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1Abstra
t. We investigate the asymptoti
 behavior of solutions to semi-
lassi
alS
hrödinger equations with nonlinearities of Hartree type. For a weakly nonlinears
aling, we show the validity of an asymptoti
 superposition prin
iple for slowlymodulated highly os
illatory pulses. The result is based on a high-frequen
y av-eraging e�e
t due to the nonlo
al nature of the Hartree potential, whi
h inhibitsthe 
reation of new resonant waves. In the proof we make use of the frameworkof Wiener algebras.1. Introdu
tion and main resultIn this work we are interested in the asymptoti
 behavior for 0 < ε ≪ 1 of thefollowing nonlinear S
hrödinger equation(1.1) iε∂tu
ε = −

ε2

2
∆u

ε +
(
K ∗ |uε|2

)
u

ε, u
ε
∣∣
t=0

= u
ε
0,where (t, x) ∈ R+ × Rd, d ∈ N. This model des
ribes the time-evolution of a
omplex-valued �eld u

ε(t, x), under the in�uen
e of a Hartree-type nonlinearity, asit appears for example in the des
ription of super�uids, 
f. [2℄. Above, K = K(x)denotes a given real-valued intera
tion kernel, to be spe
i�ed in detail below, and
“∗′′ denotes the 
onvolution w.r.t. x ∈ Rd. The s
aling of (1.1) for small ε > 0
orresponds to the semi-
lassi
al regime, i.e. the regime of high-frequen
y solutions
u

ε(t, x), whi
h 
an be approximated via geometri
 opti
s.The asymptoti
 behavior of (1.1) as ε → 0+ has been studied by several authors,mainly for the 
ase K(x) = ± 1
|x|
: For example in [14, 16, 18℄, Wigner measure te
h-niques are invoked, whi
h however require mixed states and thus 
an not be appliedto our situation. In the one-dimensional 
ase, this 
onstraint 
an be over
ome [19℄,but uniqueness of the limiting Wigner measure for t > 0 is still open. Turning tomulti-s
ale WKB expansions, whi
h are typi
ally valid for short times only, a varietyof asymptoti
 results 
an be found in [1, 7, 10, 15℄, provided that uε

0 is given as asingle-phase WKB initial data, i.e
u

ε
0(x) = aε(x)eiϕ(x)/ε,with given (ε-independent) phase ϕ(x) ∈ C and amplitude aε(x) ∈ R, su
h that,asymptoti
ally, aε ∼ a0 + εa1 + ε2a2 + . . . .In the present work we are interested in generalizing these studies to the 
ase of(a superposition of) several WKB waves. Due to the expe
ted nonlinear intera
tionbetween high-frequen
y waves (i.e. the appearan
e of resonan
es), this problem isnotoriously di�
ult, even on a formal level. We shall therefore simplify the situation
onsiderably by turning our attention to the 
ase of (asymptoti
ally) small initialdata 
orresponding to modulated plane-waves. More pre
isely, we 
onsider uε

0(x) =
εα/2uε

0(x), where α > 1 and uε
0(x) is given by a superposition of ε-os
illatory plane-waves, i.e.(1.2) uε

0(x) =

J∑

j=1

aj(x)eikj ·x/ε, kj ∈ Rd,



2with amplitudes aj(x) ∈ C, j ∈ {1, . . . , J} ⊆ N. Here, and in the following, we shallassume for the sake of simpli
ity that the initial amplitudes aj do not depend on ε,sin
e we shall only be interested in the leading order asymptoti
s. A generalization toamplitudes admitting an asymptoti
 expansion in ε is then straightforward. Withoutrestri
tion of generality we shall also assume that
kj 6= kℓ for all j 6= ℓ ∈ Γ := {1, . . . , J} ⊆ N,where J ∈ N ∪ {∞} and {1, . . . ,∞} means simply N.By res
aling uε = ε−α/2

u
ε, we 
an rewrite the 
onsidered model into(1.3) iε∂tu

ε = −
ε2

2
∆uε + εα

(
K ∗ |uε|2

)
uε, uε

∣∣
t=0

= uε
0,where the initial data is now of order one but the equation displays an (asymptot-i
ally) small nonlinearity. We shall from now on take on this point of view sin
e itlooks more natural from the physi
al point of view. In addition, it is well known (seee.g. [3, 4℄) that the 
hoi
e α = 1 for (1.3) is 
riti
al as far as semi-
lassi
al behav-ior is 
on
erned (see Se
tion 2 for more details). We shall therefore pay parti
ularattention to this 
ase. We remark that the same asymptoti
 s
aling has been usedin [5, 6℄ for S
hrödinger equations with (gauge invariant) power-law nonlinearities

