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Abstract

We derive dispersive stability results for oscillator chains like the FPU
chain or the discrete Klein-Gordon chain. If the nonlinearity is of degree
higher than 4, then small localized initial data decay like in the linear case.
For this, we provide sharp decay estimates for the linearized problem us-
ing oscillatory integrals and avoiding the nonoptimal interpolation between
different ¢P spaces.

1 Introduction

The phenomenon of dispersive stability is well-studied for partial differential equa-
tions. Usually one considers a Hamiltonian system where energy conservation
prevents strict spectral stability giving rise to exponential decay. Typically the
behavior of small solutions is such that the energy norm is bounded from above
and below by constants while the L* norm decays with an algebraic rate of the
type (1-+¢)~“. This rate is generated from the fact that initially localized solutions
are dispersed by the different group velocities associated with the different wave
numbers . The fundamental effects derive from the dispersion relation © = w(#)
of the linear differential operator, where @ is the frequency and ¢(f) = Vyw(0)
the group velocity. The dispersion is now related to the fact that c still depends
nontrivially on 6, i.e. the second derivative of w should be nontrivial. We refer to
[Seg68, Str74, Ree76, Str78| for results treating the sine-Gordon, the Klein-Gordon,
the nonlinear Schrédinger, or the relativistic wave equations. Sometimes the the-
ory is developed under the name scattering theory for small data. In [CW91| a
recent improvement was made on the lowest order of nonlinearity for the gen-
eralized Korteweg-de Vries equation by a careful combination of sharp estimates
for the linear part, obtained via deep harmonic analysis, and careful chain-rule
estimates for fractional derivatives of the nonlinearity.

The same dispersive effects are to be expected in discrete systems, which are
infinite ODEs on a lattice Z?. The difference is now that the dispersion relation
is now a periodic function in 6, i.e. w is defined on the torus T¢ := Rd/(zwz)d.
Thus, in contrast to PDEs, where w is an algebraic function on R¢, the dispersion
relation has necessarily a richer degeneracy structure. As a result, the linear decay
estimates for periodic lattices need a more careful analysis, and it is the aim of
this work to establish a more general approach to this field.



To describe the work done so far and our contributions we start by highlighting the
three major equations treated in this field, namely the Fermi-Pasta-Ulam chain
(FPU), the Klein-Gordon chain (dKG) and the discrete nonlinear Schrodinger
equation (dANLS):

2, =V (xvj —xj) = Ve, —xj_1), J € Z; (FPU)
Ty = wjp — 25 + xjm + Wi(zj), JEZ; (dKG)
i = ujyy — 2uj +uj_q + aluj|’uy, j € Z. (ANLS)
Here the potentials V' and W are assumed to be such that V'(r) = r + O(|r|%)

and W’ (z) = z + O(Jz|?). In general, 3 > 1 is used to measure the order of the
nonlinearity.

A very careful study of the linear FPU equation was given in [Fri03|, which high-
lights the synchronization phenomena in compact domains. In [Mie06| general
multidimensional linear lattice systems were studied on the shorter hyperbolic
scale, where energy transport along the rays dominates but dispersion is not yet
seen. Discrete lattice systems as finite-difference approximations of wave equa-
tions are analyzed in |Zua05, 1Z09|, where the proper approximation of dispersion
relations is an important point.

Dispersive stability results in the direction of this work are obtained in [SKO05,
GHMOG|. The latter work provides the dispersive stability of FPU under the
assumption that the nonlinearity satisfies 5 > 5. In this work, we will improve
this result to the case § > 4. In [SK05] dKG and dNLS are studied analytically
and numerically; we comment on the result of this paper below.

To describe our result we first restrict to FPU, which will be discussed in full detail
in Section 3. There we will also treat a generalized FPU chain which allows for
any finite number of interactions. Our main result will be that under a suitable
stability and nonresonance condition we have dispersive stability if the nonlinearity
is of order # > 4. In particular we will show that the decay of the solution of the
nonlinear problem is the same as that of the linear one. The main point in the
analysis is that we obtain an improved estimate for the dispersive decay of the
linear semigroup. Writing FPU abstractly in the form

a(t) = Lz + KN (2)

and using the the Banach spaces (7 = (P(Z; R?) we find, for each p € [2,4) U (4, o0]
a constant C), such that

C, C
“aoller < R zollr < — 2 for t >0, (1.1
Izl < oy ool e K zollr < e llolla for ¢ >0, (L)
where the decay rates are given by
— 2
P=2 for pE [2,4), 9
_ 2p 5 =P~
X%p=9 p-1 and &, = ol
—— forp € (4, 00, P
3p



The operator IC arises from the difference structure of the right-hand side in FPU.
The case p = 4 is excluded in (1.1), since the first estimate holds only with a
logarithmic correction, see (3.9b).

The key observation is that the decay rates for p € (2, 00) are strictly better than
the ones obtained by interpolating the decay as = 0 and a,, = 1/3, which would
lead to &, = (p — 2)/(3p) < a,. The main work of Section 3 will be devoted to
establish the decay estimates (1.1), which are obtained by analyzing the dispersion
relation and estimating the resulting oscillatory integrals. The nonlinear stability
result is then obtained using standard arguments, which we have collected in an
abstract setting in Section 2. We emphasize that all nonlinear decay estimates are
of the form that the nonlinear decay is exactly of the order as the linear decay,
which is also found numerically, see Figure 1.1. We also show that our decay rates
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Figure 1.1: Double-logarithmic plot of ¢7 norms of the solution to the linear FPU
(—) and the nonlinear FPU with V(r) = r + |r|* (- -) as function of ¢.

are optimal in the sense, that the dispersive decay of the nonlinear system cannot
be better than for the linear system.

In Section 4 we will discuss the usage of our method in more general settings
such as dKG, dNLS, and a two-dimensional lattice. In particular, we compare
our results for dKG with those obtained in [SK05]. There, for § > 5 dispersive
decay in ¢? was proved with the rate &, = (p—2)/(3p), while numerically the values
0.226, 0.267, and 0.292 were obtained for p = 4, 5, and 6, respectively. We improve
the results in a twofold manner: first we reduce the possible order of nonlinearity
to the regime 3 > 4, and second we establish the better (and sharp) decay rate
a, = (p—1)/(3p), which matches much better with the numerical values.



