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Abstra
tWe 
onsider Hamiltonian problems depending on a small parameter like in waveequations with rapidly os
illating 
oe�
ients or the embedding of an in�nite atomi

hain into a 
ontinuum by letting the atomi
 distan
e tend to 0. For general semi-linear Hamiltonian systems we provide abstra
t 
onvergen
e results in terms of theexisten
e of a family of joint re
overy operators whi
h guarantee that the e�e
tiveequation is obtained by taking the Γ-limit of the Hamiltonian. The 
onvergen
e isin the weak sense with respe
t to the energy norm. Exploiting the well-developedtheory of Γ-
onvergen
e, we are able to generalize the admissible 
oe�
ients for ho-mogenization in the wave equations. Moreover, we treat the passage from a dis
reteos
illator 
hain to a wave equation with general L
∞ 
oe�
ients.1 Introdu
tionMany evolutionary problems are of geometri
 nature and are des
ribed by fun
tionals andgeometri
 stru
tures. Dissipative systems on a state spa
e Q are typi
ally given by anenergy potential Φ : Q → R∞ := R ∪ {∞} and a dissipation fun
tional R : TQ givingrise to an equation of the type of a gradient �ow:

0 = ∂u̇R(u(t), u̇(t)) + ∂uΦ(u(t)). (1.1)Here, we will deal with Lagrangian and Hamiltonian systems that are de�ned on a tangentor 
otangent bundle of the 
on�guration spa
e Q. In a me
hani
al system we have inaddition to the energy potential Φ a kineti
 energy K(u, u̇) = 1
2
〈M(u)u̇, u̇〉 on TQ andthe Lagrangian equations read

d

dt

(
∂u̇K(u, u̇)

)
=

d

dt

(
M(u)u̇)

)
= −∂uΦ(u).Introdu
ing the 
onjugate momentum p = M(u)u̇ we obtain the 
anoni
al Hamiltonianform

u̇ = ∂pH(u, p) = M(u)−1p, ṗ = −∂uH(u, p) = −∂uΦ(u),where H : T∗Q → R∞ : (u, p) 7→ 1
2
〈M(u)−1p, p〉 + Φ(u). More generally Hamiltoniansystems are de�ned on a general manifold P and des
ribed by a Hamiltonian H : P → Rand a symple
ti
 form Ω (a nondegenerate two-form).In all these 
ontexts there arises the natural question about the limiting behavior if thefun
tionals and stru
tures depend on a small parameter ε. Assume that we have given1



Φε and Rε in the dissipative 
ase, Φε and Kε in the Lagrangian 
ase, or Hε and Ωε in theHamiltonian 
ase, where the range of ε is given as [0, ε1], i.e., the desired limit 
ase ε = 0 isin
luded. For ea
h ε we also have solution uε : [t1, t2] → Q. The general aim in this 
ontextis to analyze the types of 
onvergen
e we need to impose su
h that we 
an guarantee thatthe limit q0(t) = limε→0 qε(t) satis�es the limit problem with Φ0 = limε→0 Φε and similarlyfor Rε, et
. Of 
ourse, if the dependen
e in ε is 
ontinuous in suitably strong topologies,then the standard theory of 
ontinuous dependen
e provides the desired result.We are here interested in relatively weak types of 
onvergen
es for the fun
tionals, namelythose that allow us to treat multis
ale problems. For instan
e, for the wave equation
ρ(1

ε
x)üε = div(A(1

ε
x)∇uε) +B(1

ε
x)uε (1.2)with highly os
illatory, periodi
 
oe�
ients the solutions will not 
onverge for ε → 0 instrong norms. The best we 
an hope for will be the weak 
onvergen
e in the energy norm.Under reasonable assumptions, for this 
ase the limiting problem 
an be 
onstru
ted andwe obtain an e�e
tive, ma
ros
opi
 equation, namely

ρ∗ü0 = div(A∗∇u0) +B∗u0,where ρ∗ and B∗ are simple averages while A∗ is a more 
ompli
ated e�e
tive sti�nesstensor related to the harmoni
 mean.De�ning the asso
iated potential and kineti
 energies
Φε(u) = 1

2

∫
Ω
A(1

ε
x)∇u:∇u+B(1

ε
x)u·udx, Φ0(u) = 1

2

∫
Ω
A∗∇u:∇u+B∗u·udx,

Kε(v) = 1
2

∫
Ω
ρ(1

ε
x)v · vdx, K0(v) = 1

2

∫
Ω
ρ∗v · vdxit is the question in what sense we have that Φε and Kε 
onverge to Φ0 and K0 re-spe
tively. It turns out that the most relevant 
onverge is the so-
alled Γ-
onvergen
efor fun
tionals, see [Dal93, Bra02℄. However, sin
e we have two fun
tionals it is not
lear that we 
an do the two limit 
al
ulations independently. The determination ofe�e
tive Hamiltonian in multis
ale problems is one of the fundamental issue in many ar-eas su
h as quantum me
hani
s, mole
ular dynami
s, �ber opti
s, or water wave theory[CDMZ91, BS97, SW00b, All03, LT05, GM06, Mie06
, CS07, GHM06b℄In Se
tion 2 we will address these question in an abstra
t setting. For this we introdu
efamilies of joint re
overy operators (Gε)ε>0 that work for both fun
tionals simultaneously.We also provide 
ounterexamples showing that nonexisten
e of su
h a family may lead tofailure in the limiting pro
edure, i.e., limits of solutions fail to solve the problem asso
iatedwith the limiting fun
tionals. In Se
tion 3 we apply the theory to one-dimensional systemsof wave equations generalizing (1.2). and in Se
tion 4 we treat the passage from a dis
retelatti
e system to a 
ontinuum system.Before going into details we point to related work that also bases on the idea of identifyingthe limit problem by passing to the limit in the determining fun
tionals rather than in theequation itself. For gradient �ows the dissipation potential Rε relates to a Riemannian2



metri
, i.e., Rε(u, u̇) = 1
2
〈gε(u)u̇, u̇〉, where gε(u) : TuQ → T∗uQ is symmetri
 and positivesemide�nite. The question of taking the limit for the gradient �ows gε(u)u̇ = −∂uΦε(u)was addressed in [SS04℄ to derive the limiting behavior for the vorti
es in a Ginzburg�Landau model, in [Ort05℄ to analyze 
onvergen
e of numeri
al approximations, and in[KMM06℄ for the limit behavior of domain walls in thin magneti
 �lms. A simple linear
ounterexample with Q = R2 is given in [Mie06b℄.Another interesting dissipative situation is the 
ase of rate-independent systems where

R(q, ·) is homogeneous of degree 1. Then, ∂vR(q, v) ⊂ TqQ denotes the set-valued sub-differential of the 
onvex fun
tionR(q, ·) and (1.1) is a di�erential in
lusion, whi
h may bereformulated as an evolutionary variational inequality, 
f. [Mie05℄. For rate-independentsystems, Γ-
onvergen
e is studied via the energeti
 formulation in [MO07, MRS06℄ usingthe global distan
e Dε : Q×Q → [0,∞] asso
iated with the in�nitesimal metri
 Rε. Inaddition to the Γ-
onvergen
e of Φε and Dε to Φ0 and D0, respe
tively, one has to imposethe existen
e of joint re
overy sequen
es:
∀uε with uε → u ∀ û ∈ Q ∃ ûε with ûε → û:

lim sup
ε→∞

(
Φε(t, ûε)+Dε(uε, ûε)−Φε(t, uε)

)
≤ Φ0(t, û)+D0(u, û)−Φ0(t, u),Several appli
ations are treated in [MRS06℄, and [MT06℄ addresses the two-s
ale homog-enization for linearized elastoplasti
ity.We return to our theory 
on
erning Hamiltonian systems. Our theory in Se
tion 2 isbased on a Gelfand triple V ⊂ X ⊂ V ∗ of Hilbert spa
es and 
losed subspa
es Vε ⊂ V .We 
onsider general, 
oer
ive, lower semi-
ontinuous quadrati
 forms of the type

Φε(u) =

{
1
2
〈Aεu, u〉 for u ∈ Vε,

∞ otherwise,and show that Φε
Γ→ Φ0 (de�ned in (2.2) and also written Φ0 = Γ-limε→0 Φε) if and onlyif there exists a family (Gε)ε of re
overy operators with Gε ∈ L(V0;Vε) su
h that(i) ∀ v0 ∈ V0: Fεv0 ⇀ v0 in V,(ii) vε ∈ Vε, vε ⇀ v0 ∈ V0 =⇒ F ∗ε Aεvε ⇀ A0v0 in V ∗0 ,(iii) vε ⇀ v0 6∈ V0 =⇒ Φε(vε) → ∞.

(1.3)Combining (i) and (ii) it follows immediately that Φε(Fεv0) → Φ0(v0). In 
ase that
Vε = V0 and that Aε has a bounded inverse one 
an 
hoose Fε = A−1

ε A0 and the strongerstatement AεFεv0 → A0v0 in V ∗0 . But appli
ations (
f. Se
tion 4 and [Mie06
℄) need themore general 
ontext that Vε is a true subspa
e that may not be dense.In Se
tions 2.3 and 2.4 we 
onsider linear and semilinear me
hani
al systems of the form
Mεüε + DuΦε(uε) = 0, uε ∈ Vε, (1.4)where the kineti
 energies Kε(v) = 1

2
〈Mεv, v〉 and the potentials Φε are uniformly 
oer
iveon X and V respe
tively. Moreover, we assume Φε ∈ C1(Vε; R) for some 
losed subspa
e3



Vε ⊂ V . Using the 
oer
ivity any family of solutions uε : R → Vε with bounded energyhas a subsequen
e and a limit fun
tion u0 ∈ C∞w (R, V ) ∩ CLip(R, X) satisfying
∀ t ∈ R : uε(t) ⇀ u0(t) in V and u̇ε

∗
⇀ u̇0 in L∞(R, X).In Theorem 2.10 we show that u0 satis�es the limit problem if there exists a family (Gε)ε>0of joint re
overy operators Gε ∈ L(V0;Vε) su
h that the following holds: If uε ∈ Vε with

uε ⇀ u0 and sup Φε(uε) <∞, then we have(a) u0 ∈ V0, (b) G∗εMεuε ⇀M0u0 in V ∗0 , (
) G∗εDΦε(uε) ⇀ DΦ0(u0) in V ∗0 . (1.5)We also dis
uss the question whether 
onvergen
e of the initial 
onditions (uε(t1), u̇ε(t))implies 
onvergen
e at other times. Example 2.8 shows that this is wrong in general, andTheorem 2.7(
) provides su�
ient 
onditions. In general, the 
onvergen
e
(G∗εMuε(t1), G

∗
εMu̇ε(t1)) → (M0u0(t1),M0u̇0(t1)) in V ∗0 → V ∗0for some t1 implies the same 
onvergen
e for all t ∈ R.Se
tion 2.5 provides the 
orresponding results for Hamiltonian systems of the form

Ωεżε = DHε(zε), zε ∈ Zε.The joint re
overy 
ondition reads exa
tly as (1.5) if u, V,Φ, and M are repla
ed by
z, Z,H , and Ω, respe
tively, see (2.29). Similar statements for the initial values hold.Finally, Se
tion 2.6 provides some results 
on
erning strong 
onvergen
e for the 
ase theenergy H0(z0(t)) of the limit fun
tions is the limit limε→0Hε(zε(tε)) of the energies. Inthis 
ase it is possible to show that Gεz0 − zε 
onverges strongly to 0 in V a.e. in R.For semigroups generated from equations of the type u̇ = Aεu or ü + Aεu = 0 similar
onvergen
e results are known. There 
onvergen
e 
an be expressed in terms of the
onvergen
e of the resolvent operators Rε(λ,A) = (Aε−λI)−1 for ε → 0. Our setting
Mεü+Aεu = 0 involves two physi
ally relevant stru
tures depending on ε and 
onvergen
eis asked in the physi
ally relevant quantities. The transformation uε = M

1/2
ε ũε would nottransfer 
onvergen
e properties of uε to those of vε.Se
tion 3 is devoted to the homogenization of systems of hyperboli
 equations as in (1.2).For simpli
ity we restri
t ourselves to the one-dimensional setting but allow for ve
tor-valued u(t, x) ∈ Rm. The main advantage of the present theory is that it uses veryweak 
onvergen
e notions. Thus, we are able to homogenize equations with general L∞
oe�
ients. For general periodi
ity stru
tures in Rd we let Y = [0, 1)d ∼ (R/Z)d and

[ · ] : Rd → Zd for the 
omponentwise Gauÿ bra
ket. For a general fun
tion a ∈ L∞(Rd ×
Y ; Rm×m) the usual ansatz for the os
illation 
oe�
ients would be ãε(x) = a(x, 1

