R, a functional E is called geodesically λ-convex with respect to the metric dK if for
all geodesics γ : [sa, sb] → X the map s → E(γ(s)) is λ-convex, i.e.

E(γ(sθ)) ≤ (1−θ)E(γ(s0)) + θE(γ(s1)) − λ
θ(1−θ)

2
(s0−s1)

2 (3.6)

for all θ ∈ [0, 1] and s0, s1 ∈ [sa, sb], where sθ = (1−θ)s0 + θs1.
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3.3 Properties of geodesically λ-convex gradient flows

In this section we collect some useful properties of geodesically λ-convex systems. We refer to
[AGS05] for the full discussion. First, we have a Lipschitz continuous dependence of the solutions
uj , j = 1, 2, on the initial data (also see [DaS08]), namely

for all t ≥ 0 : dK(u1(t), u2(t)) ≤ e−λtdK(u1(0), u2(0)). (3.7)

In particular, for λ ≥ 0 we have a contraction semigroup. If λ > 0 we obtain exponential decay
towards the unique equilibrium state u∗, which minimizes E , i.e.

dK(u(t), u∗) ≤ e−λtdK(u(0), u∗).

Second, the time-continuous solutions u : [0,∞[→ X can be well approximated by interpolants
obtained by incremental minimizations: Fixing a time step τ > 0 we define iteratively

uτ
k+1 ∈ Arg min

w∈X

(
E(w) + 1

2τ
dK(uτ

k, w)2
)
.

For geodesically λ-convex functionals E the minimizers are unique for any τ ∈]0, τ0[ if 1/τ0 +λ ≥ 0.
Moreover, if u is the time-continuous solution with u(0) = u0 and if uτ is the left-continuous piecewise
constant interpolant of (uτ

k)k∈N, then

dK(u(t), uτ (t)) ≤ C(u0)
√

τ e−λτ t for t ≥ 0,

see [AGS05, Thms. 4.0.9+10], where λτ = λ for λ < 0 and λτ = 1
λ

log(1+λτ) for λ > 0.

Finally, it was shown in [DaS08, Prop. 3.1] that for geodesically λ-convex functionals the solutions
of the (differential) gradient flow (2.1) satisfy a purely metric formulation in terms of the evolutionary
variational inequality (EVIλ)

1

2

d+

dt
d2
K(u(t), w) +

λ

2
d2
K(u(t), w) + E(u(t)) ≤ E(w), ∀w ∈ X, t > 0,

where for a function f : [0,∞[→ R we set d+

dt
f(t) = lim suph→0+

1
h

(
f(t+h) − f(t)

)
. The above

differential form is equivalent to the integrated form of (EVIλ) given by

eλτ

2
dK(u(t+τ), w)2 − 1

2
dK(u(t), w)2 ≤

τ∫
0

eλr dr
(
E(w)− E(u(t+τ))

)

for all t, τ ≥ 0 and w ∈ X.

In particular, the solutions of (EVIλ) satisfy the uniform regularization bound

E(u(t)) ≤ E(w) +
λ

2(eλt−1)
dK(u(0), w) for all w ∈ X and t > 0.

Moreover, the solutions are uniformly continuous in time:

dK(u(t+τ), u(t))2 ≤ 2
e−λτ−1

λ

(
E(u(t)) − inf

w∈X
E(w)

)
.

11



3.4 Completion of smooth gradient flows

In addition to (3.1) and (3.2) we now assume that (Z, E ,K) generates a global semiflow in the form
u(t) = St(u(0)) with a semigroup S : [0,∞[ ×Z → Z , i.e.

St ◦ Sr = St+r for r, t ≥ 0;

St(u) → u in Z and 1
t
(St(u)−u) → −F(u) in Y for t → 0+.

The assumptions on the semiflow S are

S ∈ C0([0,∞[×Z; Z) ∩ C1([0,∞[×Z; Y ) ∩ C2([0,∞[×Z; H). (3.8)

In particular, this implies that DS and F(u) = −∂tSt(u)|t=0 satisfy

(t, u) 7→ DSt(u) ∈ C0([0,∞[×Z; Lin(Z; Y )) ∩ C1([0,∞[×Z; Lin(Z; H)). (3.9)

We define the functionals A : Y × H → R and B : Z × Y → R via

A(u, v) = 〈G(u)v, v〉, B(u, v) = 〈G(u)v, DF(u)v〉+
1

2
〈DG(u)[F(u)]v, v〉

and obtain the following formulas.

Proposition 3.3 (i) For u ∈ C1([t0, t1];Y) and v ∈ C1([t0, t1]; H) we have

d
dt
A(u(t), v(t)) = 2〈G(u)v, v̇〉 + 〈DG(u)[u̇]v, v〉. (3.10)

(ii) For all u ∈ Z , v ∈ Z , and t ≥ 0 we have

1
2

d
dt
A(St(u), DSt(u)v) + B(St(u), DSt(u)v) = 0. (3.11)

Proof: Part (i) follows simply by the assumed smoothness of G and the chain rule for the Fréchet
derivative in Banach spaces. Part (ii) is an application of part (i) by using d

dt
St(u) = −F(St(u)) and

d
dt

DSt(u) = −DF(St(u))DSt(u).

The central idea of [DaS08] is the transport of curves γt ∈ C(u0,St(u1)) defined via

γt(s) = Sst(γ(s)) for γ ∈ C(u0, u1) ∩ C2([0, 1];Z).

The main tool is the following relation (3.12) for the functions

A(s, t) := A(γt(s), γ
′
t(s)), B(s, t) := B(γt(s), γ

′
t(s)), and E(s, t) := E(γt(s)),

where γ′
t(s) = ∂s(γt(s)) ∈ Y .

Proposition 3.4 For every curve γ ∈ C(w, u) we have

1

2

∂

∂t
A(s, t) +

∂

∂s
E(s, t) + sB(s, t) = 0. (3.12)
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Proof: We first observe that the mapping Γ : (s, t) 7→ γt(s) satisfies

Γ ∈ C0([0, 1]× [0,∞[ ;Z) ∩ C1([0, 1]× [0,∞[ ; Y ) ∩ C2([0, 1]× [0,∞[ ; H).

In particular, using the definition of the semiflow St we have the relations

∂tγt(s) = −sF(γt(s)) and ∂t(γ
′
t(s)) = ∂s∂tγt(s) = −F(γt(s)) − sDF(γt(s))γ

′
t(s).

Note that we will not need an expression for γ′
t(s). Applying Proposition 3.3(i) and the above formulas

for ∂tγt(s) and ∂t(γ
′
t(s)) we find

1
2

∂
∂t

A(s, t) = −〈G(γt(s))γ
′
t(s),F(γt(s))〉 − 〈G(γt(s))γ

′
t(s), sDF(γt(s))γ

′
t(s)〉

− 1
2
〈DG(γt(s))[sF(γt(s))]γ

′
t(s), γ

′
t(s)〉

= −〈G(γt(s))γ
′
t(s),K(γt(s))DE(γt(s))〉 − sB(γt(s), γ

′
t(s))

= −〈DE(γt(s)), γ
′
t(s)〉 − sB(s, t) = − ∂

∂s
E(s, t) − sB(s, t),

which is the desired result.

One of the main achievements of [DaS08] was to show that the identity (3.12) can be used to derive
the evolutionary variational inequality (EVIλ), namely

1

2

d+

dt
dK(St(u), w)2 +

λ

2
dK(St(u), w)2 + E(St(u)) ≤ E(w) for all t ≥ 0 and w ∈ Z. (3.13)

It is especially interesting that this result holds without any completeness of the space Z . The crucial
assumption needed is that B(s, t) can be estimated in terms of A(s, t), namely in the form B(s, t) ≥
λA(s, t) along the curves γt. The following result is an abstract version of the ideas in [DaS08].