We conclude with remarking that there is a rich literature on persistent localized
solutions in lattices, such as modulated pulses, solitons, and breathers, see e.g.
[FW94, FP99, 1J05, GHMO6|. From this, it is possible to show that the generalized
FPU admits families of solitary waves of KdV type, which for 8 < 5 may have
arbitrary small energy. However, these solitary waves are the broader the smaller
the amplitude is. For the case § < 3 it follows that dispersive stability cannot
hold, see Remark 3.3. It remains open what happens in the case 3 € [3,4].

2 General stability result

In this section we present the general method to prove dispersive stability of non-
linear systems, which are based on weak decay estimates of its linearization. The
ideas are classical and were established for dispersive stability in PDE theory, see
for instance [Seg68] and [Str74]. See also [MSUO1] for a survey in the related the-
ory of diffusive stability in parabolic systems. In the context of lattice models the
authors of [GHMO6] illustrate the ideas in an abstract setting and in [SK05| these
arguments are applied to dKG systems and dNLS equations.

To emphasize the general structure we use again an abstract setting in general
Banach spaces, which will be specialized to the spaces £?(Z R") in the following
sections. The general aim is to establish conditions that guarantee that the non-
linear system still has the same dispersive decay as the linear one. This will be our
first result. In the second result we even go beyond by showing that the different
between the solution of the linear systems and the nonlinear systems decays faster
than the linear one.

We start with the general system on a Banach space Z given in the form
z=Lz+KN(z), (2.1)

where £, K linear and bounded and A is a nonlinear operator. The operator
L : 7 — Z generates a bounded semi-group (e“)tzo, that is there exists a C'z > 0
with [[e“!z|z < C¢|z||z for all t > 0 and z € Z. Typically the space Z is chosen
such that the solution z = 0 is a stable solution of (2.1), i.e.

30 >0 Vsln.z(t)with [|2°]p <e Vt>0: |z(t)|e < Cpllz’e.  (2.2)

This condition is in particular satisfied if the system is Hamiltonian and the energy
functional serves as a Liapunov function. That is, if the energy is bounded from
above and below.

However, for proving dispersive stability we need to choose different spaces and do
not rely on (2.2). We consider a scale of Banach spaces Z, C Z C X and a space
Zn C Z where the embeddings are assumed to be continuous. The space X is
used for the estimation of the solutions, Z; is taken for the initial conditions, and



Z measures the nonlinearity. We assume that positive constants Cy, Cs, Cs, o, 7,
and 3 > 1 exist such that the following estimates hold for all z and all ¢ > 0:

C
Je€'allx < i lala (2.3a)
1 K zllx < —22 |z (2.3b)
=y A ‘
IN @Iz < Cslall’ (2.3¢)

The following result is the first simple decay estimate, which we state for reasons
of clarity. It is in fact a special case of the more involved result given below. Hence
we do not provide an independent proof.

Theorem 2.1:

Let the conditions (2.3) hold with min{vy, af,af+y—1} > «a and v # 1 # Pa.
Then, there exist positive constants C' and € such that for each zy € Zy with
|Zo|| z, < € the unique solution z of (2.1) with z(0) = z satisfies

B

20l < g

1z(0)||z, fort>D0.

This and the following result rely on the following lemma that is used to estimate
the convolution integral occurring in the variation-of-constants formula. The lower
bound in the following result is only given to indicate that the provided exponent
v is optimal.

Lemma 2.2:
For constants ay,as € [0,1) U (1,00) there exists a constant C > 0 such that

¢ ¢ 1 . .
= ds < Nt>0 (24
(X1+ﬂ“4_ﬂé(1+t—sW1U,+@m S< AT forallt >0, (2.4)

where v = min{ay, ag, 0y +ags—1}.
Proof. To obtain the estimate we split the integral into the two domains [0,¢/2]

and [t/2,t]. In the first interval we estimate (14+1¢)/2 < 1+t —s <1+t and
obtain

1 L e 2
S
IL+t—s) (1+s)2 = (141)

1 t/2
—— My (t/2) < Ms(t/2
(1_|_t)a1 2(/)—/0 ( 2(/)
where My(r) = [7(1 + s)~*2ds. Evaluating the integral M, explicitly, we find
a decay estimate with exponent 75 = min{a;, a;+as—1}. Treating the interval

[t/2,t] similarly, the assertion follows by taking v = min{v;, 72 }. O



The following result gives a refinement of the above result. It is based on an
additional Banach space V' which satisfies Zo C V C X with continuous embed-
dings. It will play the role of an intermediate space in which we have already some
information, namely

30, 31,6 > 0 with Bi+3 >1Vze Z:  ||N(2)|z < Clzlz?2.  (25)

Such estimates occur naturally by interpolation, see (3.5).

Theorem 2.3:

Let the system (2.1) satisfy (2.3) and (2.5). Assume further that there exist positive
0, Cy, v such that for all zog € Zy with ||zo||z, < 0 the unique solution z of (2.1)
satisfies the estimate

lz()]lv < 1z(0)|z, for allt = 0. (2.6)

(1+1t)

Let p = min{~, v+ fea, y+iv+Poa—1} and assume p > o, frv+Pec # 1 # 7,
then there exist positive € and Cx such that for ||z(0)||z, < e the solutions satisfy

C
|2(t)]|x < (1+Xt)a 2(0)||z,  and

|2(t) — ¢“'2(0) [ x <

for all't > 0. (2.7)
( )Hﬁﬁ-ﬁz

Cx
(141t
Proof. We give the proof in such a way that the case ; = 0 is included, which
provides the proof of Theorem 2.1. Then, (2.5) reduces to (2.3¢).

We use the variations-of-constants formula
t
z(t) = e“'z(0) + / eLlt=s) KN (z(s))ds
0

and estimate the solution in the space X. Using the assumptions we obtain

CG CCrEO0)Wt s
a0l < s 20l + | Gy s () ds.

Assuming ¢ = [|z(0)]|z, < 60 and introducing R(t) = max.eo,(1 + 5)%||z(s)||x and
(= P + (o we find the estimate

1 1
L+t—3s)7 (1+s)H

t
R < e+ 0 [ - ds C.C7 R(t)*

0
Employing Lemma 2.2 we have derived the estimate R(t) < Ci(+ C*CP R(t)"2. Tt

is now easy to find £ > 0 such that for { < e we have R(t) < 2C}(, which is the
first inequality in (2.7).



Reconsidering the variations-of-constants formula once again gives

1
T+t—8)7(1+s)»

t
Jz(t) = =20l < [ - ds C.OMR()",
0
and the second estimate in (2.7) follows by employing Lemma 2.2 and the previous
estimate for R(t). O

3 Dispersive decay for generalized FPU systems

We now apply the general result presented in section 2 to Hamiltonian systems
on a one-dimensional lattice, also called oscillator chain. Here, we only discuss a
generalization of the celebrated Fermi-Past-Ulam chain in detail, while in section 4
we outline how to treat discrete Klein-Gordon systems and nonlinear Schrédinger
equations.