ε
x), butthis is not well-de�ned, as { (x, 1

ε
x) ∈ Rd × Y | x ∈ Rd } is a null set in Rd × Y . Thus, theusual work assumes additional smoothness for a, 
f. [CDMZ91, All03℄ and the referen
estherein. We avoid this problem by using

aε(x) :=
∫

Y
a
(
ε([1

ε
x] + y), 1

ε
x
)
dy,4



whi
h is well de�ned due to the averaging in the �rst variable.Using this 
on
ept, we show that the solutions uε of the os
illatory wave equation
ρε(x)üε(t, x) =

(
aε(x)u

′(t, x)
)′ − ∂uFε(x, u), u(t, ·) ∈ H1

0((0, l); R
m).have weak limits that solve the e�e
tive wave equation

ρ∗(x)üε(t, x) =
(
a∗(x)u′(t, x)

)′ − ∂uF∗(x, u), u(t, ·) ∈ H1
0((0, l); R

m),where the subs
ript ∗ denotes the harmoni
 mean a∗(x) =
( ∫

Y
a(x, y)−1 dy

)−1 while thesupers
ript ∗ is the arithmeti
 mean, e.g., F ∗(x, u) =
∫

Y
F (x, y, u) dy. Note that thee�e
tive tensors and nonlinearity may have arbitrary jumps for many x ∈ (0, l). Thisleads to re�e
tion e�e
ts in the wave equation homogenized wave equation and it is notat all 
lear that these e�e
ts are present in the original os
illatory system. The presenttheory shows that the homogenization works in this 
ase if we use weak 
onvergen
e inthe energy topology.Note also that the asso
iated potential energy Φε 
onverges to the 
orre
t limit energy

Φ0 in the weak H1 topology. The same holds true for the kineti
 energies Kε(v) =
1
2

∫ l

0
ρεv·vdy, when we again use the weak H1 norm or the strong L2 norm. However, usingweak L2 
onvergen
e, whi
h would be suggested from energeti
 
onsiderations, would givea Γ-limit de�ned via the harmoni
 mean ρ∗, see Proposition 3.1(b).This shows that the idea of using the Γ-limits 
annot be applied naïvely. On the one hand,the joint-re
overy 
ondition (1.5) justi�es that in the Lagrangian setting the topologies forthe energy re
overy and for the momentum re
overy have to be the same. On the otherhand the Hamiltonian approa
h (see Se
tion 3.3 ) de�nes the kineti
 energy in terms ofthe momentum p giving K̂ε(p) = 1

2

∫ l

0
ρ−1

ε p·pdx. In this setting the symple
ti
 stru
tureenfor
es that the weak L2 
onvergen
e has to be used for the 
al
ulation of the Γ-limit.The 
orre
t e�e
tive density matrix is obtained as the inverse of the harmoni
 mean ofthe inverse, whi
h is of 
ourse the arithmeti
 mean.In Se
tion 4 we provide another example arising from the dis
rete system. For su
hatomi
 systems there is some literature 
on
erning the passage to the 
ontinuum limit,but only in the exa
tly periodi
 
ase: For the general linear setting the derivation ofthe elastodynami
al wave equation was done in [Mie06
℄, using methods from Fouriertransforms and series, whi
h may be generalized to the slowly varying 
ase, but not to
ases with jumps in the 
oe�
ients, whi
h o

ur for instan
e at the phase boundaries in
rystals. For some work in the nonlinear setting we refer to [SW00a, DHM06, GM06,GHM06a, GHM06b℄ and the referen
es therein.The methods developed here will be useful in mu
h more general 
ontexts. For simpli
itywe have restri
ted ourselves to the following model of an atomi
 
hain for (uγ(t))γ∈Z ∈
ℓ2(Z; Rm):

mε(εγ)üγ = aε(εγ)(uγ+1−uγ) + aε(εγ+ε)(uγ−1−uγ) − ε2Duψε(x, uγ), γ ∈ Z, (1.6)5



Our main result states that, if we embed the dis
rete solutions into H1(R; Rm) via ûε =

Eε((uγ)γ) su
h that ûε is pie
ewise linear with ûε(εγ) = uγ, then any a

umulation point
u0 of families of solutions solves the ma
ros
opi
 e�e
tive wave equation

m∗(x) ∂2

∂τ2u0(τ) = ∂
∂τ

(
a∗(x)

∂
∂τ
u
)
− Duψ

∗(x, u), u(τ, ·) ∈ H1(R; Rm).2 Abstra
t 
onvergen
e resultsHere we provide a general, abstra
t framework that allow us to pass to multis
ale limitsin several appli
ations. The idea is to use the fa
t that Hamiltonian systems are drivenby a fun
tion, namely Hamiltonian Hε, and a symple
ti
 stru
ture Ωε. We study thequestion in what sense Hε and Ωε have to 
onverge to their limits H0 and Ω0. Here, weare interested in rather weak 
onvergen
e notions like Γ-
onvergen
e.2.1 Quadrati
 formsThe basi
 obje
ts for the linear theory are quadrati
 forms Q : X → R∞. We alwaysassume that these forms are homogeneous of degree 2 and uniformly 
onvex. This impliesthe 
oer
ivity
∃ c > 0 ∀u ∈ X : Q(u) ≥ c‖u‖2.We allow for the value +∞ su
h that the domain domQ = { u ∈ X |Q(u) <∞} may bea proper subspa
e of X. Moreover, we do not impose density, i.e.,

XQ = domQ
Xmay be a nontrivial 
losed subspa
e of X.Finally, we de�ne a self-adjoint operator LQ : D(LQ) ⊂ XQ ⊂ XQ in the usual way.Using the bilinear form B : domQ× domQ→ R, (u, v) 7→ 1

4
Q(u+v) − 1

4
Q(u−v) we let

D(LQ) = { u ∈ domQ | ∃C > 0 ∀ v ∈ domQ : |B(u, v)| ≤ C‖v‖ }and de�ne the linear operator LQ via
LQu = w if B(u, v) = 〈w, v〉 for all v ∈ domQ.The 
lassi
al theory of quadrati
 forms and of selfadjoint operators says that LQ is self-adjoint if and only if the subspa
e domQ equipped with the energy norm ‖ · ‖Q : v 7→

Q(v)1/2 is 
omplete. Obviously, the latter 
ondition is equivalent to the property that
Q : X → R∞ is weakly lower semi
ontinuous. Under these 
onditions Q takes the form

Q : X → R; u 7→
{

〈LQu, u〉 for u ∈ domQ,

∞ otherwise. (2.1)6



Now, domQ = D(L
1/2
Q ) and LQ ∈ L(D(L

1/2
Q ); D(L

−1/2
Q )) and we denote by

S(X) = {L : D(L) ⊂ XL → XL |XL ⊂ X 
losed, L selfadjoint }the set of all su
h operators. The asso
iated quadrati
 form for L ∈ S(x) is then denotedby QL and de�ned as in (2.1).2.2 Γ-
onvergen
e and re
overy operatorsWe 
onsider a Bana
h spa
e X and denote by → and⇀ the strong and weak 
onvergen
erespe
tively. The notion of Γ-
onvergen
e is adjusted to the 
onvergen
e of fun
tionals
Φε : X → R∞ related to the dire
t method of the 
al
ulus of variations, see [Dal93, Bra02℄.We say that Φε Γ-
onverges to Φ0 for ε→ 0 with respe
t to the weak topology on X, andshortly write Φ0 = Γ-limε→0 Φε or Φε

Γ→ Φ0, if the following two 
onditions hold:(G1) Liminf estimate:
uε ⇀ u in X =⇒ Φ0(u) ≤ lim infε→0 Φε(uε).(G2) Re
overy sequen
e:
∀ û ∈ X ∃ (ûε)ε>0 : ûε ⇀ û in X and Φε(ûε) → Φ0(û).

(2.2)We �rst deal with families of quadrati
 forms Φε = QAε
as de�ned in (2.1), namely

Φε(u) =

{
1
2
〈Aεu, u〉 for u ∈ Vε,

∞ for u ∈ X\Vε.
(2.3)Here, V is a Hilbert spa
e with dual V ∗, Vε are 
losed subspa
es, and Aε ∈ L(Vε, V

∗
ε ) with

A∗ε = Aε satisfy the uniform 
oer
ivity assumption
∃ c0 > 0 ∀ε ∈ [0, 1] ∀ v ∈ V : Φε(v) ≥

c0
2
‖v‖2

V . (2.4)We also introdu
e the V -orthogonal proje
tors Pε ∈ L(V, V ) with PεV = Vε and theiradjoints P ∗ε ∈ L(V ∗, V ∗) with P ∗ε V ∗ = V ∗ε .For quadrati
 forms we reformulate Γ-
onvergen
e using families of re
overy operators.De�nition 2.1 Assume that V is a Hilbert spa
e with dual V ∗. Moreover, let (Vε)ε∈[0,1]be a family of 
losed subspa
es of V and assume Kε ∈ L(Vε, V
∗
ε ). Then, (Gε)ε∈(0,1] with

Gε ∈ L(V0, V ) is 
alled a family of re
overy operators for (Kε)ε∈[0,1] if(R1) GεV0 ⊂ Vε,(R2) ∀ v0 ∈ V0 : Gεv0 ⇀ v0 in V,(R3) vε ∈ Vε for ε ∈ [0, 1] and vε ⇀ v0 in V =⇒ G∗εKεvε ⇀ K0v0 in V ∗0 .7



The following 
onditions are either equivalent or su�
ient for the re
overy property. Theywill be used in the sequel sin
e they wherever they are easier to handle. However, we referto Example 2.3 to see that (R3)∗ is stri
tly stronger and not appropriate in situationswhere Vε is not strongly dense.Lemma 2.2 : Let V, Vε, Kε and Gε be as in De�nition 2.1 ex
ept for (R2) and (R3).Then we have (R2)⇐⇒ (R2)∗ and (R3)∗ =⇒ (R3), where (R2)∗ and (R3)∗ are given by(R2)∗ ∀ ζ ∈ V ∗ : G∗εζ
∗
⇀ P ∗0 ζ in V ∗0 ,(R3)∗ ∀ v0 ∈ V0 : K∗εGεv0 → K∗0v0 in V ∗.If additionally Vε = V for all ε ∈ [0, 1], then (R3)∗ ⇐⇒ (R3),Proof: The equivalen
e between (R2) and (R2)∗ follows easily sin
e (R2) means that

〈Gεv0, ζ〉 
onverges to 〈v0, ζ〉 for all v0 ∈ V0 and all ζ ∈ V ∗. Using 〈Gεv0, ζ〉 = 〈v0, G
∗
εζ〉the desired equivalen
e follows with 〈v0, ζ〉 = 〈v0, P

∗
0 ζ〉.Next we show that (R3)∗ implies (R3). For this take any family (vε)ε∈[0,1] with vε ∈ Vεand vε ⇀ v0 in V . Then, for arbitrary w0 ∈ V0 
ondition (R3)∗ gives

〈w0, G
∗
εKεvε〉 = 〈K∗εGεw0, vε〉 → 〈K∗0w0, v0〉 = 〈w0, K0v0〉,sin
e the �rst term in the duality pairing 
onverges strongly whereas the se
ond term
onverges weakly. Thus, (R3) is established.For the opposite impli
ation (R3)⇒ (R3)∗ we assume Vε = V and use a standard result:A family (ηε)ε∈[0,1] satis�es ηε → η0 in V ∗ if and only if for all (vε)ε∈[0,1] in V with vε ⇀ v0we have 〈ηε, vε〉 → 〈η0, v0〉, see Lemma A.1 for a proof.Example 2.3 We 
onsider V = V ∗ = V0 = L2((0, 1)) and for all ε ∈ (0, 1] and �xed

α ∈ (0, 1) we de�ne X(ε) = (0, 1) ∩ ∪∞k=0(εk, ε(k+α)) and Vε = { u ∈ V | sppt v ⊂ X(ε) }.Finally, we let Φε(u) =
∫ 1

0
u(x)2 dx for u ∈ Vε and ∞ otherwise.The Γ-limit reads Φ0(u) = 1
α

∫ 1

0
u(x)2 dx and as re
overy operators we may 
hoose Gεu =

1
α
χεu with χε = χX(ε), sin
e 1

α
χε 
onverges weak∗ to 1. Note that (R3)∗ 
annot hold forany family of re
overy operators, sin
e AεGεv0 ∈ V ∗ε and no element in V ∗0 \{0} is a stronglimit of points σε ∈ V ∗ε .For a family (Aε)ε∈[0,1] of symmetri
 operators as above having a family of re
overy op-erators (ε)ε∈(0,1] we may de�ne the symmetri
 operators Aε

