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Abstract

We consider Hamiltonian problems depending on a small parameter like in wave
equations with rapidly oscillating coefficients or the embedding of an infinite atomic
chain into a continuum by letting the atomic distance tend to 0. For general semi-
linear Hamiltonian systems we provide abstract convergence results in terms of the
existence of a family of joint recovery operators which guarantee that the effective
equation is obtained by taking the I'-limit of the Hamiltonian. The convergence is
in the weak sense with respect to the energy norm. Exploiting the well-developed
theory of I'-convergence, we are able to generalize the admissible coefficients for ho-
mogenization in the wave equations. Moreover, we treat the passage from a discrete
oscillator chain to a wave equation with general L*>° coefficients.

1 Introduction

Many evolutionary problems are of geometric nature and are described by functionals and
geometric structures. Dissipative systems on a state space Q are typically given by an
energy potential  : @ — R, := RU {oo} and a dissipation functional R : TQ giving
rise to an equation of the type of a gradient flow:

0= BaR(u(t), a(t)) + By ®(u(t)). (1.1)

Here, we will deal with Lagrangian and Hamiltonian systems that are defined on a tangent
or cotangent bundle of the configuration space Q. In a mechanical system we have in
addition to the energy potential ® a kinetic energy K(u,4) = (M (u)i,4) on TQ and
the Lagrangian equations read

d

(0K (u,w)) = a(M(u)u)) = —0,P(u).

d
dt
Introducing the conjugate momentum p = M (u)u we obtain the canonical Hamiltonian

form

= 0H(u,p) = M(u)'p, p=—0,H(u,p) =—0,2(u),

where H : T*Q — Ru : (u,p) — 3(M(u)"'p,p) + ®(u). More generally Hamiltonian
systems are defined on a general manifold P and described by a Hamiltonian H : P — R
and a symplectic form Q (a nondegenerate two-form).

In all these contexts there arises the natural question about the limiting behavior if the
functionals and structures depend on a small parameter €. Assume that we have given



®. and R, in the dissipative case, ®. and L, in the Lagrangian case, or H. and €. in the
Hamiltonian case, where the range of € is given as [0, 1], i.e., the desired limit case ¢ = 0 is
included. For each € we also have solution u. : [t1, ts] — Q. The general aim in this context
is to analyze the types of convergence we need to impose such that we can guarantee that
the limit go(t) = lim._ g-(t) satisfies the limit problem with ®; = lim._o ®. and similarly
for R., etc. Of course, if the dependence in € is continuous in suitably strong topologies,
then the standard theory of continuous dependence provides the desired result.

We are here interested in relatively weak types of convergences for the functionals, namely
those that allow us to treat multiscale problems. For instance, for the wave equation

p(fx)ii. = div(A(Z2)Vu.) + B(1x)u. (1.2)

£

with highly oscillatory, periodic coefficients the solutions will not converge for ¢ — 0 in
strong norms. The best we can hope for will be the weak convergence in the energy norm.
Under reasonable assumptions, for this case the limiting problem can be constructed and
we obtain an effective, macroscopic equation, namely

prig = div(A,Vug) + B*ug,

where p* and B* are simple averages while A, is a more complicated effective stiffness
tensor related to the harmonic mean.

Defining the associated potential and kinetic energies

P, (u) = 5 [, A(2)Vu:Vu + B(iz)u-udz, ®o(u) =3 [, AVu:Vu+ Bru-ud,
K.(v) =3 [op(te)v-vdz, Kov) =3 [,pv-vda

it is the question in what sense we have that ®. and K. converge to &5 and ICy re-
spectively. It turns out that the most relevant converge is the so-called I'-convergence
for functionals, see [Dal93, Bra02|. However, since we have two functionals it is not
clear that we can do the two limit calculations independently. The determination of
effective Hamiltonian in multiscale problems is one of the fundamental issue in many ar-
eas such as quantum mechanics, molecular dynamics, fiber optics, or water wave theory
[CDMZ91, BS97, SW00b, All03, LT05, GM06, MieO6¢c, CS07, GHMOG6b|

In Section 2 we will address these question in an abstract setting. For this we introduce
families of joint recovery operators (G )e~o that work for both functionals simultaneously.
We also provide counterexamples showing that nonexistence of such a family may lead to
failure in the limiting procedure, i.e., limits of solutions fail to solve the problem associated
with the limiting functionals. In Section 3 we apply the theory to one-dimensional systems
of wave equations generalizing (1.2). and in Section 4 we treat the passage from a discrete
lattice system to a continuum system.

Before going into details we point to related work that also bases on the idea of identifying
the limit problem by passing to the limit in the determining functionals rather than in the
equation itself. For gradient flows the dissipation potential R. relates to a Riemannian
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metric, i.e., Ro(u, @) = 5(g(u)i, @), where g.(u) : T,Q — T;Q is symmetric and positive
semidefinite. The question of taking the limit for the gradient flows g.(u)u = —0,P.(u)
was addressed in [SS04| to derive the limiting behavior for the vortices in a Ginzburg-
Landau model, in |Ort05] to analyze convergence of numerical approximations, and in
|[KMMO06| for the limit behavior of domain walls in thin magnetic films. A simple linear
counterexample with @ = R? is given in [MieO6b].

Another interesting dissipative situation is the case of rate-independent systems where
R(q, -) is homogeneous of degree 1. Then, 0,R(q,v) C T,Q denotes the set-valued sub-
differential of the convex function R(g, -) and (1.1) is a differential inclusion, which may be
reformulated as an evolutionary variational inequality, cf. |[Mie05|. For rate-independent
systems, I-convergence is studied via the energetic formulation in [MO07, MRS06| using
the global distance D, : Q x Q — [0, 00] associated with the infinitesimal metric R.. In
addition to the I'-convergence of ®. and D, to &y and D, respectively, one has to impose
the existence of joint recovery sequences:

Vu, with v, — uw Vu € Q Ju, with u, — u:
lim sSup (cba(t aa)‘l'pa (ua> aa)_q)a(t> ua)) S <I>0 (t, a)_l',DO(ua ﬂ)—(I)o(t, u)>

Several applications are treated in [MRS06|, and [MTO06| addresses the two-scale homog-

enization for linearized elastoplasticity.

We return to our theory concerning Hamiltonian systems. Our theory in Section 2 is
based on a Gelfand triple V. C X C V* of Hilbert spaces and closed subspaces V. C V.
We consider general, coercive, lower semi-continuous quadratic forms of the type

1
P~ f
() { s(Au,u) forue V.,

00 otherwise,

and show that ®, R ®q (defined in (2.2) and also written &g = I'-lim._o ®.) if and only
if there exists a family (G.). of recovery operators with G. € L£(Vp; VZ) such that
(i) Vg € Vo: Fovg — vpin 'V,
i) v.eVy, vo—=1v€Vy =  FfAw. — Agvg in V, (1.3)
(iii) ve—v &V = D (v.)— 0.
Combining (i) and (ii) it follows immediately that ®.(F.vg) — ®o(vg). In case that
V. =V, and that A. has a bounded inverse one can choose F. = A-' Ay and the stronger

statement A.F.vg — Agvg in V. But applications (cf. Section 4 and [Mie06¢|) need the
more general context that V. is a true subspace that may not be dense.

In Sections 2.3 and 2.4 we consider linear and semilinear mechanical systems of the form
M., + Duq)e(ué:) =0, wu.€ ‘/;7 (14)

where the kinetic energies K.(v) = 1(M.v, v) and the potentials ®. are uniformly coercive
on X and V respectively. Moreover, we assume ®. € C1(V.;R) for some closed subspace
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V. C V. Using the coercivity any family of solutions u. : R — V. with bounded energy
has a subsequence and a limit function uy € C°(R, V) N CHP(R, X) satisfying

Vi ER: u(t) = up(t)in V. and . = o in L®(R, X).

In Theorem 2.10 we show that u satisfies the limit problem if there exists a family (G ).
of joint recovery operators G. € L(Vjy; V) such that the following holds: If u. € V. with
ue — ug and sup P, (u.) < oo, then we have

(a) up € Vo, (b) GiMou. — Myugin Vg, (¢) GEID®P.(u.) — DPg(up) in V. (1.5)

We also discuss the question whether convergence of the initial conditions (u. (1), @(t))
implies convergence at other times. Example 2.8 shows that this is wrong in general, and
Theorem 2.7(c) provides sufficient conditions. In general, the convergence

(G:M’U/E(tl), G:Mug(tl)) — (M(]Uo(tl), Mouo(tl)) n ‘/0* — Vb*

for some t; implies the same convergence for all t € R.

Section 2.5 provides the corresponding results for Hamiltonian systems of the form
Q2. =DH.(2.), =z € Z..

The joint recovery condition reads exactly as (1.5) if u,V,®, and M are replaced by
z,Z,H, and €, respectively, see (2.29). Similar statements for the initial values hold.
Finally, Section 2.6 provides some results concerning strong convergence for the case the
energy Ho(zo(t)) of the limit functions is the limit lim. o H.(z:(t.)) of the energies. In
this case it is possible to show that G.zy — 2. converges strongly to 0 in V" a.e. in R.

For semigroups generated from equations of the type @ = A.u or i + A.u = 0 similar
convergence results are known. There convergence can be expressed in terms of the
convergence of the resolvent operators R.(\, A) = (A.—\I)~! for ¢ — 0. Our setting
M_ii+ A.u = 0 involves two physically relevant structures depending on € and convergence
is asked in the physically relevant quantities. The transformation u. = Mgmﬂa would not
transfer convergence properties of u. to those of v..