Theorem 3.5 Assume that (Z, E ,K) generates the semigroup S and the above conditions (3.1)—
(3.8) hold. If additionally

∀u ∈ Z ∀ v ∈ Y : B(u, v) ≥ λA(u, v),

i.e. 〈G(u)v, DF(u)v〉+
1

2
〈DG(u)[F(u)]v, v〉 ≥ λ〈G(u)v, v〉,

(3.14)

then, the semigroup S satisfies (EVIλ) given in (3.13).

Proof: We apply the theory in [DaS08, Sect. 5], where the underlying metric space (X, d) is not
assumed to be complete. Hence we are able to choose (Z, dK). Following the analysis in the proof of
[DaS08, Theorem 5.1] (see (5.14) and (5.17) there) we obtain the final estimate

eλts(λt)
2

dK(St(u), w)2 − 1
2
dK(u, w)2 + E2λ(t)E(St(u)) − tE(w) = O(t2).

Dividing by t, using s(t) = t/ sinh(t) = 1 + O(t2) and Eλ(t) =
∫ t

0
eλr dr = t + O(t2), and taking

the limit t → 0+ we obtain

1
2

d+

dt
dK(St(u), w)2

∣∣
t=0

+ λ
2
dK(u, w)2 + E(u) ≤ E(w) for w ∈ Z.

Since u ∈ Z was arbitrary, it can be replaced by ũ = St(u), and the desired (EVIλ) in (3.13) follows.

Since in applications the metricG is often not given explicitly (see examples in Section 4), it is desirable
to express the fundamental estimate (3.14) in terms of the Onsager operator K = G−1.
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Proposition 3.6 Assume that

∀ u ∈ Z ∀ η ∈ G(u)Y : M(u, η) ≥ λ〈η,K(u)η〉,
where M(u, η) := 〈η, DF(u)K(u)η〉 − 1

2
〈η, DK(u)[F(u)]η〉, (3.15)

then estimate (3.14) holds.

Proof: The proof is immediate since for a given v ∈ Y we can use η = G(u)v in (3.15). After using
the formula for the derivative of the inverse, namely DG(u)[w] = −G(u)DK(u)[w]G(u) we find
(3.14).

The conditions in Proposition 3.6 are similar to the conditions of Bakry and Émery [BaÉ85, Bak94].
We now return to the metric evolution in the larger space X . For this, we assume that dK on Z can
be extended to a metric on X such that

(X , dK) is a complete metric space. (3.16)

Moreover, E : Z → R is assumed to have a lower semicontinuous extension E : X → R ∪ {∞}
(with respect to the metric topology). Finally, Z is assumed to be dense, viz.

∀u ∈ X with E(u) < ∞ ∃un ∈ Z : dK(un, u) → 0 and E(un) → E(u). (3.17)

Using the Lipschitz continuity (3.7), there is a unique continuous extension S : [0,∞[ × X → X .
Then, [DaS08, Thm. 3.3] provides the following result.

Theorem 3.7 If (3.16), (3.17) and the assumptions of Theorem 3.5 hold, then the semiflow S asso-

ciated with the gradient system (X , E, dK) satisfies EVIλ (3.13) and the Lip-schitz continuity (3.7)
with (E ,S) replaced by (E ,S). Moreover, E is geodesically λ-convex on X , i.e. for every arc-length

parameterized geodesic curve γ ∈ C0([0, 1];X ) we have

E(γ(s)) ≤ (1−s) E(γ(0)) + s E(γ(1)) − λ

2
s(1−s) dK(γ(0), γ(1))2

for s ∈ [0, 1]. (3.18)

4 Examples

This section surveys possible applications of the abstract methods developed above to scalar equa-
tions as well as reaction-diffusion systems. In particular, we show geodesic λ-convexity in a smooth
setting by establishing the estimate M(u, ξ) ≥ λ〈ξ,K(u)ξ〉. In particular, we generalize the known
results for scalar drift-diffusion equations (with conserved mass) to systems with reaction terms (non-
conserved masses). The discussion of the corresponding metric spaces (X, dK) is postponed to
future research.

4.1 Pure reaction systems and Markov chains

In [Mie11c] an entropy gradient structure was established for general reaction systems of mass-action
type that satisfy the detailed balance condition. We consider a vector u ∈ ]0,∞[n of densities and R
polynomial reactions

u̇ = −
R∑

r=1

kr(u)
(uαr

wαr − uβr

wβr

)(
αr − βr

)
, where uαr

= Πn
i=1u

αr
i

i . (4.1)
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Here w ∈ ]0,∞[n is the reference density, which is obviously a steady state and satisfies the detailed
balance condition. Moreover, kr(u) ≥ 0 is the reaction coefficient (normalized with respect to w), and
the vectors αr, βr ∈ ]0,∞[n are the stoichiometric vectors for the forward and backward reactions.
Usually the entries are assumed to be nonnegative integers, but this is not necessary here. The
gradient system (]0,∞[n , E, K) with

E(u) =
n∑

i=1

ui log(ui/wi) and K(u) =
R∑

r=1

kr(u)Λ
(

uαr

wαr , uβr

wβr

)(
αr−βr

)
⊗

(
αr−βr

)

gives (4.1). We find M(u, ξ) = ξ·M(u)ξ, where M(u) ∈ R
I×I is defined via

M(u) = 1
2

(
K(u)DF(u)T + DF(u)K(u) − DK(u)[F(u)]

)
,

see also [Mie11b]. Note that the vector field F(u) = K(u)DE(u) is nonlinear and that the matrices
K(u) and M(u) have no homogeneity or concavity properties, in general.

We want to study a few simple cases and discuss the possibility of geodesic λ-convexity. For R = 1
we drop the reaction number r and write γ = α − β and ̺ = (ui/wi)i. Then,

F(u) = φ(u)γ with φ(u) = k(u)(̺α − ̺β),

K(u) = κ(u)γ ⊗ γ with κ(u) = k(u)Λ(̺α, ̺β),

M(u) = m(u)γ ⊗ γ with m(u) = κ(u)Dφ(u) · γ − 1
2
φ(u)Dκ(u) · γ.

The general case seems too difficult to be analyzed, hence we reduce to the case k(u) ≡ 1. Intro-
ducing the matrix V = diag(1/ui)i we have Du(uα)[γ] = uαα · V γ, and after some elementary
calculations involving the properties of the function Λ (see [Mie11b]) we find

m(u) = 1
2
Λ(̺α, ̺β)

(
̺αα − ̺ββ + Λ(̺α, ̺β)(α−β)

)
· V (α−β).

For geodesic λ-convexity we have to show m(u) ≥ λΛ(̺α, ̺β) which after dividing by Λ(̺α, ̺β)
leads to the formula

λ = 1
2
inf{∑n

i=1
(αi−βi)

wi̺i

[
̺ααi − ̺ββi + Λ(̺α, ̺β)(αi−βi)

]
| ̺ ∈ ]0,∞[n }.

In the special case where αiβi = 0 for all i we find the simpler form

λ = 1
2
inf{∑n

i=1
1

wi̺i

(
α2

i ̺
α+β2

i ̺
β+Λ(̺α, ̺β)(α2

i +β2
i )

)
| ̺ ∈ ]0,∞[n } ≥ 0.

This formula applies to example (2.8) where α = (1, 1, 0, 0)T and β = (0, 0, 1, 1)T. Because of
|α|, |β| ≥ 2 the infimum is λ = 0 (by choosing ̺ = ε(1, 1, 1, 1) and ε → 0).