0 : V0 → V ∗0 ; v0 7→ G∗εAεGεv0and the asso
iated quadrati
 forms Φ0
ε : V → R∞. Then, for v0 ∈ V0 we have

Φε(Gεv0) =
1

2
〈AεGεv0, Gεv0〉 = Φ0

ε(v0) =
1

2
〈Aε

0v0, v0〉 →
1

2
〈A0v0, v0〉. (2.5)This leads to the �rst result 
on
erning the su�
ien
y of re
overy operators for the proofof Γ-
onvergen
e. 8



Proposition 2.4 For ε ∈ [0, 1] let Vε, Aε and Φε be given as above and satisfying (2.4).Moreover let (Gε)ε>0 be a family of re
overy operators as in De�nition 2.1. If additionally
vε ⇀ v and v 6∈ V0 =⇒ Φε(vε) → ∞, (2.6)then we have Φ0 = Γ-limε→0 Φε.Proof: Be
ause of Φ0(v) = ∞ for v 6∈ V0, 
ondition (2.6) shows that (G1) and (G2) in(2.2) hold for all v 6∈ V0.It remains to 
onsider v0 ∈ V0. Using vε = Gεv0 we have a re
overy sequen
e, as

Φε(Gεv0) → Φ0(v0), see (2.5). Thus, (G2) is established. For (G1) 
onsider an arbi-trary family with vε → v0 and use the identity
Φε(vε) = Φε(Gεv0−vε) + 〈G∗εAεvε, v0〉 − Φε(Gεv0).We have just seen that the last term 
onverges to Φ0(v0). The se
ond last term 
onvergesbe
ause of (R3), i.e., G∗εAεvε → A0v0, and the limit is 〈A0v0, v0〉 = 2Φ0(v0). Sin
e the�rst term after the equality sign is nonnegative we 
an take the liminf and obtain (G1).We also want to show that under the assumption that Φε

Γ→ Φ0 we always have at leastone su
h re
overy operator. Our 
onstru
tion provides a 
anoni
al version but we hastento emphasize that this is not useful for pra
ti
al purposes, sin
e usually the proof of
Γ-
onvergen
e has to be done �rst and therefore re
overy sequen
es are needed to startwith. Nevertheless the following result 
lears the stru
tures and provides further insight.The 
onstru
tion of the re
overy operators Fε : V0 → Vε involves the fun
tionals

Jε,v0 : V → R∞; v 7→ Φε(v) − 〈A0v0, v〉.Clearly, Jε,v0 is 
oer
ive, lower semi-
ontinuous and uniformly 
onvex. Hen
e, Jε,v0 has aunique minimizer ṽε(v0) in Vε, and we set
Fε :

{
V0 → Vε,

v0 7→ ṽε(v0) = argminJε,v0 .
(2.7)Using 0 = DJε,v0(ṽε) = Aεvε − P ∗εA0v0 we easily �nd Fε = A−1

ε P ∗εA0 ∈ L(V0, Vε) and
‖Fε‖Vε←V0 ≤ ‖A−1

ε ‖Vε←V ∗

ε
‖P ∗ε ‖V ∗

ε ←V ∗‖A0‖V ∗←V0 ≤
1

c0
‖A0‖V ∗←V0. (2.8)Proposition 2.5 Let Φε, Vε, Pε and Aε be de�ned as above su
h that (2.4) holds. If

Φ0 = Γ-limε→0 Φε, then (Fε)ε>0 de�nes a family of re
overy operators.Proof: To show vε := Fεv0 ⇀ v0 we use that vε minimizes Jε,v0. By (2.8) we know that
‖vε‖V is bounded, hen
e for a subsequen
e we have vεk

⇀ ṽ. By v̂ε we denote a re
overysequen
e for v0 as postulated by (G2), i.e., v̂ε ⇀ v0 and Φε(v̂ε) → Φ0(v0) <∞. Thus,
Φ0(ṽ) ≤ lim infk→∞Φεk

(vεk
) = limk→∞〈A0v0, vεk

〉 + lim infk→∞ Jε,v0(vεk
)

≤ 〈A0v0, ṽ〉 + lim infk→∞ Jε,v0(v̂εk
) = 〈A0v0, ṽ〉 + Φ0(v0) − 〈A0v0, v0〉.9



Rearranging this inequality gives
0 ≥ Φ0(ṽ) + Φ0(v0) − 〈A0v0, ṽ〉 = 1

2
〈A0(v0−ṽ), v0−ṽ〉 ≥ c0‖v0−ṽ‖2

V .Hen
e, ṽ = v0 and thus the only a

umulation point of the family Fεv0 is v0 and (R2) isestablished.The 
onvergen
e (R3) follows easily sin
e a small 
omputation shows F ∗εAε = A0P0.Be
ause of A0P0 lies in L(V ;V ∗0 ) and is independent of ε, the desired weak 
onvergen
efollows from vε ⇀ v0 due to the weak 
ontinuity of bounded linear operators.For Vε = V we have the simpli�
ation Fε = A−1
ε A0 and we see that Γ-
onvergen
eredu
es to the weak 
onvergen
e of the resolvent with respe
t to the energy norm. Thegeneralization presented here allows us to avoid assumptions that involve a joint upperbound like 〈Aεv, v〉 ≤ Cupp‖v‖2

V and, thus, are more �exible in appli
ations.Remark 2.6 Our 
onstru
tion of re
overy operators is not restri
ted to the linear setting.For stri
tly 
onvex fun
tionals Φε for ε > 0 and for di�erentiable Φ0 : V0 → R thefun
tional Jε,v0 takes the form Jε,v0(v) = Φε(v) − 〈DΦ0(v0), v〉. It is interesting to notethat su
h re
overy sequen
es do not re
over the energy level but rather the derivative,namely the minimizer vε of Jε,v0 satis�es DΦε(vε) = P ∗ε DΦ0(v0). This is quite 
lose towhat we need for our nonlinear theory, 
f. (2.19).2.3 Linear me
hani
al systemsSin
e the kineti
 and the potential energies in me
hani
al systems asso
iate with di�erenttopologies we use a Gelfand triple V ⊂ X ∼= X∗ ⊂ V ∗ of Hilbert spa
es. We denote by
〈·, ·〉 the s
alar produ
t in X as well as the duality produ
t on V ∗ × V and distinguishthe norms by a subs
ript. For ea
h ε ∈ [0, 1] we 
onsider fun
tions Kε and Φε denotingthe kineti
 and the potential energies, respe
tively. In this se
tion we assume that bothfun
tionals are quadrati
:

Kε(u) = 1
2
〈Mεu, u〉 and Φε(u) =

{
1
2
〈Aεu, u〉 for u ∈ Vε,

∞ otherwise,where Vε ⊂ V is a 
losed subspa
e, M ε ∈ L(X,X∗) with M ∗

ε = M ε, and Aε ∈ L(Vε, V
∗
ε )with A∗ε = Aε. We will use the following 
oer
ivity assumption:

∃ c0 > 0 ∀u ∈ V : Φε(u) ≥ c0
2
‖u‖2

V ,

∃ c1 > 0 ∀ v ∈ X : 1
c1
‖v‖2

V ≥ 〈M εv, v〉 ≥ c1‖v‖2
X .

(2.9)We set Xε = Vε
X and de�ne Qε as the X-orthogonal proje
tor from X into Xε. Letting

Mε = Q∗εMεQε : Xε → X∗ε
∼= Xε we now 
onsider solutions of the asso
iated Hamiltoniansystem

Mεü+ Aεu = 0, u(t) ∈ Vε, (2.10)10



where we always assume that the energy
Eε(u, u) = 1

2
〈Mεu̇, u̇〉 + Φε(u) (2.11)is �nite and 
onstant along solutions. A

ording to (2.9) we 
onsider weak solutions

uε : R → V of (2.10) with uε ∈ C0(R, Vε) ∩ C1(R, Xε) ∩ C2(R, V ∗ε ) satisfying
∫ T

S
〈Mεuε(t), ϕ̈ε(t)〉 + 〈Aεuε(t), ϕε(t)〉dt
+
[
〈Mεu̇ε(t), ϕε(t)〉 − 〈Mεuε(t), ϕ̇ε(t)〉

]T
S

= 0.

} for all ϕε ∈ C2(R, Vε)and S < T.
(2.12)This notion looks very weak, but using the selfadjointness of Mε and Aε it is easy to seethat ea
h solution of (2.12) satis�es uε ∈ BC0(R, V ) ∩BC1(R, X) ∩BC2(R, V ∗) and thatit satis�es energy 
onservation Eε(uε(t), u̇ε(t)) = const.We now 
onsider a family (uε)ε>0 of solutions su
h that the energy eε = Eε(uε(t), u̇ε(t))is bounded. We are interested in passing to the limit ε → 0 under weak 
onditions. The
oer
ivity assumptions (2.9) show that uε is bounded in BC0(R, V )∩BC1(R, X). Sin
e Vis 
ontinuously embedded into X, we have boundedness of uε in BC1(R, X) and we mayapply the Arzela�As
oli theorem in C0([−T, T ], Xweak) to obtain a subsequen
e (uεk

)k∈Nwith εk ց 0 and a limit fun
tion u0 ∈ BC0(R, X), su
h that
∀ t ∈ R : uεk

(t) ⇀ u0(t) in V, and u̇εk

∗
⇀ u̇0 in L∞(R, X). (2.13)Note that the boundedness of uε in BC0(R, V ) implies that the pointwise weak 
onvergen
ein X 
an be improved to weak 
onvergen
e in V . The weak* 
onvergen
e of u̇εk

followsby the Bana
h�Alaoglu theorem as L∞(R, X) is the dual of the separable spa
e L1(R, X).The following result provides a �rst su�
ient 
ondition su
h that u0 obtained in (2.13)solves (2.10) for ε = 0.Theorem 2.7 For ε ∈ [0, 1] let Vε,Mε, Aε be given as above. Assume Φ0 = Γ-limε→0 Φεand that (Fε)ε>0 as de�ned in (2.7) is a family of re
overy operators satisfying
vε ∈ Vε for ε ∈ [0, 1] and vε ⇀ v0 =⇒ F ∗εMεvε ⇀M0v0 in V ∗0 . (2.14)Now let (uε)ε>0 be a family of solutions of (2.12) with bounded energy and u0 any limitas postulated in (2.13).(a) Then, u0 lies in BC0(R, V0)∩BC1(R, X0)∩BC2(R, V ∗0 ) and satis�es (2.12) for ε = 0.Moreover, F ∗εk

Mεk
u̇εk

(t) ⇀M0u̇0(t) for all t ∈ R.(b) If in addition to (a) we have that (F ∗εMεuε(t), F
∗
εMεu̇ε(t)) ⇀ (M0u0(t),M0u̇0(t)) in

V ∗0 × V ∗0 holds for one t ∈ R, then it holds for all other t ∈ R as well.(
) Under the additional upper bound
∃Cupp > 0 ∀ ε ∈ [0, 1] : ‖M−1

ε ‖V ∗
ε →V ∗

ε
+ ‖Aε‖Vε→V ∗

ε
≤ Cupp (2.15)the additional 
onvergen
e (uε(t), u̇ε(t)) ⇀ (u0(t), u̇0(t)) in V ×X for some t ∈ R impliesthe same 
onvergen
e for all other t ∈ R as well.11



Example 2.8 Here we show that the assertion in Part (b) 
annot be improved withoutfurther 
ondition as in Part (
). Let X = Vε = R2 withMε = I and Aε = diag(1, 1/ε), for
ε > 0. Then, for ε = 0 we obtain V0 = span

{(
1
0

)} and Φ0

((
q1

q2

))
= 1

2
q2
1 if q2 = 0 and +∞else. For ε > 0 we have the solutions uε(t) =

(
a sin(t+αε)
εb sin(t/ε)

), whi
h have the bounded energy
eε = Eε(uε, u̇ε) = 1

2
(a2 + b2). We have uε(t) → u0(t) =

(
a sin(t+α0)

0

) uniformly in t ∈ R.Moreover, u̇ε(t) =
(

a cos(t+αε)
b cos(t/ε)

) satis�es u̇ε
∗
⇀ u̇0. Note that we have u̇ε(0) →

(
a cos α0

b

) butfor t 6= 0 the se
ond 
omponent of u̇ε(t) does not 
onverge. As Fε : V0 → Vε takes theform Fε