Section 3 is devoted to the homogenization of systems of hyperbolic equations as in (1.2).
For simplicity we restrict ourselves to the one-dimensional setting but allow for vector-
valued u(t,z) € R™. The main advantage of the present theory is that it uses very
weak convergence notions. Thus, we are able to homogenize equations with general L
coefficients. For general periodicity structures in R? we let Y = [0,1)¢ ~ (R/z)? and
[-]:R?Y — Z for the componentwise GauB bracket. For a general function a € L>®(R¢ x
Y; R™™) the usual ansatz for the oscillation coefficients would be a.(z) = a(z, Lz), but
this is not well-defined, as { (z,12) e R* x Y |2 € R?} is a null set in R? x Y. Thus, the
usual work assumes additional smoothness for a, cf. [CDMZ91, All03] and the references
therein. We avoid this problem by using

as(x) = [y a(e([za] +y), 2x) dy,
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which is well defined due to the averaging in the first variable.

Using this concept, we show that the solutions u. of the oscillatory wave equation
pe(2)ii=(t, z) = (a-(x)u'(t, x)), — O F.(z,u), ult,-) € Hy((0,1); R™).
have weak limits that solve the effective wave equation
pi(x)iic(t, ) = (a*(a:)u'(t,a:))/ — O Fu(w,u), wu(t,-) € H((0,1); R™),

where the subscript . denotes the harmonic mean a.(z) = ([, a(z,y)™" dy)_1 while the
superscript * is the arithmetic mean, e.g., F*(z,u) = [, F'(x,y,u) dy. Note that the
effective tensors and nonlinearity may have arbitrary jumps for many = € (0,[). This
leads to reflection effects in the wave equation homogenized wave equation and it is not
at all clear that these effects are present in the original oscillatory system. The present
theory shows that the homogenization works in this case if we use weak convergence in
the energy topology.

Note also that the associated potential energy ®. converges to the correct limit energy
®, in the weak H' topology. The same holds true for the kinetic energies K.(v) =
% fol p-v-vdy, when we again use the weak H' norm or the strong L? norm. However, using
weak L2 convergence, which would be suggested from energetic considerations, would give
a [-limit defined via the harmonic mean p,, see Proposition 3.1(b).

This shows that the idea of using the I'-limits cannot be applied naively. On the one hand,
the joint-recovery condition (1.5) justifies that in the Lagrangian setting the topologies for
the energy recovery and for the momentum recovery have to be the same. On the other
hand the Hamiltonian approach (see Section 3.3 ) defines the kinetic energy in terms of
the momentum p giving Iea(p) = %fol p='p-pdz. In this setting the symplectic structure
enforces that the weak L? convergence has to be used for the calculation of the I'-limit.
The correct effective density matrix is obtained as the inverse of the harmonic mean of
the inverse, which is of course the arithmetic mean.

In Section 4 we provide another example arising from the discrete system. For such
atomic systems there is some literature concerning the passage to the continuum limit,
but only in the exactly periodic case: For the general linear setting the derivation of
the elastodynamical wave equation was done in |[Mie06¢|, using methods from Fourier
transforms and series, which may be generalized to the slowly varying case, but not to
cases with jumps in the coefficients, which occur for instance at the phase boundaries in
crystals. For some work in the nonlinear setting we refer to [SW00a, DHM06, GMOG6,
GHMO06a, GHMO06b| and the references therein.

The methods developed here will be useful in much more general contexts. For simplicity
we have restricted ourselves to the following model of an atomic chain for (u,(t)) ez €

(Z;R™):

me(e7)ily = as(e7)(uyr1—uy) + ac(ev+e) (Uy-1—uy) — e Dt (z,u,), v € Z, (1.6)



Our main result states that, if we embed the discrete solutions into H'(R; R™) via 4. =
E.((uy)y) such that @, is piecewise linear with u.(e7y) = u,, then any accumulation point
ug of families of solutions solves the macroscopic effective wave equation

m*(x)aa—;uo(f) = %(a*(x)%u) — Dyp*(z,u), wu(r,-) € HY(R;R™).

2 Abstract convergence results

Here we provide a general, abstract framework that allow us to pass to multiscale limits
in several applications. The idea is to use the fact that Hamiltonian systems are driven
by a function, namely Hamiltonian H., and a symplectic structure €2.. We study the
question in what sense H. and (). have to converge to their limits Hy and 2y. Here, we
are interested in rather weak convergence notions like I'-convergence.

2.1 Quadratic forms

The basic objects for the linear theory are quadratic forms @@ : X — R.,,. We always
assume that these forms are homogeneous of degree 2 and uniformly convex. This implies
the coercivity

Je>0Vue X Qu) > cllull*.

We allow for the value +o00 such that the domain dom@ = {u € X | Q(u) < oo } may be
a proper subspace of X. Moreover, we do not impose density, i.e.,

X = domQX

may be a nontrivial closed subspace of X.

Finally, we define a self-adjoint operator Ly : D(Lg) C Xg C Xg in the usual way.
Using the bilinear form B : dom@ x dom@ — R, (u,v) — 1Q(u+v) — 1Q(u—v) we let

D(Lg) ={uedom@|3IC >0Vv e dom@ : |B(u,v)| <Clv| }
and define the linear operator L via
Lou=w if B(u,v)= (w,v) forall v € dom@.

The classical theory of quadratic forms and of selfadjoint operators says that Lq is self-
adjoint if and only if the subspace dom(@ equipped with the energy norm | - |lg : v +—
Q(v)Y? is complete. Obviously, the latter condition is equivalent to the property that
Q@ : X — R is weakly lower semicontinuous. Under these conditions () takes the form

(Lou,u) for u € dom@,

| (2.1)
00 otherwise.

Q : X—>R;u»—>{



Now, dom@) = D(LgQ) and Lg € ﬁ(D(Lgm); D(Lélﬂ)) and we denote by
S(X)={L: D(L) C X, — X, | X, C X closed, L selfadjoint }

the set of all such operators. The associated quadratic form for L € S(z) is then denoted
by Q1 and defined as in (2.1).

2.2 TI'-convergence and recovery operators

We consider a Banach space X and denote by — and — the strong and weak convergence
respectively. The notion of I'-convergence is adjusted to the convergence of functionals
O, : X — R related to the direct method of the calculus of variations, see [Dal93, Bra02].
We say that &, I'-converges to & for ¢ — 0 with respect to the weak topology on X, and
shortly write &, = I'-lim,._o P. or o, 5 ®y, if the following two conditions hold:

(G1) Liminf estimate:
u. —uin X =  Py(u) <liminf. oD (u.).
(G2) Recovery sequence:
Vue X F(Ue)eso: U —~uin X and P (u.) — Po(u).

(2.2)

We first deal with families of quadratic forms ®. = Q4. as defined in (2.1), namely

1 f
D (u) = 5(Acu,u) foru eV, (2.3)
00 for u e X\V..

Here, V is a Hilbert space with dual V*, V_ are closed subspaces, and A, € £(V., V") with
Ar = A, satisfy the uniform coercivity assumption

Jep>0Ve € [0,1] Vo eV : d.(v) > %HUHQV. (2.4)
We also introduce the V-orthogonal projectors P. € L(V,V) with P.V = V. and their
adjoints P € L(V*,V*) with P*V* = V.

For quadratic forms we reformulate I'-convergence using families of recovery operators.

Definition 2.1 Assume that V is a Hilbert space with dual V*. Moreover, let (Vz)ecpo1]
be a family of closed subspaces of V' and assume K. € L(V.,VZ). Then, (G:)ec01) with
G. € L(Vy,V) is called a family of recovery operators for (K.).cjo,1) if

(R2) VuogeVy: Gevg—wvy inV,
(R3) wv.€ V. foree[0,1] and v. = vy inV = GEIK.v. — Kovg in V.



The following conditions are either equivalent or sufficient for the recovery property. They
will be used in the sequel since they wherever they are easier to handle. However, we refer
to Example 2.3 to see that (R3)* is strictly stronger and not appropriate in situations
where V. is not strongly dense.

Lemma 2.2 : Let V,V., K. and G. be as in Definition 2.1 except for (R2) and (R3).
Then we have (R2) <= (R2)" and (R3)* = (R3), where (R2)* and (R3)* are given by

(R2)" V¢eV*: Gi¢2P¢ inVy,
(R3)" VweVy: K:Govy — Kivg in V*.

If additionally V. =V for all ¢ € [0, 1], then (R3)* <= (R3),

Proof: The equivalence between (R2) and (R2)* follows easily since (R2) means that
(Gevg, ¢) converges to (vg, () for all vy € Vj and all ¢ € V*. Using (G v, () = (vo, GE()
the desired equivalence follows with (vg, () = (vo, P;().

Next we show that (R3)* implies (R3). For this take any family (ve).cp,) with v. € V.
and v, — v in V. Then, for arbitrary wg € V4 condition (R3)* gives

(wo, GEKv.) = (KZGowp, ve) — (Kjwo, vo) = (wo, Kovp),

since the first term in the duality pairing converges strongly whereas the second term
converges weakly. Thus, (R3) is established.

