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Abstra
tWe derive dispersive stability results for os
illator 
hains like the FPU
hain or the dis
rete Klein-Gordon 
hain. If the nonlinearity is of degreehigher than 4, then small lo
alized initial data de
ay like in the linear 
ase.For this, we provide sharp de
ay estimates for the linearized problem us-ing os
illatory integrals and avoiding the nonoptimal interpolation betweendi�erent ℓp spa
es.1 Introdu
tionThe phenomenon of dispersive stability is well-studied for partial di�erential equa-tions. Usually one 
onsiders a Hamiltonian system where energy 
onservationprevents stri
t spe
tral stability giving rise to exponential de
ay. Typi
ally thebehavior of small solutions is su
h that the energy norm is bounded from aboveand below by 
onstants while the L∞ norm de
ays with an algebrai
 rate of thetype (1+t)−α. This rate is generated from the fa
t that initially lo
alized solutionsare dispersed by the di�erent group velo
ities asso
iated with the di�erent wavenumbers θ. The fundamental e�e
ts derive from the dispersion relation ω̂ = ω(θ)of the linear di�erential operator, where ω̂ is the frequen
y and c(θ) = ∇θω(θ)the group velo
ity. The dispersion is now related to the fa
t that c still dependsnontrivially on θ, i.e. the se
ond derivative of ω should be nontrivial. We refer to[Seg68, Str74, Ree76, Str78℄ for results treating the sine-Gordon, the Klein-Gordon,the nonlinear S
hrödinger, or the relativisti
 wave equations. Sometimes the the-ory is developed under the name s
attering theory for small data. In [CW91℄ are
ent improvement was made on the lowest order of nonlinearity for the gen-eralized Korteweg-de Vries equation by a 
areful 
ombination of sharp estimatesfor the linear part, obtained via deep harmoni
 analysis, and 
areful 
hain-ruleestimates for fra
tional derivatives of the nonlinearity.The same dispersive e�e
ts are to be expe
ted in dis
rete systems, whi
h arein�nite ODEs on a latti
e Z
d. The di�eren
e is now that the dispersion relationis now a periodi
 fun
tion in θ, i.e. ω is de�ned on the torus T

d := R
d/(2πZ)d .Thus, in 
ontrast to PDEs, where ω is an algebrai
 fun
tion on R

d, the dispersionrelation has ne
essarily a ri
her degenera
y stru
ture. As a result, the linear de
ayestimates for periodi
 latti
es need a more 
areful analysis, and it is the aim ofthis work to establish a more general approa
h to this �eld.
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To des
ribe the work done so far and our 
ontributions we start by highlighting thethree major equations treated in this �eld, namely the Fermi-Pasta-Ulam 
hain(FPU), the Klein-Gordon 
hain (dKG) and the dis
rete nonlinear S
hrödingerequation (dNLS):
ẍj = V ′(xj+1 − xj) − V ′(xj − xj−1), j ∈ Z; (FPU)
ẍj = xj+1 − 2xj + xj−1 +W ′(xj), j ∈ Z; (dKG)
iu̇j = uj+1 − 2uj + uj−1 + a|uj|β−1uj, j ∈ Z. (dNLS)Here the potentials V and W are assumed to be su
h that V ′(r) = r + O(|r|β)and W ′(x) = x + O(|x|β). In general, β > 1 is used to measure the order of thenonlinearity.A very 
areful study of the linear FPU equation was given in [Fri03℄, whi
h high-lights the syn
hronization phenomena in 
ompa
t domains. In [Mie06℄ generalmultidimensional linear latti
e systems were studied on the shorter hyperboli
s
ale, where energy transport along the rays dominates but dispersion is not yetseen. Dis
rete latti
e systems as �nite-di�eren
e approximations of wave equa-tions are analyzed in [Zua05, IZ09℄, where the proper approximation of dispersionrelations is an important point.Dispersive stability results in the dire
tion of this work are obtained in [SK05,GHM06℄. The latter work provides the dispersive stability of FPU under theassumption that the nonlinearity satis�es β > 5. In this work, we will improvethis result to the 
ase β > 4. In [SK05℄ dKG and dNLS are studied analyti
allyand numeri
ally; we 
omment on the result of this paper below.To des
ribe our result we �rst restri
t to FPU, whi
h will be dis
ussed in full detailin Se
tion 3. There we will also treat a generalized FPU 
hain whi
h allows forany �nite number of intera
tions. Our main result will be that under a suitablestability and nonresonan
e 
ondition we have dispersive stability if the nonlinearityis of order β > 4. In parti
ular we will show that the de
ay of the solution of thenonlinear problem is the same as that of the linear one. The main point in theanalysis is that we obtain an improved estimate for the dispersive de
ay of thelinear semigroup. Writing FPU abstra
tly in the form

ż(t) = L z + KN (z)and using the the Bana
h spa
es ℓp = ℓp(Z; R2) we �nd, for ea
h p ∈ [2, 4)∪ (4,∞]a 
onstant Cp su
h that
‖eL tz0‖ℓp ≤ Cp

(1 + t)αp
‖z0‖ℓ1, ‖eL tK z0‖ℓp ≤ Cp

(1 + t)α̃p
‖z0‖ℓ1 for t > 0, (1.1)where the de
ay rates are given by

αp =











p− 2

2p
for p ∈ [2, 4),

p− 1

3p
for p ∈ (4,∞],

and α̃p =
p− 2

2p
.
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The operator K arises from the di�eren
e stru
ture of the right-hand side in FPU.The 
ase p = 4 is ex
luded in (1.1), sin
e the �rst estimate holds only with alogarithmi
 
orre
tion, see (3.9b).The key observation is that the de
ay rates for p ∈ (2,∞) are stri
tly better thanthe ones obtained by interpolating the de
ay α2 = 0 and α∞ = 1/3, whi
h wouldlead to α̂p = (p − 2)/(3p) < αp. The main work of Se
tion 3 will be devoted toestablish the de
ay estimates (1.1), whi
h are obtained by analyzing the dispersionrelation and estimating the resulting os
illatory integrals. The nonlinear stabilityresult is then obtained using standard arguments, whi
h we have 
olle
ted in anabstra
t setting in Se
tion 2. We emphasize that all nonlinear de
ay estimates areof the form that the nonlinear de
ay is exa
tly of the order as the linear de
ay,whi
h is also found numeri
ally, see Figure 1.1. We also show that our de
ay rates
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Figure 1.1: Double-logarithmi
 plot of ℓp norms of the solution to the linear FPU(�) and the nonlinear FPU with V (r) = r + |r|4 (- -) as fun
tion of t.are optimal in the sense, that the dispersive de
ay of the nonlinear system 
annotbe better than for the linear system.In Se
tion 4 we will dis
uss the usage of our method in more general settingssu
h as dKG, dNLS, and a two-dimensional latti
e. In parti
ular, we 
ompareour results for dKG with those obtained in [SK05℄. There, for β > 5 dispersivede
ay in ℓp was proved with the rate α̂p = (p−2)/(3p), while numeri
ally the values
0.226, 0.267, and 0.292 were obtained for p = 4, 5, and 6, respe
tively. We improvethe results in a twofold manner: �rst we redu
e the possible order of nonlinearityto the regime β > 4, and se
ond we establish the better (and sharp) de
ay rate
αp = (p− 1)/(3p), whi
h mat
hes mu
h better with the numeri
al values.
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We 
on
lude with remarking that there is a ri
h literature on persistent lo
alizedsolutions in latti
es, su
h as modulated pulses, solitons, and breathers, see e.g.[FW94, FP99, IJ05, GHM06℄. From this, it is possible to show that the generalizedFPU admits families of solitary waves of KdV type, whi
h for β < 5 may havearbitrary small energy. However, these solitary waves are the broader the smallerthe amplitude is. For the 
ase β < 3 it follows that dispersive stability 
annothold, see Remark 3.3. It remains open what happens in the 
ase β ∈ [3, 4].2 General stability resultIn this se
tion we present the general method to prove dispersive stability of non-linear systems, whi
h are based on weak de
ay estimates of its linearization. Theideas are 
lassi
al and were established for dispersive stability in PDE theory, seefor instan
e [Seg68℄ and [Str74℄. See also [MSU01℄ for a survey in the related the-ory of di�usive stability in paraboli
 systems. In the 
ontext of latti
e models theauthors of [GHM06℄ illustrate the ideas in an abstra
t setting and in [SK05℄ thesearguments are applied to dKG systems and dNLS equations.To emphasize the general stru
ture we use again an abstra
t setting in generalBana
h spa
es, whi
h will be spe
ialized to the spa
es ℓp(Zd,Rn) in the followingse
tions. The general aim is to establish 
onditions that guarantee that the non-linear system still has the same dispersive de
ay as the linear one. This will be our�rst result. In the se
ond result we even go beyond by showing that the di�erentbetween the solution of the linear systems and the nonlinear systems de
ays fasterthan the linear one.We start with the general system on a Bana
h spa
e Z given in the form
ż = L z + KN (z) , (2.1)where L, K linear and bounded and N is a nonlinear operator. The operator