Example 4.1 The annihilation-creation reaction modeling the recombination and generation of electron-

hole pairs in semiconductors, cf. [Gli08, GlG09] and Section 2.4, reads

u̇ = −
(
u1u2 − 1

)
(1, 1)T, where α = (1, 1)T

and β = (0, 0)T. (4.2)

The formula yields λ = 1
2
inf{

(
1
u1

+ 1
u2

)(
u1u2+Λ(u1u2, 1)

)
| u1, u2 > 0 } = cosh(1) > 0.
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Discrete Markov chains can be seen as special reaction systems where only exchange reactions
Xi ⇌ Xj occur. The reaction system takes the form

u̇ = R(u) = Qu, where Qij ≥ 0 for i 6= j and
∑I

i=1 Qij = 0. (4.3)

We assume that there is a unique steady state w with wi > 0 for all i (also called irreducibility). A
much stronger assumption is the condition of detailed balance, which reads Qijwj = Qjiwi for i, j =
1, ..., I . According to [Mie11b, Maa11], (4.3) is induced by the gradient system (XMkv, EMkv, KMkv),
where XMkv = {u ∈ [0, 1]I | ∑I

i=1 ui = 1 }, EMkv(u) =
∑I

i=1 ui log(ui/wi), and

KMkv(u) =
∑

1≤i<j≤I

Qijwj Λ
(

ui

wi
,

uj

wj

) (
ei−ej

)
⊗

(
ei−ej

)
∈ R

I×I ,

where ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ R
I are the unit vectors. Moreover, it is shown in [Mie11b] that

for all Markov chains there is a λ ∈ R such that (EMkv, KMkv) is geodesically λ-convex. For special
classes, like tridiagonal Q, explicit estimates for λ are obtained.

4.2 Scalar diffusion equation

We consider a bounded, convex domain Ω ⊂ R
d, d ≥ 1, with smooth boundary. In Ω we are given

the scalar diffusion equation

u̇ = div(a(u)∇u) in Ω, ∇u · ν = 0 on ∂Ω. (4.4)

This equation is the gradient flow of the energy E with respect to the Onsager operator K given via

E(u) =

∫

Ω

E(u)dx and K(u)ξ = − div(µ(u)∇ξ),

where E and µ are such that µ(u)E ′′(u) = a(u) holds. In particular, we assume that E, µ ∈
C2(]0,∞[) and the sign conditions

µ(u) ≥ 0, µ′′(u) ≤ 0, E ′′(u) > 0 for all u > 0.

We impose that solutions u : Ω → R of (4.4) are sufficiently smooth for given smooth initial conditions
such that the assumptions of the last section for the semiflow St : u(0) 7→ u(t) are satisfied.

In the following we slightly deviate from the setting in Section 3.4 in that we consider Y and Z to be
open and connected subsets of affine spaces u∗+Y and u∗+Z where the shift is given by u∗ =
1/|Ω|. This modification allows us to extend our theory to the space of probability measures ρ ∈
P(Ω). More precisely, let X = M(Ω) the space of Radon measures ρ (using that Ω is bounded all
moments

∫
Ω
|x|p dρ(x) are finite) and X = P(Ω) denotes the subset of probability measures such

that
X = { ρ ∈ X | ρ(Ω) = 1 and ρ ≥ 0 }.

The results of Section 3.4 can be easily adapted to this case.

The quadratic form associated with the operator K defines in a natural way the spaces

H∗ = H1
av(Ω) = { ξ ∈ H1(Ω) |

∫
Ω

ξ dx = 0 }, H = H−1
0,av = (H1

av(Ω))∗.
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Moreover, we choose s ≥ 4 such that s > 2 + d/2 and define the spaces

Y = { v ∈ Hs−2(Ω) |
∫
Ω

vdx = 0 and ∇v · ν = 0 on ∂Ω }, Y = { u ∈ u∗+Y | inf u > 0 },
Z = Hs(Ω) ∩ Y, Z = { u ∈ u∗+Z ∩ Y | ∇

(
div(a(u)∇u)

)
· ν = 0 on ∂Ω }.

The boundary condition in the definition of the set Z is necessary to ensure that the semiflow satisfies
S ∈ C1([0,∞[×Z; Y ). In particular, for a solution t 7→ u(t) ∈ Z holds u̇(t) ∈ Y . Obviously we
have Z ⊂ Y ⊂ X and Y ⊂ u∗ + Y and Z ⊂ u∗ + Z with dense embeddings.

Our analysis is similar to that in [DaS08, Sect. 4] with the main difference that we have to take care of
the boundary conditions when doing integrations by part. There are two crucial observations for the
case with boundaries. Firstly, the curvature of the boundary of convex bodies provides a sign for the
normal derivative ∇(|∇ξ|2) · ν ≤ 0, whenever ∇ξ · ν = 0 holds, see Proposition 4.2. Secondly, the
testfunctions ξ ∈ G(u)Y will satisfy two boundary conditions, namely

− div(µ(u)∇ξ) = v ∈ Y =⇒
(
∇ξ · ν = 0 and ∇

(
div(µ(u)∇ξ)

)
· ν = 0

)
.

In order to show that the assumptions of Proposition 3.6 hold we have to compute the quadratic form
M(u, ξ) = 〈ξ, DF(u)K(u)ξ〉 − 1

2
〈ξ, DK(u)[F(u)]ξ〉, with

F(u) = − div(a(u)∇u) and DF(u)[v] = − div
(
a′(u)v∇u + a(u)∇v

)
.

For ξ ∈ G(u)Y we use the abbreviation v = K(u)ξ ∈ Y and obtain

M0(u, ξ) = −
∫

Ω

ξ
(
div(a′(u)v∇u + a(u)∇v)

)
dx − 1

2

∫

Ω

µ′(u)
(
− div(a(u)∇u)

)
|∇ξ|2dx

=

∫

Ω

∇ξ ·
(
a′(u)v∇u + a(u)∇v

)
dx −

∫

Ω

a(u)∇u · ∇
(
µ′(u)1

2
|∇ξ|2

)
dx,

where in both cases the boundary terms vanish, namely using (a′(u)v∇u+a(u)∇v) · ν = 0 and
a(u)∇u · ν = 0 from v ∈ Y and u ∈ Z . Applying integration by parts one more time yields

M0(u, ξ) =

∫

Ω

a(u)∆ξ div(µ(u)∇ξ)dx−
∫

Ω

a(u)∇u · ∇
(
µ′(u)1

2
|∇ξ|2

)
dx

=

∫

Ω

∇H(u) ·
(
(∆ξ)∇ξ −∇(1

2
|∇ξ|2)

)
+ a(u)µ(u)(∆ξ)2 − a(u)µ′′(u)

2
|∇u|2|∇ξ|2dx,

where we have set H(u) =
∫ u

0
a(y)µ′(y)dy and used that ∇ξ · ν = 0. Finally, integrating by parts

one last time leads to

M0(u, ξ) =

∫

Ω

H(u)|D2ξ|2 +
(
a(u)µ(u)−H(u)

)
(∆ξ)2 − a(u)µ′′(u)

2
|∇u|2|∇ξ|2dx

−
∫

∂Ω

H(u)∇(1
2
|∇ξ|2) · ν da.

(4.5)

Here we used Bochner’s formula div((∆ξ)∇ξ) − ∆(1
2
|∇ξ|2) = (∆ξ)2 − |D2ξ|2. The boundary

integral is nonpositive using the assumption H(u) ≥ 0 and Proposition 4.2 below.

Thus, we have shown that M(u, ξ) ≥ 0 holds if we assume that u 7→ µ(u) is concave and aµ ≥
d−1

d
H ≥ 0. Here the latter condition is due to the elementary estimate

∀E ∈ R
d×d : α|E|2 − β(tr E)2 ≥ 0 ⇔ α ≥ max{0, dβ}.
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Now, Proposition 3.6 states that (E ,K) is geodesically 0-convex. Since the present result will be a
special case of the result in the next subsection, we refer to Theorem 4.3 for the precise statement.