For the opposite implication (R3)=- (R3)* we assume V. = V' and use a standard result:
A family (7).)zcp0,1) satisfies . — 1y in V* if and only if for all (v.).cjo,1) in V' with v, — v
we have (n.,v.) — (o, vo), see Lemma A.1 for a proof. m

Example 2.3 We consider V = V* =V = L*((0,1)) and for all € € (0,1] and fixed
a € (0,1) we define X () = (0,1) N U (ek, e(k+a)) and V. = {u € V|spptv C X(¢) }.
Finally, we let ®_(u) = fol u(z)*dx for u € V. and oo otherwise.

The T'-limit reads ®o(u) = é fol u(x)?dz and as recovery operators we may choose G.u =
Lxeu with x. = xx(e), since 2x. converges weak* to 1. Note that (R3)* cannot hold for
any family of recovery operators, since A.G.vy € V¥ and no element in Vy\{0} is a strong

limit of points 0. € V.

For a family (A.).cp,1) of symmetric operators as above having a family of recovery op-
erators (z)ee(o,1] we may define the symmetric operators A : Vo — Vs vy —= GEA.GLv
and the associated quadratic forms ®? : V' — R_,. Then, for vy € V; we have

1 1 1
(I)a(Ga’Uo) = §<AEG5’U0, GE’U()> = (I)g(vo) = §<A3U0, U()) — §<A0U0,U0>. (25)

This leads to the first result concerning the sufficiency of recovery operators for the proof
of I'-convergence.



Proposition 2.4 For e € [0,1] let V., A. and ®. be given as above and satisfying (2.4).
Moreover let (G.).~o be a family of recovery operators as in Definition 2.1. If additionally

ve —vandv gVy = P (v.) — o0, (2.6)

then we have ®q = I'-lim._,o ..

Proof: Because of ®y(v) = oo for v ¢ V4, condition (2.6) shows that (G1) and (G2) in
(2.2) hold for all v & Vj.

It remains to consider vy € V5. Using v. = G.vy we have a recovery sequence, as
O (Gevg) — Po(vg), see (2.5). Thus, (G2) is established. For (G1) consider an arbi-
trary family with v. — vy and use the identity

D (v.) = P(Gevg—v:) + (GEA v, 1) — P (Gevp).

We have just seen that the last term converges to ®g(vg). The second last term converges
because of (R3), i.e., GEA.v. — Apvg, and the limit is (Agvg, v9) = 2P(vp). Since the
first term after the equality sign is nonnegative we can take the liminf and obtain (G1). m

We also want to show that under the assumption that ®, RN d, we always have at least
one such recovery operator. Qur construction provides a canonical version but we hasten
to emphasize that this is not useful for practical purposes, since usually the proof of
['-convergence has to be done first and therefore recovery sequences are needed to start
with. Nevertheless the following result clears the structures and provides further insight.

The construction of the recovery operators F. : Vo — V. involves the functionals
Jewg 0 V= Ry v O (v) — (Aguo, v).

Clearly, J.,, is coercive, lower semi-continuous and uniformly convex. Hence, J.,, has a
unique minimizer v.(vg) in Vz, and we set

FE:{VO G (2.7)

vy +—  U(vg) = argminJ. .

Using 0 = DJ.,,(0.) = A.v. — P Agug we easily find F. = AZ'PrAg € L(V, V) and

1
veev, < —|[Agl

V- 2.8
< Vi Th (2.8)

1Fllveevy < A vz

E

Aol

VE* (_V*

Proposition 2.5 Let ®., V., P. and A. be defined as above such that (2.4) holds. If
&g = [-lim. o ., then (F.).so defines a family of recovery operators.

Proof: To show v, := F.uyp — vy we use that v, minimizes J. ,,. By (2.8) we know that
||ve|lv is bounded, hence for a subsequence we have v., — v. By v, we denote a recovery
sequence for vy as postulated by (G2), i.e., v. — vy and D.(v.) — Py(vy) < co. Thus,

Qy(v) < liminfy .o D, (ve,) = limy_oo (Aovo, v, ) + liminfy_ oo Je 4 (ve,)

S <AOU0,/’[J/> + lim lllfk_wo Je,vo (/U\ek) = <AOU0,/’[J/> + @0(@0) — <AOU0, U0>.
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Rearranging this inequality gives
0 > @0(5) + (1)0(@0) — <AOU0,5> = %<A0(U0—§), U0—§> > Co||U0—§’|%/.

Hence, v = vy and thus the only accumulation point of the family F.ug is vy and (R2) is
established.

The convergence (R3) follows easily since a small computation shows FfA. = AyF.
Because of AgPy lies in £(V; V) and is independent of ¢, the desired weak convergence
follows from v. — vy due to the weak continuity of bounded linear operators. m

For V. = V we have the simplification F. = A-'4, and we see that I'-convergence
reduces to the weak convergence of the resolvent with respect to the energy norm. The
generalization presented here allows us to avoid assumptions that involve a joint upper
bound like (A.v,v) < Cyppllv||# and, thus, are more flexible in applications.

Remark 2.6 Our construction of recovery operators is not restricted to the linear setting.
For strictly convex functionals ®. for ¢ > 0 and for differentiable &y : V; — R the
functional J. ,, takes the form J. . (v) = ®.(v) — (DPy(vy),v). It is interesting to note
that such recovery sequences do not recover the energy level but rather the derivative,
namely the minimizer v. of J.,, satisfies DO (v.) = P*D®y(vy). This is quite close to
what we need for our nonlinear theory, cf. (2.19).

2.3 Linear mechanical systems

Since the kinetic and the potential energies in mechanical systems associate with different
topologies we use a Gelfand triple V. C X = X* C V* of Hilbert spaces. We denote by
(-,+) the scalar product in X as well as the duality product on V* x V' and distinguish
the norms by a subscript. For each ¢ € [0, 1] we consider functions K. and ®. denoting
the kinetic and the potential energies, respectively. In this section we assume that both
functionals are quadratic:

(Acu,u) for w eV,

9] otherwise,

K. (u) =

N[

(M.u,u) and @e(u):{ 2

where V. C V is a closed subspace, M, € L(X, X*) with M: = M., and A, € L(V., V)
with A = A.. We will use the following coercivity assumption:

e >0VueV: O (u) > Lul, (2.9)
dep >0Vve X é||v||%/ > (M v,v) > ¢||v|%.

We set X, = VEX and define @), as the X-orthogonal projector from X into X.. Letting
M, = Q:MEQE : Xe — X = X, we now consider solutions of the associated Hamiltonian

system
M.+ Acu =0, wu(t) eV, (2.10)

10



where we always assume that the energy
E.(u,u) = X(M.u,u) + D-(u) (2.11)

is finite and constant along solutions. According to (2.9) we consider weak solutions
u. : R — V of (2.10) with u. € CO(R, V) N CH(R, X.) N C*(R, V*) satisfying
. . T :
+ [(Meic(t), (1)) — (Meue(t), 9=(t))] 4 = 0. and S < T.

This notion looks very weak, but using the selfadjointness of M, and A, it is easy to see
that each solution of (2.12) satisfies u. € BC°(R, V)N BCY(R, X) N BC*(R, V*) and that
it satisfies energy conservation E.(u.(t),@.(t)) = const.

We now consider a family (u.).s¢ of solutions such that the energy e. = E.(uc(t),u(t))
is bounded. We are interested in passing to the limit ¢ — 0 under weak conditions. The
coercivity assumptions (2.9) show that wu. is bounded in BC*(R, V)NBC!(R, X). Since V
is continuously embedded into X, we have boundedness of u. in BC!'(R, X) and we may
apply the Arzela—Ascoli theorem in CO([—T, T, Xyeax) to obtain a subsequence (ue, )ren
with £, \, 0 and a limit function uy € BC°(R, X), such that

VteR: ., (t) —u(t) inV, and., —u in L®(R,X). (2.13)

Note that the boundedness of u, in BC*(R, V) implies that the pointwise weak convergence
in X can be improved to weak convergence in V. The weak™ convergence of 7., follows
by the Banach—Alaoglu theorem as L°(R, X) is the dual of the separable space L*(R, X).

The following result provides a first sufficient condition such that wy obtained in (2.13)
solves (2.10) for e = 0.

Theorem 2.7 Fore € [0,1] let V., M., A. be given as above. Assume @y = I'-lim._, D,
and that (F.)eso as defined in (2.7) is a family of recovery operators satisfying

ve € Vo fore €[0,1] andv. — vy = F M.v. — Movy inVj. (2.14)

Now let (u:)eso be a family of solutions of (2.12) with bounded energy and ug any limit
as postulated in (2.13).

(a) Then, ug lies in BCO(R, Vo) NBCH(R, Xo) NBC%(R, Vy') and satisfies (2.12) for e = 0.
Moreover, F? M., ., (t) — Motug(t) for allt € R.

(b) If in addition to (a) we have that (FXM.u.(t), FXM.u.(t)) = (Mouo(t), Moto(t)) in
Vi x Vi holds for one t € R, then it holds for all other t € R as well.

(¢) Under the additional upper bound

3 Cup > 0¥ € [0.1) ¢ 1M vy + [ Acllvemv < Cupp (2.15)

the additional convergence (uc(t),u:(t)) = (uo(t),uo(t)) in V x X for somet € R implies
the same convergence for all other t € R as well.