L : Z → Z generates a bounded semi-group (eL t)t≥0, that is there exists a CL > 0with ‖eL tz‖Z ≤ CL‖z‖Z for all t ≥ 0 and z ∈ Z. Typi
ally the spa
e Z is 
hosensu
h that the solution z = 0	 is a stable solution of (2.1), i.e.
∃CE > 0 ∀ sln. z(t)with ‖z0‖ℓ2 ≤ ε ∀ t > 0 : ‖z(t)‖ℓ2 ≤ CE‖z0‖ℓ2. (2.2)This 
ondition is in parti
ular satis�ed if the system is Hamiltonian and the energyfun
tional serves as a Liapunov fun
tion. That is, if the energy is bounded fromabove and below.However, for proving dispersive stability we need to 
hoose di�erent spa
es and donot rely on (2.2). We 
onsider a s
ale of Bana
h spa
es Z0 ⊂ Z ⊂ X and a spa
e

ZN ⊂ Z where the embeddings are assumed to be 
ontinuous. The spa
e X isused for the estimation of the solutions, Z0 is taken for the initial 
onditions, and4



ZN measures the nonlinearity. We assume that positive 
onstants C1, C2, C3, α, γ,and β > 1 exist su
h that the following estimates hold for all z and all t ≥ 0:
‖eL tz‖X ≤ C1

(1 + t)α
‖z‖Z0

, (2.3a)
‖eL tK z‖X ≤ C2

(1 + t)γ
‖z‖ZN

, (2.3b)
‖N (z)‖ZN

≤ C3‖z‖βX . (2.3
)The following result is the �rst simple de
ay estimate, whi
h we state for reasonsof 
larity. It is in fa
t a spe
ial 
ase of the more involved result given below. Hen
ewe do not provide an independent proof.Theorem 2.1:Let the 
onditions (2.3) hold with min{γ, αβ, αβ+γ−1} ≥ α and γ 6= 1 6= βα.Then, there exist positive 
onstants C and ε su
h that for ea
h z0 ∈ Z0 with
‖z0‖Z0

≤ ε the unique solution z of (2.1) with z(0) = z0 satis�es
‖z(t)‖X ≤ C

(1 + t)α
‖z(0)‖Z0

for t ≥ 0.This and the following result rely on the following lemma that is used to estimatethe 
onvolution integral o

urring in the variation-of-
onstants formula. The lowerbound in the following result is only given to indi
ate that the provided exponent
γ is optimal.Lemma 2.2:For 
onstants α1, α2 ∈ [0, 1) ∪ (1,∞) there exists a 
onstant C > 0 su
h that

t

C(1 + t)γ+1
≤
∫ t

0

1

(1 + t− s)α1

1

(1 + s)α2
ds ≤ C

(1 + t)γ
for all t > 0, (2.4)where γ = min{α1, α2, α1+α2−1}.Proof. To obtain the estimate we split the integral into the two domains [0, t/2]and [t/2, t]. In the �rst interval we estimate (1 + t)/2 ≤ 1 + t − s ≤ 1 + t andobtain

1

(1 + t)α1
M2(t/2) ≤

∫ t/2

0

1

(1 + t− s)α1

1

(1 + s)α2
ds ≤ 2α1

(1 + t)α1
M2(t/2)where M2(r) =

∫ r

0
(1 + s)−α2 ds. Evaluating the integral M2 expli
itly, we �nda de
ay estimate with exponent γ2 = min{α1, α1+α2−1}. Treating the interval

[t/2, t] similarly, the assertion follows by taking γ = min{γ1, γ2}.
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The following result gives a re�nement of the above result. It is based on anadditional Bana
h spa
e V whi
h satis�es Z0 ⊂ V ⊂ X with 
ontinuous embed-dings. It will play the role of an intermediate spa
e in whi
h we have already someinformation, namely
∃C, β1, β2 > 0 with β1+β2 > 1 ∀ z ∈ Z : ‖N (z)‖ZN

≤ C‖z‖β1

V ‖z‖β2

X . (2.5)Su
h estimates o

ur naturally by interpolation, see (3.5).Theorem 2.3:Let the system (2.1) satisfy (2.3) and (2.5). Assume further that there exist positive
δ, CV , ν su
h that for all z0 ∈ Z0 with ‖z0‖Z0

≤ δ the unique solution z of (2.1)satis�es the estimate
‖z(t)‖V ≤ CV

(1 + t)ν
‖z(0)‖Z0

for all t ≥ 0. (2.6)Let ρ = min{γ, β1ν+β2α, γ+β1ν+β2α−1} and assume ρ ≥ α, β1ν+β2α 6= 1 6= γ,then there exist positive ε and CX su
h that for ‖z(0)‖Z0
≤ ε the solutions satisfy

‖z(t)‖X ≤ CX
(1 + t)α

‖z(0)‖Z0
and

‖z(t) − eL tz(0)‖X ≤ CX
(1 + t)ρ

‖z(0)‖β1+β2

Z0

for all t ≥ 0. (2.7)Proof. We give the proof in su
h a way that the 
ase β1 = 0 is in
luded, whi
hprovides the proof of Theorem 2.1. Then, (2.5) redu
es to (2.3
).We use the variations-of-
onstants formula
z(t) = eL tz(0) +

∫ t

0

eL(t−s) KN (z(s)) dsand estimate the solution in the spa
e X. Using the assumptions we obtain
‖z(t)‖X ≤ C1

(1 + t)α
‖z(0)‖Z0

+

∫ t

0

C2

(1 + t− s)γ
C(CV ‖z(0)‖Z0

)β1

(1 + s)νβ1
‖z(s)‖β2

X ds.Assuming ζ = ‖z(0)‖Z0
≤ δ and introdu
ing R(t) = maxs∈[0,t](1 + s)α‖z(s)‖X and

µ = β1ν + β2α we �nd the estimate
R(t) ≤ C1ζ + (1 + t)α

∫ t

0

1

(1 + t− s)γ
1

(1 + s)µ
ds C∗ζ

β1R(t)β2 .Employing Lemma 2.2 we have derived the estimate R(t) ≤ C1ζ+C∗ζβ1R(t)β2 . Itis now easy to �nd ε > 0 su
h that for ζ ≤ ε we have R(t) ≤ 2C1ζ , whi
h is the�rst inequality in (2.7).
6



Re
onsidering the variations-of-
onstants formula on
e again gives
‖z(t) − eL tz(0)‖X ≤

∫ t

0

1

(1 + t− s)γ
1

(1 + s)µ
ds C∗ζ

β1R(t)β2 ,and the se
ond estimate in (2.7) follows by employing Lemma 2.2 and the previousestimate for R(t).3 Dispersive de
ay for generalized FPU systemsWe now apply the general result presented in se
tion 2 to Hamiltonian systemson a one-dimensional latti
e, also 
alled os
illator 
hain. Here, we only dis
uss ageneralization of the 
elebrated Fermi-Past-Ulam 
hain in detail, while in se
tion 4we outline how to treat dis
rete Klein-Gordon systems and nonlinear S
hrödingerequations.3.1 The generalized FPU systemWe 
onsider an in�nite number of equal parti
les with unit mass and intera
t-ing with a �nite number K of neighbors via potentials V1, . . . , VK . A

ording toNewton's law the equations of motion are
ẍj =

∑

1≤k≤K

(V ′
k(xj+k − xj) − V ′

k(xj − xj−k)) , j ∈ Z. (3.1)Here xj ∈ R denotes the displa
ements. We write x := (xj)j∈Z. For the timebeing we only assume that V ′
k(r) = akr + V ′

nl,k(r), V ′
nl,k(r) = O(|r|β)|r|→0 with

β > 1. System (3.1) is Hamiltonian, i.e. (ẋ, ṗ)T = J can dHx(ẋ, ṗ) with momen-tum p := ẋ, J can the Poisson tensor 
orresponding to the 
anoni
al symple
ti
stru
ture de�ned by 〈(x,p),J can(x̃, p̃)〉ℓ2⊕ℓ2 = 〈x, p̃〉ℓ2 −〈x̃,p〉ℓ2 and Hamiltonian
Hx(x,p) =