3.1 The generalized FPU system

We consider an infinite number of equal particles with unit mass and interact-
ing with a finite number K of neighbors via potentials Vi, ..., Vk. According to
Newton’s law the equations of motion are

Ty = Z Ve(@jur —25) = Vi(wj —25-1)) ,  JEL (3.1)
1<k<K
Here z; € R denotes the displacements. We write x := (z;)jez. For the time

being we only assume that V/(r) = apr 4+ V7. (r), Vi k(r) = O(|r?)jp—o with
B > 1. System (3.1) is Hamiltonian, i.e. (X, )7 = Jean d Hy(X, p) with momen-
tum p := X, Jcan the Poisson tensor corresponding to the canonical symplectic
structure defined by ((x,p), T can(X, D)) 2z = (X, D)2 — (X, p)r2 and Hamiltonian

He(x.p) = > (%pg + ) Vilwjar — ifj)) :

JET 1<k<K
The dispersive decay is driven by the linearized system

;= E ay, (:zsj+k — 2 + xj_k).
1<k<K

The dispersion relation is obtained by looking for plane waves in the form x;(t) =
¢'®+9)  We find the relation

0 =A0) = Y ap2(1-cos(kd)). (3.2)

1<k<K



Obviously, we have A(0) = 0, which is a consequence of Galilean invariance. By
periodicity, it suffices to take 6 € [—m, 7] and by reflection symmetry we may take
0 € [0, 7] only. Throughout, we make the following stability condition

A(0) >0 forall 8 € (0,7], (3.3)
which certainly holds if all a;, are positive, however more general cases are possible.

An essential feature of the considered model is its Galilean invariance, i.e for all
¢, c € R the transformation (x,p) — (x; + & + ct, x; + ¢)jez leaves (3.1) invariant.
Therefore it is convenient to use distances r := (0; — 1)x = (x;41 — ;) jez as new
variables instead of the displacements. Introducing z := (r,p)? the Hamiltonian
turns into

H.(z) = %(Z,Ar z) 2 + Vu(z)

with

(z, A, 2)p :Z <p§+ Z ak‘ Z 7°j+l‘2>

1<k<K  0<I<k

and

an(Z) = Z Z an,k( Z 7’j+l>-

JEZ 1<k<K 0<I<k

The transformed Hamiltonian system (3.1) reads as
z="0 dH.(z) = Lz + T, N(z) (3.4a)

where £ = 7, A, with 7, A,, and N given by

— 0 0y-1 (2 i<x 2p<n<x (k= [l])axd; 0
R P T O

0
N = ) = ((ZKM Sosmes Vioi Sipemise ml))jez) B

where (0,z); = zj1; and 0y = 044. Clearly, Lz = J; A, z gives the linear forces
and J;, N(z) the nonlinear interaction forces. Here the operator 7, refers to the
push-forward of the Poisson tensor Jcan, i.€. Jp =7 Jecan 7 where 7T is the linear
map defined by (r,p)? = 7 (x,p)?. Note that now J, is a non-canonical Poisson
structure.

3.2 Nonlinear dispersive stability

To study the nonlinear system we use the Banach spaces

1/
e@ER) with norm [2e = (Y0 leP) !

Jezd



where p € [1,00]. We frequently write (7 to denote (?(Z%;R™), if the lattice Z<
and the space R™ are either irrelevant or clear from the context.

For 1 < p; < py < oo we have the continuous embedding (' C (P2 with ||z||p: <
||z||»:. An essential tool is the interpolation estimate

1—-9 0
_I_

—, 3.5
Do P1 ( )

_ 1
|12[v0 < ||2]lg0” |2[[ 7w, Where — =
Dy

and pg, p1 € [1,00] and ¥ € [0, 1]. This is an easy consequence of Holder’s inequality
and plays a crucial role in many estimates concerning dispersive decay. Moreover,
we use Young'’s inequality for convolutions a x b with (a*b); = >, ;4 aj_rb;. For
r,p,q € [1,00] with % —i—% =1+ 1 we have

la*b|ler < [la]lew||bllea for all a € P, b e 2. (3.6)

To apply the general result of section 2 we first provide the a priori estimate (2.2).
The theory in section 3.3 shows that (3.3) is equivalent to the existence of a positive
constant C' such that

1
5||z||?2 <(z, A z)p < C|z||% for all z € (*(Z;R?).

Using this it is easy to obtain the classical energy stability in (%(Z;R?): there are
Cy > 0 and gy > 0 such that for all zy € ¢? with ||z||,2 < &o the solution z of (3.4)
with z(0) = z, exists globally in time and satisfies

|z(t)||lez < C|z(0)||,z for all t € R. (3.7)

To state the linear decay result we define the relevant branch © = w(#) of the
dispersion relation via

w(f) = /A(9) > 0.

With a slight abuse of notation we simply call w the dispersion relation. Under
the stability assumptions (3.3) we have w € C*([0,7]) and we are able to define
the set of critical wave numbers as

O = {0 € [0, 7] | W"(0) = 0}.

Since K in (3.2) is finite, O, is discrete and contains § = 0. Thus, we have
Ou ={b0,...,00} with 6y =0 < 0, < ... < 0y < for some M € N.

The following linear decay results will be proved in section 3.3.

Theorem 3.1:
Consider the group (e“%);cr for L = J. A, defined in (3.4b). Assume that the
dispersion relation w satisfies (3.3) and the non-degeneracy condition

W(0)>0 and VOe€O,: ") #0. (3.8)



Then, for p € [2,4) U (4, 00| there exists C, such that, for allt > 0, we have

—2
C o, forp € [2,4),
He“HZl w < —2L—  where o, = “p
> (1 +t)ap p D 1
—— forp € (4,00].

In the case p = 4 there exists Cy > 0 such that

log(2 +t)

Lt < C (
e ||el,z4_ 4 11t

1/4
) for all t > 0.

If furthermore ©. = {0}, then for p € [2,00] there exists C'p such that

C -2
£ —  forallt >0, where a, = p—.

1€ T [l er < o

The philosophy of the decay estimate is that oscillations with wave numbers 6
travel along rays j = ¢(0)t, where the group velocity is given by ¢(0) = w'(6). The
decay along these rays is like t=/2 if w”(#) # 0 and like t=/3 if § € O,. In Figure
3.1 we plot the dispersion relations w and the associated solution r;(t) to display
the influence of the critical wave numbers 0; € ©.,. Thus, the decay like t=1/3 in
(> is easily obtained. However, for § ~ 0, € O there is a cross-over between
the two different decay rates, which needs to be estimated carefully to obtain the

decay rate «, for p € (2, 00).