∝ |u|2σu, σ ∈ N. In parti
ular, in [5℄ the problem of high-frequen
y wave intera
tionis exhaustively studied in the 
ase σ = 1 for whi
h a geometri
 des
ription of allpossible nonlinear resonan
es is given.However, for the 
onsidered 
ase of Hartree type nonlinearities, the situation isvery di�erent, due to the nonlo
al nature of K ∗ |uε|2. Sin
e we expe
t the solution
uε(t, x) to be given asymptoti
ally as a superposition of highly os
illatory waves,we 
learly 
an not regard the Hartree term to be slowly varying (as in the 
ase ofa single wave). The notion of a resonan
e though, seems to be not 
learly de�nedin this 
ase. A more sophisti
ated analysis of the os
illatory stru
ture of K ∗ |uε|2is needed therefore. As we shall see, the nonlo
al nature of the Hartree potentialyields a kind of averaging e�e
t. In parti
ular no new highly os
illatory phases are
reated in leading order (via resonan
es), in sharp 
ontrast to the situation for lo
alnonlinearities.In order to be more pre
ise, we need to introdu
e some notation: The Fouriertransform of f ∈ L1 ∩ L2(Rd) will be denoted as

(Ff)(ξ) ≡ f̂(ξ) =
1

(2π)d/2

∫

Rd

f(x)e−ix·ξdx.Our analyti
al approa
h will be based on the use of the Wiener Algebra (see Se
tion3 for more details). Within this framework it turns out that the natural spa
e forthe amplitudes a = (aj)j∈Γ is given as follows.De�nition 1.1.
A(Rd) := {a = (aj)j∈Γ : (âj)j∈Γ ∈ ℓ1(Γ; L1(Rd))},



3
Γ = {1, . . . , J} ⊆ N, equipped with the norm

‖a‖A(Rd) =

J∑

j=1

‖âj‖L1(Rd).We are now in the position to state the main theorem of this work.Theorem 1.2. For d > 1, 
onsider the Cau
hy problem (1.3) with α > 1, subje
t toinitial data uε
0 of the form (1.2), where the initial amplitudes aj ∈ L2(Rd) ∩ A(Rd)are su
h that (∂p

xaj)j∈Γ ∈ A(Rd) for all |p| 6 2. In addition assume(1.4) |Λ|−1
∞ := inf{|kℓ − km| : ℓ, m ∈ Γ, ℓ 6= m} > 0,and let the intera
tion kernel K satisfy (1 + |ξ|)K̂(ξ) ∈ L∞(Rd).Then, for all T > 0 there exists C, ε0 > 0, su
h that for any ε ∈ (0, ε0), the exa
tsolution to (1.3) 
an be approximated by(1.5) ∥∥uε − uε

app

∥∥
L∞([0,T ]×Rd)