∑

j∈Z

(

1

2
p2
j +

∑

1≤k≤K

Vk(xj+k − xj)

)

.The dispersive de
ay is driven by the linearized system
ẍj =

∑

1≤k≤K

ak
(

xj+k − 2xj + xj−k
)

.The dispersion relation is obtained by looking for plane waves in the form xj(t) =
ei(θj+ω̂t). We �nd the relation

ω̂2 = Λ(θ) :=
∑

1≤k≤K

ak2
(

1− cos(kθ)
)

. (3.2)
7



Obviously, we have Λ(0) = 0, whi
h is a 
onsequen
e of Galilean invarian
e. Byperiodi
ity, it su�
es to take θ ∈ [−π, π] and by re�e
tion symmetry we may take
θ ∈ [0, π] only. Throughout, we make the following stability 
ondition

Λ(θ) > 0 for all θ ∈ (0, π], (3.3)whi
h 
ertainly holds if all ak are positive, however more general 
ases are possible.An essential feature of the 
onsidered model is its Galilean invarian
e, i.e for all
ξ, c ∈ R the transformation (x,p) 7→ (xj + ξ + ct, xj + c)j∈Z leaves (3.1) invariant.Therefore it is 
onvenient to use distan
es r := (∂+ − 1)x = (xj+1 − xj)j∈Z as newvariables instead of the displa
ements. Introdu
ing z := (r,p)T the Hamiltonianturns into

Hr(z) =
1

2
〈z,Ar z〉ℓ2 + Vnl(z)with

〈z,Ar z〉ℓ2 =
∑

j∈Z

(

p2
j +

∑

1≤k≤K

ak

∣

∣

∣

∑

0≤l≤k

rj+l

∣

∣

∣

2
)and

Vnl(z) =
∑

j∈Z

∑

1≤k≤K

Vnl,k

(

∑

0≤l≤k

rj+l

)

.The transformed Hamiltonian system (3.1) reads as
ż = Jr dHr(z) = L z + Jr N (z) (3.4a)where L = Jr Ar with Jr, Ar, and N given by

Jr :=

(

0 ∂+ − 1

1 − ∂− 0

)

, Ar :=

(∑

|l|<K

∑

|l|<k≤K(k − |l|)ak∂l 0

0 1

)

, (3.4b)
N (z) := dVnl(z) =

(

0
(

∑

1≤k≤K

∑

0≤m<k V
′
k,nl

(
∑

|l+m|≤k rj+l
)

)

j∈Z

)

, (3.4
)where (∂lz)j = zj+l and ∂± = ∂±1. Clearly, L z = Jr Ar z gives the linear for
esand Jr N (z) the nonlinear intera
tion for
es. Here the operator Jr refers to thepush-forward of the Poisson tensor J can, i.e. Jr = T J can T ∗ where T is the linearmap de�ned by (r,p)T = T (x,p)T . Note that now Jr is a non-
anoni
al Poissonstru
ture.3.2 Nonlinear dispersive stabilityTo study the nonlinear system we use the Bana
h spa
es
ℓp(Zd; Rm) with norm ‖z‖ℓp :=

(

∑

J∈Zd
|zJ |p

)1/p

8



where p ∈ [1,∞]. We frequently write ℓp to denote ℓp(Zd; Rm), if the latti
e Z
dand the spa
e R

m are either irrelevant or 
lear from the 
ontext.For 1 ≤ p1 < p2 ≤ ∞ we have the 
ontinuous embedding ℓp1 ⊂ ℓp2 with ‖z‖ℓp2 ≤
‖z‖ℓp1 . An essential tool is the interpolation estimate

‖z‖ℓpϑ ≤ ‖z‖1−ϑ
ℓp0

‖z‖ϑℓp1 , where 1

pϑ
=

1 − ϑ

p0

+
ϑ

p1

, (3.5)and p0, p1 ∈ [1,∞] and ϑ ∈ [0, 1]. This is an easy 
onsequen
e of Hölder's inequalityand plays a 
ru
ial role in many estimates 
on
erning dispersive de
ay. Moreover,we use Young's inequality for 
onvolutions a ∗ b with (a ∗ b)J =
∑

I∈Zd aJ−IbI . For
r, p, q ∈ [1,∞] with 1

p
+ 1

q
= 1 + 1

r
we have

‖a ∗ b‖ℓr ≤ ‖a‖ℓp‖b‖ℓq for all a ∈ ℓp, b ∈ ℓq. (3.6)To apply the general result of se
tion 2 we �rst provide the a priori estimate (2.2).The theory in se
tion 3.3 shows that (3.3) is equivalent to the existen
e of a positive
onstant C su
h that
1

C
‖z‖2

ℓ2 ≤ 〈z,Ar z〉ℓ2 ≤ C‖z‖2
ℓ2 for all z ∈ ℓ2(Z; R2).Using this it is easy to obtain the 
lassi
al energy stability in ℓ2(Z; R2): there are

C2 > 0 and ε0 > 0 su
h that for all z0 ∈ ℓ2 with ‖z0‖ℓ2 ≤ ε0 the solution z of (3.4)with z(0) = z0 exists globally in time and satis�es
‖z(t)‖ℓ2 ≤ C‖z(0)‖ℓ2 for all t ∈ R. (3.7)To state the linear de
ay result we de�ne the relevant bran
h ω̂ = ω(θ) of thedispersion relation via

ω(θ) :=
√

Λ(θ) ≥ 0.With a slight abuse of notation we simply 
all ω the dispersion relation. Underthe stability assumptions (3.3) we have ω ∈ C∞([0, π]) and we are able to de�nethe set of 
riti
al wave numbers as
Θ
r := {θ ∈ [0, π] | ω′′(θ) = 0} .Sin
e K in (3.2) is �nite, Θ
r is dis
rete and 
ontains θ = 0. Thus, we have

Θ
r = {θ0, . . . , θM} with θ0 = 0 < θ1 < ... < θM ≤ π for some M ∈ N.The following linear de
ay results will be proved in se
tion 3.3.Theorem 3.1:Consider the group (eL t)t∈R for L = Jr Ar de�ned in (3.4b). Assume that thedispersion relation ω satis�es (3.3) and the non-degenera
y 
ondition
ω′(0) > 0 and ∀ θ ∈ Θ
r : ω′′′(θ) 6= 0. (3.8)9



Then, for p ∈ [2, 4) ∪ (4,∞] there exists Cp su
h that, for all t ≥ 0, we have
‖eL t‖ℓ1,ℓp ≤ Cp

(1 + t)αp
, where αp =











p− 2

2p
for p ∈ [2, 4),

p− 1

3p
for p ∈ (4,∞].