Thus, we have generalized [DaS08, Thm. 4.2] from manifolds without boundary to the case of convex
domains in R

d with smooth boundaries. The condition of convexity is quite natural in the context of
optimal transport, since only convex domains are still complete metric length-spaces with respect to
the Euclidean distance.

We close this subsection with the result on the signs of ∇
(
|∇ξ|2

)
· ν on the boundary. We refer to

[Gri85, Ch. 3] and [GST09, Lem. 5.2] for previous proofs, but still give an independent proof of a more
general result needed in Section 4.7. It involves the second fundamental form I of the boundary, i.e.
for two tangent vectors τ1, τ2 ∈ Tx∂Ω we have I(τ1, τ2) = τ1 ·Dν(x)τ2 = I(τ2, τ1), where ν is the
outer normal vector.

Proposition 4.2 Assume that Ω ⊂ R
d is a domain with C2 boundary. Then, for functions ξ1, ξ2 ∈

H3(Ω) with ∇ξ1 · ν = ∇ξ2 · ν = 0 on ∂Ω we have the identity

∇
(
∇ξ1 · ∇ξ2

)
· ν = −2I(∇‖ξ1,∇‖ξ2), (4.6)

where ∇‖ξ denotes the tangential part of the gradient ∇‖ξ = ∇ξ − (∇ξ·ν)ν. In particular, if Ω is

convex and ξ2 = ξ1, then ∇
(
|∇ξ1|2

)
· ν ≤ 0 on ∂Ω.

Proof: Without loss of generality we assume that ξj is smooth. We denote by ν ∈ C1(Ω) a smooth
extension of the outer unit normal ν into Ω. For x ∈ Ω we compute

∇
(
∇ξ1 · ∇ξ2

)
· ν(x) = ∇ξ2 · D2ξ1 ν + ∇ξ1 · D2ξ2 ν

= ∇ξ2 ·
(
∇

(
∇ξ1 · ν

)
− Dν∇ξ1

)
+ ∇ξ1 ·

(
∇

(
∇ξ2 · ν

)
− Dν∇ξ2

)
.

(4.7)

On the boundary the product ∇ξj · ν vanishes identically, such that ∇‖(∇ξj · ν) = 0 on ∂Ω. Hence,
there are scalar functions γj : ∂Ω → R such that ∇(∇ξj · ν

)
= γν on ∂Ω. Inserting this into (4.7)

and using ∇ξj · ν = 0 we have established (4.6).

For a convex body, the second fundamental form is positive semidefinite. Hence, formula (4.6) gives
the desired result for ξ1 = ξ2.

We end this subsection by mentioning that the theory can also be applied to smooth inhomogeneous
systems, e.g. where the mobility depends on the spatial variable x ∈ Ω:

u̇ = −F(u) = div(M(x)∇u), K(u)ξ = − div(u M(x)∇ξ), E(u) =

∫

Ω

u logudx,

where M ∈ W2,∞(Ω; Rd×d
spd ), and there exists α0 > 0 with a·M(x)a ≥ α0|a|2. The appropriate

boundary conditions are now (M(x)∇u(x)) · ν(x) = 0 = (M(x)∇ξ(x)) · ν(x) for x ∈ ∂Ω. Doing
the appropriate integrations by part we obtain the formula

M(u, ξ) = 〈DF(u)ξ,K(u)ξ〉 − 1
2
〈ξ, DK(u)[F(u)]ξ〉

=

∫

Ω

div(M∇ξ) div(uM∇ξ) + 1
2
div(M∇u)∇ξ · M∇ξ dx

=

∫

Ω

u
(
∇ξ·B∇ξ + ∇ξ·B:D2ξ + |MD2ξ|2

)
dx −

∫

∂Ω

uM∇
(

1
2
∇ξ·M∇ξ

)
· ν da,
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where all terms involving third derivatives of ξ cancel, and the tensors B and B are given via M,
DM, and D2

M. Proposition 4.2 can be generalized for spatially dependent mobilities leading to three
additional terms due to the spatial derivatives of M:

M∇
(
∇ξ1·M∇ξ2

)
· ν = −I(M∇ξ1, M∇ξ2) + ∇ξ1 · DM[Mν]∇ξ2

−∇ξ2 · DM[M∇ξ1]ν −∇ξ1 · DM[M∇ξ2]ν.

If the sum of these terms is negative, using α0 > 0 and M ∈ W2,∞(Ω) (giving B, B ∈ L∞(Ω))
and pointwise minimization over D2ξ(x) ∈ R

d×d
sym provides a λM ∈ R such that M(u, ξ) ≥

λM〈ξ,K(u)ξ〉 = λM

∫
Ω

u∇ξ·M∇ξ dx.

For an isotropic mobility matrix M(x) = µ(x)I satisfying the boundary relation µI(τ, τ) ≥ ∇µ·ν|τ |2
for all x ∈ ∂Ω and τ ∈ Tx∂Ω we obtain the simplified estimate

M(u, ξ) =

∫

Ω

u
(
∇ξ·

(
(1

2
µ∆µ+1

2
|∇µ|2)I − µD2µ

)
∇ξ

+ 2µ∇ξ·D2ξ∇µ − µ∆ξ∇µ·∇ξ + µ2|D2ξ|2
)

dx

+

∫

∂Ω

u
(
µ2

I(∇ξ,∇ξ)− µ(∇µ · ν)|∇ξ|2
)
dx (4.8)

≥
∫

Ω

u
(
∇ξ·

(
µ

2
∆µI − µD2µ

)
∇ξ − d−2

4

(
∇ξ·∇µ

)2
)

dx ≥ λM〈ξ,K(u)ξ〉,

where λM = inf{ 1
2
∆µ(x) − σmax

(
D2µ(x) + d−2

4µ(x)
∇µ(x) ⊗∇µ(x)

)
| x ∈ Ω },

where again minimization with respect to D2ξ as used in the first estimate. Here σmax(H) ∈ R

denotes the largest eigenvalue of a symmetric matrix H ∈ R
d×d. In space dimensions d = 1 and 2

we obtain

d = 1 : λM = inf{−µ′′(x)/2 + (µ′(x))2/(4µ(x)) | x ∈ Ω }, (4.9a)

d = 2 : λM = inf{ 1
2

(
σmin(D

2µ(x)) − σmax(D
2(µ(x))

)
| x ∈ Ω }. (4.9b)

Our result can be compared to the estimates obtained in [Lis09, Thm. 1.5] with complete different
methods. The results there are formulated using the Wasserstein distance WI , while our results are
formulated in terms of dK which is called WG there, see [Lis09, Eqn. (1.67)]. Thus, our rate λM may
differ from the contractivity rate α, which takes the form α = inf{−σmax

(
D2µ(x) + d∇√

µ(x) ⊗
∇√

µ(x)
)
| x ∈ Ω } in our smooth setting.

4.3 A scalar drift-diffusion equation with concave mobility

We now generalize the diffusion equation of the previous section by adding drift terms induced by
a given potential V . Moreover, we allow the density u to be restricted to a bounded interval, i.e. we
assume that there is a bound U ∈ ]0,∞] such that

u(t, x) ∈ ]0, U [ a.e.

Such restriction occur in systems with exclusion principles. We refer to [GaG05, BD∗10] and Section
4.7. Our work relates to [CL∗10] and [LMS12, Prop. 4.6], where the entropy and the potential energy
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are studied concerning their geodesic λ-convexity. We make the result of the latter work more precise.
We have the total energy and the Onsager operator

E(u) =

∫

Ω

E(u(x)) + u(x)V (x)dx and K(u)ξ = − div
(
µ(u)∇ξ).