11



Example 2.8 Here we show that the assertion in Part (b) cannot be improved without
further condition as in Part (c). Let X = V. = R? with M. = I and A. = diag(1,1/¢), for
€ > 0. Then, for e = 0 we obtain V = span {((1))} and (IDO((Z;)) = %q% if g = 0 and +o0
ii‘;ﬁ;{f‘g))), which have the bounded energy
e. = E.(ue, 1) = L(a® +b?). We have u.(t) — uo(t) = (*""UT)) uniformly in t € R.
Moreover, .(t) = (alf;)zgi;g)) satisfies ii. = ty. Note that we have i.(0) — (“°3°) but
for t # 0 the second component of u.(t) does not converge. As F. : Vy — V. takes the

form F. (‘g) = (g‘) we find F* M. (g) = (g‘) € Vi. Thus, we are able to confirm statement

(b), as the convergence of the first component of u.(t) and u.(t) for some t implies the

else. For £ > 0 we have the solutions u.(t) = (

convergence for all over t as well.

Proof: First, note that the limit function ug from (2.13) must lie in Vj, as $g(ug(t)) <
liminf. o ®.(u.(t)) by (G1). However, ®.(u.(t)) < E.(ue, ) < F,.

Part (a) follows by inserting ¢.(t) = F.pg(t) into (2.12) for ¢ > 0. Here, ¢y € C%([0,T], Vo)
is arbitrary. Pushing F. to the other side in the duality pairing we can use (R3) to obtain
(FrAuc(t), polt)) — (Aouo(t), o(t)) forallt € R. Similarly we have (M u.(t), F.po(t)) =
(FXMu(t), po(t)) — (Mouo(t), go(t)) for all £ € R. Thus, we obtain (2.12) for S < T,
and @y € C?((S,T),Vp). From this and from My, My ' € L(Xo, Xo) and Ay € L(Vo, V7))
it follows that ug satisfies ug € BC°(R, V5) N BCH(R, X) N BC*(R, V), i.e., (2.10) holds
pointwise for uy as an equation in V. Then, it follows again that (2.12) holds including
boundary terms.

To show the pointwise weak convergence of F*M_.u.(t) towards Myi(t) in V" we choose
a function p € C*(R) with p(0) = 1 and p(—1) = 0 = p(0) = p(—1). For any gy € V; we
let @.(t) = p(t—T)F.qo and S =T — 1 in (2.12) to obtain

<F€*M€115(T), QO> = <M€"[L€(T), QDE(T»
= [ (FrMouc(t), qo)p(t—T) + (Ao Pouc(t), go)p(t—T) dt.

The uniform weak convergence of u. allows us to pass to the limit in the right-hand side.
Thus, the limit p(t) = lim._o(FF M.u.(t), qo) exists for all t € R and we have

u(t) = f7_ (Mouo(t), q0) 5(t=T) + (Aouo(t), go)p(t—T) dit.

However, as ug solves (2.12) for ¢ = 0 we may test with po(t) = p(t—T)qo to find that
w(t) = (Myto(t), qo). Thus, FFXM.u.(t) — Mot(t) in Vy is established.

To prove Part (b) we simply use the fact that ug is uniquely specified if (ug(t.), o(ts)) €
Vo x X is prescribed. Thus, if u.(t.) — up in V and FFM.a.(t.) — Myvp holds, then any
limit ug of a subsequence in the sense of (2.13) satisfies, by Part (a), the initial condition
uo(ts) = up and 1g(t.) = vp. Thus, the whole sequence converges in the sense of (2.13)
and Part (a) yields F.M_u.(t) — Myio(t) for all t € R.

In Part (c) we have a uniform upper bound on all operators A. and M. Hence, from
ti. = —M>'A.u. we obtain a uniform bound for u. in BC2(]R, V*). Thus, the Arzela—
Ascoli theorem is also applicable to i, € CHP(R, V*). Together with the pointwise bound
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of (e(t))-epo1] in X we obtain pointwise weak convergence in X. Arguing as in Part (b)
by using uniqueness of the limit solution, we obtain the desired result. [

Example 2.9 We consider the finite dimensional example with X =V = V. = R? with

M.ii+ Acuw=0 with M. = (] °.) and (2 ,_71/5), (2.16)

0 e« —1/e 1/&2
where o« > 0 is a fixed parameter. We have Vjj = span{ ((1))}, o, L ®y, and K, ER Ko with

2 @ 1 (wM)? for u® =0,
Do = Ko : R? = Rags (1)) > { 37

00 otherwise.

Thus, the limit problem reads Myt + Aqu = 0 with My = Ag = I on V;. The solutions of
the limit problem are u(t) = acos(t+a)(}) for a,a € R.

The exact solutions of (2.16) for € > 0 can be written in the form

us(t) = ay cos(wy(€)t + B1)¢1(€) + ag cos(wa(e)t + Ba)pa(e),

where the eigenfunctions ¢;() € R? and the eigenfrequencies w;(g) > 0 satisfy

(A —wi(e)M.)p;(e) =0,  (M.p;(e), pr(e)) = jk.

For o € (0,2) we find wy(e) = 1+ O(27%), p1(e) = () + O(e¥7),wa(e) = 1/e>*+ O(1),
and |ps(€)| < 1. Hence, any convergent subsequence of solutions with bounded energies
|2

E-(u., i) = ‘“Twl (e)* + %u)g(&f)2 converges to a solution of the limit problem.

For o = 2 we find ¢;(g) — (%) and w?(e) = (3 +V5)/2. For o > 2 we find ¢,(c) =
(1) + O 2),wi(e) =v24 0(272), and ws(e) = /*"L A/2+ h.o.t. Hence, for a > 2 the
limits of subsequences of energy-bounded solutions u. have the form

ug(t) = (a1 cos(wit + B1) + as cos(wit + B)) ().

where wi , = ((3 +/5)/2)Y? for o = 2 and (w?,w3) = (V/2,0) for o > 2. These functions
certainly do not satisfy the limit problem.

We now check in what regime for o our sufficient conditions hold. Note that the recovery
operator F. : Vy — V. = R? constructed in (2.7) for (A.)-cj1) depends only on A. and
is, thus, independent of . We have F. = AZ'PYA, : (g) — 5(}:) and FF = (é °). The
condition (2.14) reads M_F (g) = 5(511%) — (g) and holds only for v € (0,1). In the next

section we will weaken the condition (cf. (2.19)) to
ue —u and (Auc,u) <C = F'M.u. — Myuy.

This condition holds for all o € (0,2), since FxM, = (1 ") and (Acuc, u.) < C implies
| (ue, (?)H < Ce.
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2.4 Nonlinear mechanical systems

We now generalize the above theory to the nonlinear setting. The new conditions are
even more general for the linear case. We treat abstract systems of the form

M.ii. + D®.(u.) =0, u. € VL, (2.17)

where now ®, : V — R, is such that ®.(u) = +oo for u € V. and ®.|y, € CY(V;R).
Moreover, we assume the coercivity

O (u) — 400 for ||u|ly — oo and

(2.18)
Jeg >0Vee[0,1]Vue X : (Mou,u) > collulk.

The main observation about the theory in Section 2.1 is that the specific choice of F for
the recovery operator is not necessary. All what we use for proving Theorem 2.7 can be
put into the following condition:

Vee (0,1 3G. € L(Vi; Ve) -

if ue = up in V and sup.cpq) Pe(ue) < 0o, then
(i) GIDP.(u.) — DPy(up) in Vj,
(ii)) GiM.u. — Moug in Vj'.

(2.19)

Even for linear systems this condition is weaker than the classical recovery condition,
since we only need to consider sequences that have bounded energies (cf. also Example
2.9). Note that we do not impose that ®q is the I-limit of the family (®.).~( for ¢ — 0.
Condition (2.19)(i) asks that the derivatives are “recovered” correctly, cf. also Remark
2.6. However, having a weakly convergent sequence u. inside the nonlinear term D®.(+)
roughly means that we are restricted to semilinear cases.

A function u. € L>®((ty, t2); Vo) "W ((2,t5); X) is called a weak solution of (2.17) if for
all o € C2((t1,1;); V) we have

S (Meue (1), (8)) + (DPe(ue(t)), (t)) dt = 0. (2:20)
We additionally impose in this abstract setting that for all € € [0, 1]

all weak solutions wu. of (2.17) satisfy
Ue € CO((tl,tg);VE)ﬂCl((tl,tQ);X), (221&)
Eo(uc(t), 4. (t) = $(Motie(t), 0=(t)) + P (uc(t)) = const. (2.21D)

For a family (u.).-o of weak solutions of (2.17) on a common interval (t1, ;) that have
bounded energies sup,. e-(t) < oo the coercivity assumption (2.18) provides a priori
bounds for wu. in CO((ty,t5); Vo) N CY((t1,t2); X). Thus, as in the previous section, we
are able to extract a subsequence (u.,)reny and a limit function u € L®((t1,%2); Vo) N
Whoo((ty,5); X) such that

(1) Vt € (t,t) : ue, (t) = u(t) in V, (ii) @, =0 in L®((t1,t9); X).  (2.22)
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The following result provides sufficient conditions that guarantee that any such limit
provides a weak solution of (2.17) for e = 0.

Theorem 2.10 Let X,V V., M. and ®. be such that (2.18), (2.19), and (2.21) hold.
Then, any limit u as obtained in (2.22) satisfies (2.17) for ¢ = 0. Moreover, for all
t € (t1,t2) we additionally have G7, M, 1., (t) — Motg(t) in V5" for k — oo.

If furthermore the limit problem has the property that for each (wq,vy) € Vo x Xy and each
t. € (t1,t2) there exists at most one weak solution uy with (ue(t.), wo(te)) = (wo, vo), then
the convergence (GEMou.(t), GEM (1)) = (uo(t), wo(t)) in Vi x Vi for one t implies the
same convergence for all other t € (t1,t3).