(3.9a)In the 
ase p = 4 there exists C4 > 0 su
h that
‖eL t‖ℓ1,ℓ4 ≤ C4

( log(2 + t)

1 + t

)1/4 for all t > 0. (3.9b)If furthermore Θ
r = {0}, then for p ∈ [2,∞] there exists C̃p su
h that
‖eL t Jr ‖ℓ1,ℓp ≤ C̃p

(1 + t)α̃p
for all t > 0, where α̃p =

p− 2

2p
. (3.10)The philosophy of the de
ay estimate is that os
illations with wave numbers θtravel along rays j = c(θ)t, where the group velo
ity is given by c(θ) = ω′(θ). Thede
ay along these rays is like t−1/2 if ω′′(θ) 6= 0 and like t−1/3 if θ ∈ Θ
r. In Figure3.1 we plot the dispersion relations ω and the asso
iated solution rj(t) to displaythe in�uen
e of the 
riti
al wave numbers θj ∈ Θ
r. Thus, the de
ay like t−1/3 in

ℓ∞ is easily obtained. However, for θ ≈ θn ∈ Θ
r there is a 
ross-over betweenthe two di�erent de
ay rates, whi
h needs to be estimated 
arefully to obtain thede
ay rate αp for p ∈ (2,∞).
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jFigure 3.1: Dispersion relations and time evolutions. Left: 
lassi
al FPU (K = 1:
a1 = −1). Right: generalized FPU (K = 2: a1 = 0.08, a2 = 0.23) with two wavefronts. The upper �gures show ω(θ) and ω′(θ), respe
tively, and the lower �gureshows rj(t) for t = 800 and initial 
ondition (rj(0), ẋj(0)) = (δj,0, 0).Be
ause the operator Jr is related to the di�eren
e operators ∂1 − 1 and ∂−1 − 1,it redu
es the amplitudes of very long waves. Thus, in eL t Jr the bad de
ay10



asso
iated with θ0 = 0 ∈ Θ
r is redu
ed but not for any other θn ∈ Θ
r. Hen
e, thelast statement needs the requirement Θ
r = {0}. In this 
onne
tion it is interestingto mention that in 
ase Θ
r = {0} the solutions of ż = L z globally de
ay like t−1/2if we restri
t the initial 
onditions to a suitable subspa
e. Indeed, if we 
hoose
z0 ∈ Jr ℓ

1 this follows from (3.10) and the fa
t that the operators Jr and eL t
ommute.The following de
ay result is a dire
t 
ombination of the abstra
t results of se
tion2 and the above linear de
ay estimates.Theorem 3.2:Consider the generalized FPU system satisfying the linearized stability 
ondition(3.3) and the non-degenera
y 
ondition (3.8). Assume that ea
h potential Vk sat-is�es Vk(r) = akr + O(|r|β) for β > 4. Then, for ea
h p ∈ [2, 4) ∪ (4,∞] thereexist Cp and ε > 0 su
h that all solutions z of (3.4) with ‖z(0)‖ℓ1 ≤ ε satisfy theestimate
‖z(t)‖ℓp ≤ Cp

(1 + t)αp
‖z(0)‖ℓ1 for all t ≥ 0, (3.11)where the de
ay rate αp is given in (3.9). If additionally Θ
r = {0}, then

‖z(t) − eL tz(0)‖ℓp ≤ C̃p
(1 + t)α̃p

‖z(0)‖βℓ1 for all t ≥ 0, (3.12)where the de
ay rate α̃p is given in (3.10).We have omitted the 
ase p = 4 to avoid a 
lumsy presentation. For p = 4 one
an easily obtain algebrai
 de
ay for any α < 1/4 by interpolation or a de
ay asin (3.9b), after generalizing the results in Se
tion 2 to in
lude logarithmi
 terms.Proof. In a �rst step we apply Theorem 2.1 with Z0 = ZN = ℓ1 ⊂ X = ℓp1with 4 > p1 > 2β/(β−2), where we used β > 4. Be
ause of β > p1 we have
‖N (z)‖ℓ1 ≤ C‖z‖βℓp1 . We estimate K = Jr by a 
onstant and use α = γ = αp1.The 
hoi
e of p1 gives α < 1 < αβ and min{γ, αβ, αβ+γ−1} = α, whi
h allowsus to apply the theorem. We obtain positive Cp1 and ε0 su
h that (3.11) holds for
p = p1. Sin
e the result holds for p = 2 by the nonlinear stability estimate (3.7),the interpolation (3.5) shows that the result holds for p ∈ [2, p1]. Sin
e p1 
an be
hosen as 
lose to p = 4 as we like, estimate (3.11) is established for all p ∈ [2, 4).Next we 
onsider p ∈ (4, β] and see that Theorem 2.3 is appli
able with ν = β1 = 0,
α = αp < γ = α̃p, and Z0 = ZN = ℓ1 ⊂ X = ℓp. Thus, (3.11) and (3.12) hold for
p ∈ (4, β].Finally, we treat the 
ase p = ∞ by 
hoosing p2 ∈ (2, 4) with p2 ≥ 12−2β < 4.Using ‖N (z)‖ℓ1 ≤ C‖z‖p2ℓp2

‖z‖β−p2ℓ∞ we are able to employ Theorem 2.3 with Z0 =
ZN = ℓ1 ⊂ V = ℓp2 ⊂ X = ℓ∞, and ν = αp2 < α = 1/3 ≤ γ, where γ = 1/3 in thegeneral 
ase and γ = 1/2 if the additional 
ondition Θ
r = {0} holds, see Theorem11



3.1. Using β1 = p2 and β2 = β − p2 we �nd νβ1 + αβ2 > 1. Hen
e ρ = γ ≥ αand the desired estimate (3.11) follows for p = ∞. Again, the remaining range
p ∈ [β,∞] follows from interpolation.If the additional 
ondition Θ
r = {0} holds, we 
an apply the last assertion inTheorem 2.3 and obtain (3.12).So far, we have only derived estimates for ZN = ℓ1. It is however straight forwardto obtain results for ZN = ℓq for q ∈ (1, 2), however the de
ay rates will be lowerand one may need higher order of nonlinearity β. To see this, we simply note thatthe appli
ation of the operator eL t is in fa
t a 
onvolution with a matrix-valuedGreen's fun
tion G(t) ∈ ℓ1(Z; R2×2), 
f. (3.20). Hen
e, using Young's inequality(3.6) the operator norm ‖eL t‖ℓq,ℓp 
an be estimated by ‖G‖ℓs where 1+ 1

p
= 1

s
+ 1

q
.In fa
t, the estimates stated above and proved below are obtained by estimatingthe ℓp norm of G(t).We emphasize that for q = 1 the formula ‖eL t‖ℓ1,ℓp = ‖G(t)‖ℓp holds, sin
e theupper bound follows from Young's inequality and the lower bound is obtained byusing the initial 
ondition z = (δj)j∈Z. Our estimates for Gj(t) will be sharpenough to establish also lower bounds ‖G(t)‖ℓp ≥ c/(1+ t)αp, thus that we 
annothope for better estimates for the linear terms. In fa
t, using that the de
ay rates

α2 = 0 and α∞ = 1/3 are optimal, it su�
es to show that the de
ay rate α4 
annotbe better than 1/4 (up to the logarithmi
 term). Then, for no p ∈ (2,∞) the de
ayrate 
an be better than αp, be
ause an interpolation would lead to a better de
ayrate for p = 4. Below we will show that estimate (3.9b) is indeed optimal.Figure 3.2 displays numeri
ally estimated de
ay rates, the exa
t 
urve αp, and the
urve α̂p = (p − 2)/(3p), whi
h is obtained by interpolation between p = 2 and
p = ∞ and hen
e is not optimal. The numeri
al 
urves agrees well with αp awayfrom p = 4. This e�e
t may be due to the logarithmi
 
orre
tion whi
h spoils the
onvergen
e.In the following remark we argue that the above dispersive de
ay 
annot hold for
β < 3, be
ause of existen
e of solitary waves with arbitrary small ℓ1 norm.Remark 3.3 (Solitary waves):From [FW94, FP99℄ the existen
e of solitary waves for generalized FPU systems
an be dedu
ed under additional global 
onditions on the intera
tion potentials
Vk. Su
h waves satisfy zj(t) = Z(j−ct) for a �xed pro�le Z : R → R

2 and a givenwave speed c. In parti
ular, [FW94℄ provides for the 
ase 1 < β < 5 the existen
eof solitary waves with arbitrarily small energy, i.e. ‖zδsoli‖ℓ2 = δ ∈ (0, δ0). Ourstability result implies that for β > 4 these solution 
annot be small in ℓ1.In [FP99℄ the 
ase β = 2 is investigated, and it is shown that c = ω′(0) + O(ε2).The 
onstru
tions there 
an be generalized to our 
ase to provide small-energysolitary waves of asso
iated with the generalized KdV limit. Moreover, in [SW00℄it was shown that solutions of the form rεj (t) = ε2/(β−1)R(ε3t, ε(j+ω′(0)t)) + h.o.t.
12
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Figure 3.2: Exa
t de
ay rate αp, interpolation rate α̂p, ℓ2-ℓ∞ interpolation rateand numeri
ally estimated rates as fun
tions of 1/p.exist, where R : [0, T ] × R → R satis�es the generalized KdV equation
∂τR+ b1∂