(3.9a)

(3.9b)

(3.10)

2 1 1
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Figure 3.1: Dispersion relations and time evolutions. Left: classical FPU (K = 1:
a; = —1). Right: generalized FPU (K = 2: a; = 0.08, ay = 0.23) with two wave
fronts. The upper figures show w(6) and w'(#), respectively, and the lower figure

shows r;(t) for ¢ = 800 and initial condition (r;(0),z;(0)) = (d;,,0).

Because the operator 7, is related to the difference operators 0y — 1 and 0_; — 1,
it reduces the amplitudes of very long waves. Thus, in e“! 7, the bad decay

10



associated with 6y = 0 € O, is reduced but not for any other #,, € ... Hence, the
last statement needs the requirement O, = {0}. In this connection it is interesting
to mention that in case ., = {0} the solutions of z = £ z globally decay like t~1/2
if we restrict the initial conditions to a suitable subspace. Indeed, if we choose
z* € J. (' this follows from (3.10) and the fact that the operators J, and e
commute.

The following decay result is a direct combination of the abstract results of section
2 and the above linear decay estimates.

Theorem 3.2:

Consider the generalized FPU system satisfying the linearized stability condition
(3.3) and the non-degeneracy condition (3.8). Assume that each potential Vj sat-
isfies Vi(r) = apr + O(|r|?) for B > 4. Then, for each p € [2,4) U (4,00] there
exist Cp, and € > 0 such that all solutions z of (3.4) with ||z(0)||n < € satisfy the
estimate

C,
2(t)||er < ﬁ 1z(0)||»  for all t >0, (3.11)

where the decay rate o, is given in (3.9). If additionally O, = {0}, then

C
12(t) — ¢512(0) o < W 12(0)||3;  for all t >0, (3.12)

where the decay rate c, is given in (3.10).

We have omitted the case p = 4 to avoid a clumsy presentation. For p = 4 one
can easily obtain algebraic decay for any o < 1/4 by interpolation or a decay as
in (3.9b), after generalizing the results in Section 2 to include logarithmic terms.

Proof. In a first step we apply Theorem 2.1 with Z, = Zy = (' ¢ X = (™
with 4 > p; > 26/(8-2), where we used § > 4. Because of § > p; we have
N (2)||o < C|lz||o. We estimate K = J; by a constant and use a = v = ay,.
The choice of p; gives @ < 1 < aff and min{y, a3, af+y—1} = a, which allows
us to apply the theorem. We obtain positive C,, and &y such that (3.11) holds for
p = p1. Since the result holds for p = 2 by the nonlinear stability estimate (3.7),
the interpolation (3.5) shows that the result holds for p € [2,p;]. Since p; can be
chosen as close to p = 4 as we like, estimate (3.11) is established for all p € [2,4).

Next we consider p € (4, 8] and see that Theorem 2.3 is applicable with v = 3, = 0,
a=a,<y=d,,and Zy= Zy =0 C X = (7. Thus, (3.11) and (3.12) hold for
pe 40

Finally, we treat the case p = oo by choosing py € (2,4) with p, > 12—20 < 4.
Using || NV(z)||n < C| 2|2, ||2]|/<7* we are able to employ Theorem 2.3 with Z, =
Iy=0CcV=rcCX=/(°andv=a, <a=1/3 <+, where y =1/3 in the
general case and v = 1/2 if the additional condition ©., = {0} holds, see Theorem

11



3.1. Using #; = po and By = [ — pg we find vf3; + af > 1. Hence p = v > «
and the desired estimate (3.11) follows for p = oo. Again, the remaining range
p € |3, 00| follows from interpolation.

If the additional condition ©., = {0} holds, we can apply the last assertion in
Theorem 2.3 and obtain (3.12). O

So far, we have only derived estimates for Zy = 1. It is however straight forward
to obtain results for Z = (7 for ¢ € (1,2), however the decay rates will be lower
and one may need higher order of nonlinearity 3. To see this, we simply note that
the application of the operator e“? is in fact a convolution with a matrix-valued
Green’s function G(t) € (*(Z; R**?), cf. (3.20). Hence, using Young’s inequality
(3.6) the operator norm [[e“?||s s» can be estimated by ||G||,s where 1 —l—% =14 é.
In fact, the estimates stated above and proved below are obtained by estimating
the ¢? norm of G(t).

We emphasize that for ¢ = 1 the formula ||e“!||;n » = ||G(¢)]|s holds, since the
upper bound follows from Young’s inequality and the lower bound is obtained by
using the initial condition z = (§;);ez. Our estimates for G;(¢) will be sharp
enough to establish also lower bounds ||G(t)||» > ¢/(1+1t)*r, thus that we cannot
hope for better estimates for the linear terms. In fact, using that the decay rates
ag = 0 and a., = 1/3 are optimal, it suffices to show that the decay rate ay cannot
be better than 1/4 (up to the logarithmic term). Then, for no p € (2, 00) the decay
rate can be better than «,, because an interpolation would lead to a better decay
rate for p = 4. Below we will show that estimate (3.9b) is indeed optimal.

Figure 3.2 displays numerically estimated decay rates, the exact curve «,,, and the
curve &, = (p — 2)/(3p), which is obtained by interpolation between p = 2 and
p = oo and hence is not optimal. The numerical curves agrees well with «, away
from p = 4. This effect may be due to the logarithmic correction which spoils the
convergence.

In the following remark we argue that the above dispersive decay cannot hold for
3 < 3, because of existence of solitary waves with arbitrary small ¢! norm.

Remark 3.3 (Solitary waves):

From |[FW94, FP99| the existence of solitary waves for generalized FPU systems
can be deduced under additional global conditions on the interaction potentials
Vi. Such waves satisfy z;(t) = Z(j—ct) for a fixed profile Z : R — R? and a given
wave speed c¢. In particular, [FW94| provides for the case 1 < < 5 the existence
of solitary waves with arbitrarily small energy, i.e. [|z.]|2 = § € (0,8). Our

soli
stability result implies that for 8 > 4 these solution cannot be small in ¢*.