Proof: The proof is essentially the same as for the linear case. Start from the weak
solutions (u.)sc(01] We test with ¢ = G.po(t). Our a priori bounds allow us to apply the
recovery conditions (2.19). Thus, we can pass to the limit and obtain that ug is a weak
solution. Applying the regularity assumption we have ug € CO((¢1,t); Vo) NC((¢1,t2); X).
Thus, for all € € [0, 1] we may integrate by parts in (2.20) and obtain

\V/SOO € Cg((t1>t2)§ ‘/0) : :12 <G:Dq)a(ua(t))a SOO(t» - <G:Maue(t)’ Sbo(t»dt =0.

Now consider S and T" with ¢; < S < T < t; and let x = X7 be the characteristic
function. Choose a sequence (xi)ren With xx € C?((t1,12)) and Y, — 65 — 07 in the sense
of Radon measures (the dual of C°([t1,t,])). Replacing ¢q in the above identity by xzo
we may pass to the limit and obtain, for all oy € C?((ty,12); Vo),

S5 (GED(uc(t)), po(t)) — (G2 Motic(t), @o(t)) dt + (G2 Mte(t), o (t))] g = 0.

Now we may undo the integration by parts again and see that weak solutions even satisfy
the weak form on subintervals including the boundary terms as given in (2.11).

Based on (2.11), the arguments about the convergence of G M., 1., (t) and the conver-
gence of (G-M.u.(t), GeM.1.(t)) works as in the proof of Theorem 2.7. m

2.5 Hamiltonian systems

Here, we consider general Hamiltonian system. We will mainly restrict to the linear case
and address the nonlinear case only shortly at the end of this subsection. We consider
a Hilbert space Z, closed subspaces Z. and Hamiltonians H. : Z — R, with H.|y, €
CYV.;R) and H. = oo on V\V.. The linear case is given by symmetric linear operators
L. € L(Z.,Z}) defining the Hamiltonians

(L. f Ze
Ha(z):{2< z,z) for z € Z,, (2.23)

00 otherwise.
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As above, we assume uniform coercivity:
Je>0Ve€[0,1]Vz € Z: H.(2) > c|z||3 (2.24)

To define the Hamiltonian flow via a differential equation we have to specify symplectic
structures Q. € L(Z., Z}), i.e., S is skew symmetric (2 = —().) and nondegenerate:

If (Qz.,v.) =0 for all z. € Z., then v. = 0. (2.25)
The Hamiltonian system now takes the strong form
Q.Z. =DH.(2.), =z € Z.. (2.26)
Again we define the notion of weak solutions z. € L*°((t1,2); Z.) by test functions:
Ve € Cl(tt); Z2) = 12 (Qeze(t), 9(1)) + (DH.(2:(1)), (1)) dt = 0. (2.27)

As in the case of mechanical systems we assume that every weak solution is slightly
smoother and conserves energy:

All weak solutions z. of (2.26) satisfy

2. € CY((t1,t2); Z.) and H.(2.(t)) = const. (2.28)

The above linear mechanical systems can be put into this Hamiltonian form by introducing

p = N7'i. and setting Z =V x X, H.(u,p) = 3(Acu,u)y + 3(NZM.N.p,p) and Q. =
0 —M:N:

(NE*ME 0

the Lagrangian setting. In general, the weak-convergence properties of these two systems

might be different.

). In the case N. = M. we obtain the canonical setting while N, = I gives

The crucial assumption to obtain the desired convergence result is again the existence of
a family of joint recovery operators, i.e.,

Vee (0,1] 3G. € L(Zy; Z.) -

if 2z = zpin Z and sup.gp ) H-(2:) < 0o, then
(i) GiQz. — Qozo in Z§,
(ii) GIDH.(z.) = DHy(z0) in Z;.

(2.29)

Thus, if we have a sequence (z:).c(o,1) of solutions of (2.26) with bounded energy this
sequence is bounded in L>((t1,t2); Z). Thus, we may extract a subsequence that converges
weak™ to a limit function, namely

Ze, =z in L((t1,1); Z). (2.30)

Note that this convergence is equivalent to the weak convergence
f:f 2, (s)ds — f: z(s)ds in Z for all 7,1 with t; <7 <75 <. (2.31)
However, weak™ convergence is not compatible with nonlinearities occurring in DH.. To
exploit (2.29)(ii) we would need weak convergence pointwise in £. How this can be obtained

we discuss at the end of this section. At present we restrict to the linear case, where weak*
convergence is sufficient.
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Theorem 2.11 Let Z, Z., L., and ). be as above and assume that H. is given through
(2.23) such that (2.28) holds. Moreover, let the joint recovery condition (2.29) be satisfied.

Then, every limit zy obtained as in (2.30) from a sequence of the weak solutions z. of
(2.26) is a solution of (2.26) for e — 0.

Moreover, if GiQ.z.(t) — Qozo(t) for some t € R, then this convergence holds for all
t € R without extracting a subsequence.

Proof: First, by using the linearity DH.(z.) = L.z. and the characterization (2.31) for
weak® convergence, the recovery conditions (2.29) yield

G*Q.z. =z and GfL.z. > Loz in L(R; Z;).

Second, we use the weak form of (2.27) for the solutions z. and test it with . (t) = G- (t)
for p € CY(R, Zp). Pushing G. to the other side we can pass to the limit and find that z
is again a weak solution.

As in the proof of Theorem 2.10 we may now restrict the weak form to intervals [S,T] C
(t1,12) giving

0= (G202, )| + 4G22 (0), (1)) + (GEL.(t), po(t)) . (2.32)

From this the results concerning the convergence of GZQ.z.(t) follows as above. We use
here that the linear limit problem g%y = Lgzo has at most one solution for a given value
w = Qoz0(t,), see the following lemma. m

In the following result we include the case that € has a nontrivial kernel. Hence, zy(0)
will not be uniquely determined through 7y = 42.

Lemma 2.12 Let Qqo, Ly € L(Zy, Z) with Qo = —Q, Lo = L, and (Loz,2) > c||z||%-
Then, QoZo = Lozo has at most one solution for a given value ny = Qyz0(0).

Proof: By linearity it suffices to show that 7 = 0 implies z = 0. We use (2.32) for e =0
with @o(t) = ¢ for t € [0,,] and obtain (Qo2(t,)—Q2(0)—Lo [, 2(s)ds, 1) = 0 for all .
Using €202(0) = 0 and letting w(t) = fot 2(s)ds we find w € W (R, Zy) and Qo> = Low.
From 4 Hy(w) = (Lyw, ) = (Qow, i) = 0 we conclude Hy(w(t)) = Ho(w(0)) = Ho(0) =
0 for all . This implies w = 0 and, hence, z = w = 0, which is the desired result. n

Example 2.13 Consider the case Z = Z = R* with Q. = (5 '2), where I, € R***. The
Hamiltonians are given via L. = diag(1,1,1/¢% 1). We find Z, = span{e;, ez, e, C R?
and Ly = idg,. As recovery operators we may take the constant family G, : Zy — R*,
29 — zo which is the simple embedding. The above results are applicable and using the

coordinates zy = aqeq + ases + azey we find the limit problem

0
0

,_.
oo
N——
o.
I
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that has the solution a(t) = (0, bcos(t+03), bsin(t+3))T.

Note that the original problem has the solutions
2e(t) = (e cos(ye+t/e), be cos(t+/3.), ece sin(y.+t /), b sin(t+5:)) T,

with energy H.(2(t)) = 3(c24b?). Boundedness of energy implies boundedness of b,
and c.. Hence, we may assume convergence of (b.,c., Bz,7.) to (b,c,[3,7), by passing
to a suitable subsequence. Then, we obtain uniform convergence of the second, third,
and fourth component of z.. However, the first component converges to 0 only weak*
in L*(R). Note that GZQ.2:(t) also converges in Z, since Q. = (5, %2) moves the first

component into the third one, and G* = diag(1, 1,0, 1) projects out the third component.

We finally address the question how nonlinear problems can be treated in the Hamiltonian
setting. To improve the weak® convergence into a weak pointwise convergence we need
some control over the temporal behavior. One natural way of doing this is to impose a
bound on the inverses of €2.. For this we assume that Z is continuously embedded into a
bigger space Y such that we have

30 >0Veec[0,1]: [|Qy—z < Co.

For the energy we impose the existence of a continuous and nondecreasing function R, :
R — [0,00), such that

Vee[0,1]Vz € Z.: |DH.(2)]

A S Rupp(HE(Z))‘

Now an energetic bound H.(2.(-)) < E, provides the bound |[DH.(2(-))||ecm;zz) < R =
Rupp(Ey) and moreover ||Z||pemy) < CqR,. Thus, Arzela-Ascoli can be applied in
C*([t1, ta], Yivear) and the boundedness on Z then provides pointwise weak convergence in
Z as well.

2.6 Strong convergence

In general, we should not expect strong convergence of u. to ug, since this is usually in-
compatible with I'-convergence (except in the case of Mosco convergence, where condition
(G2) in (2.2) is strengthened by asking u. — u). However, weak convergence as well as
convergence of the energy implies a stronger convergence involving the recovery operators.