3
ηR + b2∂ηV

′(R) = 0where V ′(r) = r + O(|r|β). This equation possesses solitary wave solutions withexponentially de
aying tales. In terms of the generalized FPU system these so-lutions satisfy ‖zεsoli(t)‖ℓ1 ∼ ε(3−β)/(β−1), whi
h shows that for 1 < β < 3 thereare solitary waves that are arbitrarily small in ℓ1. We 
on
lude that the abovedispersive de
ay result 
annot hold for β < 3, while the 
ase β ∈ [3, 4] remainsopen.3.3 ℓp-estimates for the linearized systemWe 
onsider the linearization of (3.4) in z = 0, i.e. the 
ase N (z) ≡ 0. To solvethe system expli
itly we use Fourier transform F : ℓ2(Z,R2) → L2(S1,R2) de�nedby ẑ(θ) =
∑

j∈Z
zje

−ijθ. Then ż = Jr Ar z turns into
(

˙̂r
˙̂p

)

=

(

0 eiθ − 1
1 − e−iθ 0

)(

ω2
r (θ) 0
0 1

)

·
(

r̂

p̂

)

, (3.13)where
ω2

r (θ) =
∑

|l|≤K−1

∑

|l|<k≤K

(k − |l|)akeil·θ

=
∑

0<k≤K

kak + 2
∑

0<l≤K−1

(

∑

l<k≤K

(k − l)ak

)

cos(l · θ).
(3.14)

13



Sin
e (3.13) implies ¨̂r = 2(cos θ−1)ωr(θ)
2r̂ and sin
e the previous subse
tion gives

¨̂r = −Λ(θ)r̂ we 
on
lude
ω(θ) = 2

∣

∣

∣

∣

sin
θ

2

∣

∣

∣

∣

ωr(θ). (3.15)Using the linear stability 
ondition (3.3) we obtain
∃ cr > 0 ∀ θ ∈ S1 : ωr(θ) = ωr(−θ) ≥ cr. (3.16)The fundamental matrix of the linear system (3.13) is

Ĝr(θ, t) =

(

cos(ω(θ)t) eiθ−1
ω(θ)

sin(ω(θ)t)
−ω(θ)
e−iθ−1

sin(ω(θ)t) cos(ω(θ)t)

)

. (3.17)The Green's fun
tion of our original problem is given by G(t) = F−1 Ĝr(θ, t),that is Gj(t) = 1
2π

∫

S1 Ĝr(θ, t)e
ij θ dθ for j ∈ Z. Thus the long time behaviorof solutions to the linearized system is determined by os
illatory integrals. Forinstan
e, for the 
lassi
al FPU, i.e. for ωr(θ) ≡ 1, the 
omponents of Gj turninto Bessel fun
tions, 
f. [Fri03℄. Below we apply tools from asymptoti
 analysisto obtain upper bounds on the solutions of the linearized system. To do so itturns out that an alternative representation of the above Green's fun
tion is more
onvenient. Using the symmetry of ωr we �nd that

Gj(t) =
1

2π

π
∫

0

(

h(θ, t, j
t
) 1

ωr(θ)
h
(

θ, t, j+1/2
t

)

ωr(θ)h
(

θ, t, j−1/2
t

)

h(θ, t, j
t
)

)

dθwith h(θ, t, c) = cos
(

t(ω(θ)+θc)
)

+ cos
(

t(ω(θ)−θc)
)

.

(3.18)The new variable c ∈ R roughly 
hara
terizes the rays j = ct and is used to remindus to the group velo
ity c(θ) = ω′(θ).Thus, we obtained the following representation formula for the solution of thelinearized problem.Lemma 3.4 (Expli
it solution):Given some initial 
onditions z0 = (r0,p0)T ∈ ℓ2(Z,R2), the unique solution of
ż = L z with L = Jr Lr de�ned in (3.4b) is determined by

z(t) = eL tz0 (3.19)where (eL t)t∈R is a di�erentiable group of bounded operators on ℓ2(Z,R2) de�nedby
(

eL tz
)

j
=
∑

k∈Z

Gk(t) · zj−k for j ∈ Z (3.20)with Gj(t) de�ned in (3.18).
14



The asymptoti
 behavior of (3.18) is determined by terms of the form
g(t, c) =

∫ π

0

ψ(θ)eitφ(θ,c) dθ with φ(θ, c) = ±(ω(θ) − cθ) (3.21)with ω de�ned in (3.15) and ψ(θ) standing for 1, 1/ωr(θ) or ωr(θ). In any 
ase ψis smooth on [0, π].The main result from asymptoti
 analysis we will use below is van der Corput'slemma, see e.g. [Ste93℄. It states that if φ is smooth and ∣∣φ(k)(θ)
∣

∣ ≥ λ > 0 for
θ ∈ (a, b) where either k ≥ 2, or k = 1 and φ′ is monotoni
, then

∣

∣

∣

∣

∫ b

a

eitφ(θ) dθ

∣

∣

∣

∣

≤ Ck (λt)−
1

k with Ck = (5 · 2k−1 − 2). (3.22)Note that Ck does neither depend on a and b nor on φ expli
itly. Writing F (θ) =
∫ θ

a
eitφ(ξ) dξ and applying integration by parts to ∫ b

a
ψ(θ)F ′(θ)dθ we obtain

∣

∣

∣

∣

∫ b

a

eitφ(z)ψ(z) dz

∣

∣

∣

∣

≤ Ck (λt)−
1

k

(

|ψ(b)| +
∫ b

a

|ψ′(θ)| dθ
)

. (3.23)In the following lemmas we provide the de
ay estimates on g(t, c) required to provethe sharp ℓp de
ay rate of the linear group eL t. We use the notation
Cψ := max

θ∈[0,π]
|ψ(θ)| +

∫ π

0

|ψ′(θ)| dθ.Sin
e van der Corput's Lemma only demands assumptions on ∣∣φ(k)(θ)
∣

∣ the following
onsiderations are indeed independent of the sign of φ in (3.21).The �rst lemma provides a global upper bound on g(t, c). Using the 
lassi
almethod of stationary phase, 
f. [Won89℄ it is straight forward to 
he
k that theresult is sharp.Lemma 3.5 (Global bound):Consider the os
illatory integral (3.21) with dispersion relation ω satisfying (3.8)and ψ ∈ W 1,1([0, π]). Then there exists a 
onstant Cω > 0 depending only on ωsu
h that
∀ t ≥ 0, c ∈ R : |g(t, c)| ≤ CωCψ

(1 + t)1/3
. (3.24)Proof. Due to φ(θ, c) = ω′′(θ) the following 
onsiderations are uniform with respe
tto the group velo
ity c.We write Uδ(θm) = {θ ∈ [0, π] | |θ − θm| < δ}. Due to the non-degenera
y
ondition (3.8) it is possible to 
hoose δ > 0 su
h small that |ω′′′(θ)| ≥ A for all

15



θ ∈ ⋃M
m=0 Uδ(θm) for some 
onstant A > 0. Sin
e ω′′(θ) = 0 if and only if θ ∈ Θ
rthere exists B > 0 with |ω′′(θ)| ≥ B for all θ ∈ [0, π]\⋃M

m=0 Uδ(θm). Now we write
g(t, c) =

∫

SM
m=0 Uδ(θm)

ψ(θ)eitφ(θ,c) dθ +

∫

[0,π]\
SM

m=0 Uδ(θm)

ψ(θ)eitφ(θ,c) dθand apply (3.23). Thus
|g(t, c)| ≤ (M + 1)

(

18A−1/3 + 8B−1/2
)