In |[FP99| the case 3 = 2 is investigated, and it is shown that ¢ = w'(0) + O(&?).
The constructions there can be generalized to our case to provide small-energy
solitary waves of associated with the generalized KdV limit. Moreover, in [SW00|
it was shown that solutions of the form r5(t) = e "=V R(%, e(j+w'(0)t)) + h.o.t.
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Figure 3.2: Exact decay rate «,, interpolation rate ¢,, ¢*-(*° interpolation rate
and numerically estimated rates as functions of 1/p.

exist, where R : [0,7] x R — R satisfies the generalized KdV equation
O, R+ b9} R + by0,V'(R) = 0

where V'(r) = r 4+ O(|r|?). This equation possesses solitary wave solutions with
exponentially decaying tales. In terms of the generalized FPU system these so-
lutions satisfy ||zs;(t)]|n ~ eB~@/(0=1 which shows that for 1 < 3 < 3 there
are solitary waves that are arbitrarily small in ¢!. We conclude that the above
dispersive decay result cannot hold for 5 < 3, while the case § € [3,4] remains

open.

3.3 [(P-estimates for the linearized system

We consider the linearization of (3.4) in z = 0, i.e. the case N(z) = 0. To solve
the system explicitly we use Fourier transform F : (%(Z,R?) — L*(S', R?) defined
by 2(0) = 3 .cp z¢77. Then z = J; A, z turns into

Ot )

wr@)= Y > (k—ll)are"”

| <K—1|l|<k<K

= > ka+2 > ( > (k—l)ak)cos(l-ﬁ).

0<k<K 0<I<K—-1 MI<k<K

where

(3.14)
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Since (3.13) implies I = 2(cos 0 — 1)w,(0)%F and since the previous subsection gives
r = —A(f)r we conclude

w(f) =2 we(6). (3.15)

sin —
2

Using the linear stability condition (3.3) we obtain

e, >0VHeS: w(0) = wi(—0) > c,. (3.16)

The fundamental matrix of the linear system (3.13) is

A ) cos(w(0)1) ‘fj;l sin(w(0)t)
G.(0,t) = (‘“,’(9) sin(w(0)t) (C)OS(W(Q)t) ) .

e 101

(3.17)

The Green s function of our original problem is given by G(t) = F~ LG.(6,1),

that is G,(t) = 1 fsl (0,t)e7?dh for j € Z. Thus the long time behavior
of solutlons to the hnearlzed system is determined by oscillatory integrals. For
instance, for the classical FPU, i.e. for w,(f) = 1, the components of G; turn

into Bessel functions, cf. [Fri03]. Below we apply tools from asymptotic analysis
to obtain upper bounds on the solutions of the linearized system. To do so it
turns out that an alternative representation of the above Green’s function is more
convenient. Using the symmetry of w, we find that

Gy(1) = o / 0.t 3) a0, 7*3/2) do
7 2 ) \wi(O)h(0, 12 ho,t, 1) (3.18)

with h(6,t,c) = cos (t(w(8)+6c)) + cos (t(w(f)—bc)).

The new variable ¢ € R roughly characterizes the rays j = ct and is used to remind
us to the group velocity ¢(6) = w'(0).

Thus, we obtained the following representation formula for the solution of the
linearized problem.

Lemma 3.4 (Explicit solution):
Given some initial conditions z° = (r° p°)T € (*(Z,R?), the unique solution of
z= Lz with L = J, L, defined in (3.4b) is determined by

z(t) = e“'z° (3.19)

where (e£1)cr is a differentiable group of bounded operators on (*(Z,R?) defined
by
=> Gilt) -z forje (3.20)

keZ

with G;(t) defined in (3.18).
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The asymptotic behavior of (3.18) is determined by terms of the form

g(t,c) = /Oww(Q)eit‘b(e’c) df  with ¢(0,c) = H(w(0) — ) (3.21)

with w defined in (3.15) and ¥(0) standing for 1, 1/w,(6) or w,(#). In any case ¥
is smooth on [0, 7.

The main result from asymptotic analysis we will use below is van der Corput’s
lemma, see e.g. [Ste93]. It states that if ¢ is smooth and |[¢*)(6)| > A > 0 for
0 € (a,b) where either k > 2, or k =1 and ¢’ is monotonic, then

b
/ elitd(9) d@’ < Oy ()\t)_% with Cp = (5281 —2). (3.22)

Note that Cy does neither depend on a and b nor on ¢ explicitly. Writing F'(0) =
fae () d¢ and applying integration by parts to f:w(Q)F’(O)dQ we obtain

b b
[eovea) < aont (wor+ [wele). e

In the following lemmas we provide the decay estimates on ¢(t, ¢) required to prove
the sharp 7 decay rate of the linear group e“*. We use the notation

Cy = guax [016)| + [ 10/ 0.
] 0

S0

Since van der Corput’s Lemma only demands assumptions on |¢®)(6)| the following
considerations are indeed independent of the sign of ¢ in (3.21).

The first lemma provides a global upper bound on ¢(t,¢). Using the classical
method of stationary phase, cf. [Won89]| it is straight forward to check that the
result is sharp.

Lemma 3.5 (Global bound):
Consider the oscillatory integral (3.21) with dispersion relation w satisfying (3.8)
and ¢ € WU ([0,7]). Then there exists a constant C,, > 0 depending only on w
such that

C.Cy

V>0, ceR:  g(t,c)] < A+

(3.24)

Proof. Due to ¢(0, ¢) = w"(6) the following considerations are uniform with respect
to the group velocity c.

We write Us(6,,,) = {0 € [0,7] | |# — 6, < 0}. Due to the non-degeneracy
condition (3.8) it is possible to choose d > 0 such small that |w"”(0)| > A for all

15



0 ¢ U%:o Us(0,,) for some constant A > 0. Since w”(#) = 0 if and only if 6 € O,
there exists B > 0 with |w”(0)| > B for all @ € [0, 7]\ UY_, Us(6,n). Now we write

g(t’ C) — / ¢(9)eit¢(670) do + / ¢(9)eit¢(67c) do

UM Us (6m) (0,7 \UN_o Us (6m)

and apply (3.23). Thus
lg(t,c)| < (M +1) (18A7Y3 +-8B7Y2) Oyt~ '/*

holds for ¢t > 1. Using |g(t,c)| < mmaxgep~ |¢(0)] in case 0 < t < 1 proves the
conclusion for C,, = 2max{r, (M + 1)(18A~1/3 + 8B~1/2)}. O
The next result provides the decay rate t~%/2 along noncritical rays. The im-
portance is to characterize the width of the regions around the critical rays with
decay rate t~/3 that has to be excluded. This result provides sharp estimates
for cross-over between the two decay rates. Excluding group velocities near the
critical ones corresponding to the critical wave numbers, i.e. allowing only for ¢
with || & Uy co. [lw'(0n)] — €, ]w'(0n)] + €] where e > 0, (3.25) implies a uniform
bound ~ t71/2 on g(t,c). In fact, the result shows that the excluded regions may
be taken smaller, namely of width growing like t*/2. Using a suitable Airy scaling,
it can be shown that this width cannot be decreased, see (3.32) for more details.