Lemma 2.14 Let (K.).cpoq1) be a family of operators in S(V) with Qg _(v) > c||v||* for
c>0and allv eV, and let (G.)zc0,] be recovery operators, then we have the implication

<K€u€7u€> - <K0U0,U0>
— ||G€u0 — u€||V — 0.
Ue — Ug
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Proof: We use the uniform coercivity and find

CHGEUO - ua||2 S <K5(Gau0 - ue)> Gauo - ue)
= <KeGeu0a Geu0> - 2<K5G5u0> ue> + <Kaua> ue>
— (Koug, up) — 2(Kouo, uo) + (Kouo, ug) = 0,

where we used K.G.uqg — Kyug together with G.ug — ug and v, — ug. As ¢ > 0 is
independent of ¢, the proof is finished. [

We now state a strong convergence result for linear Hamiltonian systems. A correspond-
ing result is valid for linear mechanical systems. If in addition to the weak or weak*
convergence of the solutions z. we also have the convergence of the energies to the energy
of the limiting solution, then the convergence statement can be improved considerably.

Theorem 2.15 Let Z,Z., L., €}, be as in the previous section and assume that H. = Q..
Moreover, assume that a family (G.).~o of joint recovery operators as in (2.29) ezists.
Let z.: R — Z, € € [0,1], be weak solutions of the Hamiltonian system (2.26) such that
ze =z in L®(R, Z) and H.(z(ty)) — Ho(2(t)) for some ty € R (and hence all t € R).
Then, for a.a. t € R we have

ze(t) = z(t) and ||G.2(t) — z(t)||z — 0.

Proof: We use Lemma 2.14 and the energy conservation H.(z.(t9)) = H.(z-(t)) for all
t € R and € € [0, 1]. However, to apply Lemma 2.14 we need to show z.(tg) — z(ty). For
this, we use z. — z and G.z — z in L°(R, Z). Moreover, we have

c||Gez(t) — 2 ()[* < (Le(Gez(t) — 2:(t)), Gez(t) — 2:(1))
= (L.G.2(t), Go2(t) — 22:(t)) + 2H(2:(1)).

Using H.(z.(t)) = H:(2:(to)) — Ho(2(tp)) and L.G.z(t) — Loz(t) for all t € R we find
after integration over [t1, 5] that

e [P NGez(t) = z(0)|2dt < [ (L.Gez(t), Gea(t) — 22.(8)) dt + 2(ts — t1) Ho (2 (to))
— [ (Loa(t), 2(t) — 22(8)) dt + 2(ts — 1) Ho(=(to))

— [ 2Ho(2(t)) dt +2(t — 1) Ho(=(to)) = 0

This implies that, choosing a subsequence, we have G.z(t) — z.(t) — 0 a.e. in R. Using
G.z(t) — z(t) this implies z.(t) — z(t) a.e. in R. Since the limit z. = z is unique, the
result holds without choosing a subsequence. [
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3 Applications to wave equations

3.1 Homogenization and I'-convergence

We consider the situation of fast oscillating coefficients in functionals. In principle the
result seems to be well known, however, mostly the assumptions on the coefficients are
more restrictive. We consider an open domain 2 C R? with Lipschitz boundary and set
Y = (R/z)? for the unit torus of dimension d. We assume

a € L(QxY;R™™) and Ja >0VE€R™: a(z,y)é - € > alé? ae. in Qx Y. (3.1)

sym

The coefficient functions a, are then defined via
a.(r) = fwecg(x) a(w,z)dw  where C.(z) = e([Lz] + [0,1)9). (3.2)

Here, f means the average, [-] denotes the componentwise application of the Gauf
bracket, and éx as second argument of a is understood modulo 1 in each component.

Proposition 3.1 For a and a. satisfying (3.1) and (3.2) we define

a.(z) = (fy a(z,y)™? dy)_1 and a*(x) = [, a(z,y)dy

as well as the following functionals on L2(Q;R™):

D (u) = [ ac(x)u(x)-u(z)de,

D (u) = [oa(z)u(x)u(z)de, @*(u)= [,a*(x)u(x)u(z)ds
Then the following holds true:
(a) If u. — u (strongly) in L2(Q), then ®.(u.) — ®*(u).
(b) In the weak topology of L2(2) we have @, Lo, 4 family of recovery operators is
given by G. : u v (a.) ta.u.
(¢) Define W, : HY((0,1); R™) — R;v — ®.(v') and W, (v) = ®,(v'), then V. LW, in the
weak topology of HY((0,1); R™). A family of recovery operators is given by

~

AE.H}]((O l)-Rm) - Hl((o l) (OF
(Geu)(z) = [y (as(y y)dy — % [3(a-(y) " a(y)u'(y) dy.

Proof Note that the functionals ®., ®,, and ®* are uniformly coercive and bounded,
, there exists C' > 0 such that for all ¢ > 0 and all u € L2(Q;R™) we have &ulj3 <
(I>€( ) < ||u||3. This implies uniform continuity:

Ve>0Vu,v € L(QUR™):  [Po(u) — e(v)] < C(Jlullz + [Jv]l2) [lu — vl (3.3)
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ad (a). Using (3.3) it is sufficient to show the statement for constant sequences u. = u.
Moreover, it is sufficient to show the result for a dense subset like C2°(2;R™). Set N, =
{neZ|en+0,1)%) c Q} and y5 = e(n+(3,...,3)) such that e(n+[0,1)%) = C.(y5).
With this define Q. = U,en. Co(y5), then 2. C ©Q and vol(Q\€2.) < Ce, since 2 is bounded
and has a Lipschitz boundary. We have

|@(u) — [, ac(@)u(x) - ulz)de] < vol(Q\ Q) llacl|solull, < Ce.

The same result holds, when a. is replaced by a*. Hence, it suffices to estimate the
integrals over €).. For this define the piecewise constant approximation

H2) = e @ (w)dz if Ce(z) C Q.

The classical result for the density of Lebesgue points of a* shows that aX(z) — a*(x)

a

a.e. in Q. Hence, we have ®%(u) — ®*(u), where ®*(u) = [, a*u - udz. The remaining
difference is estimated as follows

}fQ [aa z)—a*(z )} () - u(:L')d:L'} SZnENE fcg(y%) aa(x)—a:(yfl)}u(x)-u(x)dx
[ lac(x)—a (yn)]u(yi)'u(yi)dx‘ + vol(C(y5) 2]l allso |l ot V]| V]| o

Ce(y3)

nENE

Using [o e a=(2)dz = [ .y a(w,y) dwdy = vol(C.(y;,))ai(y;,) the first term vanishes
and then . vol(C.(y;)) = vol(§)) gives the desired convergence result.

ad (b). We first argue as in the proof of part (a) to show that for all v in L*(Q) we
have G.u = (a.) ta,u — u for e — 0. It suffices to consider smooth u and v with
au,v € CP(Q;R™) and to show (G.u,v) — (u,v). As above, consider the average of
(a.)™' over C.(y¢), namely

fc )yldz = fcg (fcs(z dw) dz = [, (fc a(w,y)dw) " 1dy.

Since a is measurable and bounded from above and below, we can use the density
of the Lebesgue points and the continuity of the inversion to conclude that b.(z) —
[y a(z,y)"tdy = a.(x)"" for a.e. x € Q. This proves G.u — u. Moreover, choosing v = u
we have

. (Gou) = (a.Gou, Gou) = {a,u, (as) au) — (au, u) = O, (u).

It remains to show the liminf estimate. For this, we use the identity
O, (u.) = P (u—Geug) + 2(a-Geug, us) — P (Geug).

Now u. — ug implies that the two last terms converge to 2{a,ug, ug) — Pu(ug) = Po(ug).
Since the first term on the right-hand side is non-negative, the desired estimate follows.

d (¢). The result follows by applying part (b) to the derivative of the functions in
(( [); R™). In particular, note that

(Geu)(2) = a-(z)au(e — oy a-(y) e W) (y) dy = (Gau') (z) — F, Gl (y) dy.
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Using fol W (y) dy = u(l)—u(0) = 0 we easily find (G.u) — u' in L2((0,1); R™). Together
with the boundary conditions this implies G.u — u in H'((0,1); R™).

The convergence W (G.ug) — W, (ug) is now a direct consequence of Part (b). The liminf

estimate follows exactly as in (b). Thus, W, L 0, is established. n

3.2 Lagrangian wave equation

In this section we show how the abstract results of Section 2.4 apply to semilinear wave
equations with oscillatory coefficients. The emphasis here is on the fact that we are able
to allow for general coefficients of L type. The same holds true for the nonlinearity of
lower order. For simplicity we only treat the one-dimensional case, since only for this case
we have available the I'-convergence result for the derivative in Proposition 3.1(c). We
expect that the analogous result also holds in higher dimensions when the nonlinearity
has sufficiently slow growth.

By Y = S! = R/z we denote the microscopic periodicity interval and by A = (0,1) the
macroscopic physical domain. Consider density and stiffness matrices

p,a € L2(A x Y;R™X™) such that,

sym 3.4
Jaur > 0VE RV (n,y) €Ax Y+ ale )€ 2 alély o€ 2 righ O
Moreover, consider a potential F': A x Y x R™ — R such that
FeL®AxY;CL.(R™), F(x,y,u)>0. (3.5)
For ¢ > 0 we let C.(z) = (¢[%],€[£]+¢) N A, define the oscillatory functions
x x x
pe () :][ plw,=)dw, a.(z) :][ a(w,=)dw, F.(x,u) :][ F(w, —,u)dw,
C.(z) € C.(x) € Ce () €
and consider the hyperbolic systems
0
pe(@)ua(t,x) = 5 (aa(x)ux(t, a:)) — DuF(, u(t, z)). (3.6)
x

Our aim is to show that the solutions of this problem converge to solutions of the homo-
genized problem

o (2 un(t, z) = % (a*(x)ux(t, :13)) — D F*(x,u(t, 7)), (3.7)

where the effective quantities are given by

oo = [oends @@= ([ alwna) " Few = [ Pegod. 69
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The following result will be a direct application of the abstract results in Section 2.4. As
Hilbert spaces we choose V = V. = HJ(A;R™) and X = L2(A;R™). The total energy
potential &, : V' — R and the kinetic energy K. read

®.(v) = [, ta-(2)u/(z) -/ (z) + Fe(z,u(z))dz and K.(v) = [, 2p-(z)v(z) - v(z)dz.