Cψt
−1/3holds for t > 1. Using |g(t, c)| ≤ πmaxθ∈[0,π] |ψ(θ)| in 
ase 0 ≤ t ≤ 1 proves the
on
lusion for Cω = 2 max{π, (M + 1)(18A−1/3 + 8B−1/2)}.The next result provides the de
ay rate t−1/2 along non
riti
al rays. The im-portan
e is to 
hara
terize the width of the regions around the 
riti
al rays withde
ay rate t−1/3 that has to be ex
luded. This result provides sharp estimatesfor 
ross-over between the two de
ay rates. Ex
luding group velo
ities near the
riti
al ones 
orresponding to the 
riti
al wave numbers, i.e. allowing only for cwith |c| /∈ ⋃θn∈Θ
r[|ω′(θn)| − ε, |ω′(θn)| + ε] where ε > 0, (3.25) implies a uniformbound ∼ t−1/2 on g(t, c). In fa
t, the result shows that the ex
luded regions maybe taken smaller, namely of width growing like t2/3. Using a suitable Airy s
aling,it 
an be shown that this width 
annot be de
reased, see (3.32) for more details.Lemma 3.6 (Envelope fun
tion):Consider the os
illatory integral (3.21) with dispersion relation ω satisfying (3.8)and ψ ∈ W 1,1([0, π]). Then, there exists a 
onstant Cω > 0 depending only on ωsu
h that for all t > 0 and all c ∈ R \ {c | ∃ θ ∈ Θ
r : ||ω′(θ)| − |c|| ≤ t−2/3} holds

∣

∣g(t, c)
∣

∣ ≤ CωCψ
(1 + t)1/2

(

1 +
∑

θ∈Θ
r 1

|ω′(θ)2 − c2|1/4

)

. (3.25)Proof. For 0 < t ≤ 1 we use |g(t, c)| ≤ Cψπ. Below we assume t > 1.To simplify the 
onsiderations let us �rst assume that there is only one 
riti
alwave number θ0 = 0. For θ near 0 the phase fun
tion of (3.21) behaves like
φ(θ, c) = ±(c0 − c)θ ± ω′′′(0)

6
θ3 + O(θ5) with c0 = ω′(0). Now we write

g(t, c) =

∫ δ̃

0

ψ(θ)eitφ(θ,c) dθ +

∫ δ

δ̃

ψ(θ)eitφ(θ,c) dθ +

∫ π

δ

ψ(θ)eitφ(θ,c) dθ. (3.26)Due to ω′′′(0) 6= 0 there exists 0 < δ < 1 and 
onstants A, Ā > 0 su
h that
∀ θ ∈ (0, δ) : |ω′′(θ)| ≥ Aθ and |ω′(θ) − c0| ≤ Āθ2. (3.27)
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Then we have in parti
ular |∂2
θφ(θ, c)| = |ω′′(θ)| ≥ Aδ̃ for all θ ∈ (δ̃, δ). Sin
e weassumed Θ
r = {0} there also exists B > 0 su
h that we have |∂2

θφ(θ, c)| ≥ B forall θ ∈ (δ, π). Thus van der Corput's Lemma (3.23) implies
∣

∣

∣

∣

∫ δ

δ̃

ψ(θ)eitφ(θ,c) dθ

∣

∣

∣

∣

≤ 8Cψ

(Aδ̃t)1/2
and ∣

∣

∣

∣

∫ π

δ

ψ(θ)eitφ(θ,c) dθ

∣

∣

∣

∣

≤ 8Cψ
(Bt)1/2

. (3.28)Here δ,A, Ā and B do not depend on c but only on ω.If δ̃ with 0 < δ̃ ≤ δ is so small that δ̃2 ≤ 1
Ā+1

|c0 − |c||, then using (3.27) we obtain
|∂θφ(θ, c)| = |ω′(θ) − c| ≥ |c0 − |c|| − Āθ2 ≥ δ̃2 for all θ ∈ (0, δ̃). Hen
e, againa

ording to (3.23) we obtain

∣

∣

∣

∣

∣

∫ δ̃

0

ψ(θ)eitφ(θ,c) dθ

∣

∣

∣

∣

∣

≤ 3Cψ

δ̃2t
. (3.29)Now we distinguish two 
ases. If δ2 ≤ 1

Ā+1
|c0 − |c|| we 
hoose δ̃ := δ. Hen
e theright hand side of (3.29) is independent of c. Substituting this bound togetherwith the se
ond estimate in (3.28) in (3.26) gives

∣

∣g(t, c)
∣

∣ ≤ 8Cψ
(Bt)1/2

+
3Cψ
δ2t

≤ Cψ
t1/2

(

8√
B

+
3

δ2

)

. (3.30)In 
ase 1
Ā+1

|c0 − |c|| < δ2 we 
hoose δ̃2 := 1
Ā+1

|c0 − |c||. Then the assumption
|c0 − |c|| ≥ t−2/3 yields δ̃3/2t1/2 ≥ (Ā + 1)−3/4. Thus, 
ombining the upper bound(3.29) with the �rst estimate in (3.28) leads to
∣

∣

∣

∣

∫ δ

0

ψ(θ)eitφ(θ,c) dθ

∣

∣

∣

∣

≤ 8Cψ

(Aδ̃t)1/2
+

3Cψ

δ̃2t
≤ Cψ

|c0 − |c||1/4t1/2
(

8A1/2
+ 3(Ā+ 1)3/4

)

.Finally, using this together with the se
ond estimate in (3.28) and |g(t, c)| ≤ Cψπfor 0 < t ≤ 1 yields
∣

∣g(t, c)
∣

∣ ≤ CωCψ
(1 + t)1/2

(

1 +
1

|c20 − c2|1/4
)with Cω > 0 depending only on ω(θ). The last estimate also 
overs (3.30) if we
hoose Cω su�
iently large. This 
ompletes the proof for Θ
r = {0}.To prove the general 
ase assume we have Θ
r = {θ0, θ1, . . . , θM} with θ0 < θ1 <

. . . θM . We de
ompose the integral de�ning g(c, t) like
g(c, t) = · · · +

∫ θm+δ̃m

θm

...+

∫ θm+δm

θm+δ̃m

...+

∫ θm+1+δm+1

θm+δm

...+ . . .
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with δm and δm+1 su�
iently small su
h that ω′′′(θ) 6= 0 for θ ∈ (θm − δm, θm +
δm) ∪ (θm+1 − δm+1, θm+1 + δm+1). Then similar estimates like (3.27) hold and weuse the same arguments as above to get the upper bound

∣

∣

∣

∫ θm+1−δm+1

θm

ψ(θ)eitφ(θ,c) dθ
∣

∣

∣
≤ Cω,mCψ

(1 + t)1/2

(

1 +
1

|c2m − c2|1/4
)

.Sin
e Θ
r is �nite this implies the statement.Now we state a result that provides a global de
ay rate t−1/2 under the additionalassumption that only θ = 0 is a 
riti
al wave number and that the fun
tion ψsatis�es ψ(0). It will be used to estimate eL t Jr, where the bad behavior of thefronts, whi
h relate to long waves (i.e. θ = 0) are �ltered out by the di�eren
eoperators ∂± − 1 in Jr.Lemma 3.7:Consider the os
illatory integral (3.21) with dispersion relation ω satisfying (3.8)and ψ ∈ W 1,1([0, π]). If additionally Θ
r = {0} and ψ(0) = 0, then there exists a
onstant Cω > 0 depending only on ω(θ) su
h that
∀t ≥ 0 :

∣

∣g(t, c)
∣

∣ ≤ CωCψ
(1 + t)1/2

. (3.31)The proof relies on an uniform asymptoti
 expansion of the os
illatory integrals.Sin
e we think that the te
hni
al details would dislo
ate the fo
us of the paper weforbear to give the full proof but only highlight the main idea. The detail 
an befound in [Pat09℄.To see the �lter e�e
t of the di�eren
e operators ∂± − 1 we apply the method ofstationary phase, 
f. [Won89℄, to g(t, c) for c = c0 := ω′(0) and �nd that it behaveslike t−2/3. A

ording to [Hör90, 7.7.18℄ there is a generalization of the 
lassi
almethod of stationary phase whi
h is uniform in terms of the group velo
ity c. Infa
t, for y ∈ [−ε, ε] with ε > 0 su�
iently small and c0 := ω′(0) holds
g(t, c0 + y) ∼ t−1/3Ai

(

a(y)t2/3
)[

u0(y) + O(t−1)
]

+ t−2/3Ai′
(

a(y)t2/3
)[

u1(y) + O(t−1)
]

.
(3.32)Here Ai(·) refers to the Airy fun
tion, and a, u0 and u1 are smooth fun
tions with

a(0) = 0. Making these fun
tions expli
it we �nd that the leading order term
an
els. Together with Lemma 3.6 this implies (3.31).In this 
onne
tion one should note that there is a smooth 
ross-over between thedi�erent s
ales. Indeed, employing the asymptoti
 behavior of Airy's fun
tion,
f. [Olv74℄, we obtain for y < 0 the asymptoti
 behavior t−1/3Ai
(

a(y)t2/3
)