6 Cεβ with β =

{
1 if α ∈ {1} ∪ [2,∞),
α−1 if α ∈ (1, 2).Here the approximate solution uε

app is given by(1.6) uε
app(t, x) =

J∑

j=1

aj(x − tkj)e
iSj(t,x)eikj ·x/ε−it|kj |2/(2ε),where Sj(t, x) ∈ R is de�ned in (2.10) if α = 1 and Sj(t, x) = 0 if α > 1, respe
tively.In (1.6), the total number of (highly os
illatory) phases J ∈ N ∪∞, is the sameas for the initial data (1.2). Hen
e, no new phases are 
reated by the nonlinearity.Nonlinear e�e
ts in leading order only show up via self-modulation of the amplitudes(provided α = 1). The 
ondition (1.4) 
an be seen as a small divisor assumptionrequired in the 
ase of in�nitely many phases (though, not of the same type as theone used in [5℄). Obviously, (1.4) is satis�ed if J < +∞.Under the general assumptions of this work, we 
an not infer global well posednessof equation (1.3) in the Wiener spa
e. The usual arguments for proving globalexisten
e (see e.g. [17℄) involve the 
onservation of the L2 norm, whi
h also holdsin our 
ase. However, this is not su�
ient to 
ontrol the nonlinearity (K ∗ |u|2)u inthe Wiener spa
e. Nevertheless, the above theorem shows that for initial data uε

0 inthe form (1.2), the solutions 
annot blow up too fast: If T ε > 0 is the blow-up time,then T ε → +∞ for ε → 0.Remark 1.3. A parti
ular example for K, satisfying the assumptions is given by theone 
onsidered in [2, equation (15)℄ and more importantly by the so-
alled Yukawapotential
K(x) = ±

e−λ|x|

|x|
, x ∈ R3, λ > 0,for whi
h the 
orresponding Fourier transform is found to be

K̂(ξ) = ±
1

λ2 + |ξ|2
.



4Clearly, (1 + |ξ|)K̂ ∈ L∞(R3) in this 
ase. Note that in the limit λ → 0 we obtainthe Fourier transform of the Coulomb potential K(x) = ± 1
|x|
, whi
h, however, is toosingular, to dire
tly apply our theorem. It remains an interesting open problem toestablish the same result for the Coulomb 
ase in d = 3.The paper is organized as follows: In Se
tion 2, we formally derive the approxi-mate solution and draw some further 
on
lusions from it. In Se
tion 3 we set up theWiener framework for the exa
t and the approximate solution. Finally, we prove therequired estimates on the remainder of the approximation and 
onsequently statethe proof of Theorem 1.2 in Se
tion 4.2. Derivation of the approximate solutionWe seek an approximation of solutions to (1.3) in the form(2.1) uε

app(t, x) =
J∑

j=1

Aj(t, x)eiφj(t,x)/ε.Assuming su�
ient smoothness, we 
an plug this ansatz into (1.3), whi
h yields(2.2) iε∂tu
ε
app +

ε2

2
∆uε

app − εα
(
K ∗ |uε

app|
2
)
uε

app =

2∑

n=0

εnXn + εα(Y + YR)with
X0 = −

J∑

j=1

eiφj/ε
(
∂tφj +

1

2
|∇φj|

2
)
Aj ,

X1 = i
J∑

j=1

eiφj/ε
(
∂tAj + ∇Aj · ∇φj +

1

2
Aj∆φj

)
,and

X2 =
1

2

J∑

j=1

eiφj/ε∆Aj .(2.3)These terms are the same as in the linear 
ase K ≡ 0. Due to the presen
e of theHartree type nonlinearity, we also obtain
Y = −

J∑

j=1

eiφj/ε
(
K ∗

J∑

ℓ=1

|Aℓ|
2
)
Aj ,(2.4)

YR = −
J∑

j=1

eiφj/ε
(
K ∗

J∑

ℓ,m=1

ℓ 6=m

(
AℓAm ei(φℓ−φm)/ε

))
Aj.(2.5)Obviously, YR 
arries high-frequen
y os
illations, whi
h are not 
aptured by ouransatz (2.1). Thus we need to develop a more 
areful analysis in the following,whi
h shows that YR is of higher order.



5Ignoring this problem for the moment, we 
onsequently aim to eliminate equalpowers of ε. Hen
e, in leading order, we set X0 = 0, whi
h is equivalent to theHamilton-Ja
obi equation(2.6) ∂tφj +
1

2
|∇φj|

2 = 0, φj

∣∣
t=0

= kj · x.Solutions to (2.6) determine the 
hara
teristi
 high-frequen
y os
illations present in
uε

app. In our 
ase, they are easily found to be(2.7) φj(t, x) = kj · x −
t

2
|kj|

2.These phases obviously solve (2.6) for all (t, x) ∈ R ×Rd, i.e. no 
austi
s appear inour study.In the next step we set X1 = 0 if α > 1 and X1 + Y = 0 if α = 1 (note that wedo not in
lude YR here). Comparing the prefa
tors of the terms multiplied by eiφj/ε,yields the following system of transport equations for the amplitudes:(2.8) ∂tAj + kj · ∇Aj =