Theorem 3.2 Tuke any family (u.)eso of weak solutions u. € CO(R;V.) N CHR; X) of
(3.6) which is uniformly bounded in energy. Assume that for a subsequence we have

VteR: u,(t) —=ult) and ., >0 in L°(R; X).

Then, w is a solution of the homogenized problem (3.7).

Moreover, if for some time t we have additionally (uc(t), u.(t)) = (u(t), w(t)) in V* x V¥,
then this convergence holds true for all t € R.

Remark 3.3 We emphasize that the I'-limit of the Lagrangian energy functional E. =
O, + K. in the weak topology of V' x X (which is the natural topology) is not the limit
energy. This is only true if we use the weak topology in V x V| i.e, strong convergence of
the velocities in L*(A; R™).

Proof: It is easy to see that ®. € C'(V,R) with D®.(u) = —Z(a.w') + Dy F.(-, u)

and that (2.18) is satisfied. In particular, we note that V' is compactly embedded into
C°(A;R™) and, hence, into X.

The limiting space Vj equals V' and the limiting quantities are defined via p*, a, and F*
in a similar manner. For the recovery operator G, : V' — V we choose G, as defined in
Proposition 3.1(c). It remains to verify condition (2.19). The condition (ii) there means

u. = ugin V=H'(AR™) =  Gipu. — piugin V= H (A R™). (3.9)

To verify this, note that we have u. — uy in X and as in the proof of Proposition 3.1 we
conclude p.u. — p*ug in X (arithmetic mean). Applying (-, v) to Gp.u., using duality
as well as G.v — v in V, the desired result follows.

For condition (2.19)(i) we decompose
<G*D(I> = [, —(acu G vdz + [, DyFe(z, us(x ))@av(x)dx.

The first term converges to (a,u(v’) by Proposition 3.1. For the second term we again
use the compact embedding of V into C°(A; R™) giving u. — g and G.v— v uniformly
in A. Thus, we conclude [, Do F(z, u.(2))Gov(z) dz — [y DuF*(x, ug(x))v(x) dz, where
again the oscillations of F. in x are simply averaged out. [
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3.3 Hamiltonian wave equation

For the Hamiltonian case we restrict to the linear case by assuming F' = 0. For a general
matrix-valued function b(x,y) € R™ ™ with b,b~! € L>(A x Y;R™ ™) we define b. as in
(3.2). With this we introduce the velocity variable v and the Hamiltonian H. via

1
u=0bv and H.(u,v)= 3 / bl pbov - v+ a - u de.
A

We keep b. general at this moment to be able to explore all possibilities that are compatible
with our method.

The underlying space is Z = V x X = H}(A;R™) x L2(A;R™) and the corresponding
symplectic structure reads €2, = (bfps ~reb<) and is to be considered as a mapping from Z
into Z* = H7Y(A; R™) x L2(A;R™).

For the recovery operator G. : Z — Z we may assume the diagonal form G, = (Goséo )

with @6 from Proposition 3.1(c¢). The second component G. has to be chosen such that
the joint recovery conditions (2.29) hold. Letting A. : Z — Z*; (1) — (;T(ZEZEZ)) and using

Lemma 2.2 this is equivalent to showing Q.G. (g) — Q (g) and A.G. (5) — Ay (g) for all
(Z) € Z. Since Ay and €y must have the form Ag (5) = (_(“&ul)/) and (Z) = (_4“)), we

have to satisfy m
Vo e L2(A:R™) : bl p.b.Gov — rv and Gov — v in L2(A;R™), (3.10a)
Vo e L2 (A;R™) : pob.Gov — pw in HHA; R™), (3.10b)
Vue HY(AR™) - b p.Gou — pTu in L2(A; R™). (3.10¢)

In relation (3.10¢) we have Gou — u (strongly) in L*(A;R™), hence we must choose b,
such that b! p.@ — p'@ for all w. Thus, we are forced to take b. = p-'p (where the slight
generalization b. = pZ'p. with g.v — pov would also be possible). Inserting this into the
first condition of (3.10a) we see that G. must be chosen such that

Gov— oo Tro — 0'in L2(A;R™).
Together with G.v — v and pU — p*v this implies

r=pu"(p*)'p and G = W pep T

again neglecting a slight generalization, where r might depend on e. Finally, condition
(3.10b) follows since p.b.G.v = puG.v converges to pv weakly in L*(A;R™), which is
compactly embedded into H™1(A; R™).

Thus, we have explored the possible ways to transform the linear wave equation into a
Hamiltonian systems in such way that a family of joint recovery operators exists. The
essential freedom we have is the choice of 1 : A — R™*™ such that p, u=t € L°(A; R™*™).

We define the symplectic form €2 = ( OT_O“) and the Hamiltonians H., € > 0, and H, via

H_(u,v) = f,u p=tpvv + acu’w'dz and  Hy(u,v) —2f,u v + au-u' da.
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Theorem 3.4 Let p,a € L¥(A x Y;R™™) and p., ac, i be as defined above. For e >0
let z. = (ug,v:) : R — V X Z be weak solutions of the Hamiltonian system

,uTua = DvHa(uaa Ua)a _,U'l}a - DvHE(uEa Ua)a

and assume that z. = z = (u,v) in L°(R;V x X). Then, z is a solution of the effective

Hamiltonian system
phi = DyHy(u,v), —pi = D,Hy(u,v),
In particular, the homogenized problem is given by the effective Hamiltonian Hy that is

the I limit of H. for ¢ — 0 in the weak topology of the natural energy space V x X.

While the above results have potential for generalization into the multi-dimensional case,
we now treat a particular simple Hamiltonian form, which arises by using the momentum
p = pew and the strain w = u/. The wave equation p.ii = (a.u’) can be rewritten as the

b e (L)) () -omesn

where H.(w,p) = 1 [, acw-w + p'p - pdz. Now the relevant Hilbert space is
Z():XQXXQ WlthXQ {wEL2(A ]Rm |fA dl’—O}

system

On the space X, the operator 9, can be defined by (0;'u)(z) = [, K £)d¢ with
K(z,§) = (x=¢£)/l + sign(x—1)/2. Since K satisfies K(x,§) = —K(f,x) the operator
0! is skew symmetric, which implies that Q is a symplectic form. From the above
it is again clear, that the effective Hamiltonian H is obtained as the I'-limit, namely

Ho(w,p) =3 [y aw'-w' + (p*)"'p- pda.

4 Discrete lattice models

In this section we want to apply the abstract theory for the passage from microscopic
discrete systems to macroscopic continuum models. While the macroscopic system will
be a system of wave equations as discussed above, the microscopic system is an infinite
lattice of mass points subjected to Newton’s law according to a background potential ¥,
and interaction potentials W, 3:

Myiiy = —DW,( Z DU, 5(tysp = ty) = DUy g(uy —uyp), vy €L7% (41)
0<|BI<R

Here, u, € R™ denotes the vector of all displacement of atoms in the cell associated with
the lattice site v € Z4. We write u = (u,), € (*(Z% R™) and v = u = (1), € (*(Z4;R™)
for vector of displacements and velocities, respectively. The system is mechanical system
with kinetic and potential energies

K(u) = Z %Mvuv'uv and  ®(u) = Z <\II%0(UV) + Z \Ilmﬁ(uv_uwrﬁ))- (4.2)

v€eZ4 ~€eZ4 0<|BI<R
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4.1 Embedding of lattices into continua

The main technique of treating the multiscale passage is to embed the discrete system
into the the continuous space Z =V x X with

V =H'R%R™) and X = L*R%4R™).

However, the embedding has to be such that the dynamics of the discrete model is ex-
actly represented in the continuous counterpart in suitable closed subspaces V. and X..
Moreover, we want to be able to find exact formulas for the energies K.(v) = $(M.v, v)
and &, : V. — R and for the induced symplectic structure €2..

For € > 0 we define the embedding operator

A VAR H'(RY),
Ee: u= (uv)v A EADY UVH(%E_'V)}
~yezZd

where H € WL(R9) is the piecewise affine interpolation between the values H(y) = 1
for y € [~1/4,1/4]¢ and H(y) = 0 for y & [~3/4,3/4]¢. The embedding into L?(R?) is

done in a similar spirit, namely

B Z(Z% - L*(R),
EcYp=(p), — |z—20 % pyﬁ(%af—v)},
~eZ4

where H(y) = 1 for y € [~1/4,1/4]¢ and 0 otherwise.