∼
C1t

−1/2 and t−2/3Ai′
(

a(y)t2/3
)

∼ C2t
−1/2 as t → ∞. Furthermore, the asymptoti
expansion (3.32) implies that the width-s
aling of the fronts in Lemma 3.5 is

18



sharp. This holds for θ = 0 as well as for general θ ∈ Θ
r, where in (3.32) o

ursan additional modulating fa
tor eiω(θ)t, see again [Hör90℄ and [Pat09℄ for details.Up to now we provided the de
ay rates along 
riti
al and non
riti
al rays but we didnot use that the e�e
tive propagation speed is �nite. The light 
one 
orresponds to
c ∈ [−c∗, c∗] where c∗ := maxθ∈Θ
r |ω′(θ)|. Outside of this region the de
ay is fasterthan algebrai
 in terms of t as well as in terms of the velo
ity c ∈ (−∞,−c∗) ∪
(c∗,∞).Applying partial integration, whi
h is the standard argument to see this, 
f. [Ste93℄,is not straight forward due to the o

urring boundary terms. In [Fri03℄ the ex-ponential de
ay is proved, for the standard FPU 
ase, using a dilation-analyti
argument with respe
t to Fourier frequen
y. Using (3.32) and the asymptoti
 be-havior of Ai as t → ∞ it turn out that the de
ay is even faster. In any 
ase one�nds for ea
h δ > 0 a de
ay 
onstant κδ > 0 su
h that

∀ t ≥ 0 ∀ c ∈ (−∞,−c∗−δ] ∪ [c∗+δ,∞) : |g(t, c)| ≤ e−κδ(|c|−c∗)t. (3.33)With the above lemmas we are now prepared to prove the ℓp de
ay rate of eL t.Proof of Theorem 3.1. A

ording to Lemma 3.4 the group eL t a
ts as 
onvolutionwith the matrix-valued Green's fun
tion G(t) = (Gk,m(t))k,m=1,2. Using Young'sinequality (3.6) we obtain
‖eL tz0‖ℓp ≤ ‖G(t)‖ℓp‖z0‖ℓ1 .Thus, it is su�
ient to prove the desired de
ay rates in (3.9) and (3.10), respe
-tively, for the 
omponents of G(t).We only 
arry out the details of the proof for G1,1(t). Let us �rst 
onsider the
ase p 6= 4. We aim to prove
∥

∥G1,1(t)
∥

∥

ℓp
≤ Cp

(1 + t)αp
(3.34)whi
h a

ording to (3.18) and by introdu
ing the velo
ity c = j/t as new variablefollows from

t

∫ ∞

−∞

∣

∣

∣

∣

1

2π

∫ π

0

h(θ, t, c) dθ

∣

∣

∣

∣

p

dc = O(t−pαp) as t→ ∞.The left hand side is bounded by terms of the form
Bp(t) := t

∫ ∞

−∞

|g(t, c)|p dcwith g(t, c) de�ned in (3.21), φ(θ, c) = ±(ω(θ) ± cθ) and ψ(θ) standing for 1,
1/ωr(θ) or ωr(θ). Without loss of generality we only 
onsider φ(θ, c) = ω(θ) − cθand may assume t > 1. 19



To estimate the 
ontributions of ea
h θ ∈ Θ
r we 
hoose ε > 0 and 
onsider
c ∈ [ω′(θ)−ε, ω′(θ)+ε]. Using Lemma 3.5 and Lemma 3.6 we �nd
Bp(t) = t

(

∫ ω′(θ)−t−2/3

ω′(θ)−ε

+

∫ ω′(θ)+t−2/3

ω′(θ)−t−2/3

+

∫ ω′(θ)+ε

ω′(θ)+t−2/3

)

|g(t, c)|p dc

≤ CωCψ
(1 + t)p/3−1/3

+
2C̃ωCψ

(1 + t)p/2−1

(

1 +

∫ ω′(θ)+ε

ω′(θ)+t−2/3

dc

|ω′(θ)2 − c2|p/4

)

≤ CωCψ + 2C̃ωCψC

(1 + t)(p−1)/3
+

2C̃ωCψC

(1 + t)(p−2)/2

(3.35)
with C depending on ω′(θ), ε and p. Taking the leading order term we get thede
ay rate pαp. Thus, using (3.33) and Lemma 3.6 for c /∈ [ω′(θ)−ε, ω′(θ)+ε] weobtain

Bp(t) ≤ 2M
CωCψ + 2C̃ωCψC

(1 + t)pαp
+ O(t−(p−2)/2) + O(e−κεεpt)whi
h implies (3.34). Hen
e, the 
ase p 6= 4 is established.In the 
ase p = 4 the additional fa
tor log t 
ontributing to the leading order termappears on the right hand side of (3.35). Indeed, we obtain

B4(t) ≤
CωCψ + 2C̃ωCψC

1 + t
+

2C̃ωCψC

1 + t

(

log t+ log ε
)

.This is su�
ient to see that ∥∥G1,1(t)
∥

∥

ℓp
≤ Cp

(

(1 + t) log(2 + t)
)1/4.For the other 
omponents of G(t) we may use exa
tly the same arguments. Thisproves the �rst statement of Theorem 3.1.To prove the se
ond statement we pro
eed like above but we use the global upperbound Lemma 3.7 instead of Lemma 3.5 and Lemma 3.6. Then, the leading orderterm behaves like t(2−p)/p.4 Outlook: Further appli
ations4.1 The dis
rete Klein-Gordon and nonlinear S
hrödingerequationHere we outline how to apply the tools developed in Se
tions 2 and 3 to othermodels in one-dimensional 
hains, namely the dis
rete Klein-Gordon (dKG) andthe dis
rete nonlinear S
hrödinger equation (dNLS), see Se
tion 1.For (dKG) we have an on-site potential with W ′(x) = bx + O(|x|β). Like in theFPU 
ase our results are not restri
ted to nearest neighbor intera
tion. Indeed, wemay allow for any �nite range intera
tion as long as the stability 
ondition (3.8)20



is satis�ed; but for simpli
ity we restri
t ourselves to the simplest 
ase, where thedispersion relation reads
ω(θ) =

√
2 + b− 2 cos θ.The stability 
ondition immediately implies b ≤ 0. In Figure 4.1 we plot the dis-persion relation and the time evolution of a prototypi
al dKG 
hain. A major
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jFigure 4.1: Dispersion relation and time evolution for the prototypi
al dKG
hain (a1 = −1, b = 0.5): ω(θ), ω′(θ) and xj(t) at t = 800 to initial 
ondition
(xj(0), ẋj(0)) = (δj,0, 0).di�eren
e to FPU is that the propagation fronts do not 
orrespond to the ma
ro-s
opi
 wave number θ ≈ 0. Hen
e, the fronts are not monotone but have an Airyexpansion as in (3.32) but multiplied with a fa
tor eiω(θ∗)t, where ω′(θ∗) = c∗ andhen
e ω′′(θ∗) = 0. Now θ = 0 does not lie in Θ
r be
ause the on-site potential Wdestroyed the Galilean invarian
e.But apart from these two di�eren
e the results and the approa
hes to prove theseare the same like in the FPU 
ase. Using the expli
it solution of the linearizedsystem, we may prove the analog to Theorem 3.1 with the same de
ay rates. Thisrelies on the fa
t that the key ingredients for its proof is the representation ofthe solutions in terms of os
illatory integral of the form (3.21) and quite general
onditions on ω, namely (3.8).Theorem 4.1:Consider the dis
rete Klein-Gordon system (dKG) with W ′(x) = bx + O(|x|β),
b < 0 and β > 4. Then, for ea
h p ∈ [2, 4) ∪ (4,∞] there exist Cp and ε > 0 su
hthat all solutions z = (x, ẋ) with ‖z(0)‖ℓ1 ≤ ε satisfy the estimate