The drift-diffusion equation takes the form

u̇ = div(a(u)∇u + µ(u)∇V
)

in Ω, (a(u)∇u + µ(u)∇V ) · ν = 0 on ∂Ω, (4.10)

where a(u) = µ(u)E ′′(u). We again impose the sign conditions

µ(u) > 0, µ′′(u) ≤ 0, E ′′(u) > 0 for all u ∈ ]0, U [. (4.11)

In the case U < ∞ we explicitly allow for the case µ′(u) < 0 which occurs in the commonly used
mobility µ(u) = u − u2 on ]0, 1[. We will see that the non-monotonicity of µ gives rise to new
conditions. We emphasize that the following result does not need the condition ∇V · ν = 0 on ∂Ω
employed in [LMS12, Prop. 4.6].

Theorem 4.3 Assume that Ω is a convex bounded domain in R
d with smooth boundary. In addition

to (4.11) define H(u) =
∫ u

0
µ(y)µ′(y)E ′′(y)dy and assume

H(u) ≥ 0, µ(u)2E ′′(u) ≥ d−1
d

H(u) for all u ∈ ]0, U [. (4.12)

If the potential V : Ω → R satisfies V ∈ W2,∞(Ω), then (E ,K) are geodesically λ-convex for

λ = λV
2 − λV

1 , where

λV
1 =

9

8
‖∇V ‖2

L∞ sup{−µ′′(u)/E′′(u) | u ∈ ]0, U [ } ≥ 0,

λV
2 = inf{µ′(u) a · D2V (x)a | u ∈ ]0, U [, x ∈ Ω, a ∈ R

d
with |a| = 1 }.

Before giving the proof of this result note that the case of a linear mobility (i.e. µ(u) = u) for the
Wasserstein distance gives the standard result as λV

1 = 0. Moreover, λV
2 simply characterizes the

λ-convexity of V on the Euclidean space Ω. Note that in the case µ′(u) < 0 we need λ-concavity of
V .

Proof: We proceed exactly as in the previous subsection. We only have the new terms associated
with V . Since K is independent of V and the vector field F depends linearly on V , the new terms are
also linear in V . Together with M0 from (4.5) we have

MV (u, ξ) = M0(u, ξ)

+

∫

Ω

µµ′∇ξ·D2V ∇ξ +
µµ′′

2

(
2∇u·∇ξ ∇V ·∇ξ − |∇ξ|2∇V ·∇u

)
dx.

(4.13)

To reach this result, we emphasize that the integrations by parts have to be done of the full vec-
tor field F such that w = K(u)ξ in

∫
Ω

ξDF(u)[w] dx satisfies the additional boundary condition
[w(a′(u)∇u+µ′(u)∇V ) + a(u)∇w]·ν = 0 obtained by differentiating the boundary condition in
(4.10).

While the first term in (4.13) can be immediately estimated from below by λV
2 µ|∇ξ|2, the other terms

do not have a sign. That is why in [CL∗10] it was expected that the potential energy
∫
Ω

uV dx is
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not geodesically convex. However, to estimate the geodesic convexity of E we can use the nonneg-
ative term −µ′′ a

2
|∇u|2|∇ξ|2 occurring in M0 and not needed otherwise to show positivity of M0.

Abbreviating U = ∇u and X = ∇ξ, we have to estimate the following terms from below:

− µ′′ a
2
|U |2|X|2 + µµ′′

2

(
2U ·X ∇V ·X − |X|2∇V ·U

)
≥ (−µ′′)|X|2

(
a
2
|U |2−3

2
µ|U ||∇V |

)

≥ −(−µ′′)|X|2 9µ2

8a
|∇V |2 = − (−µ′′)

E′′
|∇V |2µ|X|2 ≥ −λV

1 µ|X|2.
Thus, the result is established.

We conclude by making the conditions more explicit in the case of µ(u) = u − u2 on ]0, 1[ and
E ′′(u) = 1/m(u), i.e. E(u) = u logu + (1−u) log(1−u). We obtain λV

1 = 9‖∇V ‖2
∞/16 and

λV
2 = ‖rspec(D

2V (·))‖∞, where rspec denotes the spectral radius.

4.4 A scalar nonlinear reaction-diffusion equation

In a convex, bounded, and smooth domain Ω we consider the reaction-diffusion equation

u̇ = ∆u − f(u) in Ω, ∇u · ν = 0 on ∂Ω.

We assume that it is the gradient flow of the free energy E and the Onsager operator K defined via

E(u) =

∫

Ω

u(log u−1)dx and K(u)ξ = − div(u∇ξ) + κ(u)ξ. (4.14)

Hence, we assume the relation f(u) = κ(u) log u. The reaction coefficient κ satisfies

κ ∈ C0([0,∞[) ∩ C2(]0,∞[),

κ(0) = 0, κ(u), κ′(u) > 0 and κ′′(u) ≤ 0 for all u > 0.
(4.15)

The concavity of κ implies that of u 7→ 〈ξ,K(u)η〉, which is the prerequisite of the convexity of d2
K,

see Remark 3.1.

Similar to the previous examples we introduce the spaces

H∗ = H1(Ω), H = H−1
0 (Ω),

Y = { u ∈ Hs−2(Ω) | ∇u · ν = 0 on ∂Ω }, Y = { u ∈ Y | inf u > 0 },
Z = Hs(Ω) ∩ Y, Z = { u ∈ Z ∩ Y | ∇(∆u − f(u)) · ν = 0 }

and calculate M(u, ξ). With DF(u)[v] = −∆v − f ′(u)v and v = K(u)ξ we obtain

M(u, ξ) =

∫

Ω

ξ
(
−∆v+f ′(u)v)dx − 1

2

∫

Ω

(
−∆u+f(u))

)(
|∇ξ|2+κ′(u)ξ2

)
dx = I1 + I2.

Integrating twice the first term in I1 (using ∇ξ · ν = ∇v · ν = 0 on ∂Ω) and inserting the definition
of v = K(u)ξ we find

I1 =

∫

Ω

(
−∆ξ + f ′(u)ξ

) (
− div(u∇ξ) + κ(u)ξ

)
dx

=

∫

Ω

−u∇∆ξ · ∇ξ + u∇
(
f ′(u)ξ

)
· ∇ξ + ∇ξ ·

(
κ(u)ξ

)
+ f ′(u)κ(u)ξ2dx

=

∫

Ω

−u∇∆ξ · ∇ξ + (uf ′+κ)|∇ξ|2 + (uf ′′+κ′)ξ∇ξ·∇u + f ′κξ2 dx.
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Similarly, we integrate by parts the first term in I2 (using ∇u · ν = 0) and obtain

2I2 =

∫

Ω

−∇u · ∇
(
|∇ξ|2+κ′ξ2

)
− f |∇ξ|2 − 2fκ′ξ dx

= −
∫

∂Ω

u∇
(
|∇ξ|2

)
·ν da +

∫

Ω

u∆
(
|∇ξ|2

)
−f |∇ξ|2−2κ′ξ∇ξ·∇u−

(
κ′′|∇u|2+fκ′

)
ξ2 dx.

Again using Proposition 4.2 we can estimate the boundary integral and obtain

M(u, ξ) ≥
∫

Ω

u|D2ξ|2 + M1(u)|∇ξ|2 + m2(u)ξ∇ξ·∇u +
(
M3(u)−κ′′|∇u|2/2

)
ξ2 dx

where M1(u) = uf ′(u)+κ(u)−f(u)/2, m2(u) = uf ′′(u), M3(u) = f ′(u)κ(u)−f(u)κ′(u)/2.