The normalization constants were chosen such that for U € C}(R?) and u. = (U(e7)),, we
have E.u. — U in H'(R%) and E.u. — U in L2(R?), which corresponds in a natural way
to our relation x = ey between the microscopic and the macroscopic scale. Note however,
that the norms scale with e, namely 27||p||% = %[ E.p|?. and ||E.ul|;> ~ ¢%||ul|%. The
construction of H and H was done such that the symplectic form in the discrete system
has a particularly simple representation in L?(R%; R™) after the embedding, namely

~ ~

08— (%op) = [ (B BD)0) — (BRI B dy. (43

Thus, up to a normalization constant we find the canonical symplectic form of the con-
tinuous problem in the cotangent bundle of L*(R;R™).
4.2 Transformation of the energies and equation

Moreover, we are able to write the kinetic and potential energies in terms of the embed-
dings. For simplicity, we restrict ourselves in the sequel to the one-dimensional case as
we did in Section 3, since we will rely on some results from there. We will also restrict to
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the case of nearest-neighbor interaction with a quadratic potential W, ;. We expect that
the analysis can be generalized using suitable elaborate notation, see e.g., [Mie06c].

We assume that the chain is microscopically periodic with a period N € N and that the
coefficients may vary macroscopically as well in a L™ manner. For this purpose we use
the functions m, a, and 1), satisfying

m,a € L®(R/yz x R;R™™) and ¢ € L®(R/nz x R; CL (R™)),
Ja>0V(n,z) €R/yz x RYEER™ : (4.4)
min {m(n, )¢ - €, a(n,2)¢- &, Y(n,2,8)} > ot
We assume that the functions m,a and 1 are piecewise constant in the first variable,

namely m(n,z) = m(v,z) for v € Z/nz and |n—y| < 1/2. As in Section 3.2 (cf. (3.2)) we
denote with m., a., and 1. the piecewise averages over the small cells C.(x), namely

fc m(z/e,y)dy with Ce(z) = e([Z] + N) + [0,eN]

and similarly for a. and 1/15. With this we define the discrete functions as

1
My =me(e7), Wap(u) = e(er,u),  Uya(u) = Sac(ey)u- u

Relying heavily on the piecewise affine nature of our embedding operators the discrete
energies (4.2) take the form

Eg(p) = Z’yEZ ;M 'y oy = ¢ fRd 2m€( )"
. (u) = D ez (\I’v 1(uv+1 Uy) + Wy o(uy) )
= & Jp 3[a:(2)(0.E)(2) - (0. Bu)(2)] + Fo(w, Eou)(w)) da,

where F.(z, u) = 2H per (L2) 0. (@, u) with Hpe(y) = > ez H(y—=). For the nonlinearity
we used that E.u is constant on the small intervals (e(y—1/4), e(y+1/4)).

HEp)(x) - (Eep)(x) da,

In particular, our construction guarantees that the discrete lattice system

me(e7)ily = —€2Du1/1€(37, Uy) + ac(e7) (Uyg1—uy) + ac(e(v+1))(uy1—uy), v €Z, (4.5)

is equivalent to the Hamiltonian system on Z. = V. x X, with Hamiltonian H, and
symplectic structure 2. given by

V. = E.2(Z;R™) C HY(R;R™), X. = E(*(Z;R™) C L(R; R™),

He(u,p) = Ko(u) + ®.(u) with K.(E.p) = eK.(p) and &.(Eu) = £*3.(u),

Q). () = fpu-p—u-pda.
The different rescaling in terms of € for the kinetic energy, the potential energy and the
symplectic form arise from the fact that we also rescale the time by defining a macroscopic

time 7 = et by letting u(t) = E.u(r/e) and p = cE.p(7/e), cf. [Mie06¢c, GHMO6b] for
more details. The resulting Hamiltonian system reads

(7 0)( dTp) - Q(:p) ~ (o) = Drlwp v x X (40
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4.3 Passage to the limit

We are now able to pass to the limit in the problem (4.6) by using our abstract theory
together with the analysis for the wave equations in Section 3.

For this we need to construct recovery operators G.:V = HY(R;R™) — V. for the
potential energy and recovery operators G.: X = L?(R;R™) — X for the kinetic energy
(i.e., (2.29)(ii) holds) such that additionally the symplectic form passes to the limit in the
sense of (2.29)(i). Here this means

V.su.—ueVp=VinV — é*ueéuoinX:LQ(R;]Rm),

4.7
XoopopeXo=XinX — Gp—poinV'—HIRR"Y. )

Note that any recovery operators CAJE and és provide weak convergence of @svo and éepo in
the better spaces V and X, respectively. However, this does not imply (4.7). Nevertheless,
we show in the following result that the canonical recovery operators associated with the
potential and the kinetic energies, respectively, do fulfill these conditions.

Lemma 4.1 With the functions m,a, and v from (4.4) we have the limits

Oy = F—lima_)o D, u— fR ta () (z) - (2) + % (2, u(z)) dx
and Ko(p) = [, sm 'p(z) - p(x)dz,

where the effective functions m*, a,, and V* are given by

m*(‘r) N ny 1m Y, T ]C[() N] dna .
a.(x) = (3 25 alv, ) n™ (f[o wp @l ) ~tdn)
w*(x7u> = % Z«J:[:I w(%%u - 3‘1[07N]q/} Ual’au)dﬂ

Moreover, the canonical recovery operators (@5)6 and (ég)6 constructed as in Proposition
2.5 satisfy (4.7).

Proof: We first convince ourselves that the given formulas are the associated I'-limits,
D, RN ®pin V and K. RN Ko in X. For this we simply interprete ®, and . as special cases
of the functionals considered in Proposition 3.1. This needs a generalization as we now
allow for the value +o0o under the integrand. For instance we implement the condition
p. € X. = F KZ(R R™) by allowing p. € X but defining K. via [ k.(2, p(x)) dz with
ke(z,p) = sm.(x)'p-p for x € (—=5,%) mod € and k.(x,p) = +oo otherwise. Taking the
harmonic mean the values +oco turn into 0, the average is well defined, and we obtain the
desired results. We assume that éa : X — X, C X is given via Proposition 2.5 when
applied to IC.. For the construction of @5 we use the auxiliary quadratic form

2

Q-(u) = [; ta.(2)u/(z) - W/ (x) + £ |u(z)|*dz for u € Vo and oo otherwise,

28



where « is an arbitrary, fixed number. Since the leading term is identical to that of ®, it is
easy to see that the recovery sequence G, for (). is a recovery sequence of the nonquadratic
®. as well.

Second, we derive condition (4.7). Consider any family (u.). with u. — g in V. As
é:ue is bounded in X, it suffices to test with a dense set of w € X. We choose any w &
CO(R:R™). Let sppt(w) C [~R+1, R—1] for some R > 0. Then, sppt(G.w) C [~R, R]
and uc|[—r,r) — Uo|-r,r in L*([~R, R];R™), and we find

(Gruz,w) = [T ue (Grw)de — [T ugwda = (u,w),

which is the first line in (4.7).

For @6 we argue similarly by using C!(R; R™) as a dense set in V. Now, @Ev will not have
compact support, sub satisfy a uniform bound |@EU(I)| > Ce*l#l. Moreover, @Ev — v
in V implies strong L?-convergence on compact intervals [—R, R]|. For a family (p.). with
P — po in X we can estimate as follows

[{GZpe, v) = (Po, v)| = [(pe; Gev) = (po,0)|

< f|:c|>R (|pa|+|p0|)ce_n|m|dl' + } f\x\<RpE ’ Ga'U_pO ’ de}
The first term can be estimated by sup.(o ) [|[p:[x2Ce™"/\/k and, thus, can be made
small independently of ¢ by choosing R big enough. Then, keeping R fixed the second

term tends to 0 for € — 0 because of weak convergence of p. and strong convergence of
G.v in L*([-R, R];R™). Thus, the second condition in (4.7) is established as well. m

We summary the finding in the main result as follows.

Theorem 4.2 Let m,a, and 1) be given as in (4.4). Consider a family (u.). of solutions
in C?(R; (2(Z;R™)) such that

(E-u(2), E-M.eu(2)) = (u,p) in L®(R; HY(R; R™) x L2(R; R™)).

:
Then, (u,p) is a solution of the effective, macroscopic wave equation

d%_u(T, z) =m*(x) 'p(T, 2), %p(T, 2) = 0, (a.(x)dpu(r, ) — D™ (2, u)

with the effective Hamiltonian [, %(m*)_lp “p+ %a*u’ ' 4 *(-,u)dz. Moreover, if for
some T € R we have (E.u(r/e), E-M.eu(r/e)) — (u(r),p(7)), then the same holds for
all T € R.

A Appendix

Lemma A.1 LetY be a reflexive or separable Banach space. Then, vy, — y is equivalent
to the property that for all sequences (N, )nen in Y™ with n, = n we have (yn, nn) — (y,1).
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Proof: The implication “=" follows by the triangle inequality via (n,,y,) = (., y) +
Dy Yn—y) — (n,y)+0, since y,—y — 0 and (1, )nen is bounded due to weak™* convergence.

For the opposite implication first note that taking n, = n implies 3, — y. Second, we use
that there exists 7, € Y* such that ||n,||. = 1 and (y,—vy, n.) = ||yn—y|| = 6. Now choose
a subsequence such that limy_, d,, = limsup,,_, . 0,. Choosing a further subsequence if
necessary, we may assume 1, 2 7 by using the property of Y. We define the sequence
(Mn)nen as My = Ny, if n = ny for some k and as n, = n else. Then 7, A 1 and we have

Onge = [Wne — Yl = Wnge> M) — Y i) — (y,m) — (y,m) = 0.

As limsup ||y, —y|| = limy_ ,,, = 0 the strong convergence is proved. m
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