‖z(t)‖ℓp ≤ Cp
(1 + t)αp

‖z(0)‖ℓ1 for all t ≥ 0, (4.1)where the de
ay rate αp is given in (3.9).Again the 
ase p = 4 
an be in
luded by adding a suitable logarithmi
 term.This theorem improves the result in [SK05℄ in a twofold manner, namely in terms of
β as well as in terms of the de
ay rate αp for p ∈ (2,∞). In parti
ular, Theorem 4.1explains the dis
repan
y the numeri
al simulation and the theoreti
al de
ay rate
α̂p in [SK05℄. We see that our de
ay rate αp �ts the numeri
s mu
h better.21



p 4 5 6
α̂p = p−2

3p
1
6
≈ 0.167 1

5
0.2 1

3
≈ 0.133numeri
s in [SK05℄ 0.226 0.267 0.292

α = p−1
3p

1
4

= 0.25 4
15

≈ 0.267 5
18

≈ 0.278The above theory 
an be easily transferred to the dis
rete nonlinear S
hrödingerequation (dNLS), where the dispersion relation reads ω(θ) = 2−2 cos θ. Obviously
Θ
r = {π/2} and the non-degenera
y 
ondition ω′′′(π) 6= 0 holds. In this 
ase the
ℓ2 norm is in fa
t a �rst integral, and hen
e is preserved exa
tly along solutions.Using this, it is not di�
ult to show that for β > 4 we have dispersive stabilitywith the same de
ay rates as above.4.2 Appli
ations to systems in 2DHere we dis
uss the appli
ation of our general theory to a system on a two-dimensional latti
e. The 
ru
ial point in higher spa
e dimensions are the estimatesfor the linear group. Here we only present a 
onje
ture for the de
ay rates; therigorous proof being ongoing work, 
f. [Pat09℄. For methods to handle 2D os
illa-tory integrals we refer to [Won89, BH86, Hör90℄ and [GWF81℄, whi
h is based onte
hniques derived in [Dui74℄.We 
onsider the Hamiltonian system

ẍj = V ′(xj+e1 − xj) − V ′(xj − xj−e1) + V ′(xj+e2 − xj) − V ′(xj − xj−e2) (4.2)with j = (j1, j2) ∈ Z
2. Here e1 = (1, 0)T and e2 = (0, 1)T are the unit ve
tors,

x := (xj)j∈Z2 with xj ∈ R and V ′(r) = r+O(|r|β) with β > 1. To avoid di�
ultiesby introdu
ing an analog to the distan
es r in one dimension we restri
t ourselvesto initial 
onditions (x(0), ẋ(0)) = (x0, 0) ∈ ℓ1(Z2,R2).Like in the one-dimensional 
ase it is possible to solve the linearization of (4.2)expli
itly and the behavior of the solutions relies on os
illatory integrals of theform
g(t, c) =

1

(2π)2

∫

T2

ψ(θ)eitφ(θ,c) dθ (4.3)with φ(θ, c) = ±(ω(θ) − c · θ), where now θ = (θ1, θ2) ∈ T
2 and c ∈ R

2. For (4.2)the dispersion relation is given by
ω(θ) =

√

4 − 2 cos θ1 − 2 cos θ2.Although we do not state the formula note that in this 
ase it is possible 
al
ulatethe 
riti
al set Θ
r = {θ ∈ T
2 | det D2ω(θ) = 0} expli
itly. The mapping Dω :

T
2 → R

2 has the range {c ∈ R
2 | 0 < |c| < 1} of possible group velo
ities and maps

Θ
r into a 
losed 
urve with four verti
es, see Figure 4.2, left. The right-hand sideof Figure 4.2 displays the time evolution of the �rst 
omponent of the Green's22
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Figure 4.2: Left: The 
ir
le is the set of possible group velo
ities and the 
urvewith four verti
es denotes the 
riti
al group velo
ities. Right: Time evolution ofthe linearization of (4.2) with initial 
ondition x0

j1jj
= δj1δj2 and ẋ0 = 0	.fun
tion, whi
h 
learly shows di�erent regimes at the 
riti
al wave numbers. We
an roughly distinguish three regions: (i) four verti
es, (ii) four edges 
onne
tingthese verti
es and (iii) the remaining region inside the light 
one, whi
h is a 
ir
leof radius t.To obtain the de
ay properties of ‖eL t‖ℓ1,ℓp, where L again stands for the linearpart of the operator on the right hand side of (4.2), we �rst determine the lo
alasymptoti
 behavior of (4.3). Then, assuming a reasonable width of the threedi�erent regions we infer the ℓp de
ay rate like in the proof of Theorem 3.1. Todo so we apply the lo
alization prin
iple: For c = Dω(θ), the main 
ontributionto g(t, c) is given by

Iθ(t) =

∫

T2

h(δ) eitϕ(δ) dδ where ϕ(δ) := φ(θ + δ,Dω(θ)). (4.4)Here h ∈ C∞, supph ⊂ Uε(0) for ε > 0 su�
iently small, and h(0) = 1. Thefun
tion h arises via partition of unity on T
2. The lo
al de
ay rate t−α(θ) of Iθ(t),and hen
e of g(t,Dω(θ)), is determined by the leading-order terms of the Taylorexpansion

ϕ(δ) = ϕ(0) +
1

2
δT · D2ω(θ) · δ + h.o.t., Dϕ(0) = 0. (4.5)For θ ∈ T

2\Θ
r a linear 
oordinate transformation δ = Aξ leads to ϕ(Aξ) = ϕ(0)+
ξ2
1 ± ξ2

2 +h.o.t. Thus, s
aling ξ with √
t leads to |Iθ(t)| ∼ 2π

|det D2ω(θ)|1/2 t
−1 +O(t−2).This de
ay rate 
orresponds to the region inside the light 
one, but away from thefronts.For θ ∈ Θ
r we have to distinguish two 
ases. The four verti
es 
orrespond to thedegenerated points (±π

2
,±π

2
). If θ ∈ Θ
r \ {(±π

2
,±π

2
)}, then, following the ideas23



in [GWF81℄ we �nd a lo
al 
oordinate transformation to get ϕ(Aξ) = ϕ(0) + ξ2
1 ±

ξ3
2 + h.o.t. Thus, |Iθ(t)| ∼ b(θ)t−5/6 +O(t−7/6), where b(θ) is singular in (±π

2
,±π

2
).Finally, for θ = (±π

2
,±π

2
) there exists a 
oordinate transform δ = b(ξ) su
h that

φ(b(ξ)) = φ(0) − ξ2
1 − ξ4

2 . S
aling ξ1 and ξ2 with t1/2 and t1/4, respe
tively, gives
|Iθ(t)| ∼ b(θ)t−3/4, whi
h is also the global ℓ∞ de
ay rate.The de
ay rate of ‖eL t‖ℓ1,ℓp is roughly determined by
∥

∥

∥
g
(

t, ·
t

)
∥

∥

∥

p

ℓp(Z2,R)
∼ t2

∫

|c|≤1

|g(t, c)|pdc =
t2

(2π)2p

∫

|c|<1

∣

∣

∣

∣

∫

T2

eitφ(θ,c) dθ

∣

∣

∣

∣

p

dc. (4.6)Using the normal forms given above we estimate the amount of the three regionson the right-hand side and obtain
∥

∥g(t, ·
t
)
∥

∥

p

ℓp
∼ t2

(

C
onet−p + C
urvet−βt−5p/6 + Cvertext−γt−3p/4
)

,where t−β gives area of the regions around the four 
urves and t−γ the area ofthe regions around the four verti
es measured relatively to the dis
 |c| < 1. We
onje
ture that the 
orre
t values are β = 2/3 and γ = 3/4.This 
onje
ture leads to the de
ay rates α2D
p = min{p−2

p
, 3p−5

4p
}, whi
h is obtainedfrom interpolating the three values α2 = 0, α3 = 1/3, and α∞ = 3/4. It seemsreasonably that the 
ase p = 3 needs a logarithmi
 
orre
tion. The numeri
alsimulations shown in Figure 4.3 agree quite well with this rate for p ∈ [2, 3],however there are major dis
repan
ies for larger p. In any 
ase, the numeri
s
learly suggests that the optimal de
ay rates are better that the ones, whi
h 
anbe obtained by interpolating between α2 = 0 and α∞ = 3/4.
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Figure 4.3: Conje
tured exa
t de
ay rate α2Dp, interpolation rate and numeri
allyestimates rates as fun
tion of 1/p.Nevertheless, if α2D
p hat the above form for p ∈ [2, 3), then the nonlinear dispersivede
ay theory of Theorem 2.1 provides dispersive de
ay with this rate whenever thenonlinearity is of degree β > 3. 24
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