(
α
0

)
=
(

α
0

) we �nd F ∗εMε

(
α
β

)
=
(

α
0

)
∈ V ∗0 . Thus, we are able to 
on�rm statement(b), as the 
onvergen
e of the �rst 
omponent of uε(t) and u̇ε(t) for some t implies the
onvergen
e for all over t as well.Proof: First, note that the limit fun
tion u0 from (2.13) must lie in V0, as Φ0(u0(t)) ≤

lim infε→0 Φε(uε(t)) by (G1). However, Φε(uε(t)) ≤ Eε(uε, u̇ε) ≤ E∗.Part (a) follows by inserting ϕε(t) = Fεϕ0(t) into (2.12) for ε > 0. Here, ϕ0 ∈ C2([0, T ], V0)is arbitrary. Pushing Fε to the other side in the duality pairing we 
an use (R3) to obtain
〈F ∗εAεuε(t), ϕ0(t)〉 → 〈A0u0(t), ϕ0(t)〉 for all t ∈ R. Similarly we have 〈Mεuε(t), Fεϕ̈0(t)〉 =

〈F ∗εMεuε(t), ϕ̈0(t)〉 → 〈M0u0(t), ϕ̈0(t)〉 for all t ∈ R. Thus, we obtain (2.12) for S < T ,and ϕ0 ∈ C2
c((S, T ), V0). From this and from M0,M

−1
0 ∈ L(X0, X0) and A0 ∈ L(V0, V

∗
0 )it follows that u0 satis�es u0 ∈ BC0(R, V0) ∩ BC1(R, X) ∩ BC2(R, V ∗0 ), i.e., (2.10) holdspointwise for u0 as an equation in V ∗0 . Then, it follows again that (2.12) holds in
ludingboundary terms.To show the pointwise weak 
onvergen
e of F ∗εMεu̇ε(t) towards M0u̇0(t) in V ∗0 we 
hoosea fun
tion ρ ∈ C2(R) with ρ(0) = 1 and ρ(−1) = 0 = ρ̇(0) = ρ̇(−1). For any q0 ∈ V0 welet ϕε(t) = ρ(t−T )Fεq0 and S = T − 1 in (2.12) to obtain

〈F ∗εMεu̇ε(T ), q0〉 = 〈Mεu̇ε(T ), ϕε(T )〉
=
∫ T

T−1
〈F ∗εMεuε(t), q0〉ρ̈(t−T ) + 〈A0P0uε(t), q0〉ρ(t−T )dt.The uniform weak 
onvergen
e of uε allows us to pass to the limit in the right-hand side.Thus, the limit µ(t) = limε→0〈F ∗εMεu̇ε(t), q0〉 exists for all t ∈ R and we have

µ(t) =
∫ T

T−1
〈M0u0(t), q0〉ρ̈(t−T ) + 〈A0u0(t), q0〉ρ(t−T )dt.However, as u0 solves (2.12) for ε = 0 we may test with ϕ0(t) = ρ(t−T )q0 to �nd that

µ(t) = 〈M0u̇0(t), q0〉. Thus, F ∗εMεu̇ε(t) ⇀M0u̇0(t) in V ∗0 is established.To prove Part (b) we simply use the fa
t that u0 is uniquely spe
i�ed if (u0(t∗), u̇0(t∗)) ∈
V0 ×X0 is pres
ribed. Thus, if uε(t∗) ⇀ ũ0 in V and F ∗ε Mεu̇ε(t∗) ⇀M0ṽ0 holds, then anylimit u0 of a subsequen
e in the sense of (2.13) satis�es, by Part (a), the initial 
ondition
u0(t∗) = ũ0 and u̇0(t∗) = ṽ0. Thus, the whole sequen
e 
onverges in the sense of (2.13)and Part (a) yields FεMεu̇ε(t) ⇀M0u̇0(t) for all t ∈ R.In Part (
) we have a uniform upper bound on all operators Aε and M−1

ε . Hen
e, from
üε = −M−1

ε Aεuε we obtain a uniform bound for uε in BC2(R, V ∗). Thus, the Arzela�As
oli theorem is also appli
able to u̇ε ∈ CLip(R, V ∗). Together with the pointwise bound12



of (u̇ε(t))ε∈[0,1] in X we obtain pointwise weak 
onvergen
e in X. Arguing as in Part (b)by using uniqueness of the limit solution, we obtain the desired result.Example 2.9 We 
onsider the �nite dimensional example with X = V = Vε = R2 with
Mεü+ Aεu = 0 with Mε =

(
1 0
0 ε−α

) and ( 2 −1/ε
−1/ε 1/ε2

)
, (2.16)where α > 0 is a �xed parameter. We have V0 = span{

(
1
0

)
}, Φε

Γ→ Φ0, and Kε
Γ→ K0 with

Φ0 = K0 : R2 → R∞;
(

u(1)

u(2)

)
7→
{

1
2
(u(1))2 for u(2)=0,

∞ otherwise.Thus, the limit problem reads M0ü+A0u = 0 with M0 = A0 = I on V0. The solutions ofthe limit problem are u(t) = a cos(t+α)
(
1
0

) for a, α ∈ R.The exa
t solutions of (2.16) for ε > 0 
an be written in the form
uε(t) = a1 cos(ω1(ε)t+ β1)ϕ1(ε) + a2 cos(ω2(ε)t+ β2)ϕ2(ε),where the eigenfun
tions ϕj(ε) ∈ R2 and the eigenfrequen
ies ωj(ε) > 0 satisfy

(Aε − ω2
j (ε)Mε)ϕj(ε) = 0, 〈Mεϕj(ε), ϕk(ε)〉 = δjk.For α ∈ (0, 2) we �nd ω1(ε) = 1+O(ε2−α), ϕ1(ε) =

(
1
0

)
+O(ε2−α), ω2(ε) = 1/ε2−α +O(1),and |ϕ2(ε)| ≤ 1. Hen
e, any 
onvergent subsequen
e of solutions with bounded energies

Eε(uε, u̇ε) = |a|2

2
ω1(ε)

2 + |a|2

2
ω2(ε)

2 
onverges to a solution of the limit problem.For α = 2 we �nd ϕj(ε) →
(

ρj

0

) and ω2
j (ε) = (3 ±

√
5)/2. For α > 2 we �nd ϕ1(ε) =(

1
0

)
+O(εα−2), ω1(ε) =

√
2 +O(εα−2), and ω2(ε) = εα/2−1/

√
2 + h.o.t. Hen
e, for α ≥ 2 thelimits of subsequen
es of energy-bounded solutions uε have the form

u0(t) = (a1 cos(ω∗1t+ β1) + a2 cos(ω∗2t+ β2))
(
1
0

)
,where ω∗1,2 = ((3 ±

√
5)/2)1/2 for α = 2 and (ω∗1, ω

∗
2) = (

√
2, 0) for α > 2. These fun
tions
ertainly do not satisfy the limit problem.We now 
he
k in what regime for α our su�
ient 
onditions hold. Note that the re
overyoperator Fε : V0 → Vε = R2 
onstru
ted in (2.7) for (Aε)ε∈[0,1] depends only on Aε andis, thus, independent of α. We have Fε = A−1

ε P 0
εA0 :

(
δ
0

)
7→ δ

(
1
ε

) and F ∗ε =
(
1 ε
0 0

). The
ondition (2.14) reads MεFε

(
δ
0

)
= δ
(

1
ε1−α

)
→
(

δ
0

) and holds only for α ∈ (0, 1). In the nextse
tion we will weaken the 
ondition (
f. (2.19)) to
uε ⇀ u and 〈Aεuε, uε〉 ≤ C =⇒ F ∗ε Mεuε →M0u0.This 
ondition holds for all α ∈ (0, 2), sin
e F ∗εMε =

(
1 ε1−α

0 0

) and 〈Aεuε, uε〉 ≤ C implies
|〈uε,

(
0
1

)
〉| ≤ C̃ε. 13



2.4 Nonlinear me
hani
al systemsWe now generalize the above theory to the nonlinear setting. The new 
onditions areeven more general for the linear 
ase. We treat abstra
t systems of the form
Mεüε + DΦε(uε) = 0, uε ∈ Vε, (2.17)where now Φε : V → R∞ is su
h that Φε(u) = +∞ for u 6∈ Vε and Φε|Vε

∈ C1(Vε; R).Moreover, we assume the 
oer
ivity
Φε(u) → +∞ for ‖u‖V → ∞ and
∃ c0 > 0 ∀ ε ∈ [0, 1] ∀u ∈ X : 〈Mεu, u〉 ≥ c0‖u‖2

X.
(2.18)The main observation about the theory in Se
tion 2.1 is that the spe
i�
 
hoi
e of Fε forthe re
overy operator is not ne
essary. All what we use for proving Theorem 2.7 
an beput into the following 
ondition:

∀ ε ∈ (0, 1] ∃Gε ∈ L(V0;Vε) :if uε ⇀ u0 in V and supε∈[0,1] Φε(uε) <∞, then(i) G∗εDΦε(uε) ⇀ DΦ0(u0) in V ∗0 ,(ii) G∗εMεuε ⇀M0u0 in V ∗0 . (2.19)Even for linear systems this 
ondition is weaker than the 
lassi
al re
overy 
ondition,sin
e we only need to 
onsider sequen
es that have bounded energies (
f. also Example2.9). Note that we do not impose that Φ0 is the Γ-limit of the family (Φε)ε>0 for ε → 0.Condition (2.19)(i) asks that the derivatives are �re
overed� 
orre
tly, 
f. also Remark2.6. However, having a weakly 
onvergent sequen
e uε inside the nonlinear term DΦε(·)roughly means that we are restri
ted to semilinear 
ases.A fun
tion uε ∈ L∞((t1, t2);Vε)∩W1,∞((t1, t2);X) is 
alled a weak solution of (2.17) if forall ϕ ∈ C2
c((t1, tt);V ) we have

∫ t2
t1
〈Mεuε(t), ϕ̈(t)〉 + 〈DΦε(uε(t)), ϕ(t)〉dt = 0. (2.20)We additionally impose in this abstra
t setting that for all ε ∈ [0, 1]all weak solutions uε of (2.17) satisfy

uε ∈ C0((t1, t2);Vε) ∩ C1((t1, t2);X), (2.21a)
Eε(uε(t), u̇ε(t)) = 1

2
〈Mεu̇ε(t), u̇ε(t)〉 + Φε(uε(t)) = const. (2.21b)For a family (uε)ε>0 of weak solutions of (2.17) on a 
ommon interval (t1, t2) that havebounded energies supε>0 eε(t) < ∞ the 
oer
ivity assumption (2.18) provides a prioribounds for uε in C0((t1, t2);Vε) ∩ C1((t1, t2);X). Thus, as in the previous se
tion, weare able to extra
t a subsequen
e (uεk

)k∈N and a limit fun
tion u ∈ L∞((t1, t2);Vε) ∩
W1,∞((t1, t2);X) su
h that(i) ∀ t ∈ (t1, t2) : uεk

(t) ⇀ u(t) in V, (ii) u̇εk

∗
⇀ u̇ in L∞((t1, t2);X). (2.22)14



The following result provides su�
ient 
onditions that guarantee that any su
h limitprovides a weak solution of (2.17) for ε = 0.Theorem 2.10 Let X, V, Vε,Mε and Φε be su
h that (2.18), (2.19), and (2.21) hold.Then, any limit u as obtained in (2.22) satis�es (2.17) for ε = 0. Moreover, for all
t ∈ (t1, t2) we additionally have G∗εk

Mεk
u̇εk

(t) ⇀M0u̇0(t) in V ∗0 for k → ∞.If furthermore the limit problem has the property that for ea
h (w0, v0) ∈ V0×X0 and ea
h
t∗ ∈ (t1, t2) there exists at most one weak solution u0 with (u0(t∗), u̇0(t∗)) = (w0, v0), thenthe 
onvergen
e (G∗εMεuε(t), G

∗
εMεu̇ε(t)) ⇀ (u0(t), u̇0(t)) in V ∗0 ×V ∗0 for one t implies thesame 
onvergen
e for all other t ∈ (t1, t2).Proof: The proof is essentially the same as for the linear 
ase. Start from the weaksolutions (uε)ε∈(0,1] we test with ϕ = Gεϕ0(t). Our a priori bounds allow us to apply there
overy 
onditions (2.19). Thus, we 
an pass to the limit and obtain that u0 is a weaksolution. Applying the regularity assumption we have u0 ∈ C0((t1, t2);Vε)∩C1((t1, t2);X).Thus, for all ε ∈ [0, 1] we may integrate by parts in (2.20) and obtain

∀ϕ0 ∈ C2
c((t1, t2);V0) :