{
0 if α > 1,
−iVeff(A)Aj if α = 1,where we have used the fa
t that ∆φj ≡ 0, in view of (2.7). For α = 1, the e�e
tive(nonlinear) potential Veff(A) is given by

Veff(A) := K ∗
( J∑

ℓ=1

|Aℓ|
2
)
.We see that for α > 1 no nonlinear e�e
ts are present in transport equations for theleading order amplitudes. The 
ase α = 1 is therefore seen to be 
riti
al as far assemi-
lassi
al asymptoti
s is 
on
erned.Lemma 2.1. The transport equation (2.8) with initial data (aj)j∈Γ ∈ L2 ∩ A(Rd)admits global-in-time solutions A ∈ C([0,∞); L2 ∩ A(Rd)), whi
h 
an be written inthe form(2.9) Aj(t, x) = aj(x − tkj)e

iSj(t,x),where Sj ≡ 0 for α > 1 and Sj ∈ C([0,∞) × Rd) for α = 1 is given by(2.10) Sj(t, ·) = −

∫ t

0

(
K ∗

J∑

ℓ=1

∣∣aℓ

(
· +(τ − t)kj − τkℓ

)∣∣2
)

dτIn parti
ular we have mass 
onservation for ea
h individual mode(2.11) ‖Aj(t, ·)‖L2(Rd) = ‖aj‖L2(Rd), ∀ t ∈ R.In 
ontrast to φj the phases Sj are only slowly varying, i.e. they os
illate withfrequen
ies larger than 1/ε. They des
ribe the nonlinear self-modulation of theamplitudes but do not show up in quadrati
 quantities, like the mass density |Aj|2et
.



6Proof. By multiplying (2.8) with Āj and taking the real part, we see
(∂t + kj · ∇) |Aj|

2 = 0,whi
h yields |Aj(t, x)|2 = |aj(x− tkj)|2 and thus (2.9) and (2.11). Finally, inserting(2.9) into (2.8) and integrating along 
hara
teristi
s, we obtain the expression (2.10)for Sj. �Having obtained the 
hara
teristi
 phases φj and the leading order amplitudes
Aj we shall now turn our attention towards the remainder, i.e.(2.12) R(uε

app) =

{
ε2X2 + εYR if α = 1,
ε2X2 + εα(Y + YR) if α > 1.For α = 1 the term YR appearing within R(uε

app) is formally of order O(ε). Thus,at �rst glan
e, YR seems to be too large to be 
onsidered a part of the remainder.It will be our main task to show that YR is indeed su�
iently small as ε → 0+. Tothis end, we shall rely on the framework of Wiener algebras.3. The Wiener algebra frameworkWe now present the analyti
al framework of Wiener algebras whi
h already provedits use in similar 
ir
umstan
es, 
f. [5, 8, 12℄. We start with the following de�nition.De�nition 3.1 (Wiener Algebra). We de�ne
W (Rd) :=

{
f ∈ S ′(Rd; C), ‖f‖W := ‖f̂‖L1(Rd) < ∞

}
.The following properties of W (Rd) have been proved in [8, 12℄.Lemma 3.2.i. W (Rd) is a Bana
h spa
e, 
ontinuously embedded into L∞(Rd).ii. W (Rd) is an algebra, in the sense that the mapping (f, g) 7→ fg is 
ontinuousfrom W (Rd)2 to W (Rd), and moreover

∀f, g ∈ W (Rd), ‖fg‖W 6 ‖f‖W‖g‖W .iii. Let Uε(t) = eiε t
2
∆ denote the free S
hrödinger group. Then, for all t ∈ R,