Lemma 3.6 (Envelope function):

Consider the oscillatory integral (3.21) with dispersion relation w satisfying (3.8)
and ¢ € WHL([0,7]). Then, there exists a constant C,, > 0 depending only on w
such that for allt >0 and all c € R\ {c |30 € O : ||/ (0)] — |c|| < t~#3} holds

C,C 1
lg(t,c)] < m (1 +6€2®:U WIGE _02|1/4> . (3.25)

Proof. For 0 <t <1 we use |g(t,c)| < Cym. Below we assume ¢ > 1.

To simplify the considerations let us first assume that there is only one critical
wave number 6, = 0. For ¢ near 0 the phase function of (3.21) behaves like
60, ¢) = £(co — ¢)0 + =093 1 O(6°) with ¢ = w'(0). Now we write

6

5 4 T
g(t,c) = / Y(0)e?) dh + / (0" dg + / V(0)e?@)dg.  (3.26)
0 6 é

Due to w”(0) # 0 there exists 0 < § < 1 and constants A, A > 0 such that

Vo e (0,0): lw”(0)] > AG and |w'(0) — co| < AG* (3.27)
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Then we have in particular [92¢(6, ¢)| = |w”(A)| > A for all § € (§,0). Since we
assumed O, = {0} there also exists B > 0 such that we have |03¢(6,c)| > B for
all § € (6, 7). Thus van der Corput’s Lemma (3.23) implies

8Cy
(Agt>1/2

" ité(0,c) 80111
/5 w(Q)e d9'§ (Bt)l/Q' (3.28)

and

g
[ p(0)e) de‘ <
3

Here 6, A, A and B do not depend on ¢ but only on w.

If 6 with 0 < 0 < 4 is so small that 62 < 1710 — |el|, then using (3.27) we obtain
1090, ¢)| = |'(0) —¢| > |co — |¢]| — AG> > 4% for all § € (0,0). Hence, again
according to (3.23) we obtain

5
/ Y(9)e?0) dg| < %. (3.29)
0

Now we distinguish two cases. If 6 < %H|co — |e|| we choose & := 4. Hence the
right hand side of (3.29) is independent of ¢. Substituting this bound together
with the second estimate in (3.28) in (3.26) gives

8C, 3C, Cy( 8 3
‘g(t,c)‘ S (Bt)1/2 + 52¢ S m (ﬁ + ﬁ) . (330)

In case ——|co — |¢|| < 6% we choose 6% := =L-|cy — |¢||. Then the assumption
A1 3 5 A1

lco — ||| > t7%/3 yields 6*/2t1/2 > (A + 1)~%/%. Thus, combining the upper bound

(3.29) with the first estimate in (3.28) leads to

80y, 30y _ Cy
(Adt)/2 52 T oo — [cf|M/4e1/2

g
/ h(6)e ) d@' <
0

8 A 4
<A1/2 +3(A+1)Y ) .

Finally, using this together with the second estimate in (3.28) and |g(¢,¢)| < Cym
for 0 <t <1 yields

C,Cy 1
lg9(t. )] < 1+ 4)1/2 Lt
(1+1) |co — ¢

with C, > 0 depending only on w(f). The last estimate also covers (3.30) if we
choose C,, sufficiently large. This completes the proof for ©., = {0}.

To prove the general case assume we have O, = {6y, 01,...,0y} with 6y < 0; <
...0p. We decompose the integral defining g(c, t) like
Orm+0m Om+0m Omt1+0mt1
g(c,t):---+/ +/ +/ N
O, Om+om Om+6m
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with 0, and 4,,,1 sufficiently small such that w"”(0) # 0 for 6 € (0., — 6y, O +
Om) U (Oms1 — Omst, i1 + Oma1). Then similar estimates like (3.27) hold and we
use the same arguments as above to get the upper bound

€m+1_5m+1 . C C 1
0 itep(6,c) de| < w,m-y 1 )
)/Gm Y(0)e = (1402 + |2, — 2|1/

m
Since O, is finite this implies the statement. O
Now we state a result that provides a global decay rate t~%/2 under the additional
assumption that only 6 = 0 is a critical wave number and that the function ¢
satisfies 1(0). Tt will be used to estimate e“! 7., where the bad behavior of the
fronts, which relate to long waves (i.e. 8 = 0) are filtered out by the difference
operators 0+ — 1 in 7.

Lemma 3.7:

Consider the oscillatory integral (3.21) with dispersion relation w satisfying (3.8)
and 1 € WH([0,71]). If additionally ©., = {0} and ¥(0) = 0, then there exists a
constant C,, > 0 depending only on w(6) such that

VE>0:  |g(t.c)| < (3.31)

The proof relies on an uniform asymptotic expansion of the oscillatory integrals.
Since we think that the technical details would dislocate the focus of the paper we
forbear to give the full proof but only highlight the main idea. The detail can be
found in |Pat09].

To see the filter effect of the difference operators 05 — 1 we apply the method of
stationary phase, cf. |[Won89], to ¢(t, ¢) for ¢ = ¢y := w’(0) and find that it behaves
like t72/3. According to [Hor90, 7.7.18] there is a generalization of the classical
method of stationary phase which is uniform in terms of the group velocity c¢. In
fact, for y € [—¢, €] with € > 0 sufficiently small and ¢ := w'(0) holds

g(t,co+y) ~ t_l/gAi(a(y)tz/g) [uo(y) + O™ )]

+ 7 2BAY (a(y)2?) [ua (y) + O], (3.32)

Here Ai(-) refers to the Airy function, and a, ug and wu; are smooth functions with
a(0) = 0. Making these functions explicit we find that the leading order term
cancels. Together with Lemma 3.6 this implies (3.31).

In this connection one should note that there is a smooth cross-over between the
different scales. Indeed, employing the asymptotic behavior of Airy’s function,
cf. [Olv74], we obtain for y < 0 the asymptotic behavior t~/3Ai(a(y)t*/?) ~
Cit~1/% and t~2/3A7 (a(y)tz/g) ~ Cyt=1? as t — oo. Furthermore, the asymptotic
expansion (3.32) implies that the width-scaling of the fronts in Lemma 3.5 is
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sharp. This holds for §# = 0 as well as for general § € O, where in (3.32) occurs
an additional modulating factor e*®* see again [Hor90| and |Pat09] for details.