∫ t2
t1
〈G∗εDΦε(uε(t)), ϕ0(t)〉 − 〈G∗εMεu̇ε(t), ϕ̇0(t)〉dt = 0.Now 
onsider S and T with t1 < S < T < t2 and let χ = χ[S,T ] be the 
hara
teristi
fun
tion. Choose a sequen
e (χk)k∈N with χk ∈ C2

c((t1, t2)) and χ′k ∗
⇀ δS − δT in the senseof Radon measures (the dual of C0([t1, t2])). Repla
ing ϕ0 in the above identity by χkϕ0we may pass to the limit and obtain, for all ϕ0 ∈ C2

c((t1, t2);V0),
∫ T

S
〈G∗εDΦε(uε(t)), ϕ0(t)〉 − 〈G∗εMεu̇ε(t), ϕ̇0(t)〉dt+ 〈G∗εMεu̇ε(t), ϕ0(t)〉

∣∣T
S

= 0.Now we may undo the integration by parts again and see that weak solutions even satisfythe weak form on subintervals in
luding the boundary terms as given in (2.11).Based on (2.11), the arguments about the 
onvergen
e of G∗εk
Mεk

u̇εk
(t) and the 
onver-gen
e of (GεMεuε(t), GεMεu̇ε(t)) works as in the proof of Theorem 2.7.2.5 Hamiltonian systemsHere, we 
onsider general Hamiltonian system. We will mainly restri
t to the linear 
aseand address the nonlinear 
ase only shortly at the end of this subse
tion. We 
onsidera Hilbert spa
e Z, 
losed subspa
es Zε and Hamiltonians Hε : Z → R∞ with Hε|Vε

∈
C1(Vε; R) and Hε = ∞ on V \Vε. The linear 
ase is given by symmetri
 linear operators
Lε ∈ L(Zε, Z

∗
ε ) de�ning the Hamiltonians

Hε(z) =

{
1
2
〈Lεz, z〉 for z ∈ Zε,

∞ otherwise. (2.23)15



As above, we assume uniform 
oer
ivity:
∃ c > 0 ∀ ε ∈ [0, 1] ∀ z ∈ Z : Hε(z) ≥ c‖z‖2

Z . (2.24)To de�ne the Hamiltonian �ow via a di�erential equation we have to spe
ify symple
ti
stru
tures Ωε ∈ L(Zε, Z
∗
ε ), i.e., Ωε is skew symmetri
 (Ω∗ε = −Ωε) and nondegenerate:If 〈Ω∗εzε, vε〉 = 0 for all zε ∈ Zε, then vε = 0. (2.25)The Hamiltonian system now takes the strong form

Ωεżε = DHε(zε), zε ∈ Zε. (2.26)Again we de�ne the notion of weak solutions zε ∈ L∞((t1, t2);Zε) by test fun
tions:
∀ϕε ∈ C1

c((t1, t2);Zε) :
∫ t2

t1
〈Ωεzε(t), ϕ̇(t)〉 + 〈DHε(zε(t)), ϕε(t)〉dt = 0. (2.27)As in the 
ase of me
hani
al systems we assume that every weak solution is slightlysmoother and 
onserves energy:All weak solutions zε of (2.26) satisfy

zε ∈ C0((t1, t2);Zε) and Hε(zε(t)) = const.
(2.28)The above linear me
hani
al systems 
an be put into this Hamiltonian form by introdu
ing

p = N−1
ε u̇ε and setting Z = V × X, Hε(u, p) = 1

2
〈Aεu, u〉V + 1

2
〈N∗εMεNεp, p〉 and Ωε =(

0 −MεNε

N∗
ε Mε 0

). In the 
ase Nε = Mε we obtain the 
anoni
al setting while Nε = I givesthe Lagrangian setting. In general, the weak-
onvergen
e properties of these two systemsmight be di�erent.The 
ru
ial assumption to obtain the desired 
onvergen
e result is again the existen
e ofa family of joint re
overy operators, i.e.,
∀ ε ∈ (0, 1] ∃Gε ∈ L(Z0;Zε) :if zε ⇀ z0 in Z and supε∈[0,1]Hε(zε) <∞, then(i) G∗εΩεzε ⇀ Ω0z0 in Z∗0 ,(ii) G∗εDHε(zε) ⇀ DH0(z0) in Z∗0 . (2.29)Thus, if we have a sequen
e (zε)ε∈(0,1] of solutions of (2.26) with bounded energy thissequen
e is bounded in L∞((t1, t2);Z). Thus, we may extra
t a subsequen
e that 
onvergesweak* to a limit fun
tion, namely

zεk

∗
⇀ z in L∞((t1, t2);Z). (2.30)Note that this 
onvergen
e is equivalent to the weak 
onvergen
e

∫ τ2
τ1
zεk

(s)ds ⇀
∫ τ2

τ1
z(s)ds in Z for all τ1, τ2 with t1 ≤ τ1 < τ2 ≤ t2. (2.31)However, weak∗ 
onvergen
e is not 
ompatible with nonlinearities o

urring in DHε. Toexploit (2.29)(ii) we would need weak 
onvergen
e pointwise in t. How this 
an be obtainedwe dis
uss at the end of this se
tion. At present we restri
t to the linear 
ase, where weak∗
onvergen
e is su�
ient. 16



Theorem 2.11 Let Z,Zε, Lε, and Ωε be as above and assume that Hε is given through(2.23) su
h that (2.28) holds. Moreover, let the joint re
overy 
ondition (2.29) be satis�ed.Then, every limit z0 obtained as in (2.30) from a sequen
e of the weak solutions zε of(2.26) is a solution of (2.26) for ε→ 0.Moreover, if G∗εΩεzε(t) ⇀ Ω0z0(t) for some t ∈ R, then this 
onvergen
e holds for all
t ∈ R without extra
ting a subsequen
e.Proof: First, by using the linearity DHε(zε) = Lεzε and the 
hara
terization (2.31) forweak∗ 
onvergen
e, the re
overy 
onditions (2.29) yield

G∗εΩεzε
∗
⇀ Ω0z and G∗εLεzε

∗
⇀ L0z in L∞(R;Z∗0).Se
ond, we use the weak form of (2.27) for the solutions zε and test it with ϕε(t) = Gεϕ0(t)for ϕ ∈ C1(R, Z0). Pushing Gε to the other side we 
an pass to the limit and �nd that z0is again a weak solution.As in the proof of Theorem 2.10 we may now restri
t the weak form to intervals [S, T ] ⊂

(t1, t2) giving
0 = −〈G∗εΩεz, ϕ0〉

∣∣∣
T

S
+
∫ T

S
〈G∗εΩεzε(t), ϕ̇0(t)〉 + 〈G∗εLεzε(t), ϕ0(t)〉dt. (2.32)From this the results 
on
erning the 
onvergen
e of G∗εΩεzε(t) follows as above. We usehere that the linear limit problem Ω0ż0 = L0z0 has at most one solution for a given value

w = Ω0z0(t∗), see the following lemma.In the following result we in
lude the 
ase that Ω0 has a nontrivial kernel. Hen
e, z0(0)will not be uniquely determined through η0 = Ω0z0.Lemma 2.12 Let Ω0, L0 ∈ L(Z0, Z
∗
0) with Ω0 = −Ω∗0, L0 = L∗0, and 〈L0z, z〉 ≥ c‖z‖2

X.Then, Ω0ż0 = L0z0 has at most one solution for a given value η0 = Ω0z0(0).Proof: By linearity it su�
es to show that η = 0 implies z ≡ 0. We use (2.32) for ε = 0with ϕ0(t) = ψ for t ∈ [0, t∗] and obtain 〈Ω0z(t∗)−Ω0z(0)−L0

∫ t∗
0
z(s)ds, ψ〉 = 0 for all ψ.Using Ω0z(0) = 0 and letting w(t) =

∫ t

0
z(s)ds we �nd w ∈ W1,∞

loc (R, Z0) and Ω0ẇ = L0w.From d
dt
H0(w) = 〈L0w, ẇ〉 = 〈Ω0ẇ, ẇ〉 = 0 we 
on
lude H0(w(t)) = H0(w(0)) = H0(0) =

0 for all t. This implies w ≡ 0 and, hen
e, z = ẇ ≡ 0, whi
h is the desired result.Example 2.13 Consider the 
ase Z = Z = R4 with Ωε = ( 0
−I2

I2
0 ), where I2 ∈ R2×2. TheHamiltonians are given via Lε = diag(1, 1, 1/ε2, 1). We �nd Z0 = span{e1, e2, e4} ⊂ R4and L0 = idZ0. As re
overy operators we may take the 
onstant family Gε : Z0 → R4,

z0 7→ z0 whi
h is the simple embedding. The above results are appli
able and using the
oordinates z0 = α1e1 + α2e2 + α3e4 we �nd the limit problem
(

0 0 0

0 0 1

0 −1 0

)
α̇ = α,17



that has the solution α(t) = (0, b cos(t+β), b sin(t+β))T.Note that the original problem has the solutions
zε(t) = (cε cos(γε+t/ε), bε cos(t+βε), εcε sin(γε+t/ε), bε sin(t+βε))

T,with energy Hε(zε(t)) ≡ 1
2
(c2ε+b

2
ε). Boundedness of energy implies boundedness of bεand cε. Hen
e, we may assume 
onvergen
e of (bε, cε, βε, γε) to (b, c, β, γ), by passingto a suitable subsequen
e. Then, we obtain uniform 
onvergen
e of the se
ond, third,and fourth 
omponent of zε. However, the �rst 
omponent 
onverges to 0 only weak*in L∞(R). Note that G∗εΩεzε(t) also 
onverges in Z∗0 , sin
e Ωε = ( 0

−I2

I2
0 ) moves the �rst
omponent into the third one, and G∗ε = diag(1, 1, 0, 1) proje
ts out the third 
omponent.We �nally address the question how nonlinear problems 
an be treated in the Hamiltoniansetting. To improve the weak∗ 
onvergen
e into a weak pointwise 
onvergen
e we needsome 
ontrol over the temporal behavior. One natural way of doing this is to impose abound on the inverses of Ωε. For this we assume that Z is 
ontinuously embedded into abigger spa
e Y su
h that we have

∃CΩ > 0 ∀ ε ∈ [0, 1] : ‖Ω1
ε‖Y←Zε

≤ CΩ.For the energy we impose the existen
e of a 
ontinuous and nonde
reasing fun
tion Rupp :

R → [0,∞), su
h that
∀ ε ∈ [0, 1] ∀ z ∈ Zε : ‖DHε(z)‖Z∗ ≤ Rupp(Hε(z)).Now an energeti
 bound Hε(zε(·)) ≤ E∗ provides the bound ‖DHε(zε(·))‖L∞(R;Z∗

ε ) ≤ R∗ =

Rupp(E∗) and moreover ‖żε‖L∞(R;Y ) ≤ CΩR∗. Thus, Arzela-As
oli 
an be applied in
C∗([t1, t2], Yweak) and the boundedness on Z then provides pointwise weak 
onvergen
e in
Z as well.2.6 Strong 
onvergen
eIn general, we should not expe
t strong 
onvergen
e of uε to u0, sin
e this is usually in-
ompatible with Γ-
onvergen
e (ex
ept in the 
ase of Mos
o 
onvergen
e, where 
ondition(G2) in (2.2) is strengthened by asking ûε → û). However, weak 
onvergen
e as well as
onvergen
e of the energy implies a stronger 
onvergen
e involving the re
overy operators.Lemma 2.14 Let (Kε)ε∈[0,1] be a family of operators in S(V ) with QKε

(v) ≥ c‖v‖2 for
c > 0 and all v ∈ V , and let (Gε)ε∈(0,1] be re
overy operators, then we have the impli
ation

〈Kεuε, uε〉 → 〈K0u0, u0〉

uε ⇀ u0




 =⇒ ‖Gεu0 − uε‖V → 0.18



Proof: We use the uniform 
oer
ivity and �nd
c‖Gεu0 − uε‖2 ≤ 〈Kε(Gεu0 − uε), Gεu0 − uε〉

= 〈KεGεu0, Gεu0〉 − 2〈KεGεu0, uε〉 + 〈Kεuε, uε〉

→ 〈K0u0, u0〉 − 2〈K0u0, u0〉 + 〈K0u0, u0〉 = 0,where we used KεGεu0 → K0u0 together with Gεu0 ⇀ u0 and uε ⇀ u0. As c > 0 isindependent of ε, the proof is �nished.We now state a strong 
onvergen
e result for linear Hamiltonian systems. A 
orrespond-ing result is valid for linear me
hani
al systems. If in addition to the weak or weak∗
onvergen
e of the solutions zε we also have the 
onvergen
e of the energies to the energyof the limiting solution, then the 
onvergen
e statement 
an be improved 
onsiderably.Theorem 2.15 Let Z,Zε, Lε,Ωε be as in the previous se
tion and assume that Hε = QLε
.Moreover, assume that a family (Gε)ε>0 of joint re
overy operators as in (2.29) exists.Let zε : R → Z, ε ∈ [0, 1], be weak solutions of the Hamiltonian system (2.26) su
h that

zε
∗
⇀ z in L∞(R, Z) and Hε(zε(t0)) → H0(z(t0)) for some t0 ∈ R (and hen
e all t ∈ R).Then, for a.a. t ∈ R we have

zε(t) ⇀ z(t) and ‖Gεz(t) − zε(t)‖Z → 0.Proof: We use Lemma 2.14 and the energy 
onservation Hε(zε(t0)) = Hε(zε(t)) for all
t ∈ R and ε ∈ [0, 1]. However, to apply Lemma 2.14 we need to show zε(t0) ⇀ z(t0). Forthis, we use zε