Uε(t) is unitary on W (Rd).Assertion iii. follows from the fa
t that Ûε(t) = eit|ξ|2/2, a
ting as a multipli
ationoperator in Fourier spa
e. From now on, we shall 
onsider the Cau
hy problem (1.3)to be posed in W (Rd). To this end we need the following well-posedness result (whi
his an adaptation of the one given in [5℄ to the 
ase of Hartree nonlinearities).Lemma 3.3. Consider the initial value problem(1.3) iε∂tu
ε +

ε2

2
∆uε = εα(K ∗ |uε|2)uε, uε

∣∣
t=0

= uε
0,with α > 1. If K̂ ∈ L∞(Rd) and uε

0 ∈ W (Rd) with ‖uε
0‖W 6 D0, then thereexists a T0 > 0, whi
h depends on D0 but not on ε, and a unique solution uε ∈

C([0, T0]; W (Rd)) of (1.3).



7Proof. Duhamel's formulation of (1.3) reads
uε(t) = Uε(t)uε

0 − iεα−1

∫ t

0

Uε(t − τ)
(
(K ∗ |uε|2)uε)

)
(τ) dτ.Denote, for �xed uε

0, the right hand side of this formula by Φε(uε)(t). From Lemma 3.2iii. we have(3.1) ‖Φε(uε)(t)‖W 6 D0 + εα−1

∫ t

0

‖
(
(K ∗ |uε|2)uε)

)
(τ)‖W dτ.In order to 
ontrol the nonlinear term, we need to estimate expressions of the form

(K ∗ (uv))w in W (Rd). To this end, we �rst use Lemma 3.2 ii, to obtain
‖(K ∗ (uv))w‖W 6 ‖K ∗ (uv)‖W‖w‖W .By Hölder's inequality we also get(3.2) ‖K ∗ (uv)‖W = ‖K̂ ∗ (uv)‖L1 6 ‖K̂‖L∞‖uv‖W ,and applying again Lemma 3.2 ii, we arrive at(3.3) ‖(K ∗ (uv))w‖W 6 ‖K̂‖L∞‖u‖W‖v‖W‖w‖W for u, v, w ∈ W (Rd).Thus, from (3.1) we obtain

‖Φε(uε)(t)‖W 6 D0 + εα−1‖K̂‖L∞

∫ t

0

‖uε(τ)‖3
W dτ.Moreover, uε 7→ Φε(uε) is lo
ally Lips
hitz in U := C([0, T ], W (Rd)): If ‖uε‖U 6 D,

‖vε‖U 6 D, then there exists C = C(D) su
h that
‖Φε(uε)(t) − Φε(vε)(t)‖W 6 C(D)

∫ t

0

‖uε(τ) − vε(τ)‖W dτ, ∀t ∈ [0, T ].A �xed point argument in {
u ∈ U : supt∈[0,T ] ‖u(t)‖W 6 D

}, with D > D0, for
T = T0 su�
iently small, then yields Lemma 3.3. �Having set up an existen
e result for the exa
t solution uε in W (Rd), we nowturn to the approximate solution uε

app given by (1.6). To this end, we shall needthe following lemma, whi
h shows that the Wiener spa
e is perfe
tly adapted to ourproblem.Lemma 3.4. Let kj ∈ Rd, cj ∈ R, and b ∈ ℓ1(Γ, W (Rd)), and set
f(x, y) =

J∑

j=1

bj(x)ei(kj ·y+cj).Then, for all ε > 0 the fun
tion f(·, ·/ε) : x 7→ f(x, x/ε) lies in W (Rd) with
‖f(·, ·/ε)‖W 6 ‖b‖A =

∑

j∈Γ

‖bj‖W .