Using assumption (4.15) the last term, which involves |∇u|2ξ2 is nonnegative and can be dropped.
We define M2(u) = f(0) + uf ′(u) − f(u) such that M ′

2(u) = m2(u) and M2(0) = 0. The term
involving m2 can be integrated by parts (using ∇ξ · ν = 0) via

∫

Ω

M ′
2(u)∇u · ξ∇ξ dx = −

∫

Ω

M2(u)∆
(

1
2
ξ2

)
dx = −

∫

Ω

M2(u)
(
|∇ξ|2+ξ∆ξ

)
dx.

The pointwise estimate −M2(u)ξ∆ξ ≥ −u
d
(∆ξ)2 − dM2(u)2

4u
ξ2 yields the lower estimate

M(u, ξ) ≥
∫

Ω

u
(
|D2ξ|2−1

d
(∆ξ)2

)
+

(
M1(u)−M2(u)

)
|∇ξ|2 +

(
M3(u)−dM2(u)2

4u

)
ξ2 dx.

Thus, we have established the following result.

Theorem 4.4 Let Ω, κ, and Mj be given as above. Define the values

λ∗
1 = inf{ M1(u)−M2(u)

u
| u > 0 } and λ∗

2 = inf{ 4uM3(u)−dM2(u)2

4uκ(u)
| u > 0 },

and set λ∗ = min{λ∗
1, λ

∗
2}. If λ∗ > −∞, then (E ,K) defined in (4.14) is geodesically λ∗-convex.

Proof: To conclude the proof we have to establish

M(u, ξ) ≥ λ∗〈ξ,K(u)ξ〉 = λ∗

∫

Ω

u|∇ξ|2 + κ(u)ξ2 dx

for all u ∈ Z and ξ ∈ G(u)Y . Since the first term in the above lower estimate for M is nonnegative,
it suffices to show M1(u)−M2(u) ≥ λ∗u and M3(u) − dM2(u)2/(4u) ≥ λ∗κ(u) for all u ≥ 0.
Since these estimates are exactly the definitions of λ∗

j , the desired result is established.

The following result provides sufficient conditions on the function κ, satisfying (4.15), that lead to a
geodesically λ-convex gradient system. It is posed in terms of the ansatz κ(u) = k(u)Λ(1, u) and
shows that k can be chosen to be constant near u = 0 given the linear reaction term f(u) =
k(0)(u− 1) there. For large u one may choose k(u) = c(log u)p for c > 0 and p ∈ [0, 1] leading to
the nonlinear reaction term f(u) = c(u − 1)(log u)p−1.
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Proposition 4.5 Consider a function κ satisfying (4.15) and let k(u) = κ(u)/Λ(1, u) > 0. If there

exist 0 < u0 < 1 < u1 < ∞ and positive constants kj , j = 0, . . . , 3 such that k satisfies the

conditions

k ∈ C0([0,∞[) with k(0) = k0; (4.16a)

lim inf
u→∞

k(u) ≥ k1; (4.16b)

k ∈ C1([u1,∞[) and k ∈ C1,α([0, u0]) for some α ∈ ]1/2, 1] ; (4.16c)

k(u)+uk′(u) ≥ k2 and |k(u)+u2k′(u)|2 ≤ k3u
2k(u)/ logu for u ≥ u1, (4.16d)

then in Theorem 4.4 we have λ∗ > −∞. The case k ≡ k0 gives λ∗ = 1
2
min{k0, k

2
0} > 0.

Proof: We denote by ηj(u) the functions in the infima defining λ∗
j in Theorem 4.4. Since both functions

are continuous on ]0,∞[ it suffices to estimate ηj near u = 0 and u = ∞.

ad η1: By (4.16a) we have M1(0) − M2(0) = −f(0)/2 = k0/2 > 0 and conclude η1(u) ≥ 0 for
sufficiently small u. For u ≥ 2 we have

M1(u) − M2(u) = κ(u) + f(u)/2 − f(0) ≥ κ(u)
2

log u = u−1
2

k(u) ≥ uk(u)/4.

Using (4.16b) we obtain η1(u) ≥ k1/4 for all sufficiently large u.

ad η2: For u ≤ 1 we have f(u) ≤ 0; using κ′ ≥ 0 we conclude M3(u) ≥ f ′(u)κ(u). More-
over, from f(u) = (u−1)k(u) and (4.16c) we conclude f ∈ C1,α([0, u0]). Hence, M2(u) =∫ u

0
f ′(u)−f ′(ν)dν satisfies |M2(u)| ≤ Cu1+α. Together we find

η2(u) ≥ f ′(u) − d
4
C2u2α−1/κ(u) ≥ f ′(0) − Cuα − d

4
C2 u2α−1| log u|

(1−u)k(u)
≥ λ−

2 on ]0, u0] .

For large u we use the asymptotics for u → ∞ given via

M2(u) ≈ k(u) + u2k′(u) and M3(u) ≈ uk(u)
2 log u

(
k(u)+uk′(u)

)
..

Using (4.16d) we find η2(u) ≥ k2/4 − dk3/2 which gives the desired result.

For the last statement note that M1(u) = k0(u+1)/2 + k0κ(u) ≥ k0u/2, M2 ≡ 0, and M3(u) =
k2

0(κ(u)−(u−1)κ′(u)/2) ≥ k2
0κ(u)/2. The latter estimate follows from the explicit relation (u−1)κ′(u) =

(1−κ(u)/u)κ(u), cf. [Mie11b, (A.3)].

4.5 A linear reaction-diffusion system

For u = (u1, u2) we consider the system of coupled linear equations

(
u̇1

u̇2

)
=

(
δ1∆u1

δ2∆u2

)
+ k

(
u2−u1

u1−u2

)
in Ω, ∇u1 · ν = ∇u2 · ν = 0 on ∂Ω, (4.17)

which is the gradient flow for the energy E and the Onsager operator K given via

E(u) =

∫

Ω

u1 log(u1−1) + u2 log(u2−1)dx and

K(u)ξ =

(
− div(u1δ1∇ξ1)
− div(u2δ2∇ξ2)

)
+ kΛ (u1, u2)

(
1 −1

−1 1

) (
ξ1

ξ2

)
.

(4.18)
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Observe that the total mass Q(u1, u2) =
∫
Ω

u1+u2 dx is conserved along solutions of (4.17), i.e.,
d
dt
Q(u1, u2) = 0. We fix a constant state u∗ = (u∗

1, u
∗
2) ∈ ]0,∞[2, choose the Sobolev index s as

before, and define the spaces

H∗ = { ξ ∈ H1(Ω)×H1(Ω) |
∫
Ω

ξ1+ξ2 dx = 0 },
Y = { v ∈ Hs−2(Ω)×Hs−2(Ω) |

∫
Ω

v1+v2 dx = 0 and ∇v1·ν=∇v2·ν=0 },
Y = {u ∈ u∗+Y | inf ui > 0, i = 1, 2 },
Z = (Hs(Ω)×Hs(Ω)) ∩ Y, Z = {u ∈ (u∗+Z) ∩ Y | ∇(∆ui) · ν = 0, i = 1, 2 }.

Since u 7→ F(u) = −K(u)DE(u) is linear we compute

DF(u)[v] = (−δ1∆v1 + k(v1−v2) , −δ2∆v2 + k(v2−v1))
T.