∗
⇀ z and Gεz

∗
⇀ z in L∞(R, Z). Moreover, we have

c‖Gεz(t) − zε(t)‖2 ≤ 〈Lε(Gεz(t) − zε(t)), Gεz(t) − zε(t)〉

= 〈LεGεz(t), Gεz(t) − 2zε(t)〉 + 2Hε(zε(t)).Using Hε(zε(t)) = Hε(zε(t0)) → H0(z(t0)) and LεGεz(t) → L0z(t) for all t ∈ R we �ndafter integration over [t1, t2] that
c
∫ t2

t1
‖Gεz(t) − zε(t)‖2 dt ≤

∫ t2
t1
〈LεGεz(t), Gεz(t) − 2zε(t)〉dt+ 2(t2 − t1)Hε(zε(t0))

→
∫ t2

t1
〈L0z(t), z(t) − 2z(t)〉dt+ 2(t2 − t1)H0(z(t0))

−
∫ t2

t1
2H0(z(t))dt + 2(t2 − t1)H0(z(t0)) = 0This implies that, 
hoosing a subsequen
e, we have Gεz(t) − zε(t) → 0 a.e. in R. Using

Gεz(t) ⇀ z(t) this implies zε(t) ⇀ z(t) a.e. in R. Sin
e the limit zε
∗
⇀ z is unique, theresult holds without 
hoosing a subsequen
e.
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3 Appli
ations to wave equations3.1 Homogenization and Γ-
onvergen
eWe 
onsider the situation of fast os
illating 
oe�
ients in fun
tionals. In prin
iple theresult seems to be well known, however, mostly the assumptions on the 
oe�
ients aremore restri
tive. We 
onsider an open domain Ω ⊂ Rd with Lips
hitz boundary and set
Y = (R/Z)d for the unit torus of dimension d. We assume
a ∈ L∞(Ω × Y ; Rm×msym ) and ∃α > 0 ∀ξ ∈ R

m : a(x, y)ξ · ξ ≥ α|ξ|2 a.e. in Ω × Y. (3.1)The 
oe�
ient fun
tions aε are then de�ned via
aε(x) =

∫
w∈Cε(x)

a(w, 1
ε
x)dw where Cε(x) = ε([1

ε
x] + [0, 1)d). (3.2)Here, ∫ means the average, [ · ] denotes the 
omponentwise appli
ation of the Gauÿbra
ket, and 1

ε
x as se
ond argument of a is understood modulo 1 in ea
h 
omponent.Proposition 3.1 For a and aε satisfying (3.1) and (3.2) we de�ne
a∗(x) =

( ∫
Y
a(x, y)−1 dy

)−1 and a∗(x) =
∫

Y
a(x, y)dyas well as the following fun
tionals on L2(Ω; Rm):

Φε(u) =
∫
Ω
aε(x)u(x)·u(x)dx,

Φ∗(u) =
∫
Ω
a∗(x)u(x)·u(x)dx, Φ∗(u) =

∫
Ω
a∗(x)u(x)·u(x)dxThen the following holds true:(a) If uε → u (strongly) in L2(Ω), then Φε(uε) → Φ∗(u).(b) In the weak topology of L2(Ω) we have Φε

Γ→ Φ∗. A family of re
overy operators isgiven by Gε : u 7→ (aε)
−1a∗u.(
) De�ne Ψε : H1

0((0, l); R
m) → R; v 7→ Φε(v

′) and Ψ∗(v) = Φ∗(v
′), then Ψε

Γ→ Ψ∗ in theweak topology of H1
0((0, l); R

m). A family of re
overy operators is given by
Ĝε : H1

0((0, l); R
m) → H1

0((0, l); R
m);

(Ĝεu)(x) =
∫ x

0
(aε(y))

−1a(y)u′(y)dy − x
l

∫ l

0
(aε(y))

−1a(y)u′(y)dy.Proof: Note that the fun
tionals Φε, Φ∗, and Φ∗ are uniformly 
oer
ive and bounded,i.e., there exists C > 0 su
h that for all ε > 0 and all u ∈ L2(Ω; Rm) we have 1
C
‖u‖2

2 ≤
Φε(u) ≤ ‖u‖2

2. This implies uniform 
ontinuity:
∀ ε > 0 ∀u, v ∈ L2(Ω; Rm) : |Φε(u) − Φε(v)| ≤ C

(
‖u‖2 + ‖v‖2

)
‖u− v‖2. (3.3)20



ad (a). Using (3.3) it is su�
ient to show the statement for 
onstant sequen
es uε = u.Moreover, it is su�
ient to show the result for a dense subset like C∞c (Ω; Rm). Set Nε =

{n ∈ Zd | ε(n+[0, 1)d) ⊂ Ω } and yε
n = ε(n+(1

2
, . . . , 1

2
)) su
h that ε(n+[0, 1)d) = Cε(y

ε
n).With this de�ne Ωε = ∪n∈Nε

Cε(y
ε
n), then Ωε ⊂ Ω and vol(Ω\Ωε) ≤ Cε, sin
e Ω is boundedand has a Lips
hitz boundary. We have

∣∣Φε(u) −
∫
Ωε
aε(x)u(x) · u(x)dx

∣∣ ≤ vol(Ω \ Ωε

)
‖aε‖∞‖u‖2

∞ ≤ Cε.The same result holds, when aε is repla
ed by a∗. Hen
e, it su�
es to estimate theintegrals over Ωε. For this de�ne the pie
ewise 
onstant approximation
a∗ε(x) =

∫
w∈Cε(x)

a∗(w)dx if Cε(x) ⊂ Ωε.The 
lassi
al result for the density of Lebesgue points of a∗ shows that a∗ε(x) → a∗(x)a.e. in Ω. Hen
e, we have Φ∗ε(u) → Φ∗(u), where Φ∗ε(u) =
∫
Ω
a∗εu · u dx. The remainingdi�eren
e is estimated as follows

∣∣ ∫
Ωε

[
aε(x)−a∗(x)

]
u(x) · u(x)dx

∣∣ ≤∑n∈Nε

∣∣∣
∫

Cε(yε
n)
aε(x)−a∗ε(yε

n)
]
u(x) · u(x)dx

∣∣∣

≤
∑

n∈Nε

∣∣∣
∫

Cε(yε
n)

[
aε(x)−a∗ε(yε

n)
]
u(yε

n) · u(yε
n)dx

∣∣∣+ vol(Cε(y
ε
n))2‖a‖∞‖u‖∞ε

√
d‖∇u‖∞Using ∫

Cε(yε
n)
aε(x)dx =

∫
Cε(yε

n)×Y
a(w, y)dwdy = vol(Cε(y

ε
n))a∗ε(y

ε
n) the �rst term vanishesand then ∑n∈Nε

vol(Cε(y
ε
n)) = vol(Ωε) gives the desired 
onvergen
e result.ad (b). We �rst argue as in the proof of part (a) to show that for all u in L2(Ω) wehave Gεu = (aε)

−1a∗u ⇀ u for ε → 0. It su�
es to 
onsider smooth u and v with
a∗u, v ∈ C∞c (Ω; Rm) and to show 〈Gεu, v〉 → 〈u, v〉. As above, 
onsider the average of
(aε)

−1 over Cε(y
ε
n), namely

bε(x) =
∫

Cε(x)
aε(z)

−1 dz =
∫

Cε(x)

(∫
Cε(z)

a(w, 1
ε
z)dw

)−1
dz =

∫
Y

(∫
Cε(x)

a(w, y)dw
)−1

dy.Sin
e a is measurable and bounded from above and below, we 
an use the densityof the Lebesgue points and the 
ontinuity of the inversion to 
on
lude that bε(x) →∫
Y
a(x, y)−1 dy = a∗(x)

−1 for a.e. x ∈ Ω. This proves Gεu ⇀ u. Moreover, 
hoosing v = uwe have
Φε(Gεu) = 〈aεGεu,Gεu〉 = 〈a∗u, (aε)

−1a∗u〉 → 〈a∗u, u〉 = Φ∗(u).It remains to show the liminf estimate. For this, we use the identity
Φε(uε) = Φε(uε−Gεu0) + 2〈aεGεu0, uε〉 − Φε(Gεu0).Now uε ⇀ u0 implies that the two last terms 
onverge to 2〈a∗u0, u0〉 − Φ∗(u0) = Φ0(u0).Sin
e the �rst term on the right-hand side is non-negative, the desired estimate follows.ad (
). The result follows by applying part (b) to the derivative of the fun
tions in

H1((0, l); Rm). In parti
ular, note that
(Ĝεu)

′(x) = aε(x)
−1a∗(x)u

′(x) −
∫ l

0
aε(y)

−1a∗(y)u
′(y)dy = (Gεu

′)(x) −
∫ l

0
Gεu

′(y)dy.21



Using ∫ l

0
u′(y) dy = u(l)−u(0) = 0 we easily �nd (Ĝεu)

′ ⇀ u′ in L2((0, l); Rm). Togetherwith the boundary 
onditions this implies Ĝεu ⇀ u in H1((0, l); Rm).The 
onvergen
e Ψε(Ĝεu0) → Ψ∗(u0) is now a dire
t 
onsequen
e of Part (b). The liminfestimate follows exa
tly as in (b). Thus, Ψε
Γ→ Ψ∗ is established.3.2 Lagrangian wave equationIn this se
tion we show how the abstra
t results of Se
tion 2.4 apply to semilinear waveequations with os
illatory 
oe�
ients. The emphasis here is on the fa
t that we are ableto allow for general 
oe�
ients of L∞ type. The same holds true for the nonlinearity oflower order. For simpli
ity we only treat the one-dimensional 
ase, sin
e only for this 
asewe have available the Γ-
onvergen
e result for the derivative in Proposition 3.1(
). Weexpe
t that the analogous result also holds in higher dimensions when the nonlinearityhas su�
iently slow growth.By Y = S1 = R/Z we denote the mi
ros
opi
 periodi
ity interval and by Λ = (0, l) thema
ros
opi
 physi
al domain. Consider density and sti�ness matri
es

ρ, a ∈ L∞(Λ × Y ; Rm×msym ) su
h that,
∃α, r > 0 ∀ ξ ∈ Rm ∀ (x, y) ∈ Λ × Y : a(x, y)ξ · ξ ≥ α|ξ|2, ρ(x, y)ξ · ξ ≥ r|ξ|2.