8Proof. We write
‖f(·, ·/ε)‖W =

∥∥
J∑

j=1

eicj b̂j(· − kj/ε)
∥∥

L1
6

J∑

j=1

‖b̂j(· − kj/ε)‖L1 =

J∑

j=1

‖b̂j‖L1 .The last term is, by de�nition, ‖b‖A. �Remark 3.5. This lemma in general does not hold for fun
tions of the form
f(x, y) =

∑J
j=1 bj(x)eiϕj(y), with ϕj(y) 6= kj · y + cj. A generalization of our study tonon-plane wave WKB phases therefore seems to be a deli
ate issue (at least withinthe Wiener framework) and by no means straightforward.Sin
e the phases φj 
onsidered in this work are of plane-wave form (2.7), applyingLemma 3.4 with cj = − t

2ε
|kj|

2 to (1.6), we immediately obtain(3.4) ‖uε
app(t, ·)‖W 6 ‖A(t, ·)‖A.Similarly, we 
an estimate the expression (2.3) for X2 by(3.5) ‖X2(t, ·)‖W 6
1

2
‖∆A(t, ·)‖A =

1

2

J∑

j=1

‖∆Aj(t, ·)‖W .In addition, we obtain the following estimate for Y , de�ned in (2.4):
‖Y (t, ·)‖W 6

∥∥∥K ∗
J∑

ℓ=1

|Aℓ(t, ·)|
2
∥∥∥

W
‖A(t, ·)‖A,where we have used Lemma 3.4 and Lemma 3.2 ii. This 
an be estimated furthersimilarly to (3.2) by using Lemma 3.4 (with kj = 0, cj = 0), as well as Assertion ii.of Lemma 3.2 and the fa
t that ℓ∞ ⊂ ℓ1, to obtain(3.6) ‖Y (t, ·)‖W 6 ‖K̂‖L∞‖A(t, ·)‖3
A.In order to 
lose the argument, we 
onsequently require appropriate bounds inA(Rd)on the amplitudes Aj(t, ·), together with their spatial derivatives.Lemma 3.6. Let α > 1 and K̂ ∈ L∞(Rd). For all a = (aj)j∈Γ ∈ A(Rd), thereexists a unique solution A ∈ C([0,∞);A(Rd)) to the system (2.8). Moreover, if

(∂p
xaj)j∈Γ ∈ A(Rd), for |p| 6 2, then (∂p

xAj)j∈Γ ∈ C([0,∞);A(Rd)).Proof. For α > 1 the statements of the lemma are immediately 
lear, sin
e in this
ase Aj(t, x) = aj(x − tkj), 
f. (2.8). For α = 1 we rewrite (2.8) in its integral form(3.7) Aj(t, x) = aj(x − tkj) +

∫ t

0

N (A)j(τ, x + (τ − t)kj)dτ,where the nonlinearity N (A)j is given by
N (A)j = −i

(
K ∗

( J∑

ℓ=1

|Aℓ|
2
))

Aj



9Invoking the same arguments as for the derivation of (3.6), we obtain
‖N (A)‖A =

J∑

j=1

‖N (A)j‖W 6 ‖K̂‖L∞‖A‖3
A.This shows that N (A) de�nes a 
ontinuous mapping from A3 to A and a lo
al-in-time existen
e result immediately follows from the standard Cau
hy-Lips
hitztheorem for ordinary di�erential equations. That the solutions Aj indeed exist forall t > 0 then follows from the expli
it representation (2.9). From the latter weadditionally obtain the propagation of regularity, by expli
it 
al
ulation of ∂p

xA. �Lemma 3.6 
onsequently establishes the estimates in W (Rd) for uε
app, X2 and Yin a rigorous way. Note however, that the above given estimates do not yield anestimate for the remainder R(uεapp), given by (2.12), sin
e it also in
ludes YR, whi
hwe 
ompletely ignored so far. We will make up for it in the following se
tion.4. Estimates on the remainder and proof of the main theoremIt remains to estimate in W (Rd) the term YR given in (2.5). To this end we shallprove the following key te
hni
al result.Proposition 4.1. Let YR be de�ned by (2.5) with plane-wave phases φj given by(2.7) and assume |Λ|−1

∞ := inf{|kℓ − km| : ℓ, m ∈ Γ, ℓ 6= m} > 0. Moreover, let Kbe su
h that K̂ ∈ L∞(Rd) and ∇̂K ∈ L∞(Rd). Then we have the following bound:(4.1) ‖YR(t, ·)‖W 6 ε CK‖A(t, ·)‖2
A