With the shorthand v = K(u)ξ we obtain M(u, ξ) = I1 + I2 with

I1 =

∫

Ω

(
ξ1

ξ2

)
·
(−δ1∆v1 + k(v1−v2)

−δ2∆v2 + k(v2−v1)

)
dx and

I2 = −1

2

∫

Ω

(
δ1|∇ξ1|2+k∂u1

Λ(u)(ξ1−ξ2)
2
)(
−δ1∆u1+k(u1−u2)

)
dx

− 1

2

∫

Ω

(
δ2|∇ξ2|2+k∂u2

Λ(u)(ξ1−ξ2)
2
)(
−δ2∆u2+k(u2−u1)

)
dx

Integrating the first term in I1 by parts twice, using the boundary conditions ∇vi · ν = ∇ξi · ν = 0,
and finally substituting v = K(u)ξ gives

I1 =

∫

Ω

(
δ1∆ξ1−k(ξ1−ξ2)

δ2∆ξ2−k(ξ2−ξ1)

)
·
(

div(u1δ1∇ξ1)−kΛ(u)(ξ1−ξ2)

div(u2δ2∇ξ2)−kΛ(u)(ξ2−ξ1)

)
dx

=

∫

Ω

[
− δ2

1u1∇∆ξ1·∇ξ1 − δ2
2u2∇∆ξ2·∇ξ2 + k∇(ξ1−ξ2)·(δ1u1∇ξ1−δ2u2∇ξ2)

− kΛ(u)(ξ1−ξ2)(δ1∆ξ1−δ2∆ξ2) + 2k2Λ(u)(ξ1−ξ2)
2
]
dx.

Similarly, we integrate the second term and obtain

2I2 =

∫

Ω

[
− δ2

1∇u1 · ∇
(
|∇ξ1|2

)
+

(
kδ1∆u1−k2(u1−u2)

)
∂u1

Λ(u)(ξ1−ξ2)
2

− δ2
2∇u2 · ∇

(
|∇ξ2|2

)
+

(
kδ2∆u2−k2(u2−u1)

)
∂u2

Λ(u)(ξ1−ξ2)
2
]
dx

=

∫

Ω

[
δ2
1u1∆

(
|∇ξ1|2

)
+

(
kδ1∆u1−k2(u1−u2)

)
∂u1

Λ(u)(ξ1−ξ2)
2

+ δ2
2u2∆

(
|∇ξ2|2

)
+

(
kδ2∆u2−k2(u2−u1)

)
∂u2

Λ(u)(ξ1−ξ2)
2
]
dx

−
∫

∂Ω

δ1u1∇
(
|∇ξ1|2

)
+ δ2u2∇

(
|∇ξ2|2

)
da.

Thus, using again Bochner’s formula and Proposition 4.2 we arrive at

I1 + I2 ≥
∫

Ω

δ1u1|D2ξ1|2 + δ2
2u2|D2ξ2|2 + k2m(u)(ξ1−ξ2)

2 + kG(δ1, δ2, u, ξ)dx

with m(u) = 2Λ(u1, u2)−1
2

(
∂u1

Λ(u1, u2)−∂u2
Λ(u1, u2)

)
(u1−u2).
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It was shown in [Mie11b, Example 3.5] that m(u) ≥ 2Λ(u) ≥ 0 holds.

The main task is to control the mixed terms with prefactor kδj that are collected in the function G.
Unfortunately we can estimate these terms only in the case of equal mobilities δj = δ > 0. For
G(u, ξ) = 2

δ
G(δ, δ, u, ξ) some rearrangements yield the identity

G(u, ξ) = (ξ1−ξ2)
2
(
∆Λ(u) − L(u)

)
− 2Λ(u)(ξ1−ξ2)∆(ξ1−ξ2) + (u1+u2)|∇(ξ1−ξ2)|2

where L(u) = ∂2
u1

Λ(u)|∇u1|2+2∂u1
∂u2

Λ(u)∇u1·∇u2+∂2
u2

Λ(u)|∇u2|2.
Since Λ is a concave function, we have L(u) ≤ 0. To estimate

∫
Ω

G dx we integrate by parts the
very first term twice (using ∇ξ · ν = 0 and ∇Λ(u) · ν = 0) and find

∫

Ω

G(u, ξ)dx =

∫

Ω

(
2Λ(u)+u1+u2

)
|∇(ξ1−ξ2)|2 − (ξ1−ξ2)

2
L(u)dx ≥ 0.

Hence, we have established the following result.

Theorem 4.6 If Ω is smooth and convex and δ1 = δ2 > 0, then the gradient system (4.17) generated

by (E ,K) from (4.18) is geodesically 0-convex.

4.6 Drift-diffusion system in 1D

We consider the one-dimensional version of the drift-reaction-diffusion system (2.10) for electron and
holes in a semiconductor, see Section 2.4. We further simplify the system be neglecting the reaction
terms (np − 1).

To highlight the general structure we treat a system with I nonnegative densities ui ∈ L1(Ω) with
Ω = ]0, 1[, where the species have the charge vector q = (qi)i=1,...,I ∈ Z

I . The system takes the
form

0 = (εφ′
u)′ + q · u, in Ω, φu(0) = 0 = φ′

u(1); (4.19a)

u̇i =
[
µi

(
u′

i + uiV
′
i + qiuiφ

′
u

)]′
in Ω; (4.19b)

0 = µi(u
′
i + uiV

′
i + qiuiφ

′
u) for x ∈ {0, 1}, (4.19c)

where ′ is the partial derivative with respect to x. The potentials V = (V1, . . . , VI) are smooth
functions and contain possible doping terms. The system is the gradient flow for

E(u) =

∫ 1

0

I∑

i=1

ui(log ui + Vi) +
ε

2
|φ′

u|2 dx and K(u)ξ = −
(
µiuiξ

′
i

)′
i=1,...,I

. (4.20)

Since we have no reaction between the species and no-flux boundary conditions the individual masses∫ 1

0
ui dx are conserved. The electrostatic potential φu is a linear function of q·u, viz. φu = Lq·u. In

the one-dimensional case we have an explicit solution formula:
(

φ = Lg, g = γ′, γ(1) = 0
)

=⇒ φ′ = −γ/ε. (4.21)

The function spaces can be introduced as in the above examples. We only give the calculation of the
operator M, where now the quadratic nature of F due to the terms uiφ

′
u has to be observed. Using

the two boundary conditions for ξ = G(u)v we find

(DF(u)∗ξ)i = −µiξ
′′
i + µi

(
V ′

i +qiφ
′
u)ξ′i − qiLg, where g =

∑I
j=1 µjqj

(
ujξ

′
j

)′
= −q · K(u)ξ.
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Now the quadratic form M(u, ξ) = I1 + I2 can be calculated as usual:

I1 =
I∑

i=1

1∫
0

(DF(u)∗ξ)i(K(u)ξ)i dx =
1∫
0

I∑
1

µ2
i

(
−uiξ

′′′
i ξ′i + uiξ

′
i

(
(V ′

i +qiφ
′
u)ξ′i

)′)
+ gLgdx,

I2 = −1
2

I∑
i=1

1∫
0

µ2
i (ξ

′
2)

2F(u)i dx =
I∑

i=1

µ2
i

1∫
0

ui

(
ξ′′′i ξ′i+(ξ′′i )2

)
− ξ′iξ

′′
i ui(V

′
i +qiφ

′
u)dx,

where used the boundary conditions ξ′i = 0 on ∂Ω. Combining the two terms and using some can-
cellation we arrive at

M(u, ξ) =

∫ 1

0

I∑

i=1

µ2
i ui

(
(ξ′′i )

2 + V ′′
i (ξ′i)

2
)

+ hξφ
′′
u + gLgdx with hξ =

I∑

i=1

µ2
i qiui(ξ

′
i)

2.

The first two terms can be estimated in the standard way. For the interaction via φu and L we note
that g is such that formula (4.21) can be applied. When assuming additionally that ε ≡ ε0 the third
and fourth term can be rewritten as

Qu(ξ) = hξφ
′′
u + gLg =

1

ε0

(
−hξ q·u +

(∑I
i=1 µjqjujξ

′
j

)2
)2

.