(3.4)Moreover, 
onsider a potential F : Λ × Y × R
m → R su
h that

F ∈ L∞(Λ × Y ; C1lo
(Rm)), F (x, y, u) ≥ 0. (3.5)For ε > 0 we let Cε(x) = (ε[x
ε
], ε[x

ε
]+ε) ∩ Λ, de�ne the os
illatory fun
tions

ρε(x) =

∫

Cε(x)

ρ(w,
x

ε
)dw, aε(x) =

∫

Cε(x)

a(w,
x

ε
)dw, Fε(x, u) =

∫

Cε(x)

F (w,
x

ε
, u)dw,and 
onsider the hyperboli
 systems

ρε(x)utt(t, x) =
∂

∂x

(
aε(x)ux(t, x)

)
− DuFε(x, u(t, x)). (3.6)Our aim is to show that the solutions of this problem 
onverge to solutions of the homo-genized problem

ρ∗(x)utt(t, x) =
∂

∂x

(
a∗(x)ux(t, x)

)
− DuF

∗(x, u(t, x)), (3.7)where the e�e
tive quantities are given by
ρ∗(x) =

∫

Y

ρ(x, y)dy, a∗(x) =
(∫

Y

a(x, y)−1 dy
)−1

, F ∗(x, u) =

∫

Y

F (x, y, u)dy. (3.8)22



The following result will be a dire
t appli
ation of the abstra
t results in Se
tion 2.4. AsHilbert spa
es we 
hoose V = Vε = H1
0(Λ; Rm) and X = L2(Λ; Rm). The total energypotential Φε : V → R and the kineti
 energy Kε read

Φε(v) =
∫
Λ

1
2
aε(x)u

′(x) · u′(x) + Fε(x, u(x))dx and Kε(v) =
∫
Λ

1
2
ρε(x)v(x) · v(x)dx.Theorem 3.2 Take any family (uε)ε>0 of weak solutions uε ∈ C0(R;Vε) ∩ C1(R;X) of(3.6) whi
h is uniformly bounded in energy. Assume that for a subsequen
e we have

∀ t ∈ R : uεk
(t) ⇀ u(t) and u̇εk

∗
⇀ u̇ in L∞(R;X).Then, u is a solution of the homogenized problem (3.7).Moreover, if for some time t we have additionally (uε(t), u̇ε(t)) ⇀ (u(t), u̇(t)) in V ∗×V ∗,then this 
onvergen
e holds true for all t ∈ R.Remark 3.3 We emphasize that the Γ-limit of the Lagrangian energy fun
tional Eε =

Φε + Kε in the weak topology of V ×X (whi
h is the natural topology) is not the limitenergy. This is only true if we use the weak topology in V × V , i.e, strong 
onvergen
e ofthe velo
ities in L2(Λ; Rm).Proof: It is easy to see that Φε ∈ C1(V,R) with DΦε(u) = − ∂
∂x

(aεu
′) + DuFε(·, u)and that (2.18) is satis�ed. In parti
ular, we note that V is 
ompa
tly embedded into

C0(Λ; Rm) and, hen
e, into X.The limiting spa
e V0 equals V and the limiting quantities are de�ned via ρ∗, a∗ and F ∗in a similar manner. For the re
overy operator Gε : V → V we 
hoose Ĝε as de�ned inProposition 3.1(
). It remains to verify 
ondition (2.19). The 
ondition (ii) there means
uε ⇀ u0 in V = H1(Λ; Rm) =⇒ Ĝ∗ερεuε ⇀ ρ∗u0 in V ∗ = H−1(Λ; Rm). (3.9)To verify this, note that we have uε → u0 in X and as in the proof of Proposition 3.1 we
on
lude ρεuε → ρ∗u0 in X (arithmeti
 mean). Applying 〈·, v〉 to Ĝ∗ερεuε, using dualityas well as Ĝεv ⇀ v in V , the desired result follows.For 
ondition (2.19)(i) we de
ompose

〈Ĝ∗εDΦε(uε), v〉 =
∫
Λ
−(aεu

′
ε)
′ Ĝεvdx+

∫
Λ

DuFε(x, uε(x))Ĝεv(x)dx.The �rst term 
onverges to 〈a∗u′0v′〉 by Proposition 3.1. For the se
ond term we againuse the 
ompa
t embedding of V into C0(Λ; Rm) giving uε → u0 and Ĝεv → v uniformlyin Λ. Thus, we 
on
lude ∫
Λ

DuFε(x, uε(x))Ĝεv(x) dx →
∫
Λ

DuF
∗(x, u0(x))v(x) dx, whereagain the os
illations of Fε in x are simply averaged out.
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3.3 Hamiltonian wave equationFor the Hamiltonian 
ase we restri
t to the linear 
ase by assuming F ≡ 0. For a generalmatrix-valued fun
tion b(x, y) ∈ Rm×m with b, b−1 ∈ L∞(Λ× Y ; Rm×m) we de�ne bε as in(3.2). With this we introdu
e the velo
ity variable v and the Hamiltonian Hε via
ut = bεv and Hε(u, v) =

1

2

∫

Λ

bTε ρεbεv · v + aεu
′ · u′dx.We keep bε general at this moment to be able to explore all possibilities that are 
ompatiblewith our method.The underlying spa
e is Z = V × X = H1

0(Λ; Rm) × L2(Λ; Rm) and the 
orrespondingsymple
ti
 stru
ture reads Ωε = ( 0
bT
ε ρε

−ρεbε
0 ) and is to be 
onsidered as a mapping from Zinto Z∗ = H−1(Λ; Rm) × L2(Λ; Rm).For the re
overy operator Gε : Z → Z we may assume the diagonal form Gε =

( bGε 0

0 eGε

)with Ĝε from Proposition 3.1(
). The se
ond 
omponent G̃ε has to be 
hosen su
h thatthe joint re
overy 
onditions (2.29) hold. Letting Aε : Z → Z∗;
(

u
v

)
7→
(
−(aεu′)′

bT
ε ρεbεv

) and usingLemma 2.2 this is equivalent to showing ΩεGε

(
u
v

)
→ Ω0

(
u
v

) and AεGε

(
u
v

)
→ A0

(
u
v

) for all(
u
v

)
∈ Z. Sin
e A0 and Ω0 must have the form A0

(
u
v

)
=
(
−(a∗u′)′

rv

) and Ω0

(
u
v

)
=
(
−µv
µTu

), wehave to satisfy
∀ v ∈ L2(Λ; Rm) : bTε ρεbεG̃εv → rv and G̃εv ⇀ v in L2(Λ; Rm), (3.10a)
∀ v ∈ L2(Λ; Rm) : ρεbεG̃εv → µv in H−1(Λ; Rm), (3.10b)
∀u ∈ H1(Λ; Rm) : bTε ρεĜεu→ µTu in L2(Λ; Rm). (3.10
)In relation (3.10
) we have Ĝεu → u (strongly) in L2(Λ; Rm), hen
e we must 
hoose bεsu
h that bTε ρεû → µTû for all ũ. Thus, we are for
ed to take bε = ρ−1

ε µ (where the slightgeneralization bε = ρ−1
ε µε with µεv → µv would also be possible). Inserting this into the�rst 
ondition of (3.10a) we see that G̃ε must be 
hosen su
h that

G̃εv − µ−1ρεµ
−Trv → 0 in L2(Λ; Rm).Together with G̃εv ⇀ v and ρεṽ ⇀ ρ∗ṽ this implies

r = µT(ρ∗)−1µ and G̃εv = µ−1ρεµ
−Trv,again negle
ting a slight generalization, where r might depend on ε. Finally, 
ondition(3.10b) follows sin
e ρεbεG̃εv = µG̃εv 
onverges to µv weakly in L2(Λ; Rm), whi
h is
ompa
tly embedded into H−1(Λ; Rm).Thus, we have explored the possible ways to transform the linear wave equation into aHamiltonian systems in su
h way that a family of joint re
overy operators exists. Theessential freedom we have is the 
hoi
e of µ : Λ → Rm×m su
h that µ, µ−1 ∈ L∞(Λ; Rm×m).We de�ne the symple
ti
 form Ω =

(
0 −µ

µT 0

) and the Hamiltonians Hε, ε > 0, and H0 via
Hε(u, v) = 1

2

∫
Λ

µTρ−1
ε µv·v + aεu

′·u′dx and H0(u, v) = 1
2

∫
Λ

µT(ρ∗)−1µv·v + a∗u
′·u′dx.24



Theorem 3.4 Let ρ, a ∈ L∞(Λ × Y ; Rm×m) and ρε, aε, µ be as de�ned above. For ε > 0let zε = (uε, vε) : R → V × Z be weak solutions of the Hamiltonian system
µTu̇ε = DvHε(uε, vε), −µv̇ε = DvHε(uε, vε),and assume that zε
∗
⇀ z = (u, v) in L∞(R;V ×X). Then, z is a solution of the e�e
tiveHamiltonian system

µTu̇ = DvH0(u, v), −µv̇ = DvH0(u, v),In parti
ular, the homogenized problem is given by the e�e
tive Hamiltonian H0 that isthe Γ limit of Hε for ε → 0 in the weak topology of the natural energy spa
e V ×X.While the above results have potential for generalization into the multi-dimensional 
ase,we now treat a parti
ular simple Hamiltonian form, whi
h arises by using the momentum
p = ρεu̇ and the strain w = u′. The wave equation ρεü = (aεu

′)′ 
an be rewritten as thesystem
q̇ = (aεw)′

ẇ = (ρ−1
ε p)′

}
⇐⇒

(
0 ∂−1

x

∂−1
x 0

)(
ẇ

ṗ

)
=

(
aεw

ρ−1
ε p

)
= DHε(w, p),where Hε(w, p) = 1

2

∫
Λ
aεw · w + ρ−1

ε p · pdx. Now the relevant Hilbert spa
e is
Z0 = X0 ×X0 with X0 = {w ∈ L2(Λ; Rm) |

∫
Λ
w(x)dx = 0 }.On the spa
e X0 the operator ∂−1

x 
an be de�ned by (∂−1
x u
)
(x) =

∫
Λ
K(x, ξ)u(ξ)dξ with

K(x, ξ) = (x−ξ)/l + sign(x−l)/2. Sin
e K satis�es K(x, ξ) = −K(ξ, x) the operator
∂−1

x is skew symmetri
, whi
h implies that Ω is a symple
ti
 form. From the aboveit is again 
lear, that the e�e
tive Hamiltonian H0 is obtained as the Γ-limit, namely
H0(w, p) = 1

2

∫
Λ
a∗w

′ · w′ + (ρ∗)−1p · pdx.4 Dis
rete latti
e modelsIn this se
tion we want to apply the abstra
t theory for the passage from mi
ros
opi
dis
rete systems to ma
ros
opi
 
ontinuum models. While the ma
ros
opi
 system willbe a system of wave equations as dis
ussed above, the mi
ros
opi
 system is an in�nitelatti
e of mass points subje
ted to Newton's law a

ording to a ba
kground potential Ψγ,0and intera
tion potentials Ψγ,β:
Mγ üγ = −DΨγ(uγ) +

∑

0<|β|≤R

DΨγ,β(uγ+β − uγ) − DΨγ,β(uγ − uγ−β), γ ∈ Z
d. (4.1)Here, uγ ∈ R

m denotes the ve
tor of all displa
ement of atoms in the 
ell asso
iated withthe latti
e site γ ∈ Zd. We write u = (uγ)γ ∈ ℓ2(Zd; Rm) and v = u̇ = (u̇γ)γ ∈ ℓ2(Zd; Rm)for ve
tor of displa
ements and velo
ities, respe
tively. The system is me
hani
al systemwith kineti
 and potential energies
K(u̇) =

∑

γ∈Zd

1

2
Mγ u̇γ·uγ and Φ(u) =

∑

γ∈Zd

(
Ψγ,0(uγ) +

∑

0<|β|≤R

Ψγ,β(uγ−uγ+β)
)
. (4.2)25



4.1 Embedding of latti
es into 
ontinuaThe main te
hnique of treating the multis
ale passage is to embed the dis
rete systeminto the the 
ontinuous spa
e Z = V ×X with
V = H1(Rd; Rm) and X = L2(Rd; Rm).However, the embedding has to be su
h that the dynami
s of the dis
rete model is ex-a
tly represented in the 
ontinuous 
ounterpart in suitable 
losed subspa
es Vε and Xε.Moreover, we want to be able to �nd exa
t formulas for the energies Kε(v) = 1

2
〈Mεv,v〉and Φε : Vε → R and for the indu
ed symple
ti
 stru
ture Ωε.For ε > 0 we de�ne the embedding operator

Êε :





ℓ2(Zd) → H1(Rd),

u = (uγ)γ 7→
[
x 7→ ∑

γ∈Zd

uγĤ
(

1
ε
x−γ

)]
,where Ĥ ∈ W1,∞(Rd) is the pie
ewise a�ne interpolation between the values Ĥ(y) = 1for y ∈ [−1/4, 1/4]d and Ĥ(y) = 0 for y 6∈ [−3/4, 3/4]d. The embedding into L2(Rd) isdone in a similar spirit, namely

Eε :





ℓ2(Zd) → L2(Rd),

p = (pγ)γ 7→
[
x 7→ 2d

∑
γ∈Zd

pγH
(

1
ε
x−γ

)]
,where H(y) = 1 for y ∈ [−1/4, 1/4]d and 0 otherwise.The normalization 
onstants were 
hosen su
h that for U ∈ C1

c(R
d) and uε = (U(εγ))γ wehave Êεuε ⇀ U in H1(Rd) and Eεuε ⇀ U in L2(Rd), whi
h 
orresponds in a natural wayto our relation x = εγ between the mi
ros
opi
 and the ma
ros
opi
 s
ale. Note however,that the norms s
ale with ε, namely 2d‖p‖2

ℓ2 = εd‖Eεp‖2
L2 and ‖Êεu‖L2 ≈ εd‖u‖2

ℓ2. The
onstru
tion of Ĥ and H was done su
h that the symple
ti
 form in the dis
rete systemhas a parti
ularly simple representation in L2(Rd; Rm) after the embedding, namely
〈x, p̃〉 − 〈x̃,p〉 =

1

εd

∫

Rd

[
(Êεx)(y) · (Eεp̃)(y) − (Êεx̃)(y) · (Eεp)(y)

]
dy. (4.3)Thus, up to a normalization 
onstant we �nd the 
anoni
al symple
ti
 form of the 
on-tinuous problem in the 
otangent bundle of L2(R; Rm).4.2 Transformation of the energies and equationMoreover, we are able to write the kineti
 and potential energies in terms of the embed-dings. For simpli
ity, we restri
t ourselves in the sequel to the one-dimensional 
ase aswe did in Se
tion 3, sin
e we will rely on some results from there. We will also restri
t to26



the 
ase of nearest-neighbor intera
tion with a quadrati
 potential Ψγ,1. We expe
t thatthe analysis 
an be generalized using suitable elaborate notation, see e.g., [Mie06
℄.We assume that the 
hain is mi
ros
opi
ally periodi
 with a period N ∈ N and that the
oe�
ients may vary ma
ros
opi
ally as well in a L∞ manner. For this purpose we usethe fun
tions m, a, and ψ, satisfying
m, a ∈ L∞(R/NZ × R; Rm×m) and ψ ∈ L∞(R/NZ × R; C1lo
(Rm)),

∃α > 0 ∀ (η, x) ∈ R/NZ × R ∀ ξ ∈ Rm :

min
{
m(η, x)ξ · ξ, a(η, x)ξ · ξ, ψ(η, x, ξ)

}
≥ α|ξ|2.