(
‖A(t, ·)‖A + ‖∇A(t, ·)‖A

)
,where CK > 0 is independent of ε.Proof. Re
alling the de�nition of YR given in (2.5) and taking into a

ount theparti
ular plane-wave form (2.7) of the phases φj, we obtain from Lemma 3.4 andAssertion ii. of Lemma 3.2 that(4.2) ‖YR‖W 6 ‖A‖A

∥∥∥
J∑

ℓ,m=1

ℓ 6=m

K ∗
(
AℓAmei(φℓ−φm)/ε

)∥∥∥
W

.Using,
eiy·k/ε+z = −iε

k

|k|2
· ∇ye

iy·k/ε+z (z ∈ C),we 
an perform a partial integration w.r.t y, and rewrite
K ∗

(
AℓĀmei(φℓ−φm)/ε

)
=

∫

Rd

K(x − y)Aℓ(y)Ām(y)ei(φℓ(y)−φm(y))/ε dy

= iε

∫

Rd

kℓ − km

|kℓ − km|2
· ∇y

(
K(x − y)Aℓ(y)Ām(y)

)
ei(φℓ(y)−φm(y))/ε dy.To show that the boundary terms vanish, assume �rst that Aj ∈ S(Rd), the set ofS
hwartz fun
tions (for whi
h the boundary terms 
learly vanish). Sin
e S(Rd)is dense in L1(Rd), Fourier transformation implies that S(Rd) is also dense in
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W (Rd). Consequently, the fa
t that the expressions on both sides are norm-boundedsesquilinear forms establishes the above formula.Using kℓ 6= km ∈ Rd, we know that Λℓ,m := kℓ−km

|kℓ−km|2
∈ Rd is well de�ned and
onsequently

K ∗
(
AℓĀmei(φℓ−φm)/ε

)
= − iε(Λℓ,m·∇K) ∗

(
AℓĀmei(φℓ−φm)/ε

)

+ iεK ∗
((

Λℓ,m·∇(AℓĀm)
)
ei(φℓ−φm)/ε

)
.Using the estimate (3.2) and Lemma 3.4 (with J = 1) we get

‖K ∗
(
AℓĀmei(φℓ−φm)/ε

)
‖W 6 ε‖Λℓ,m·∇̂K‖L∞‖Aℓ‖W‖Am‖W

+ ε‖K̂‖L∞‖Λℓ,m·∇(AℓĀm)‖W .Invoking again Lemma 3.4 (with kj = 0, cj = 0) and Lemma 3.2 ii, we 
on
lude
∥∥∥

J∑

ℓ,m=1

ℓ 6=m

K ∗
(
AℓĀmei(φℓ−φm)/ε

)∥∥∥
W

6 ε
J∑

ℓ,m=1

ℓ 6=m

(
d|Λℓ,m|‖∇̂K‖L∞‖Aℓ‖W‖Am‖W + 2‖K̂‖L∞|Λℓ,m|‖∇Aℓ‖A‖Am‖W

)

6 ε|Λ|∞‖A‖A
(
d‖∇̂K‖L∞‖A‖A + 2‖K̂‖L∞‖∇A‖A

)where ‖∇̂K‖L∞ = max
n=1,...,d

‖∂̂xn
K‖L∞ , and

‖∇A‖A =

J∑

ℓ=1

‖∇Aℓ‖A =

J∑

ℓ=1

d∑

n=1

‖∂xn
Aℓ‖W .This, together with (4.2) yields the estimate (4.1). �Remark 4.2. Proposition 4.1 shows that ‖YR‖W = O(ε) and thus 
an indeed be
onsidered a part of the remainder. Note that in the proof it is essential to invokea stationary-phase type argument �rst, before starting to take estimates. In fa
twe would not su

eed to show that ‖YR‖W = O(ε), if we would estimate YR in itsoriginal form.By 
ombining the results of Lemma 3.6 and Proposition 4.1, we obtain the fol-lowing result.Corollary 4.3. Under the assumptions of Lemma 3.6 and Proposition 4.1, thereexists, for every T > 0, a 
onstant CR(T ) > 0, independent of ε > 0, su
h that theremainder R(uε

app) given by (2.12) satis�es(4.3) ‖R(uε
app)‖W 6 εγCR ∀ t ∈ [0, T ], ∀ ε > 0,where

γ =

{
2 if α ∈ {1} ∪ [2,∞),
α if α ∈ (1, 2).