There are two cases in which this quadratic form can be estimated from below. First, in the case I = 1
we obviously have Qu ≡ 0. For I = 2 the expression simplifies to

Qu(ξ) = −q1q2u1u2

(
µ1ξ

′
1−µ2ξ

′
2

)2
.

Thus, we find Qu ≥ 0 if q1q2 ≤ 0, this means that the particles are oppositely charged. Of course,
we could add further uncharged particles (i.e. qj = 0), but this is useless as they do not interact with
the other particles. We summarize our findings as follows.

Theorem 4.7 Consider the gradient system (E ,K) defined via (4.19) and (4.20) with constant ε.

Assume either I = 1 or I = 2 and q1q2 < 0. If the potentials Vi are λi-convex, i.e. V ′′
i ≥ λi on Ω,

then, (E ,K) is geodesically λ∗-convex with λ∗ = min{µiλi | i = 1, . . . , I }.

4.7 A multi-particle system with cross-diffusion

In several applications one is interested in reaction-diffusion systems with I species, where the mi-
croscopic sites are occupied exactly by one species. We refer to [Gri04, BD∗10]. On the macroscopic
level this means that the density vector u = (u1, . . . , uI) satisfies the pointwise restriction

u(x) · e =
I∑

i=1

ui(x) = 1 a.e. in Ω. (4.22)

Moreover, the mobility tensor obeys the Stefan-Maxwell law (see e.g. [Gri04])

M(u) = diag(u) − u ⊗ u =




u1 − u2
1 −u1u2 · · · −u1uI

−u1u2 u2 − u2
2 · · · −u2uI

...
. . .

...
−u1uI −u2uI · · · uI − u2

I


 (4.23)
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Using (4.22) we easily see that M is positive semidefinite, namely

a · M(a)ξ =
∑I

i=1 uia
2
i − (u · a)2 =

∑I
i=1 ui

(
ai−u · a

)2 ≥ 0. (4.24)

Thus, we consider the energy functional

E(u) =

∫

Ω

E(u) + u · V dx, where E(u) =

I∑

i=1

ui(log ui−1) (4.25a)

and V = (V1, . . . , VI) is a vector of potentials with V · e ≡ 0. Thus, V determines the equilibrium
state w via wi = e−Vi . Moreover, the Onsager operator acts now on the vector-valued dual variables
ξ ∈ H∗ = { ξ ∈ H1

av(Ω)I | ξ · e ≡ 0 } and takes the form

K(u)ξ =
(
− div

(
ui(∇ξi − Ξu)

))

i=1,...,I
where Ξu =

∑I

j=1 uj∇ξj. (4.25b)

Taking into account the constraint (4.22) when calculating the differentials we find the nonlinear evolu-
tionary systems

u̇ = −K(u)DE(u) = ∆u +
(

div
(
ui(∇Vi−Gu)

))

i=1,...,I
where Gu =

I∑

j=1

uj∇Vj.

Here the diffusion term is linear since M(u) is exactly the inverse of D2E(u) (taking the constraint
into account). We see that the special choice of M with negative off-diagonal terms simplifies the
diffusion terms, while the drift terms from the potential become more involved. This approach was also
used in [Gri04, GaG05], while in [BD∗10] the off-diagonal terms are not used.

In particular, the mass of each component is preserved during the flow, namely

∫

Ω

u(t, x)dx =

∫

Ω

u(0, x)dx = m ∈ ]0,∞[I with m · e = vol(Ω).

In the case I = 2 the system reduces to a scalar equation for u ∈ [0, 1] via u = (u, 1−u) of the
form

u̇ = ∆u + div
(
(u−u2)∇V

)
where 2V = V1 = −V2,

which is covered by the analysis treated in Section 4.3.

We now restrict to the case V ≡ 0 and leave the general case for future research. Our aim is to
show that the pure (uncoupled) diffusion is geodesically 0-convex. This statement is nontrivial since
the metric dK induced by the mobility tensor M couples the densities in a nontrivial way. However,
since M(u) can be estimated from above by MW(u) = diag(u) ∈ R

I×I we see that dK can be
estimated from above by the componentwise Wasserstein distance, i.e.

dK(u1, u2)2 ≤ dW(u1, u2)2 =

I∑

i=1

dW(u1
i , u

2
i )

2.

Theorem 4.8 Consider the gradient system (E ,K) defined in (4.25) with V ≡ 0. Then, E is geodesi-

cally 0-convex with respect to dK.
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To estimate the quadratic form M we assume as usual that Ω is a convex domain with smooth
boundary and define the spaces Z, Y , and H as before in the Sobolev space Hs, Hs−2 and H1,
respectively. Moreover, for the functions u, ξ, and v = (v1, . . . , vI) = K(u)ξ ∈ Y we have the
following boundary conditions:

(a) ∇ui · ν = 0, (b) ∇ξi · ν = 0, (c) ∇vi · ν = 0. (4.26)

Using F(u) = −∆u and ξ ∈ G(u)Y giving v = K(u)ξ ∈ Y , we have

M(u, ξ) =
I∑

i=1

∫

Ω

ξi(−∆vi) −
1

2
(−∆ui)

(
|∇ξi|2 − 2∇ξi · Ξu

)
dx.

Using (c) and (b) we can integrate by parts the first term twice. The second term will be integrated
once using (a). After inserting the definition of v we arrive at

M(u, ξ) =
I∑

i=1

∫

Ω

∆ξi div
(
ui(∇ξi−Ξu)

)
−∇ui · ∇(1

2
|∇ξi|2) + ∇ui · ∇(ξi · Ξu)

)
dx..

The first term will now be integrated by part once again by using (b), which also implies Ξu · ν = 0.
Integrating the second term will generate a boundary integral that will be nonnegative by Proposition
4.2:

M(u, ξ) =

∫

Ω

I∑

i=1

ui

(
−∇∆ξi · ∇ξi + ∆(1

2
|∇ξi|2)

)
+ µ(u, ξ)dx + β1

∂Ω, where

µ(u, ξ) =

I∑

i,j=1

d∑

α,β=1

(
uiujξiααβξjβ + uiβujβξiαξjα + uiβujξiαβξjα + uiβujξiαξjαβ

)

and β1
∂Ω =

∫

Ω

I∑

i=1

uiI(∇‖ξi,∇‖ξi)da ≥ 0.

Here the indices α and β denote partial derivatives with respect to xα.

The first term in M(u, ξ) is positive by Bochner’s identity. To estimate µ we interchange the summa-
tion indices i and j in the fourth term to find that the last two terms can be combined into (uiuj)βξiαβξjα.
Thus, integration by parts, employing Proposition 4.2, and exploiting the cancellation of the terms in-
volving ξiααβ gives

∫
Ω

µ(u, ξ)dx =
∫
Ω
|∇uT∇ξ|2 −

∣∣ ∑I

i=1 uiD
2ξi

∣∣2 dx + β2
∂Ω,

where β2
∂Ω =

∫
∂Ω

−I(Ξu,Ξu)dx. Here we used the boundary conditions (b), which give Ξu ·ν = 0

and hence
∑I

i=1 ui∇‖ξi = Ξu on ∂Ω. The first term in the above integral is nonnegative, while the
other two terms are nonpositive. However, they are dominated by the corresponding positive terms
obtained earlier, e.g. β1

∂Ω + β2
∂Ω ≥ 0. Using the same rearrangement as in (4.24) we find the final

expression

M(u, ξ) =

∫

Ω

I∑

i=1

ui|D2ξi−H|2 + |∇uT∇ξ|2 dx +

∫

∂Ω

I∑

i=1

uiI(∇‖ξi−Ξu,∇‖ξi−Ξu)da,

where H =
∑I

i=1 uiD
2ξi. Thus, we have established the desired result M(u, ξ) ≥ 0.
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