(4.4)We assume that the fun
tions m, a and ψ are pie
ewise 
onstant in the �rst variable,namely m(η, x) = m(γ, x) for γ ∈ Z/NZ and |η−γ| < 1/2. As in Se
tion 3.2 (
f. (3.2)) wedenote with mε, aε, and ψε the pie
ewise averages over the small 
ells Cε(x), namely
mε(x) =

∫
Cε(x)

m(x/ε, y)dy with Cε(x) = ε(
[

x
εN

]
+N) + [0, εN ]and similarly for aε and ψε. With this we de�ne the dis
rete fun
tions as

Mγ = mε(εγ), Ψγ,0(u) = ε2ψε(εγ, u), Ψγ,1(u) =
1

2
aε(εγ)u · u.Relying heavily on the pie
ewise a�ne nature of our embedding operators the dis
reteenergies (4.2) take the form

K̂ε(p) =
∑

γ∈Z

1
2
M−1

γ pγ · pγ = 1
ε

∫
Rd

1
2
mε(x)

−1(Eεp)(x) · (Eεp)(x)dx,

Φ̂ε(u) =
∑

γ∈Z

(
Ψγ,1(uγ+1−uγ) + Ψγ,0(uγ)

)

= 1
ε3

∫
R

1
2

[
aε(x)(∂xÊεu)(x) · (∂xÊεu)(x)

]
+ Fε(x, Êεu)(x))dx,where Fε(x, u) = 2Hper(1

ε
x)ψε(x, u) with Hper(y) =

∑
γ∈Z

H(y−γ). For the nonlinearitywe used that Êεu is 
onstant on the small intervals (ε(γ−1/4), ε(γ+1/4)).In parti
ular, our 
onstru
tion guarantees that the dis
rete latti
e system
mε(εγ)üγ = −ε2Duψε(x, uγ) + aε(εγ)(uγ+1−uγ) + aε(ε(γ+1))(uγ−1−uγ), γ ∈ Z, (4.5)is equivalent to the Hamiltonian system on Zε = Vε × Xε with Hamiltonian Hε andsymple
ti
 stru
ture Ωε given by

Vε = Êεℓ
2(Z; Rm) ⊂ H1(R; Rm), Xε = Eεℓ

2(Z; Rm) ⊂ L2(R; Rm),

Hε(u, p) = Kε(u) + Φε(u) with Kε(Eεp) = εK̂ε(p) and Φε(Êεu) = ε3Φ̂ε(u),

〈Ω
(

u
p

)
,
(

eu
ep

)
〉 =

∫
R
u · p̃− ũ · pdx.The di�erent res
aling in terms of ε for the kineti
 energy, the potential energy and thesymple
ti
 form arise from the fa
t that we also res
ale the time by de�ning a ma
ros
opi
time τ = εt by letting u(τ) = Êεu(τ/ε) and p = εEεp(τ/ε), 
f. [Mie06
, GHM06b℄ formore details. The resulting Hamiltonian system reads

(
0 −I
I 0

)( d
dτ
u

d
dτ
p

)
= Ω

( d
dτ
u

d
dτ
p

)
=

(
DΦε(u)

DKε(p)

)
= DHε(u, p) ⊂ V ∗ε ×X∗ε . (4.6)27



4.3 Passage to the limitWe are now able to pass to the limit in the problem (4.6) by using our abstra
t theorytogether with the analysis for the wave equations in Se
tion 3.For this we need to 
onstru
t re
overy operators Ĝε : V = H1(R; Rm) → Vε for thepotential energy and re
overy operators G̃ε : X = L2(R; Rm) → Xε for the kineti
 energy(i.e., (2.29)(ii) holds) su
h that additionally the symple
ti
 form passes to the limit in thesense of (2.29)(i). Here this means
Vε ∋ uε ⇀ u0 ∈ V0 = V in V =⇒ G̃∗εuε ⇀ u0 in X = L2(R; Rm),

Xε ∋ pε ⇀ p0 ∈ X0 = X in X =⇒ Ĝ∗εpε ⇀ p0 in V ∗ = H−1(R; Rm).
(4.7)Note that any re
overy operators Ĝε and G̃ε provide weak 
onvergen
e of Ĝεv0 and G̃εp0 inthe better spa
es V and X, respe
tively. However, this does not imply (4.7). Nevertheless,we show in the following result that the 
anoni
al re
overy operators asso
iated with thepotential and the kineti
 energies, respe
tively, do ful�ll these 
onditions.Lemma 4.1 With the fun
tions m, a, and ψ from (4.4) we have the limits

Φ0 = Γ-limε→0 Φε : u 7→
∫

R

1
2
a∗(x)u

′(x) · u′(x) + ψ∗(x, u(x))dxand K0(p) =
∫

R

1
2
m∗(x)−1p(x) · p(x)dx,where the e�e
tive fun
tions m∗, a∗, and ψ∗ are given by

m∗(x) = 1
N

∑N
γ=1m(γ, x) =

∫
[0,N ]

m(η, x)dη,

a∗(x) =
(

1
N

∑N
γ=1 a(γ, x)

−1
)−1

=
(∫

[0,N ]
a(η, x)−1 dη

)−1
,

ψ∗(x, u) = 1
N

∑N
γ=1 ψ(γ, x, u) =

∫
[0,N ]

ψ(η, x, u)dη.Moreover, the 
anoni
al re
overy operators (Ĝε)ε and (G̃ε)ε 
onstru
ted as in Proposition2.5 satisfy (4.7).Proof: We �rst 
onvin
e ourselves that the given formulas are the asso
iated Γ-limits,
Φε

Γ→ Φ0 in V and Kε
Γ→ K0 inX. For this we simply interprete Φε and Kε as spe
ial 
asesof the fun
tionals 
onsidered in Proposition 3.1. This needs a generalization as we nowallow for the value +∞ under the integrand. For instan
e we implement the 
ondition

pε ∈ Xε = Eεℓ
2(R; Rm) by allowing pε ∈ X but de�ning Kε via ∫

R
kε(x, p(x)) dx with

kε(x, p) = 1
2
mε(x)

−1p·p for x ∈ (− ε
4
, ε

4
) mod ε and kε(x, p) = +∞ otherwise. Taking theharmoni
 mean the values +∞ turn into 0, the average is well de�ned, and we obtain thedesired results. We assume that G̃ε : X → Xε ⊂ X is given via Proposition 2.5 whenapplied to Kε. For the 
onstru
tion of Ĝε we use the auxiliary quadrati
 form

Qε(u) =
∫

R

1
2
aε(x)u

′(x) · u′(x) + κ2

2
|u(x)|2 dx for u ∈ Vε and ∞ otherwise,28



where κ is an arbitrary, �xed number. Sin
e the leading term is identi
al to that of Φε it iseasy to see that the re
overy sequen
e Ĝε forQε is a re
overy sequen
e of the nonquadrati

Φε as well.Se
ond, we derive 
ondition (4.7). Consider any family (uε)ε with uε ⇀ u0 in V . As
G̃∗εuε is bounded in X, it su�
es to test with a dense set of w ∈ X. We 
hoose any w ∈
C0

c(R; Rm). Let sppt(w) ⊂ [−R+1, R−1] for some R > 0. Then, sppt(G̃εw) ⊂ [−R,R]and uε|[−R,R] → u0|[−R,R] in L2([−R,R]; Rm), and we �nd
〈G̃∗εuε, w〉 =

∫ R

−R
uε (G̃∗εw)dx→

∫ R

−R
u0wdx = 〈u, w〉,whi
h is the �rst line in (4.7).For Ĝε we argue similarly by using C1

c(R; Rm) as a dense set in V . Now, Ĝεv will not have
ompa
t support, sub satisfy a uniform bound |Ĝεv(x)| ≥ Ce−κ|x|. Moreover, Ĝεv ⇀ vin V implies strong L2-
onvergen
e on 
ompa
t intervals [−R,R]. For a family (pε)ε with
pε ⇀ p0 in X we 
an estimate as follows

|〈Ĝ∗εpε, v〉 − 〈p0, v〉| = |〈pε, Ĝεv〉 − 〈p0, v〉|
≤
∫
|x|>R

(
|pε|+|p0|

)
Ce−κ|x|dx+

∣∣ ∫
|x|<R

pε · Ĝεv−p0 · vdx
∣∣.The �rst term 
an be estimated by supε∈[0,1] ‖pε‖X2Ce−κR/

√
κ and, thus, 
an be madesmall independently of ε by 
hoosing R big enough. Then, keeping R �xed the se
ondterm tends to 0 for ε → 0 be
ause of weak 
onvergen
e of pε and strong 
onvergen
e of

Ĝεv in L2([−R,R]; Rm). Thus, the se
ond 
ondition in (4.7) is established as well.We summary the �nding in the main result as follows.Theorem 4.2 Let m, a, and ψ be given as in (4.4). Consider a family (uε)ε of solutionsin C2(R; ℓ2(Z; Rm)) su
h that
(Êεu( ·

ε
), EεMεεu̇( ·

ε
))
∗
⇀ (u, p) in L∞(R; H1(R; Rm)×L2(R; Rm)).Then, (u, p) is a solution of the e�e
tive, ma
ros
opi
 wave equation

d

dτ
u(τ, x) = m∗(x)−1p(τ, x),

d

dτ
p(τ, x) = ∂x

(
a∗(x)∂xu(τ, x)

)
− Duψ

∗(x, u)with the e�e
tive Hamiltonian ∫
R

1
2
(m∗)−1p · p + 1

2
a∗u

′ · u′ + ψ∗(·, u) dx. Moreover, if forsome τ ∈ R we have (Êεu(τ/ε), EεMεεu̇(τ/ε)) ⇀ (u(τ), p(τ)), then the same holds forall τ ∈ R.A AppendixLemma A.1 Let Y be a re�exive or separable Bana
h spa
e. Then, yn → y is equivalentto the property that for all sequen
es (ηn)n∈N in Y ∗ with ηn
∗
⇀ η we have 〈yn, ηn〉 → 〈y, η〉.29



Proof: The impli
ation �⇒� follows by the triangle inequality via 〈ηn, yn〉 = 〈ηn, y〉 +

〈ηn, yn−y〉 → 〈η, y〉+0, sin
e yn−y → 0 and (ηn)n∈N is bounded due to weak* 
onvergen
e.For the opposite impli
ation �rst note that taking ηn ≡ η implies yn ⇀ y. Se
ond, we usethat there exists ηn ∈ Y ∗ su
h that ‖ηn‖∗ = 1 and 〈yn−y, ηn〉 = ‖yn−y‖ = δn. Now 
hoosea subsequen
e su
h that limk→∞ δnk
= lim supn→∞ δn. Choosing a further subsequen
e ifne
essary, we may assume ηnk

∗
⇀ η by using the property of Y . We de�ne the sequen
e

(ηn)n∈N as ηn = ηnk
if n = nk for some k and as ηn = η else. Then ηn

∗
⇀ η and we have

δnk
= ‖ynk

− y‖ = 〈ynk
, ηnk

〉 − 〈y, ηnk
〉 → 〈y, η〉 − 〈y, η〉 = 0.As lim sup ‖yn−y‖ = limk→∞ δnk

= 0 the strong 
onvergen
e is proved.Referen
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