11Proof. Lemma 3.6 guarantees the existen
e of the norms ‖A(t, ·)‖A, ‖∇A(t, ·)‖A,
‖∆A(t, ·)‖A < ∞ for all t ∈ [0,∞), whi
h are independent of ε > 0 and 
ontinuousin t. Hen
e, taking their maximum over t ∈ [0, T ], we obtain (4.3) from (3.5), (3.6),(4.1) and the de�nition (2.12) of R(uε

app). �With the estimate of Corollary 4.3 on R(uε
app) at hand, we 
an �nally statethe proof of our main theorem, whi
h follows the basi
 ideas established in [13℄ forjustifying the nonlinear S
hrödinger equation as a modulation equation for dispersivewaves.Proof of Theorem 1.2. We 
onsider a �xed T > 0 and introdu
e the following s
alederror rε between the original solution uε to (1.3) subje
t to the initial data (1.2) andthe approximation (1.6):

εβrε := uε−uε
app,with a parameter β > 0 to be spe
i�ed below. Hen
e, rε(0) = 0. From (3.4) andLemma 3.6 we know that there exists a 
onstant CA > 0, independent of ε, su
hthat ‖uε

app(t, ·)‖W 6 CA, for all t ∈ [0, T ]. Sin
e rε(0) = 0, it follows ‖uε
0‖W 6 CA.Consequently, for any D > CA, Lemma 3.3 yields the existen
e of a unique solution

uε ∈ C([0, T0], W (Rd)) for some T0 > 0 with ‖uε(t)‖W 6 D for t ∈ [0, T0].Moreover, from (1.3) and (2.2) it follows that rε satis�es
iε∂tr

ε +
ε2

2
∆rε = εα−β

(
M(uε

app + εβrε) −M(uε
app)

)
− ε−βR(uε

app)with M(u) = (K ∗ |u|2)u for t 6 τ := min{T0, T}, and by Duhamel's formula andLemma 3.2 iii. we obtain
‖rε(t)‖W 6 εα−β−1

∫ t

0

‖M(uε
app(τ) + εβrε(τ)) −M(uε

app(τ))‖W dτ

+ ε−β−1

∫ t

0

‖R(uε
app(τ))‖W dτ,

(4.4)for all t 6 τ . Writing
M(u + r) −M(u) =

(
K ∗ (ur̄ + ūr + |r|2)

)
(u + r) + (K ∗ |u|2)r,the estimate (3.3) gives(4.5) ‖M(u + r) −M(u)‖W 6 ‖K̂‖L∞(3‖u‖2

W + 3‖u‖W‖r‖W + ‖r‖2
W ) ‖r‖W .Hen
e, repla
ing u = uε

app and r = εβrε, and re
alling β > 0, we obtain for any
C > 0 and ε0 ∈ (0, 1], su
h that 3εβ

0CAC + ε2β
0 C2 = C2

A, that(4.6) ‖M(uε
app + εβrε) −M(uε

app)‖W 6 εβCM ‖rε‖W ∀ ε 6 ε0, t 6 τwhere CM := 4‖K̂‖L∞C2
A, as long as ‖rε‖W 6 C.Inserting the bounds (4.6) and (4.3) into (4.4), and re
alling that ε0 6 1, α > 1,

τ 6 T , we 
onsequently obtain for β ∈ (0, γ−1]

‖rε(t)‖W 6 CRT + CM

∫ t

0

‖rε(τ)‖W dτ ∀ ε 6 ε0, t 6 τ.



12By Gronwall's lemma this yields
‖rε(t)‖W 6 CRTeCMt ∀ ε 6 ε0, t 6 τ.Hen
e, setting above C := CRTeCMT and D := C+CA this estimate guarantees thatthe solution uε exists on the whole time interval [0, T ], 
f. the proof of Lemma 3.3.Moreover, re
alling Lemma 3.2 i, we �nally obtain the error estimate (1.5) whi
h�nishes the proof. �Referen
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