Up to now we provided the decay rates along critical and noncritical rays but we did
not use that the effective propagation speed is finite. The light cone corresponds to
¢ € [—cy, ¢i] where ¢, := maxgee,, |w'(0)|. Outside of this region the decay is faster
than algebraic in terms of ¢ as well as in terms of the velocity ¢ € (—o0, —c,) U
(Cy, 00).

Applying partial integration, which is the standard argument to see this, cf. [Ste93|,
is not straight forward due to the occurring boundary terms. In [Fri03| the ex-
ponential decay is proved, for the standard FPU case, using a dilation-analytic
argument with respect to Fourier frequency. Using (3.32) and the asymptotic be-
havior of Ai as ¢ — oo it turn out that the decay is even faster. In any case one
finds for each 0 > 0 a decay constant kg5 > 0 such that

Vt>0Vee (—oo, —c—0] U [catd, 00) : g(t, c)| < e rallel=eat, (3.33)
With the above lemmas we are now prepared to prove the 7 decay rate of e~?.

Proof of Theorem 3.1. According to Lemma 3.4 the group e*! acts as convolution
with the matrix-valued Green’s function G(t) = (G*™(t))}.m=12. Using Young’s
inequality (3.6) we obtain

12l er < G (t)l]ev]|2"]] 2.

Thus, it is sufficient to prove the desired decay rates in (3.9) and (3.10), respec-
tively, for the components of G(t).

We only carry out the details of the proof for G!(¢). Let us first consider the
case p # 4. We aim to prove

Gy

6 Wl < 75

(3.34)

which according to (3.18) and by introducing the velocity ¢ = j/t as new variable

follows from
t/w ! /Wh(é?t ) do
. 27_(_ 0 ) ’C

p
de=0O({tP") ast — oo.

The left hand side is bounded by terms of the form

By =t [ latopac

(e o]

with ¢(t,c) defined in (3.21), ¢(0,¢) = +(w(f) £ ¢f) and ¥ (f) standing for 1,
1/w,(0) or w(#). Without loss of generality we only consider ¢(6,c¢) = w(f) — cf
and may assume t > 1.
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To estimate the contributions of each § € ©. we choose ¢ > 0 and consider
c € [w'(0)—e,w'(0)+¢]. Using Lemma 3.5 and Lemma 3.6 we find

W' (0)—t—2/3 W (0)+t—2/3 W' (0)+e
B,(t) =t / +/ +/ lg(t, c)|Pde
w'(0)—e W (0)—t=2/3 W (0)+t2/3
C.C 2C,,C W (O)+e d
v v <1 n / ¢ (3.35)

= Wt (L4 ep oysezs [ (8)2 — T

< GuCy + 2C,,C,C N 2C,,C,C
= (1) (1+1)e-272

with C' depending on w'(f),e and p. Taking the leading order term we get the
decay rate pay,. Thus, using (3.33) and Lemma 3.6 for ¢ ¢ [w/(0)—e,w'(0)+<] we
obtain

C,Cy +2C,0,C
(1 +t)pw
which implies (3.34). Hence, the case p # 4 is established.

By(t) < 2M + Ot~ P2y f O(e et

In the case p = 4 the additional factor logt contributing to the leading order term
appears on the right hand side of (3.35). Indeed, we obtain

_ CuCy + 2C,,C,C N 2C,,C,C

By, (t
a(t) < 1+t 1+t

<logt+log5).

This is sufficient to see that |G (¢)||,, < C,((1+1)log(2 + t))1/4.

For the other components of G(¢) we may use exactly the same arguments. This
proves the first statement of Theorem 3.1.

To prove the second statement we proceed like above but we use the global upper
bound Lemma 3.7 instead of Lemma 3.5 and Lemma 3.6. Then, the leading order
term behaves like ¢t(2=P)/P, U

4 Outlook: Further applications

4.1 The discrete Klein-Gordon and nonlinear Schrédinger
equation

Here we outline how to apply the tools developed in Sections 2 and 3 to other
models in one-dimensional chains, namely the discrete Klein-Gordon (dKG) and
the discrete nonlinear Schrodinger equation (ANLS), see Section 1.

For (dKG) we have an on-site potential with W'(x) = bx + O(|z|?). Like in the
FPU case our results are not restricted to nearest neighbor interaction. Indeed, we
may allow for any finite range interaction as long as the stability condition (3.8)
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is satisfied; but for simplicity we restrict ourselves to the simplest case, where the
dispersion relation reads

w(@) =vV2+b—2cosb.

The stability condition immediately implies b < 0. In Figure 4.1 we plot the dis-
persion relation and the time evolution of a prototypical dKG chain. A major

2 0.06 -
05 N
0.04F

0.02-

w'(8)

x®

002
1 05 . -0.04
-0.06

~0.08 L L L L L L L L
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6 0

Figure 4.1: Dispersion relation and time evolution for the prototypical dKG
chain (a; = —1, b = 0.5): w(f), () and z,(t) at t = 800 to initial condition
(2(0), £;(0)) = (05,0, 0)-

difference to FPU is that the propagation fronts do not correspond to the macro-
scopic wave number 6 =~ 0. Hence, the fronts are not monotone but have an Airy
expansion as in (3.32) but multiplied with a factor @) where w'(,) = ¢, and
hence w”(0,) = 0. Now 6 = 0 does not lie in O, because the on-site potential W
destroyed the Galilean invariance.

But apart from these two difference the results and the approaches to prove these
are the same like in the FPU case. Using the explicit solution of the linearized
system, we may prove the analog to Theorem 3.1 with the same decay rates. This
relies on the fact that the key ingredients for its proof is the representation of
the solutions in terms of oscillatory integral of the form (3.21) and quite general
conditions on w, namely (3.8).

Theorem 4.1:

Consider the discrete Klein-Gordon system (dKG) with W'(z) = bx + O(|z|?),
b <0 and 3> 4. Then, for each p € [2,4) U (4, o0] there exist C), and ¢ > 0 such
that all solutions z = (x,%) with ||z(0)||n < e satisfy the estimate

C
||Z(t)||gp S m ||Z(O)||gl fO’f’ all t Z 0, (41)

where the decay rate o, is given in (3.9).

Again the case p = 4 can be included by adding a suitable logarithmic term.

This theorem improves the result in [SK05] in a twofold manner, namely in terms of
3 as well as in terms of the decay rate ay, for p € (2, 00). In particular, Theorem 4.1
explains the discrepancy the numerical simulation and the theoretical decay rate
&, in [SKO05]. We see that our decay rate «, fits the numerics much better.
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P 4 5 6
Gy, = 2 §~0.167 | 0.2 s~ 0.133
numerics in [SK05] 0.226 0.267 0.292
a="r- 1=025 | £ =0.267 | & ~0.278

The above theory can be easily transferred to the discrete nonlinear Schrodinger
equation (ANLS), where the dispersion relation reads w(f) = 2—2 cosf. Obviously
Ou = {m/2} and the non-degeneracy condition w”(7) # 0 holds. In this case the
/2 norm is in fact a first integral, and hence is preserved exactly along solutions.
Using this, it is not difficult to show that for # > 4 we have dispersive stability
with the same decay rates as above.

4.2 Applications to systems in 2D

Here we discuss the application of our general theory to a system on a two-
dimensional lattice. The crucial point in higher space dimensions are the estimates
for the linear group. Here we only present a conjecture for the decay rates; the
rigorous proof being ongoing work, cf. [Pat09]. For methods to handle 2D oscilla-
tory integrals we refer to [Won89, BH86, Hor90| and [GWFS81], which is based on
techniques derived in [Dui74].

We consider the Hamiltonian system

By =V (@jre, — 25) = V(@5 = @je)) + V (@jse, — 75) = V(@5 — 7j-c,)  (4.2)
with j = (j1,72) € Z* Here e; = (1,0)T and e; = (0,1)" are the unit vectors,
x 1= (2;)eze with z; € Rand V'(r) = r+O(|r|?) with 8 > 1. To avoid difficulties
by introducing an analog to the distances r in one dimension we restrict ourselves

to initial conditions (x(0),%(0)) = (x°,0) € ¢}(Z* R?).

Like in the one-dimensional case it is possible to solve the linearization of (4.2)
explicitly and the behavior of the solutions relies on oscillatory integrals of the
form

1

(2m)? Jr2

with ¢(,c) = +(w(f) — c- 6), where now 6 = (6;,60,) € T? and ¢ € R% For (4.2)
the dispersion relation is given by

g(t,c) = Y(0)e**%) dp (4.3)

w(#) = \/4 — 2cos0; — 2 cos b,.

Although we do not state the formula note that in this case it is possible calculate
the critical set O, = {0 € T?| det D?w(f) = 0} explicitly. The mapping Dw :
T? — R? has the range {c € R?|0 < |¢| < 1} of possible group velocities and maps
O, into a closed curve with four vertices, see Figure 4.2, left. The right-hand side
of Figure 4.2 displays the time evolution of the first component of the Green’s
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1500

Figure 4.2: Left: The circle is the set of possible group velocities and the curve
with four vertices denotes the critical group velocities. Right: Time evolution of
the linearization of (4.2) with initial condition 2 ; = 9;,0;, and X° = 0.

function, which clearly shows different regimes at the critical wave numbers. We
can roughly distinguish three regions: (i) four vertices, (ii) four edges connecting
these vertices and (iii) the remaining region inside the light cone, which is a circle
of radius ¢.

To obtain the decay properties of ||e“!||;1 s», where £ again stands for the linear
part of the operator on the right hand side of (4.2), we first determine the local
asymptotic behavior of (4.3). Then, assuming a reasonable width of the three
different regions we infer the 7 decay rate like in the proof of Theorem 3.1. To
do so we apply the localization principle: For ¢ = Dw(6), the main contribution
to g(t, c) is given by

Iy(t) = /T 2 h(6) @ d5  where () := ¢(6 + 6, Dw(h)). (4.4)

Here h € C*, supph C U.(0) for ¢ > 0 sufficiently small, and h(0) = 1. The
function h arises via partition of unity on T2, The local decay rate t=*© of I,(t),
and hence of g(t,Dw(0)), is determined by the leading-order terms of the Taylor
expansion

5(6) = o(0) + %5T D2w(6) -6+ hot, Dp(0) =0, (4.5)

For § € T?\ O, a linear coordinate transformation § = A¢ leads to p(AE) = ¢(0)+
€24 €2 4+ h.o.t. Thus, scaling & with /¢ leads to |[I(t)| ~ IdetDEW Ot 2).
This decay rate corresponds to the region inside the light cone, but away from the

fronts.
For 6 € ©. we have to distinguish two cases. The four vertices correspond to the

degenerated points (£5,£%). If § € O, \ {(£5,£5)}, then, following the ideas
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in [GWF81] we find a local coordinate transformation to get p(A&) = (0) + &7 +
&8 +h.o.t. Thus, |Ip(t)] ~ b(0)t =5/ + O(t~7/%), where b(f) is singular in (+Z, £I).
Finally, for § = (£5,£7) there exists a coordinate transform § = b(&) such that
H(b(E)) = ¢(0) — &2 — €3, Scaling &, and & with t'/2 and t'/%, respectively, gives

|T5(t)| ~ b(0)t=3/*, which is also the global £>° decay rate.
The decay rate of ||€“?||; 4 is roughly determined by
P

t? (6
g(t, i) ~ t2/ g(t,c)|Pdec = / / %) 49
H Y e (22 R) le|<1 l9(t- <) (2m)2p le|<1 |J/T2

Using the normal forms given above we estimate the amount of the three regions
on the right-hand side and obtain

’ de.  (4.6)

ot [ ~ ¢ (Cconet_p + Courvet PtP/0 4 Clappent 1t/ 4>,

where ¢=° gives area of the regions around the four curves and ¢t~ the area of
the regions around the four vertices measured relatively to the disc |¢] < 1. We
conjecture that the correct values are § = 2/3 and v = 3/4.

This conjecture leads to the decay rates af,D = min{pTTz, 3’;—;5}, which is obtained
from interpolating the three values ap = 0, a3 = 1/3, and o, = 3/4. It seems
reasonably that the case p = 3 needs a logarithmic correction. The numerical
simulations shown in Figure 4.3 agree quite well with this rate for p € [2,3],
however there are major discrepancies for larger p. In any case, the numerics
clearly suggests that the optimal decay rates are better that the ones, which can

be obtained by interpolating between as = 0 and ay, = 3/4.
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Figure 4.3: Conjectured exact decay rate a2D,,, interpolation rate and numerically
estimates rates as function of 1/p.

Nevertheless, if oz;D hat the above form for p € [2,3), then the nonlinear dispersive
decay theory of Theorem 2.1 provides dispersive decay with this rate whenever the
nonlinearity is of degree 5 > 3.
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